1
|
Abeyrathne EDNS, Nam KC, Huang X, Ahn DU. Egg yolk lipids: separation, characterization, and utilization. Food Sci Biotechnol 2022; 31:1243-1256. [PMID: 35992319 PMCID: PMC9385935 DOI: 10.1007/s10068-022-01138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/22/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022] Open
Abstract
Egg yolk contains very high levels of lipids, which comprise 33% of whole egg yolk. Although triglyceride is the main lipid, egg yolk is the richest source of phospholipids and cholesterol in nature. The egg yolk phospholipids have a unique composition with high levels of phosphatidylcholine followed by phosphatidylethanolamine, sphingomyelin, plasmalogen, and phosphatidylinositol. All the egg yolk lipids are embedded inside the HDL and LDL micelles or granular particles. Egg yolk lipids can be easily extracted using solvents or supercritical extraction methods but their commercial applications of egg yolk lipids are limited. Egg yolk lipids have excellent potential as a food ingredient or cosmeceutical, pharmaceutical, and nutraceutical agents because they have excellent functional and biological characteristics. This review summarizes the current knowledge on egg yolk lipids' extraction methods and functions and discusses their current and future use, which will be important to increase the use and value of the egg.
Collapse
Affiliation(s)
- Edirisingha Dewage Nalaka Sandun Abeyrathne
- Department of Animal Science, Uva Wellassa University, Badulla, 90000 Sri Lanka
- Department of Animal Science & Technology, Suncheon National University, Suncheon, 57922 Korea
| | - Ki-Chang Nam
- Department of Animal Science & Technology, Suncheon National University, Suncheon, 57922 Korea
| | - Xi Huang
- Key Laboratory of Environment Correlative Dietology, Ministry of Education, National Research and Development Center for Egg Processing, College of Food Science and Technology, Huazhong Agricultural University, Wuhan, 430070 Hubei People’s Republic of China
| | - Dong Uk Ahn
- Department of Animal Science, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
2
|
Pončáková T, Fábian M, Martinková M, Novotná M, Fabišíková M, Tvrdoňová M, Pilátová MB, Nosálová N, Kuchár J, Jáger D, Litecká M. Stereoselective synthesis and anticancer profile of C-alkyl pyrrolidine-diols with a sphingoid base-like backbone. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
3
|
Gonda J, Fazekašová S, Martinková M, Mitríková T, Roman D, Pilátová MB. Synthesis and biological activity of sphingosines with integrated azobenzene switches. Org Biomol Chem 2019; 17:3361-3373. [DOI: 10.1039/c9ob00137a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of photochromic active sphingosine analogues and their antiproliferative activity against seven human cancer cell lines is reported.
Collapse
Affiliation(s)
- Jozef Gonda
- Department of Organic Chemistry
- P.J. Šafárik University
- Sk-040 01 Košice
- Slovak Republic
| | - Simona Fazekašová
- Department of Organic Chemistry
- P.J. Šafárik University
- Sk-040 01 Košice
- Slovak Republic
| | - Miroslava Martinková
- Department of Organic Chemistry
- P.J. Šafárik University
- Sk-040 01 Košice
- Slovak Republic
| | - Tatiana Mitríková
- Department of Organic Chemistry
- P.J. Šafárik University
- Sk-040 01 Košice
- Slovak Republic
| | - Dávid Roman
- Chemical Biology of Microbe-Host Interactions
- Leibniz Institute for Natural Product Research and Infection Biology e.V
- Hans-Knöll-Institute (HKI)
- 07745 Jena
- Germany
| | - Martina Bago Pilátová
- Institute of Pharmacology
- Faculty of Medicine
- P.J. Šafárik University
- 040 66 Košice
- Slovak Republic
| |
Collapse
|
4
|
Schmidt AM, Sengupta N, Saski CA, Noorai RE, Baldwin WS. RNA sequencing indicates that atrazine induces multiple detoxification genes in Daphnia magna and this is a potential source of its mixture interactions with other chemicals. CHEMOSPHERE 2017; 189:699-708. [PMID: 28968576 PMCID: PMC5651997 DOI: 10.1016/j.chemosphere.2017.09.107] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/14/2017] [Accepted: 09/22/2017] [Indexed: 05/08/2023]
Abstract
Atrazine is an herbicide with several known toxicologically relevant effects, including interactions with other chemicals. Atrazine increases the toxicity of several organophosphates and has been shown to reduce the toxicity of triclosan to D. magna in a concentration dependent manner. Atrazine is a potent activator in vitro of the xenobiotic-sensing nuclear receptor, HR96, related to vertebrate constitutive androstane receptor (CAR) and pregnane X-receptor (PXR). RNA sequencing (RNAseq) was performed to determine if atrazine is inducing phase I-III detoxification enzymes in vivo, and estimate its potential for mixture interactions. RNAseq analysis demonstrates induction of glutathione S-transferases (GSTs), cytochrome P450s (CYPs), glucosyltransferases (UDPGTs), and xenobiotic transporters, of which several are verified by qPCR. Pathway analysis demonstrates changes in drug, glutathione, and sphingolipid metabolism, indicative of HR96 activation. Based on our RNAseq data, we hypothesized as to which environmentally relevant chemicals may show altered toxicity with co-exposure to atrazine. Acute toxicity tests were performed to determine individual LC50 and Hillslope values as were toxicity tests with binary mixtures containing atrazine. The observed mixture toxicity was compared with modeled mixture toxicity using the Computational Approach to the Toxicity Assessment of Mixtures (CATAM) to assess whether atrazine is exerting antagonism, additivity, or synergistic toxicity in accordance with our hypothesis. Atrazine-triclosan mixtures showed decreased toxicity as expected; atrazine-parathion, atrazine-endosulfan, and to a lesser extent atrazine-p-nonylphenol mixtures showed increased toxicity. In summary, exposure to atrazine activates HR96, and induces phase I-III detoxification genes that are likely responsible for mixture interactions.
