1
|
Du F, Li R, He R, Li K, Liu J, Xiang Y, Duan K, Li C. Exploring salivary metabolome alterations in people with HIV: towards early diagnostic markers. Front Public Health 2024; 12:1400332. [PMID: 38912274 PMCID: PMC11192068 DOI: 10.3389/fpubh.2024.1400332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Background The human immunodeficiency virus (HIV) remains a critical global health issue, with a pressing need for effective diagnostic and monitoring tools. Methodology This study explored distinctions in salivary metabolome among healthy individuals, individuals with HIV, and those receiving highly active antiretroviral therapy (HAART). Utilizing LC-MS/MS for exhaustive metabolomics profiling, we analyzed 90 oral saliva samples from individuals with HIV, categorized by CD4 count levels in the peripheral blood. Results Orthogonal partial least squares-discriminant analysis (OPLS-DA) and other analyses underscored significant metabolic alterations in individuals with HIV, especially in energy metabolism pathways. Notably, post-HAART metabolic profiles indicated a substantial presence of exogenous metabolites and changes in amino acid pathways like arginine, proline, and lysine degradation. Key metabolites such as citric acid, L-glutamic acid, and L-histidine were identified as potential indicators of disease progression or recovery. Differential metabolite selection and functional enrichment analysis, combined with receiver operating characteristic (ROC) and random forest analyses, pinpointed potential biomarkers for different stages of HIV infection. Additionally, our research examined the interplay between oral metabolites and microorganisms such as herpes simplex virus type 1 (HSV1), bacteria, and fungi in individuals with HIV, revealing crucial interactions. Conclusion This investigation seeks to contribute understanding into the metabolic shifts occurring in HIV infection and following the initiation of HAART, while tentatively proposing novel avenues for diagnostic and treatment monitoring through salivary metabolomics.
Collapse
Affiliation(s)
- Fei Du
- Department of Stomatology, Yan’an Hospital of Kunming City, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Rong Li
- Department of Stomatology, The First Affiliated Hospital of Dali University, Dali, Yunnan, China
| | - Rui He
- Department of Stomatology, Kunming Maternal and Child Health Hospital, Kunming, Yunnan, China
| | - Kezeng Li
- Department of Stomatology, Yan’an Hospital of Kunming City, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Jun Liu
- Department of Infectious Diseases, Kunming Third People’s Hospital, Kunming, Yunnan, China
| | - Yingying Xiang
- Department of Stomatology, Yan’an Hospital of Kunming City, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Kaiwen Duan
- Department of Stomatology, Yan’an Hospital of Kunming City, Yan’an Hospital Affiliated to Kunming Medical University, Kunming, Yunnan, China
| | - Chengwen Li
- Department of Research Management, Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
2
|
Sever B, Otsuka M, Fujita M, Ciftci H. A Review of FDA-Approved Anti-HIV-1 Drugs, Anti-Gag Compounds, and Potential Strategies for HIV-1 Eradication. Int J Mol Sci 2024; 25:3659. [PMID: 38612471 PMCID: PMC11012182 DOI: 10.3390/ijms25073659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Acquired immunodeficiency syndrome (AIDS) is an enormous global health threat stemming from human immunodeficiency virus (HIV-1) infection. Up to now, the tremendous advances in combination antiretroviral therapy (cART) have shifted HIV-1 infection from a fatal illness into a manageable chronic disorder. However, the presence of latent reservoirs, the multifaceted nature of HIV-1, drug resistance, severe off-target effects, poor adherence, and high cost restrict the efficacy of current cART targeting the distinct stages of the virus life cycle. Therefore, there is an unmet need for the discovery of new therapeutics that not only bypass the limitations of the current therapy but also protect the body's health at the same time. The main goal for complete HIV-1 eradication is purging latently infected cells from patients' bodies. A potential strategy called "lock-in and apoptosis" targets the budding phase of the life cycle of the virus and leads to susceptibility to apoptosis of HIV-1 infected cells for the elimination of HIV-1 reservoirs and, ultimately, for complete eradication. The current work intends to present the main advantages and disadvantages of United States Food and Drug Administration (FDA)-approved anti-HIV-1 drugs as well as plausible strategies for the design and development of more anti-HIV-1 compounds with better potency, favorable pharmacokinetic profiles, and improved safety issues.
Collapse
Affiliation(s)
- Belgin Sever
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir 26470, Türkiye;
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Masami Otsuka
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
| | - Mikako Fujita
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
| | - Halilibrahim Ciftci
- Medicinal and Biological Chemistry Science Farm Joint Research Laboratory, Faculty of Life Sciences, Kumamoto University, Kumamoto 862-0973, Japan;
- Department of Drug Discovery, Science Farm Ltd., Kumamoto 862-0976, Japan
- Department of Bioengineering Sciences, Izmir Katip Celebi University, Izmir 35620, Türkiye
| |
Collapse
|
3
|
Nepal S, Holmstrom ED. Single-molecule-binding studies of antivirals targeting the hepatitis C virus core protein. J Virol 2023; 97:e0089223. [PMID: 37772835 PMCID: PMC10617558 DOI: 10.1128/jvi.00892-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/10/2023] [Indexed: 09/30/2023] Open
Abstract
IMPORTANCE The hepatitis C virus is associated with nearly 300,000 deaths annually. At the core of the virus is an RNA-protein complex called the nucleocapsid, which consists of the viral genome and many copies of the core protein. Because the assembly of the nucleocapsid is a critical step in viral replication, a considerable amount of effort has been devoted to identifying antiviral therapeutics that can bind to the core protein and disrupt assembly. Although several candidates have been identified, little is known about how they interact with the core protein or how those interactions alter the structure and thus the function of this viral protein. Our work biochemically characterizes several of these binding interactions, highlighting both similarities and differences as well as strengths and weaknesses. These insights bolster the notion that this viral protein is a viable target for novel therapeutics and will help to guide future developments of these candidate antivirals.
Collapse
Affiliation(s)
- Sudip Nepal
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
| | - Erik D. Holmstrom
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, USA
- Department of Chemistry, University of Kansas, Lawrence, Kansas, USA
| |
Collapse
|
4
|
Wang C, Wang H, Wang X, Sun L, Wang Q, Li Q, Liang R, Dou D, Yu F, Lu L, Jiang S. Multitargeted drug design strategy for discovery of short-peptide-based HIV-1 entry inhibitors with high potency. Eur J Med Chem 2023; 252:115294. [PMID: 36944281 DOI: 10.1016/j.ejmech.2023.115294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023]
Abstract
The development of short-peptide-based inhibitors to prevent HIV-1 entry into the host cell has been rewarded with limited success. Herein, we report a multitarget-directed ligand strategy to generate a series of short-peptide HIV-1 entry inhibitors that integrated the pharmacological activities of a peptide fusion inhibitor able to disrupt HIV-1 gp41 glycoprotein hexameric coiled-coil assembly and a small-molecule CCR5 antagonist that blocks the interaction between HIV-1 and its coreceptor. Among these inhibitors, dual-target 23-residue peptides SP12T and SP12L displayed dramatically increased inhibitory activities against HIV-1 replication as compared to the marketed 36-residue peptide T20. Moreover, results suggested that SP12T and SP12L successfully performed a dual-targeting mechanism. It can be concluded that these short-peptide-based HIV-1 entry inhibitors have potential for further development as candidates for a novel multitarget therapy to treat HIV-1 infection.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China.
| | - Huan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Xinling Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong an Road, Shanghai, 200032, China
| | - Lujia Sun
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong an Road, Shanghai, 200032, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong an Road, Shanghai, 200032, China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing, 100850, China
| | - Ruiying Liang
- Hebei Center for Wildlife Health, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Dou Dou
- Hebei Center for Wildlife Health, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China
| | - Fei Yu
- Hebei Center for Wildlife Health, College of Life Sciences, Hebei Agricultural University, Baoding, 071001, China.
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong an Road, Shanghai, 200032, China.
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong an Road, Shanghai, 200032, China.
| |
Collapse
|
5
|
Wang C, Xia S, Wang X, Li Y, Wang H, Xiang R, Jiang Q, Lan Q, Liang R, Li Q, Huo S, Lu L, Wang Q, Yu F, Liu K, Jiang S. Supercoiling Structure-Based Design of a Trimeric Coiled-Coil Peptide with High Potency against HIV-1 and Human β-Coronavirus Infection. J Med Chem 2022; 65:2809-2819. [PMID: 33929200 PMCID: PMC8117781 DOI: 10.1021/acs.jmedchem.1c00258] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Indexed: 12/15/2022]
Abstract
Hexameric structure formation through packing of three C-terminal helices and an N-terminal trimeric coiled-coil core has been proposed as a general mechanism of class I enveloped virus entry. In this process, the C-terminal helical repeat (HR2) region of viral membrane fusion proteins becomes transiently exposed and accessible to N-terminal helical repeat (HR1) trimer-based fusion inhibitors. Herein, we describe a mimetic of the HIV-1 gp41 HR1 trimer, N3G, as a promising therapeutic against HIV-1 infection. Surprisingly, we found that in addition to protection against HIV-1 infection, N3G was also highly effective in inhibiting infection of human β-coronaviruses, including MERS-CoV, HCoV-OC43, and SARS-CoV-2, possibly by binding the HR2 region in the spike protein of β-coronaviruses to block their hexameric structure formation. These studies demonstrate the potential utility of anti-HIV-1 HR1 peptides in inhibiting human β-coronavirus infection. Moreover, this strategy could be extended to the design of broad-spectrum antivirals based on the supercoiling structure of peptides.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Xinling Wang