Collapse
Affiliation(s)
- Allison M Schmidt
- Environmental Toxicology Program, Clemson University, Clemson, SC, USA
| | - Namrata Sengupta
- Environmental Toxicology Program, Clemson University, Clemson, SC, USA
| | | | - Rooksana E Noorai
- Clemson University Genomics Institute, Clemson University, Clemson, SC, USA
| | - William S Baldwin
- Environmental Toxicology Program, Clemson University, Clemson, SC, USA; Biological Sciences, Clemson University, Clemson, SC, USA.
| |
Collapse
|
5
|
Cingolani F, Simbari F, Abad JL, Casasampere M, Fabrias G, Futerman AH, Casas J. Jaspine B induces nonapoptotic cell death in gastric cancer cells independently of its inhibition of ceramide synthase. J Lipid Res 2017; 58:1500-1513. [PMID: 28572516 DOI: 10.1194/jlr.m072611] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 05/30/2017] [Indexed: 12/22/2022] Open
Abstract
Sphingolipids (SLs) have been extensively investigated in biomedical research due to their role as bioactive molecules in cells. Here, we describe the effect of a SL analog, jaspine B (JB), a cyclic anhydrophytosphingosine found in marine sponges, on the gastric cancer cell line, HGC-27. JB induced alterations in the sphingolipidome, mainly the accumulation of dihydrosphingosine, sphingosine, and their phosphorylated forms due to inhibition of ceramide synthases. Moreover, JB provoked atypical cell death in HGC-27 cells, characterized by the formation of cytoplasmic vacuoles in a time and dose-dependent manner. Vacuoles appeared to originate from macropinocytosis and triggered cytoplasmic disruption. The pan-caspase inhibitor, z-VAD, did not alter either cytotoxicity or vacuole formation, suggesting that JB activates a caspase-independent cell death mechanism. The autophagy inhibitor, wortmannin, did not decrease JB-stimulated LC3-II accumulation. In addition, cell vacuolation induced by JB was characterized by single-membrane vacuoles, which are different from double-membrane autophagosomes. These findings suggest that JB-induced cell vacuolation is not related to autophagy and it is also independent of its action on SL metabolism.
Collapse
Affiliation(s)
- Francesca Cingolani
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| | - Fabio Simbari
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Jose Luis Abad
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Mireia Casasampere
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Gemma Fabrias
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain
| | - Anthony H Futerman
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, Israel
| | - Josefina Casas
- Research Unit on BioActive Molecules (RUBAM), Department of Biomedicinal Chemistry, Institute for Advanced Chemistry of Catalonia (IQAC-CSIC), Barcelona, Spain.
| |
Collapse
|
6
|
Stereoselective preparation of quaternary 2-vinyl sphingosines and ceramides and their effect on basal sphingolipid metabolism. Chem Phys Lipids 2017; 205:34-41. [PMID: 28445710 DOI: 10.1016/j.chemphyslip.2017.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 04/16/2017] [Accepted: 04/20/2017] [Indexed: 11/20/2022]
Abstract
The dicyclohexylborane-mediated addition of allene 1 to (E)-2-tridecenal affords a quaternary protected 2-amino-2-vinyl-1,3-diol in good yield as a single diastereomer. This compound is readily transformed into the four stereoisomers of the quaternary (E)-2-vinyl analogs of sphingosine. The metabolic fate and the effect of these compounds on the basal sphingolipid metabolism in human A549 lung adenocarcinoma cells has been studied, together with the ceramide analog of the most relevant vinylsphingosine derivative.
Collapse
|
7
|
Santos C, Stauffert F, Ballereau S, Dehoux C, Rodriguez F, Bodlenner A, Compain P, Génisson Y. Iminosugar-based ceramide mimicry for the design of new CERT START domain ligands. Bioorg Med Chem 2017; 25:1984-1989. [PMID: 28237558 DOI: 10.1016/j.bmc.2017.02.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/23/2017] [Accepted: 02/11/2017] [Indexed: 01/29/2023]
Abstract
The enigmatical dichotomy between the two CERT/GPBP protein isoforms, their vast panel of biological implications and the scarcity of known antagonist series call for new ligand chemotypes identification. We report the design of iminosugar-based ceramide mimics for the development of new START domain ligands potentially targeting either protein isoforms. Strategic choice of (i) an iminoxylitol core structure and (ii) the positioning of two dodecyl residues led to an extent of protein binding comparable to that of the natural cargo lipid ceramide or the archetypical inhibitor HPA-12. Molecular docking study evidenced a possible mode of protein binding fully coherent with the one observed in crystalline co-structures of known ligands. The present study thus paves the way for cellular CERT inhibition studies en route to the development of pharmacological tools aiming at deciphering the respective function and therapeutic potential of the two CERT/GPBP protein isoforms.
Collapse
Affiliation(s)
- Cécile Santos
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse F-31062, France
| | - Fabien Stauffert
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Stéphanie Ballereau
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse F-31062, France
| | - Cécile Dehoux
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse F-31062, France
| | - Frédéric Rodriguez
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse F-31062, France
| | - Anne Bodlenner
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France
| | - Philippe Compain
- Laboratoire de Synthèse Organique et Molécules Bioactives (SYBIO), Université de Strasbourg, CNRS (UMR 7509), Ecole Européenne de Chimie, Polymères et Matériaux (ECPM), 25 rue Becquerel, F-67087 Strasbourg, France.
| | - Yves Génisson
- SPCMIB, UMR5068 CNRS-Université Paul Sabatier-Toulouse III, 118 route de Narbonne, Toulouse F-31062, France.
| |
Collapse
|
8
|
Rodríguez A, Ariza X, Contreras MA, Garcia J, Lloyd-Williams P, Mercadal N, Sánchez C. A Useful Allene for the Stereoselective Synthesis of Protected Quaternary 2-Amino-2-vinyl-1,3-diols. J Org Chem 2017; 82:1851-1855. [PMID: 28085287 DOI: 10.1021/acs.joc.6b02765] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Treatment of readily available allene 1 with Cy2BH followed by addition of an aldehyde led to quaternary protected 2-amino-2-vinyl-1,3-diols in high yield and excellent stereochemical purity. The choice of benzoyl as N-protecting group is critical since the observed N- to O-Bz transfer during the process prevents later undesired isomerizations in the adducts and keeps all heteroatoms protected.