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Yue Li
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Huan Wang
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Rong Xiang
- Hebei Center for Wildlife Health, College of Life
Sciences, Hebei Agricultural University, Baoding 071001,
China
| | - Qinwen Jiang
- Key Laboratory of Structure-based Drug Design &
Discovery of the Ministry of Education, Shenyang Pharmaceutical
University, Shenyang 110016, China
| | - Qiaoshuai Lan
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Ruiying Liang
- Hebei Center for Wildlife Health, College of Life
Sciences, Hebei Agricultural University, Baoding 071001,
China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Shanshan Huo
- Hebei Center for Wildlife Health, College of Life
Sciences, Hebei Agricultural University, Baoding 071001,
China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
| | - Fei Yu
- Hebei Center for Wildlife Health, College of Life
Sciences, Hebei Agricultural University, Baoding 071001,
China
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical
Countermeasures, Beijing Institute of Pharmacology and
Toxicology, 27 Tai-Ping Road, Beijing 100850,
China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology
(MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical
Center, Fudan University, 130 Dong An Road, Shanghai 200032,
China
- Lindsley F. Kimball Research Institute,
New York Blood Center, New York, New York 10065,
United States
| |
Collapse
|
6
|
Conformational flexibility of the conserved hydrophobic pocket of HIV-1 gp41. Implications for the discovery of small-molecule fusion inhibitors. Int J Biol Macromol 2021; 192:90-99. [PMID: 34619276 DOI: 10.1016/j.ijbiomac.2021.09.198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022]
Abstract
During HIV-1 infection, the envelope glycoprotein subunit gp41 folds into a six-helix bundle structure (6HB) formed by the interaction between its N-terminal (NHR) and C-terminal (CHR) heptad-repeats, promoting viral and cell membranes fusion. A highly preserved, hydrophobic pocket (HP) on the NHR surface is crucial in 6HB formation and, therefore, HP-binding compounds constitute promising therapeutics against HIV-1. Here, we investigated the conformational and dynamic properties of the HP using a rationally designed single-chain protein (named covNHR) that mimics the gp41 NHR structure. We found that the fluorescent dye 8-anilino-naphtalene-1-sulfonic acid (ANS) binds specifically to the HP, suggesting that ANS derivatives may constitute lead compounds to inhibit 6HB formation. ANS shows different binding modes to the HP, depending on the occupancy of other NHR pockets. Moreover, in presence of a CHR peptide bound to the N-terminal pockets in gp41, two ANS molecules can occupy the HP showing cooperative behavior. This binding mode was assessed using molecular docking and molecular dynamics simulations. The results show that the HP is conformationally flexible and connected allosterically to other NHR regions, which strongly influence the binding of potential ligands. These findings could guide the development of small-molecule HIV-1 inhibitors targeting the HP.
Collapse
|
7
|
Wang C, Wang X, Wang H, Pu J, Li Q, Li J, Liu Y, Lu L, Jiang S. A "Two-Birds-One-Stone" Approach toward the Design of Bifunctional Human Immunodeficiency Virus Type 1 Entry Inhibitors Targeting the CCR5 Coreceptor and gp41 N-Terminal Heptad Repeat Region. J Med Chem 2021; 64:11460-11471. [PMID: 34261320 DOI: 10.1021/acs.jmedchem.1c00781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Previous studies have reported the stepwise nature of human immunodeficiency virus type 1 (HIV-1) entry and the pivotal role of coreceptor CCR5 and the gp41 N-terminal heptad repeat (NHR) region in this event. With this in mind, we herein report a dual-targeted drug compound featuring bifunctional entry inhibitors, consisting of a piperidine-4-carboxamide-based CCR5 antagonist, TAK-220, and a gp41 NHR-targeting fusion-inhibitory peptide, C34. The resultant chimeras were constructed by linking both pharmacophores with a polyethylene glycol spacer. One chimera, CP12TAK, exhibited exceptionally potent antiviral activity, about 40- and 306-fold over that of its parent inhibitors, C34 and TAK-220, respectively. In addition to R5-tropic viruses, CP12TAK also strongly inhibited infection of X4-tropic HIV-1 strains. These data are promising for the further development of CP12TAK as a new anti-HIV-1 drug. Results show that this strategy could be extended to the design of therapies against infection of other enveloped viruses.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Xinling Wang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Huan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Qing Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Jiahui Li
- Key Laboratory of Structure-based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Liu
- Key Laboratory of Structure-based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Shanghai Institute of Infectious Diseases and Biosecurity, Fudan University, 131 Dong An Road, Shanghai 200032, China
| |
Collapse
|
8
|
Zhou G, He L, Li KH, Pedroso CCS, Gochin M. A targeted covalent small molecule inhibitor of HIV-1 fusion. Chem Commun (Camb) 2021; 57:4528-4531. [PMID: 33956029 DOI: 10.1039/d1cc01013a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We describe a low molecular weight covalent inhibitor targeting a conserved lysine residue within the hydrophobic pocket of HIV-1 glycoprotein-41. The inhibitor bound selectively to the hydrophobic pocket and exhibited an order of magnitude enhancement of anti-fusion activity against HIV-1 compared to its non-covalent counterpart. The findings represent a significant advance in the quest to obtain non-peptide fusion inhibitors.
Collapse
Affiliation(s)
- Guangyan Zhou
- Department of Basic Sciences, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA.
| | - Li He
- Department of Basic Sciences, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA.
| | - Kathy H Li
- Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
| | - Cássio C S Pedroso
- Lawrence Berkeley National Laboratory, The Molecular Foundry, 1 Cyclotron Road, 67R5114, Berkeley, CA 94720, USA
| | - Miriam Gochin
- Department of Basic Sciences, Touro University California, 1310 Club Drive, Mare Island, Vallejo, CA 94592, USA. and Department of Pharmaceutical Chemistry, UCSF School of Pharmacy, San Francisco, CA 94143, USA
| |
Collapse
|
9
|
Murugan NA, Raja KMP, Saraswathi NT. Peptide-Based Antiviral Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1322:261-284. [PMID: 34258744 DOI: 10.1007/978-981-16-0267-2_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Three types of chemical entities, namely, small organic molecules (organics), peptides, and biologics, are mainly used as drug candidates for the treatment of various diseases. Even though the peptide drugs are known since 1920 in association with the clinical use of insulin, only a limited number of peptides are currently used for therapeutics due to various disadvantages associated with them such as limited serum and blood stability, oral bioavailability, and permeability. Since, through chemical modifications and structure tuning, many of these limitations can be overcome, peptide-based drugs are gaining attention in pharmaceutical research. As of today, there are more than 60 peptide-based drugs approved by FDA, and over 150 peptides are in the advanced clinical studies. In this book chapter, the peptide-based lead compounds and drugs available for treating various viral diseases and their advantages and disadvantages when compared to small molecules drugs are discussed.
Collapse
Affiliation(s)
- N Arul Murugan
- Department of Theoretical Chemistry and Biology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Stockholm, Sweden.
| | - K Muruga Poopathi Raja
- Chemical Biology and Biophysics Laboratory, Department of Physical Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, Tamilnadu, India.
| | - N T Saraswathi
- School of Chemical & Biotechnology, Sastra Deemed University, Thanjavur, Tamil Nadu, India
| |
Collapse
|
10
|
Liu J, Obaidi I, Nagar S, Scalabrino G, Sheridan H. The antiviral potential of algal-derived macromolecules. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.04.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
11
|
Schütz D, Ruiz-Blanco YB, Münch J, Kirchhoff F, Sanchez-Garcia E, Müller JA. Peptide and peptide-based inhibitors of SARS-CoV-2 entry. Adv Drug Deliv Rev 2020; 167:47-65. [PMID: 33189768 PMCID: PMC7665879 DOI: 10.1016/j.addr.2020.11.007] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/18/2022]
Abstract
To date, no effective vaccines or therapies are available against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative pandemic agent of the coronavirus disease 2019 (COVID-19). Due to their safety, efficacy and specificity, peptide inhibitors hold great promise for the treatment of newly emerging viral pathogens. Based on the known structures of viral proteins and their cellular targets, antiviral peptides can be rationally designed and optimized. The resulting peptides may be highly specific for their respective targets and particular viral pathogens or exert broad antiviral activity. Here, we summarize the current status of peptides inhibiting SARS-CoV-2 entry and outline the strategies used to design peptides targeting the ACE2 receptor or the viral spike protein and its activating proteases furin, transmembrane serine protease 2 (TMPRSS2), or cathepsin L. In addition, we present approaches used against related viruses such as SARS-CoV-1 that might be implemented for inhibition of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Desiree Schütz
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Yasser B Ruiz-Blanco
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Elsa Sanchez-Garcia
- Computational Biochemistry, Center of Medical Biotechnology, University of Duisburg-Essen, 45117 Essen, Germany.
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany.
| |
Collapse
|
12
|
Motati DR, Uredi D, Watkins EB. The Discovery and Development of Oxalamide and Pyrrole Small Molecule Inhibitors of gp120 and HIV Entry - A Review. Curr Top Med Chem 2019; 19:1650-1675. [PMID: 31424369 DOI: 10.2174/1568026619666190717163959] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/14/2019] [Accepted: 06/25/2019] [Indexed: 02/07/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) is the causative agent responsible for the acquired immunodeficiency syndrome (AIDS) pandemic. More than 60 million infections and 25 million deaths have occurred since AIDS was first identified in the early 1980s. Advances in available therapeutics, in particular combination antiretroviral therapy, have significantly improved the treatment of HIV infection and have facilitated the shift from high mortality and morbidity to that of a manageable chronic disease. Unfortunately, none of the currently available drugs are curative of HIV. To deal with the rapid emergence of drug resistance, off-target effects, and the overall difficulty of eradicating the virus, an urgent need exists to develop new drugs, especially against targets critically important for the HIV-1 life cycle. Viral entry, which involves the interaction of the surface envelope glycoprotein, gp120, with the cellular receptor, CD4, is the first step of HIV-1 infection. Gp120 has been validated as an attractive target for anti-HIV-1 drug design or novel HIV detection tools. Several small molecule gp120 antagonists are currently under investigation as potential entry inhibitors. Pyrrole, piperazine, triazole, pyrazolinone, oxalamide, and piperidine derivatives, among others, have been investigated as gp120 antagonist candidates. Herein, we discuss the current state of research with respect to the design, synthesis and biological evaluation of oxalamide derivatives and five-membered heterocycles, namely, the pyrrole-containing small molecule as inhibitors of gp120 and HIV entry.