Collapse
Affiliation(s)
- Aleix Rodríguez
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Facultat de Química, Universitat de Barcelona , Martí i Franquès 1, Barcelona 08028, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB) , Barcelona 08028, Spain
| | - Xavier Ariza
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Facultat de Química, Universitat de Barcelona , Martí i Franquès 1, Barcelona 08028, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB) , Barcelona 08028, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III , Madrid 28029, Spain
| | - Miguel A Contreras
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Facultat de Química, Universitat de Barcelona , Martí i Franquès 1, Barcelona 08028, Spain
| | - Jordi Garcia
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Facultat de Química, Universitat de Barcelona , Martí i Franquès 1, Barcelona 08028, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB) , Barcelona 08028, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III , Madrid 28029, Spain
| | - Paul Lloyd-Williams
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Facultat de Química, Universitat de Barcelona , Martí i Franquès 1, Barcelona 08028, Spain.,Institut de Biomedicina de la Universitat de Barcelona (IBUB) , Barcelona 08028, Spain.,CIBER Fisiopatología de la Obesidad y la Nutrición (CIBERobn), Instituto de Salud Carlos III , Madrid 28029, Spain
| | - Nerea Mercadal
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Facultat de Química, Universitat de Barcelona , Martí i Franquès 1, Barcelona 08028, Spain
| | - Carolina Sánchez
- Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Facultat de Química, Universitat de Barcelona , Martí i Franquès 1, Barcelona 08028, Spain
| |
Collapse
|
9
|
Punzón E, García-Alvarado F, Maroto M, Fernández-Mendívil C, Michalska P, García-Álvarez I, Arranz-Tagarro JA, Buendia I, López MG, León R, Gandía L, Fernández-Mayoralas A, García AG. Novel sulfoglycolipid IG20 causes neuroprotection by activating the phase II antioxidant response in rat hippocampal slices. Neuropharmacology 2016; 116:110-121. [PMID: 28007500 DOI: 10.1016/j.neuropharm.2016.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 10/31/2016] [Accepted: 12/18/2016] [Indexed: 10/20/2022]
Abstract
Compound IG20 is a newly synthesised sulphated glycolipid that promotes neuritic outgrowth and myelinisation, at the time it causes the inhibition of glial proliferation and facilitates exocytosis in chromaffin cells. Here we have shown that IG20 at 0.3-10 μM afforded neuroprotection in rat hippocampal slices stressed with veratridine, glutamate or with oxygen plus glucose deprivation followed by reoxygenation (OGD/reox). Excess production of reactive oxygen species (ROS) elicited by glutamate or ODG/reox was prevented by IG20 that also restored the depressed tissue levels of GSH and ATP in hippocampal slices subjected to OGD/reox. Furthermore, the augmented iNOS expression produced upon OGD/reox exposure was also counteracted by IG20. Additionally, the IG20 elicited neuroprotection was prevented by the presence of inhibitors of the signalling pathways Jak2/STAT3, MEK/ERK1/2, and PI3K/Akt, consistent with the ability of the compound to increase the phosphorylation of Jak2, ERK1/2, and Akt. Thus, the activation of phase II response and the Nrf2/ARE pathway could explain the antioxidant and anti-inflammatory effects and the ensuing neuroprotective actions of IG20.
Collapse
Affiliation(s)
- Eva Punzón
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Fernanda García-Alvarado
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Marcos Maroto
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Cristina Fernández-Mendívil
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Patrycja Michalska
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Isabel García-Álvarez
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071 Toledo, Spain
| | - Juan Alberto Arranz-Tagarro
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Izaskun Buendia
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Manuela G López
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | - Rafael León
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, c/ Diego de León, 62, 28006 Madrid, Spain
| | - Luis Gandía
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain
| | | | - Antonio G García
- Instituto Teófilo Hernando, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain; Departamento de Farmacología y Terapéutica, Facultad de Medicina, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, 28029 Madrid, Spain; Servicio de Farmacología Clínica, Instituto de Investigación Sanitaria, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, c/ Diego de León, 62, 28006 Madrid, Spain.
| |
Collapse
|
10
|
Martinková M, Gonda J, Jacková D. Simple marine 1-deoxysphingoid bases: biological activity and syntheses. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Vogt D, Stark H. Therapeutic Strategies and Pharmacological Tools Influencing S1P Signaling and Metabolism. Med Res Rev 2016; 37:3-51. [PMID: 27480072 DOI: 10.1002/med.21402] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 06/01/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023]
Abstract
During the last two decades the study of the sphingolipid anabolic, catabolic, and signaling pathways has attracted enormous interest. Especially the introduction of fingolimod into market as first p.o. therapeutic for the treatment of multiple sclerosis has boosted this effect. Although the complex regulation of sphingosine-1-phosphate (S1P) and other catabolic and anabolic sphingosine-related compounds is not fully understood, the influence on different (patho)physiological states from inflammation to cytotoxicity as well as the availability of versatile pharmacological tools that represent new approaches to study these states are described. Here, we have summarized various aspects concerning the many faces of sphingolipid function modulation by different pharmacological tools up to clinical candidates. Due to the immense heterogeneity of physiological or pharmacological actions and complex cross regulations, it is difficult to predict their role in upcoming therapeutic approaches. Currently, inflammatory, immunological, and/or antitumor aspects are discussed.
Collapse
Affiliation(s)
- Dominik Vogt
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Straße 9, D-60438, Frankfurt, Germany
| | - Holger Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitätsstraße 1, D-40225, Düsseldorf, Germany
| |
Collapse
|
12
|
Crespo-Castrillo A, Punzón E, de Pascual R, Maroto M, Padín JF, García-Álvarez I, Nanclares C, Ruiz-Pascual L, Gandía L, Fernández-Mayoralas A, García AG. Novel synthetic sulfoglycolipid IG20 facilitates exocytosis in chromaffin cells through the regulation of sodium channels. J Neurochem 2015; 135:880-96. [DOI: 10.1111/jnc.13357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 08/03/2015] [Accepted: 08/19/2015] [Indexed: 11/27/2022]
Affiliation(s)
- Andrea Crespo-Castrillo
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | - Eva Punzón
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | - Ricardo de Pascual
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | - Marcos Maroto
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | - Juan Fernando Padín
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | | | - Carmen Nanclares
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | - Lucía Ruiz-Pascual
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | - Luis Gandía
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
| | | | - Antonio G. García
- Instituto Teófilo Hernando; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
- Departamento de Farmacología; Facultad de Medicina; Universidad Autónoma de Madrid; Madrid Spain
- Servicio de Farmacología Clínica; Instituto de Investigación Sanitaria; Hospital Universitario de La Princesa; Madrid Spain
| |
Collapse
|
13
|
Siciliano C, Barattucci A, Bonaccorsi P, Di Gioia ML, Leggio A, Minuti L, Romio E, Temperini A. Synthesis of d-erythro-Sphinganine through Serine-Derived α-Amino Epoxides. J Org Chem 2014; 79:5320-6. [DOI: 10.1021/jo500493c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Carlo Siciliano