Collapse
Affiliation(s)
- Damoder Reddy Motati
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - Dilipkumar Uredi
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| | - E Blake Watkins
- Department of Pharmaceutical Sciences, Center for Pharmacometrics and Molecular Discovery, College of Pharmacy, Union University, Jackson, Tennessee 38305, United States
| |
Collapse
|
13
|
Suttisintong K, Kaewchangwat N, Thanayupong E, Nerungsi C, Srikun O, Pungpo P. Recent Progress in the Development of HIV-1 Entry Inhibitors: From Small Molecules to Potent Anti-HIV Agents. Curr Top Med Chem 2019; 19:1599-1620. [DOI: 10.2174/1568026619666190712204050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/07/2019] [Accepted: 06/21/2019] [Indexed: 01/21/2023]
Abstract
Viral entry, the first process in the reproduction of viruses, primarily involves attachment of the viral envelope proteins to membranes of the host cell. The crucial components that play an important role in viral entry include viral surface glycoprotein gp120, viral transmembrane glycoprotein gp41, host cell glycoprotein (CD4), and host cell chemokine receptors (CCR5 and CXCR4). Inhibition of the multiple molecular interactions of these components can restrain viruses, such as HIV-1, from fusion with the host cell, blocking them from reproducing. This review article specifically focuses on the recent progress in the development of small-molecule HIV-1 entry inhibitors and incorporates important aspects of their structural modification that lead to the discovery of new molecular scaffolds with more potency.
Collapse
Affiliation(s)
- Khomson Suttisintong
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Narongpol Kaewchangwat
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Eknarin Thanayupong
- National Nanotechnology Center (NANOTEC), National Science and Technology, Development Agency (NSTDA), 111 Thailand Science Park, Phahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand
| | - Chakkrapan Nerungsi
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Onsiri Srikun
- The Government Pharmaceutical Organization, 75/1 Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Pornpan Pungpo
- Department of Chemistry, Faculty of Science, Ubon Ratchathani University, 85 Sathonlamark Road, Warinchamrap, Ubon Ratchathani 34190, Thailand
| |
Collapse
|
14
|
Meng G, Pu J, Li Y, Han A, Tian Y, Xu W, Zhang T, Li X, Lu L, Wang C, Jiang S, Liu K. Design and Biological Evaluation of m-Xylene Thioether-Stapled Short Helical Peptides Targeting the HIV-1 gp41 Hexameric Coiled-Coil Fusion Complex. J Med Chem 2019; 62:8773-8783. [PMID: 31513410 DOI: 10.1021/acs.jmedchem.9b00882] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Short peptide-based inhibition of fusion remains an attractive goal in antihuman immunodeficiency virus (HIV) research based on its potential for the development of technically and economically desirable antiviral agents. Herein, we report the use of the dithiol bisalkylation reaction to generate a series of m-xylene thioether-stapled 22-residue α-helical peptides that have been identified as fusion inhibitors targeting HIV-1 glycoprotein 41 (gp41). The peptide sequence is based on the helix-zone binding domain of the gp41 C-terminal heptad repeat region. We found that one of these stapled peptides, named hCS6ERE, showed promising inhibitory potency against HIV-1 Env-mediated cell-cell fusion and viral replication at a level comparable to the clinically used 36-mer peptide T20. Furthermore, combining hCS6ERE with a fusion inhibitor having a different target site, such as HP23, produced synergistic anti-HIV-1 activity. Collectively, our study offers new insight into the design of anti-HIV peptides with short sequences.
Collapse
Affiliation(s)
- Guangpeng Meng
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Jing Pu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Yue Li
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Aixin Han
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Wei Xu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Xue Li
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of (MOE/NHC/CAMS), School of Basic Medical Sciences & Shanghai Public Health Clinical Center , Fudan University , 131 Dong An Road , Shanghai 200032 , China.,Lindsley F. Kimball Research Institute , New York Blood Center , 310 East 67th Street , New York , New York 10065 , United States
| | - Keliang Liu
- Key Laboratory of Structure-Based Drug Design & Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China.,State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| |
Collapse
|
15
|
Trimeric heptad repeat synthetic peptides HR1 and HR2 efficiently inhibit HIV-1 entry. Biosci Rep 2019; 39:BSR20192196. [PMID: 31477581 PMCID: PMC6757187 DOI: 10.1042/bsr20192196] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 07/30/2019] [Accepted: 08/06/2019] [Indexed: 12/16/2022] Open
Abstract
The trimeric heptad repeat domains HR1 and HR2 of the human immunodeficiency virus 1 (HIV-1) gp41 play a key role in HIV-1-entry by membrane fusion. To develop efficient inhibitors against this step, the corresponding trimeric-N36 and C34 peptides were designed and synthesized. Analysis by circular dichroism of monomeric and trimeric N36 and C34 peptides showed their capacities to adopt α-helical structures and to establish physical interactions. At the virological level, while trimeric-C34 conserves the same high anti-fusion activity as monomeric-C34, trimerization of N36-peptide induced a significant increase, reaching 500-times higher in anti-fusion activity, against R5-tropic virus-mediated fusion. This result was associated with increased stability of the N36 trimer peptide with respect to the monomeric form, as demonstrated by the comparative kinetics of their antiviral activities during 6-day incubation in a physiological medium. Collectively, our findings demonstrate that while the trimerization of C34 peptide had no beneficial effect on its stability and antiviral activity, the trimerization of N36 peptide strengthened both stability and antiviral activity. This approach, promotes trimers as new promising HIV-1 inhibitors and point to future development aimed toward innovative peptide fusion inhibitors, microbicides or as immunogens.