- Dipartimento
di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Edificio Polifunzionale, I-87030 Arcavacata di Rende (CS), Italy
| | - Anna Barattucci
- Dipartimento
di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres
31, 98166 Messina, Italy
| | - Paola Bonaccorsi
- Dipartimento
di Scienze Chimiche, Università di Messina, Viale F. Stagno d’Alcontres
31, 98166 Messina, Italy
| | - Maria Luisa Di Gioia
- Dipartimento
di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Edificio Polifunzionale, I-87030 Arcavacata di Rende (CS), Italy
| | - Antonella Leggio
- Dipartimento
di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Edificio Polifunzionale, I-87030 Arcavacata di Rende (CS), Italy
| | - Lucio Minuti
- Dipartimento di Chimica, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy
| | - Emanuela Romio
- Dipartimento
di Farmacia e Scienze della Salute e della Nutrizione, Università della Calabria, Edificio Polifunzionale, I-87030 Arcavacata di Rende (CS), Italy
| | - Andrea Temperini
- Dipartimento di Chimica e Tecnologia del Farmaco, Università di Perugia, Via del
Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
14
|
Alcaide A, Llebaria A. Aziridine Ring Opening for the Synthesis of Sphingolipid Analogues: Inhibitors of Sphingolipid-Metabolizing Enzymes. J Org Chem 2014; 79:2993-3029. [DOI: 10.1021/jo500061w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anna Alcaide
- Medicinal Chemistry Laboratory (MedChemLab), Departament
de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC−CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| | - Amadeu Llebaria
- Medicinal Chemistry Laboratory (MedChemLab), Departament
de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC−CSIC), Jordi Girona 18-26, Barcelona 08034, Spain
| |
Collapse
|
15
|
Li C, Key JA, Jia F, Dandapat A, Hur S, Cairo CW. Practical labeling methodology for choline-derived lipids and applications in live cell fluorescence imaging. Photochem Photobiol 2014; 90:686-95. [PMID: 24383866 DOI: 10.1111/php.12234] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 12/24/2013] [Indexed: 12/18/2022]
Abstract
Lipids of the plasma membrane participate in a variety of biological processes, and methods to probe their function and cellular location are essential to understanding biochemical mechanisms. Previous reports have established that phosphocholine-containing lipids can be labeled by alkyne groups through metabolic incorporation. Herein, we have tested alkyne, azide and ketone-containing derivatives of choline as metabolic labels of choline-containing lipids in cells. We also show that 17-octadecynoic acid can be used as a complementary metabolic label for lipid acyl chains. We provide methods for the synthesis of cyanine-based dyes that are reactive with alkyne, azide and ketone metabolic labels. Using an improved method for fluorophore conjugation to azide or alkyne-modified lipids by Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC), we apply this methodology in cells. Lipid-labeled cell membranes were then interrogated using flow cytometry and fluorescence microscopy. Furthermore, we explored the utility of this labeling strategy for use in live cell experiments. We demonstrate measurements of lipid dynamics (lateral mobility) by fluorescence photobleaching recovery (FPR). In addition, we show that adhesion of cells to specific surfaces can be accomplished by chemically linking membrane lipids to a functionalized surface. The strategies described provide robust methods for introducing bioorthogonal labels into native lipids.
Collapse
Affiliation(s)
- Caishun Li
- Alberta Glycomics Centre, Department of Chemistry, University of Alberta, Edmonton Alberta, T6G 2G2, Canada
| | | | | | | | | | | |
Collapse
|
16
|
Su ZH, Jia HM, Zhang HW, Feng YF, An L, Zou ZM. Hippocampus and serum metabolomic studies to explore the regulation of Chaihu-Shu-Gan-San on metabolic network disturbances of rats exposed to chronic variable stress. MOLECULAR BIOSYSTEMS 2014; 10:549-61. [DOI: 10.1039/c3mb70377k] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Lee YM, Lim C, Lee HS, Shin YK, Shin KO, Lee YM, Kim S. Synthesis and Biological Evaluation of a Polyyne-Containing Sphingoid Base Probe as a Chemical Tool. Bioconjug Chem 2013; 24:1324-31. [DOI: 10.1021/bc300684q] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yun Mi Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| | - Chaemin Lim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| | - Hun Seok Lee
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| | - Young Kee Shin
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| | - Kyong-Oh Shin
- College
of Pharmacy and MRC, Chungbuk National University, Cheongju 361-763, Korea
| | - Yong-Moon Lee
- College
of Pharmacy and MRC, Chungbuk National University, Cheongju 361-763, Korea
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro, Gwanak-gu,
Seoul 151-742, Korea
| |
Collapse
|
18
|
Delgado A, Fabriàs G, Casas J, Abad JL. Natural products as platforms for the design of sphingolipid-related anticancer agents. Adv Cancer Res 2013; 117:237-81. [PMID: 23290782 DOI: 10.1016/b978-0-12-394274-6.00008-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Modulation of sphingolipid metabolism is a promising strategy for cancer therapy that has already opened innovative approaches for the development of pharmacological tools and rationally designed new drugs. On the other hand, natural products represent a classical and well-established source of chemical diversity that has guided medicinal chemists on the development of new chemical entities with potential therapeutic use. Based on these premises, the aim of this chapter is to provide the reader with a general overview of some of the most representative families of sphingolipid-related natural products that have been described in the recent literature as lead compounds for the design of new modulators of sphingolipid metabolism. Special emphasis is placed on the structural aspects of natural sphingoids and synthetic analogs that have found application as anticancer agents. In addition, their cellular targets and/or their mode of action are also considered.
Collapse
Affiliation(s)
- Antonio Delgado
- Spanish National Research Council, Consejo Superior de Investigaciones Científicas, Research Unit on Bioactive Molecules, Jordi Girona 18-26, Barcelona, Spain.
| | | | | | | |
Collapse
|
19
|
Alcaide A, Llebaria A. Synthesis of 1-thio-phytosphingolipid analogs by microwave promoted reactions of thiols and aziridine derivatives. Tetrahedron Lett 2012. [DOI: 10.1016/j.tetlet.2012.02.066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Signaling and regulatory functions of bioactive sphingolipids as therapeutic targets in multiple sclerosis. Neurochem Res 2012; 37:1154-69. [PMID: 22451227 DOI: 10.1007/s11064-012-0728-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 01/04/2012] [Accepted: 02/10/2012] [Indexed: 12/21/2022]
Abstract
Spingolipids (SLs) are an important component of central nervous system (CNS) myelin sheaths and affect the viability of brain cells (oligodendrocytes, neurons and astrocytes) that is determined by signaling mediated by bioactive sphingoids (lyso-SLs). Recent studies indicate that two lipids, ceramide and sphingosine 1-phosphate (S1P), are particularly involved in many human diseases including the autoimmune inflammatory demyelination of multiple sclerosis (MS). In this review we: (1) Discuss possible sources of ceramide in CNS; (2) Summarize the features of the metabolism of S1P and its downstream signaling through G-protein-coupled receptors; (3) Link perturbations in bioactive SLs metabolism to MS neurodegeneration and (4) Compile ceramide and S1P relationships to this process. In addition, we described recent preclinical and clinical trials of therapies targeting S1P signaling, including 2-amino-2-propane-1,3-diol hydrochloride (FTY720, fingolimod) as well as proposed intervention to specify critical SL levels that tilt balances of apoptotic/active ceramide versus anti-apoptotic/inactive dihydroceramide that may offer a novel and important therapeutic approach to MS.