Collapse
|
16
|
Singleton CD, Humby MS, Yi HA, Rizzo RC, Jacobs A. Identification of Ebola Virus Inhibitors Targeting GP2 Using Principles of Molecular Mimicry. J Virol 2019; 93:e00676-19. [PMID: 31092576 PMCID: PMC6639268 DOI: 10.1128/jvi.00676-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 04/25/2019] [Indexed: 12/31/2022] Open
Abstract
A key step in the Ebola virus (EBOV) replication cycle involves conformational changes in viral glycoprotein 2 (GP2) which facilitate host-viral membrane fusion and subsequent release of the viral genome. Ebola GP2 plays a critical role in virus entry and has similarities in mechanism and structure to the HIV gp41 protein for which inhibitors have been successfully developed. In this work, a putative binding pocket for the C-terminal heptad repeat in the N-terminal heptad repeat trimer was targeted for identification of small molecules that arrest EBOV-host membrane fusion. Two computational structure-based virtual screens of ∼1.7 M compounds were performed (DOCK program) against a GP2 five-helix bundle, resulting in 165 commercially available compounds purchased for experimental testing. Based on assessment of inhibitory activity, cytotoxicity, and target specificity, four promising candidates emerged with 50% inhibitory concentration values in the 3 to 26 μM range. Molecular dynamics simulations of the two most potent candidates in their DOCK-predicted binding poses indicate that the majority of favorable interactions involve seven highly conserved residues that can be used to guide further inhibitor development and refinement targeting EBOV.IMPORTANCE The most recent Ebola virus disease outbreak, from 2014 to 2016, resulted in approximately 28,000 individuals becoming infected, which led to over 12,000 causalities worldwide. The particularly high pathogenicity of the virus makes paramount the identification and development of promising lead compounds to serve as inhibitors of Ebola infection. To limit viral load, the virus-host membrane fusion event can be targeted through the inhibition of the class I fusion glycoprotein of Ebolavirus In the current work, several promising small-molecule inhibitors that target the glycoprotein GP2 were identified through systematic application of structure-based computational and experimental drug design procedures.
Collapse
Affiliation(s)
- Courtney D Singleton
- Department of Molecular & Cellular Pharmacology, Stony Brook University, Stony Brook, New York, USA
| | - Monica S Humby
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York, USA
| | - Hyun Ah Yi
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York, USA
| | - Robert C Rizzo
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, New York, USA
- Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, New York, USA
- Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, New York, USA
| | - Amy Jacobs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York (SUNY) at Buffalo, Buffalo, New York, USA
| |
Collapse
|
17
|
Pu J, Wang Q, Xu W, Lu L, Jiang S. Development of Protein- and Peptide-Based HIV Entry Inhibitors Targeting gp120 or gp41. Viruses 2019; 11:v11080705. [PMID: 31374953 PMCID: PMC6722851 DOI: 10.3390/v11080705] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 01/08/2023] Open
Abstract
Application of highly active antiretroviral drugs (ARDs) effectively reduces morbidity and mortality in HIV-infected individuals. However, the emergence of multiple drug-resistant strains has led to the increased failure of ARDs, thus calling for the development of anti-HIV drugs with targets or mechanisms of action different from those of the current ARDs. The first peptide-based HIV entry inhibitor, enfuvirtide, was approved by the U.S. FDA in 2003 for treatment of HIV/AIDS patients who have failed to respond to the current ARDs, which has stimulated the development of several series of protein- and peptide-based HIV entry inhibitors in preclinical and clinical studies. In this review, we highlighted the properties and mechanisms of action for those promising protein- and peptide-based HIV entry inhibitors targeting the HIV-1 gp120 or gp41 and discussed their advantages and disadvantages, compared with the current ARDs.
Collapse
Affiliation(s)
- Jing Pu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Qian Wang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Wei Xu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China
| | - Lu Lu
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China.
| | - Shibo Jiang
- Shanghai Public Health Clinical Center and School of Basic Medical Sciences, Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Fudan University, Shanghai 200032, China.
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, NY 10065, USA.
| |
Collapse
|
18
|
Chen G, Cook JD, Ye W, Lee JE, Sidhu SS. Optimization of peptidic HIV-1 fusion inhibitor T20 by phage display. Protein Sci 2019; 28:1501-1512. [PMID: 31228294 PMCID: PMC6635768 DOI: 10.1002/pro.3669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/16/2019] [Accepted: 06/17/2019] [Indexed: 11/06/2022]
Abstract
The HIV fusion inhibitor T20 has been approved to treat those living with HIV/AIDS, but treatment gives rise to resistant viruses. Using combinatorial phage-displayed libraries, we applied a saturation scan approach to dissect the entire T20 sequence for binding to a prefusogenic five-helix bundle (5HB) mimetic of HIV-1 gp41. Our data set compares all possible amino acid substitutions at all positions, and affords a complete view of the complex molecular interactions governing the binding of T20 to 5HB. The scan of T20 revealed that 12 of its 36 positions were conserved for 5HB binding, which cluster into three epitopes: hydrophobic epitopes at the ends and a central dyad of hydrophilic residues. The scan also revealed that the T20 sequence was highly adaptable to mutations at most positions, demonstrating a striking structural plasticity that allows multiple amino acid substitutions at contact points to adapt to conformational changes, and also at noncontact points to fine-tune the interface. Based on the scan result and structural knowledge of the gp41 fusion intermediate, a library was designed with tailored diversity at particular positions of T20 and was used to derive a variant (T20v1) that was found to be a highly effective inhibitor of infection by multiple HIV-1 variants, including a common T20-escape mutant. These findings show that the plasticity of the T20 functional sequence space can be exploited to develop variants that overcome resistance of HIV-1 variants to T20 itself, and demonstrate the utility of saturation scanning for rapid epitope mapping and protein engineering.
Collapse
Affiliation(s)
- Gang Chen
- Banting and Best Department of Medical Research, The Terrence Donnelly Center for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioM5S 3E1Canada
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioM5S 1A8Canada
| | - Jonathan D. Cook
- Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoOntarioM5S 1A8Canada
| | - Wei Ye
- Banting and Best Department of Medical Research, The Terrence Donnelly Center for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioM5S 3E1Canada
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioM5S 1A8Canada
| | - Jeffrey E. Lee
- Department of Laboratory Medicine and Pathobiology, Faculty of MedicineUniversity of TorontoTorontoOntarioM5S 1A8Canada
| | - Sachdev S. Sidhu
- Banting and Best Department of Medical Research, The Terrence Donnelly Center for Cellular and Biomolecular ResearchUniversity of TorontoTorontoOntarioM5S 3E1Canada
- Department of Molecular GeneticsUniversity of TorontoTorontoOntarioM5S 1A8Canada
| |
Collapse
|
19
|
Zhou G, Chu S, Nemati A, Huang C, Snyder BA, Ptak RG, Gochin M. Investigation of the molecular characteristics of bisindole inhibitors as HIV-1 glycoprotein-41 fusion inhibitors. Eur J Med Chem 2018; 161:533-542. [PMID: 30390441 DOI: 10.1016/j.ejmech.2018.10.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 11/20/2022]
Abstract
In previous work, we described 6-6'-bisindole compounds targeting a hydrophobic pocket on the N-heptad repeat region of viral glycoprotein-41 as effective inhibitors of HIV-1 fusion. Two promising compounds with sub-micromolar IC50's contained a benzoic acid group and a benzoic acid ester attached at the two indole nitrogens. Here we have conducted a thorough structure-activity relationship (SAR) study evaluating the contribution of each of the ring systems and various substituents to compound potency. Hydrophobicity, polarity and charge were varied to produce 35 new compounds that were evaluated in binding, cell-cell fusion and viral infectivity assays. We found that (a) activity based solely on increasing hydrophobic content plateaued at ∼ 200 nM; (b) the bisindole scaffold surpassed other heterocyclic ring systems in efficacy; (c) a polar interaction possibly involving Gln575 in the pocket could supplant less specific hydrophobic interactions; and (d) the benzoic acid ester moiety did not appear to form specific contacts with the pocket. The importance of this hydrophobic group to compound potency suggests a mechanism whereby it might interact with a tertiary component during fusion, such as membrane. A promising small molecule 10b with sub-μM activity was discovered with molecular weight <500 da and reduced logP compared to earlier compounds. The work provides insight into requirements for small molecule inhibition of HIV-1 fusion.
Collapse
Affiliation(s)
- Guangyan Zhou
- Department of Basic Sciences, Touro University-California, Vallejo, CA, 94592, USA
| | - Shidong Chu
- Department of Basic Sciences, Touro University-California, Vallejo, CA, 94592, USA
| | - Ariana Nemati
- Department of Basic Sciences, Touro University-California, Vallejo, CA, 94592, USA
| | - Chunsheng Huang
- Southern Research Institute, 431 Aviation Way, Frederick, MD, 21701, USA
| | - Beth A Snyder
- Southern Research Institute, 431 Aviation Way, Frederick, MD, 21701, USA
| | - Roger G Ptak
- Southern Research Institute, 431 Aviation Way, Frederick, MD, 21701, USA
| | - Miriam Gochin
- Department of Basic Sciences, Touro University-California, Vallejo, CA, 94592, USA; Department of Pharmaceutical Chemistry, University of California San Francisco, CA, 94143, USA.