Collapse
|
21
|
Mutoh T, Rivera R, Chun J. Insights into the pharmacological relevance of lysophospholipid receptors. Br J Pharmacol 2012; 165:829-44. [PMID: 21838759 PMCID: PMC3312481 DOI: 10.1111/j.1476-5381.2011.01622.x] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 07/22/2011] [Accepted: 07/23/2011] [Indexed: 12/22/2022] Open
Abstract
The discovery of lysophospholipid (LP) 7-transmembrane, G protein-coupled receptors (GPCRs) that began in the 1990s, together with research into the functional roles of the major LPs known as lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P), have opened new research avenues into their biological processes and mechanisms. Major examples of LP signalling effects include embryogenesis, nervous system development, vascular development, uterine implantation, immune cell trafficking, and inflammatory reactions. LP signalling also influences the pathophysiology of many diseases including cancer, autoimmune and inflammatory diseases, which indicate that LP receptors may be attractive targets for pharmacological therapies. A key example of such a therapeutic agent is the S1P receptor modulator FTY720, which upon phosphorylation and continued drug exposure, acts as an S1P receptor functional antagonist. This compound (also known as fingolimod or Gilenya) has recently been approved by the FDA for the treatment of relapsing forms of multiple sclerosis. Continued basic and translational research on LP signalling should provide novel insights into both basic biological mechanisms, as well as novel therapeutic approaches to combat a range of human diseases.
Collapse
Affiliation(s)
- Tetsuji Mutoh
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
- Gunma Kokusai AcademyGunma, Japan
| | - Richard Rivera
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| | - Jerold Chun
- Department of Molecular Biology, Dorris Neuroscience Center, The Scripps Research InstituteLa Jolla, CA, USA
| |
Collapse
|
22
|
Canals D, Perry DM, Jenkins RW, Hannun YA. Drug targeting of sphingolipid metabolism: sphingomyelinases and ceramidases. Br J Pharmacol 2011; 163:694-712. [PMID: 21615386 DOI: 10.1111/j.1476-5381.2011.01279.x] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Sphingolipids represent a class of diverse bioactive lipid molecules that are increasingly appreciated as key modulators of diverse physiologic and pathophysiologic processes that include cell growth, cell death, autophagy, angiogenesis, and stress and inflammatory responses. Sphingomyelinases and ceramidases are key enzymes of sphingolipid metabolism that regulate the formation and degradation of ceramide, one of the most intensely studied classes of sphingolipids. Improved understanding of these enzymes that control not only the levels of ceramide but also the complex interconversion of sphingolipid metabolites has provided the foundation for the functional analysis of the roles of sphingolipids. Our current understanding of the roles of various sphingolipids in the regulation of different cellular processes has come from loss-of-function/gain-of-function studies utilizing genetic deletion/downregulation/overexpression of enzymes of sphingolipid metabolism (e.g. knockout animals, RNA interference) and from the use of pharmacologic inhibitors of these same enzymes. While genetic approaches to evaluate the functional roles of sphingolipid enzymes have been instrumental in advancing the field, the use of pharmacologic inhibitors has been equally important in identifying new roles for sphingolipids in important cellular processes.The latter also promises the development of novel therapeutic targets with implications for cancer therapy, inflammation, diabetes, and neurodegeneration. In this review, we focus on the status and use of pharmacologic compounds that inhibit sphingomyelinases and ceramidases, and we will review the history, current uses and future directions for various small molecule inhibitors, and will highlight studies in which inhibitors of sphingolipid metabolizing enzymes have been used to effectively treat models of human disease.
Collapse
Affiliation(s)
- Daniel Canals
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | | | | | | |
Collapse
|
23
|
Díaz L, Casas J, Bujons J, Llebaria A, Delgado A. New Glucocerebrosidase Inhibitors by Exploration of Chemical Diversity of N-Substituted Aminocyclitols Using Click Chemistry and in Situ Screening. J Med Chem 2011; 54:2069-79. [DOI: 10.1021/jm101204u] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Lucía Díaz
- Spanish National Research Council (Consejo Superior de Investigaciones Científicas, CSIC), Research Unit on Bioactive Molecules (RUBAM), Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Josefina Casas
- Spanish National Research Council (Consejo Superior de Investigaciones Científicas, CSIC), Research Unit on Bioactive Molecules (RUBAM), Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jordi Bujons
- Spanish National Research Council (Consejo Superior de Investigaciones Científicas, CSIC), Departament de Química Biològica i Modelització Molecular, Institut de Química Avançada de Catalunya (IQAC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Amadeu Llebaria
- Spanish National Research Council (Consejo Superior de Investigaciones Científicas, CSIC), Research Unit on Bioactive Molecules (RUBAM), Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Antonio Delgado
- Spanish National Research Council (Consejo Superior de Investigaciones Científicas, CSIC), Research Unit on Bioactive Molecules (RUBAM), Departament de Química Biomèdica, Institut de Química Avançada de Catalunya (IQAC), Jordi Girona 18-26, 08034 Barcelona, Spain
- Universitat de Barcelona (UB), Facultat de Farmàcia, Unitat de Química Farmacèutica (Unitat Associada al CSIC), Avenida Joan XXIII, s/n, 08028 Barcelona, Spain
| |
Collapse
|
24
|
Mina JG, Mosely JA, Ali HZ, Denny PW, Steel PG. Exploring Leishmania major inositol phosphorylceramide synthase (LmjIPCS): insights into the ceramide binding domain. Org Biomol Chem 2011; 9:1823-30. [PMID: 21267500 DOI: 10.1039/c0ob00871k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of set of ceramide analogues exploring hydrophobicity in the acyl chains and the degree and nature of hydroxylation is described. These have been assayed against the parasitic protozoan enzyme LmjIPCS. These studies showed that whilst the C-3 hydroxyl group was not essential for turnover it provided enhanced affinity. Reflecting the membrane bound nature of the enzyme a long (C(13)) hydrocarbon ceramide tail was necessary for both high affinity and turnover. Whilst the N-acyl chain also contributed to affinity, analogues lacking the amide linkage functioned as competitive inhibitors in both enzyme and cell-based assays. A model that accounts for this observation is proposed.
Collapse
Affiliation(s)
- John G Mina
- Centre for Bioactive Chemistry, Biophysical Sciences Institute, Department of Chemistry and School of Biological Sciences, Durham University, Science Laboratories, South Road, Durham, UK DH1 3LE
| | | | | | | | | |
Collapse
|
25
|
Lee S, Lee S, Park HJ, Lee SK, Kim S. Design and synthesis of pyrrolidine-containing sphingomimetics. Org Biomol Chem 2011; 9:4580-6. [DOI: 10.1039/c1ob05324h] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Dihydroceramide desaturase inhibition by a cyclopropanated dihydroceramide analog in cultured keratinocytes. J Lipids 2010; 2011:724015. [PMID: 21490810 PMCID: PMC3066699 DOI: 10.1155/2011/724015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/21/2010] [Accepted: 10/27/2010] [Indexed: 01/27/2023] Open
Abstract
Most mammalian sphingolipids contain a 4,5-(E)-double bond. We report on the chemical synthesis of a dihydroceramide derivative that prevents the introduction of the double bond into sphingolipids. Minimal alteration of the parent structure by formally replacing the hydrogen atoms in the 5- and in the 6-position of the sphinganine backbone by a methylene group leads to an inhibitor of dihydroceramide desaturase in cultured cells. In the presence of 10–50 μM of compound (1), levels of biosynthetically formed dihydroceramide and—surprisingly—also of phytoceramide are elevated at the expense of ceramide. The cells respond to the lack of unsaturated sphingolipids by an elevation of mRNAs of enzymes required for sphingosine formation. At the same time, the analysis of proliferation and differentiation markers indicates that the sphingolipid double bond is required to keep the cells in a differentiated state.
Collapse
|
27
|
García-Álvarez I, Egido-Gabás M, Romero-Ramírez L, Doncel-Pérez E, Nieto-Sampedro M, Casas J, Fernández-Mayoralas A. Lipid and ganglioside alterations in tumor cells treated with antimitotic oleyl glycoside. MOLECULAR BIOSYSTEMS 2010; 7:129-38. [PMID: 21057675 DOI: 10.1039/c0mb00125b] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Oleyl 2-acetamido-2-deoxy-α-D-glucopyranoside (1) was previously shown to exhibit antimitotic activity on glioma (C6) and melanoma (A375) cell lines. Preliminary studies about its mechanism of action using (1)H MAS NMR suggested that 1 may be altering the metabolism of lipids. We have now studied the effect of 1 on the fatty acid, sphingolipid and ganglioside content in a line of carcinomic human alveolar epithelial cells (A549) using UPLC-MS. Oleic acid and NB-DNJ were used as positive controls for inhibition of fatty acid and ganglioside synthesis, respectively. Compound 1 (10 μM) was more efficient than oleic acid in reducing fatty acid levels of A549 cells, producing a decrease in the range of 40-15%, depending on the acyl chain length and the number of insaturations. In addition, glycoside 1 caused a reduction on ganglioside content of A549 tumor cell line and accumulation of lactosylceramide, the common metabolic precursor for ganglioside biosynthesis. Alteration of ganglioside metabolism was also observed with two galactosylated derivatives of 1, which caused a more pronounced increase in lactosylceramide levels. Compound 1 at higher concentrations (above 30 μM) produced drastic alterations in glycosphingolipid metabolism, leading to cell metabolic profiles very different from those obtained at 10 μM. These biochemical changes were ascribed to activation of endoplasmic reticulum stress pathways.
Collapse
|
28
|
Rives A, Ladeira S, Levade T, Andrieu-Abadie N, Génisson Y. Synthesis of cytotoxic aza analogues of jaspine B. J Org Chem 2010; 75:7920-3. [PMID: 20954692 DOI: 10.1021/jo1014239] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A straightforward access to pyrrolidine-based analogues of jaspine B was developed. Five stereoisomers were prepared including the all-cis derivatives presenting the configuration of the natural anhydrophytosphingosine. The synthesis of the latter relied on an original Staudinger-type cyclization process. The compounds were evaluated regarding their ability to alter tumor cells' viability and to interfere with the metabolism of sphingolipids.
Collapse
Affiliation(s)
- Arnaud Rives
- LSPCMIB, UMR 5068, CNRS-Université Paul Sabatier, Toulouse, France
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Sinkó B, Pálfi M, Béni S, Kökösi J, Takács-Novák K. Synthesis and characterization of long-chain tartaric acid diamides as novel ceramide-like compounds. Molecules 2010; 15:824-33. [PMID: 20335949 PMCID: PMC6256927 DOI: 10.3390/molecules15020824] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Revised: 02/01/2010] [Accepted: 02/03/2010] [Indexed: 11/16/2022] Open
Abstract
Ceramides play a crucial role in the barrier function of the skin as well as in transmembrane signaling. In this study long aliphatic chain tartaric acid diamides able to replace ceramides in an in vitro model of the stratum corneum lipid matrix due to their similar physico-chemical properties were synthesized from diacetoxysuccinic anhydride in four steps. Their pro-apoptotic effect on fibroblast cells was also investigated.
Collapse
Affiliation(s)
- Bálint Sinkó
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E.u.9., Budapest H-1092, Hungary; E-Mails: (B.S.); (S.B.); (J.K.)
| | - Melinda Pálfi
- Department of Pharmacodynamics, Semmelweis University, Nagyvárad tér 4., Budapest H-1089, Hungary; E-Mail: (M.P.)
| | - Szabolcs Béni
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E.u.9., Budapest H-1092, Hungary; E-Mails: (B.S.); (S.B.); (J.K.)
| | - József Kökösi
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E.u.9., Budapest H-1092, Hungary; E-Mails: (B.S.); (S.B.); (J.K.)
| | - Krisztina Takács-Novák
- Department of Pharmaceutical Chemistry, Semmelweis University, Hőgyes E.u.9., Budapest H-1092, Hungary; E-Mails: (B.S.); (S.B.); (J.K.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +36-1-215-5241; Fax: +36-1-217-0891
| |
Collapse
|
31
|
Wennekes T, van den Berg RJBHN, Boot RG, van der Marel GA, Overkleeft HS, Aerts JMFG. Glycosphingolipids--nature, function, and pharmacological modulation. Angew Chem Int Ed Engl 2010; 48:8848-69. [PMID: 19862781 DOI: 10.1002/anie.200902620] [Citation(s) in RCA: 221] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The discovery of the glycosphingolipids is generally attributed to Johan L. W. Thudichum, who in 1884 published on the chemical composition of the brain. In his studies he isolated several compounds from ethanolic brain extracts which he coined cerebrosides. He subjected one of these, phrenosin (now known as galactosylceramide), to acid hydrolysis, and this produced three distinct components. One he identified as a fatty acid and another proved to be an isomer of D-glucose, which is now known as D-galactose. The third component, with an "alkaloidal nature", presented "many enigmas" to Thudichum, and therefore he named it sphingosine, after the mythological riddle of the Sphinx. Today, sphingolipids and their glycosidated derivatives are the subjects of intense study aimed at elucidating their role in the structural integrity of the cell membrane, their participation in recognition and signaling events, and in particular their involvement in pathological processes that are at the basis of human disease (for example, sphingolipidoses and diabetes type 2). This Review details some of the recent findings on the biosynthesis, function, and degradation of glycosphingolipids in man, with a focus on the glycosphingolipid glucosylceramide. Special attention is paid to the clinical relevance of compounds directed at interfering with the factors responsible for glycosphingolipid metabolism.
Collapse
Affiliation(s)
- Tom Wennekes
- Leiden Institute of Chemistry, Gorlaeus Laboratories, Leiden University, P.O. Box 9502, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Wennekes T, van den Berg R, Boot R, van der Marel G, Overkleeft H, Aerts J. Glycosphingolipide - Natur, Funktion und pharmakologische Modulierung. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200902620] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Kang JH, Garg H, Sigano DM, Francella N, Blumenthal R, Marquez VE. Ceramides: branched alkyl chains in the sphingolipid siblings of diacylglycerol improve biological potency. Bioorg Med Chem 2009; 17:1498-505. [PMID: 19171486 PMCID: PMC6980351 DOI: 10.1016/j.bmc.2009.01.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 01/07/2009] [Accepted: 01/08/2009] [Indexed: 01/11/2023]
Abstract
The synthesis of a small number of ceramide analogues containing a combination of linear and highly branched alkyl chains on either the d-sphingosine or the N-acyl core of the molecule is reported. Regardless of location, the presence of the branched chain improves potency relative to the positive control, C2 ceramide; however, the most potent compound (4) has the branched side chain as part of the d-sphingosine core. The induction of apoptosis by 4 in terms of Annexin V binding and DiOC(6) labeling was superior to that achieved with C2 ceramide.
Collapse
Affiliation(s)
- Ji-Hye Kang
- Laboratory of Medicinal Chemistry, National Cancer Institute, National Institutes of Health, Bldg 376/104, Frederick, MD 21702, United States
| | - Himanshu Garg
- Nanobiology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg 469/152, Frederick, MD 21702, United States
| | - Dina M. Sigano
- Laboratory of Medicinal Chemistry, National Cancer Institute, National Institutes of Health, Bldg 376/104, Frederick, MD 21702, United States
| | - Nicholas Francella
- Nanobiology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg 469/152, Frederick, MD 21702, United States
| | - Robert Blumenthal
- Nanobiology Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bldg 469/152, Frederick, MD 21702, United States
| | - Victor E. Marquez
- Laboratory of Medicinal Chemistry, National Cancer Institute, National Institutes of Health, Bldg 376/104, Frederick, MD 21702, United States
| |
Collapse
|
34
|
Sánchez-Ollé G, Duque J, Egido-Gabás M, Casas J, Lluch M, Chabás A, Grinberg D, Vilageliu L. Promising results of the chaperone effect caused by imino sugars and aminocyclitol derivatives on mutant glucocerebrosidases causing Gaucher disease. Blood Cells Mol Dis 2009; 42:159-66. [PMID: 19167250 DOI: 10.1016/j.bcmd.2008.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/17/2008] [Accepted: 11/18/2008] [Indexed: 11/17/2022]
Abstract
Gaucher disease is an autosomal recessive disorder. It is characterized by the accumulation of glucosylceramide in lysosomes of mononuclear phagocyte system, attributable to acid beta-glucosidase deficiency. The main consequences of this disease are hepatosplenomegaly, skeletal lesions and, sometimes, neurological manifestations. At sub-inhibitory concentrations, several competitive inhibitors act as chemical chaperones by inducing protein stabilization and increasing enzymatic activity. Here we tested two iminosugars (NB-DNJ and NN-DNJ) and four aminocyclitols with distinct degrees of lipophilicity as pharmacological chaperones for glucocerebrosidase (GBA). We report an increase in the activity of GBA using NN-DNJ, NB-DNJ and aminocyclitol 1 in stably transfected cell lines, and an increment with NN-DNJ and aminocyclitol 4 in patient fibroblasts. These results on specific mutations validate the use of chemical chaperones as a therapeutic approach for Gaucher disease. However, the development and analysis of new compounds is required in order to find more effective therapeutic agents that are active on a broader range of mutations.
Collapse
Affiliation(s)
- Gessamí Sánchez-Ollé
- Departament de Genètica, Universitat de Barcelona, IBUB, CIBER de Enfermedades Raras (CIBERER), Av. Diagonal 645, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Abstract
One of the major lipid biology discoveries in last decade was the broad range of physiological activities of lysophospholipids that have been attributed to the actions of lysophospholipid receptors. The most well characterized lysophospholipids are lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P). Documented cellular effects of these lipid mediators include growth-factor-like effects on cells, such as proliferation, survival, migration, adhesion, and differentiation. The mechanisms for these actions are attributed to a growing family of 7-transmembrane, G protein-coupled receptors (GPCRs). Their pathophysiological actions include immune modulation, neuropathic pain modulation, platelet aggregation, wound healing, vasopressor activity, and angiogenesis. Here we provide a brief introduction to receptor-mediated lysophospholipid signaling and physiology, and then discuss potential therapeutic roles in human diseases.
Collapse
|
36
|
Syntheses of sphingomyelin methylene, aza, and sulfur analogues by the versatile olefin cross-metathesis method. Tetrahedron 2008. [DOI: 10.1016/j.tet.2008.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Harrak Y, Llebaria A, Delgado A. A Practical Access to 1,2-Diaminophytosphingolipids. European J Org Chem 2008. [DOI: 10.1002/ejoc.200800565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Affiliation(s)
- Antonio Delgado
- Research Unit on BioActive Molecules (RUBAM), Departament de Química Orgànica Biològica, Institut d'Investigacions Químiques i Ambientals de Barcelona (IIQAB–C.S.I.C), Jordi Girona 18–26, 08034 Barcelona, Spain
- Universitat de Barcelona, Facultat de Farmàcia, Unitat de Química Farmacèutica (Unitat Associada al CSIC), Avgda. Juan XXIII, s/n, 08028 Barcelona, Spain
| |
Collapse
|
39
|
Nussbaumer P. Medicinal chemistry aspects of drug targets in sphingolipid metabolism. ChemMedChem 2008; 3:543-51. [PMID: 18061920 DOI: 10.1002/cmdc.200700252] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Peter Nussbaumer
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Brunner Strasse 59, 1235 Vienna, Austria.
| |
Collapse
|
40
|
Pruett ST, Bushnev A, Hagedorn K, Adiga M, Haynes CA, Sullards MC, Liotta DC, Merrill AH. Biodiversity of sphingoid bases ("sphingosines") and related amino alcohols. J Lipid Res 2008; 49:1621-39. [PMID: 18499644 PMCID: PMC2444003 DOI: 10.1194/jlr.r800012-jlr200] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
"Sphingosin" was first described by J. L. W. Thudichum in 1884 and structurally characterized as 2S,3R,4E-2-aminooctadec-4-ene-1,3-diol in 1947 by Herb Carter, who also proposed the designation of "lipides derived from sphingosine as sphingolipides." This category of amino alcohols is now known to encompass hundreds of compounds that are referred to as sphingoid bases and sphingoid base-like compounds, which vary in chain length, number, position, and stereochemistry of double bonds, hydroxyl groups, and other functionalities. Some have especially intriguing features, such as the tail-to-tail combination of two sphingoid bases in the alpha,omega-sphingoids produced by sponges. Most of these compounds participate in cell structure and regulation, and some (such as the fumonisins) disrupt normal sphingolipid metabolism and cause plant and animal disease. Many of the naturally occurring and synthetic sphingoid bases are cytotoxic for cancer cells and pathogenic microorganisms or have other potentially useful bioactivities; hence, they offer promise as pharmaceutical leads. This thematic review gives an overview of the biodiversity of the backbones of sphingolipids and the broader field of naturally occurring and synthetic sphingoid base-like compounds.
Collapse
Affiliation(s)
- Sarah T Pruett
- Department of Chemistry, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Yamamoto T, Hasegawa H, Hakogi T, Katsumura S. Syntheses of Fluorescence-labeled Sphingosine 1-Phosphate Methylene and Sulfur Analogues as Possible Visible Ligands to the Receptor. CHEM LETT 2008. [DOI: 10.1246/cl.2008.188] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
42
|
Grijalvo S, Matabosch X, Llebaria A, Delgado A. A Straightforward Protocol for the Solution-Phase Parallel Synthesis of Ceramide Analogues. European J Org Chem 2008. [DOI: 10.1002/ejoc.200700814] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Kitatani K, Idkowiak-Baldys J, Hannun YA. The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell Signal 2007; 20:1010-8. [PMID: 18191382 DOI: 10.1016/j.cellsig.2007.12.006] [Citation(s) in RCA: 440] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2007] [Revised: 11/18/2007] [Accepted: 12/03/2007] [Indexed: 01/12/2023]
Abstract
Sphingolipids are important components of eukaryotic cells, many of which function as bioactive signaling molecules. Of these, ceramide is a central metabolite and plays key roles in a variety of cellular responses, including regulation of cell growth, viability, differentiation, and senescence. Ceramide is composed of the long-chain sphingoid base, sphingosine, in N-linkage to a variety of acyl groups. Sphingosine serves as the product of sphingolipid catabolism, and it is mostly salvaged through reacylation, resulting in the generation of ceramide or its derivatives. This recycling of sphingosine is termed the "salvage pathway", and recent evidence points to important roles for this pathway in ceramide metabolism and function. A number of enzymes are involved in the salvage pathway, and these include sphingomyelinases, cerebrosidases, ceramidases, and ceramide synthases. Recent studies suggest that the salvage pathway is not only subject to regulation, but it also modulates the formation of ceramide and subsequent ceramide-dependent cellular signals. This review focuses on the salvage pathway in ceramide metabolism, its regulation, its experimental analysis, and emerging biological functions.
Collapse
Affiliation(s)
- Kazuyuki Kitatani
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, South Carolina 29425, United States
| | | | | |
Collapse
|
44
|
Moon BS, Park MT, Park JH, Kim SW, Lee KC, An GI, Yang SD, Chi DY, Cheon GJ, Lee SJ. Synthesis of novel phytosphingosine derivatives and their preliminary biological evaluation for enhancing radiation therapy. Bioorg Med Chem Lett 2007; 17:6643-6. [DOI: 10.1016/j.bmcl.2007.09.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 08/31/2007] [Accepted: 09/08/2007] [Indexed: 10/22/2022]
|
45
|
Serrano P, Casas J, Llebaria A, Zucco M, Emeric G, Delgado A. Parallel Synthesis and Yeast Growth Inhibition Screening of Succinamic Acid Libraries. ACTA ACUST UNITED AC 2007; 9:635-43. [PMID: 17536867 DOI: 10.1021/cc070026n] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Libraries of succinamic acid derivatives resulting from the condensation of a series of succinic acid derivatives with amines are reported as putative khafrefungin analogues. A total of 480 compounds derived from the initial condensation of 8 scaffolds with 60 different amines have been synthesized using automated technology with the help of scavenger resins. A simple acetate hydrolysis of five of the above sublibraries afforded additional 300 compounds for a total of 780 compounds. Around 55% of the library members showed purities higher than 70% (HPLC-ELS-MS) thus proving the generality of this approach. Results on growth inhibition of the yeast Saccharomyces cerevisiae in the presence of selected library members are also reported as a preliminary evaluation of the antifungal activity.
Collapse
Affiliation(s)
- Pedro Serrano
- Research Unit on Bioactive Molecules, Departament de Química Orgànica Biologica, Institut d'Investigacions Químiques i Ambientals de Barcelona, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
46
|
Mormeneo D, Casas J, Llebaria A, Delgado A. Synthesis and preliminary antifungal evaluation of a library of phytosphingolipid analogues. Org Biomol Chem 2007; 5:3769-77. [DOI: 10.1039/b709421c] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|