| |
Collapse
|
20
|
Wang C, Zhao L, Xia S, Zhang T, Cao R, Liang G, Li Y, Meng G, Wang W, Shi W, Zhong W, Jiang S, Liu K. De Novo Design of α-Helical Lipopeptides Targeting Viral Fusion Proteins: A Promising Strategy for Relatively Broad-Spectrum Antiviral Drug Discovery. J Med Chem 2018; 61:8734-8745. [PMID: 30192544 PMCID: PMC7075651 DOI: 10.1021/acs.jmedchem.8b00890] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Indexed: 12/19/2022]
Abstract
Class I enveloped viruses share similarities in their apparent use of a hexameric coiled-coil assembly to drive the merging of virus and host cell membranes. Inhibition of coiled coil-mediated interactions using bioactive peptides that replicate an α-helical chain from the viral fusion machinery has significant antiviral potential. Here, we present the construction of a series of lipopeptides composed of a de novo heptad repeat sequence-based α-helical peptide plus a hydrocarbon tail. Promisingly, the constructs adopted stable α-helical conformations and exhibited relatively broad-spectrum antiviral activities against Middle East respiratory syndrome coronavirus (MERS-CoV) and influenza A viruses (IAVs). Together, these findings reveal a new strategy for relatively broad-spectrum antiviral drug discovery by relying on the tunability of the α-helical coiled-coil domains present in all class I fusion proteins and the amphiphilic nature of the individual helices from this multihelix motif.
Collapse
Affiliation(s)
- Chao Wang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Lei Zhao
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shuai Xia
- Key
Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic
Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai 200032, China
| | - Tianhong Zhang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Ruiyuan Cao
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Guodong Liang
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Yue Li
- Key Laboratory
of Structure-Based Drug Design & Discovery of the Ministry of
Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guangpeng Meng
- Key Laboratory
of Structure-Based Drug Design & Discovery of the Ministry of
Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weicong Wang
- Department
of Clinical Trial Center, China National Clinical Research Center
for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, China
| | - Weiguo Shi
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Wu Zhong
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shibo Jiang
- Key
Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic
Medical Sciences & Shanghai Public Health Clinical Center, Fudan University, 130 Dong An Road, Shanghai 200032, China
- Lindsley
F. Kimball Research Institute, New York
Blood Center, New York, New York 10065, United
States
| | - Keliang Liu
- State
Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| |
Collapse
|
21
|
Wang C, Xia S, Zhang P, Zhang T, Wang W, Tian Y, Meng G, Jiang S, Liu K. Discovery of Hydrocarbon-Stapled Short α-Helical Peptides as Promising Middle East Respiratory Syndrome Coronavirus (MERS-CoV) Fusion Inhibitors. J Med Chem 2018; 61:2018-2026. [PMID: 29442512 PMCID: PMC7075646 DOI: 10.1021/acs.jmedchem.7b01732] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The hexameric α-helical coiled-coil formed between the C-terminal and N-terminal heptad repeat (CHR and NHR) regions of class I viral fusion proteins plays an important role in mediating the fusion of the viral and cellular membranes and provides a clear starting point for molecular mimicry that drives viral fusion inhibitor design. Unfortunately, such peptide mimicry of the short α-helical region in the CHR of Middle East respiratory syndrome coronavirus (MERS-CoV) spike protein has been thwarted by the loss of the peptide's native α-helical conformation when taken out of the parent protein structure. Here, we describe that appropriate all-hydrocarbon stapling of the short helical portion-based peptide to reinforce its bioactive secondary structure remarkably improves antiviral potency. The resultant stapled peptide P21S10 could effectively inhibit infection by MERS-CoV pseudovirus and its spike protein-mediated cell-cell fusion; additionally, P21S10 exhibits improved pharmacokinetic properties than HR2P-M2, suggesting strong potential for development as an anti-MERS-CoV therapeutic.
Collapse
Affiliation(s)
- Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Shuai Xia
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center , Fudan University , 130 Dong An Road , Shanghai 200032 , China
| | - Peiyu Zhang
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Weicong Wang
- Pharmaceutical Preparation Section, Plastic Surgery Hospital , Chinese Academy of Medical Sciences and Peking Union Medical College , Beijing 100144 , China
| | - Yangli Tian
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China
| | - Guangpeng Meng
- Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences and Shanghai Public Health Clinical Center , Fudan University , 130 Dong An Road , Shanghai 200032 , China.,Lindsley F. Kimball Research Institute , New York Blood Center , New York , New York 10065 , United States
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology and Toxicology , 27 Tai-Ping Road , Beijing 100850 , China.,Key Laboratory of Structure-Based Drug Design and Discovery of the Ministry of Education , Shenyang Pharmaceutical University , Shenyang 110016 , China
| |
Collapse
|
22
|
Synthesis and biological evaluation of water-soluble derivatives of chiral gossypol as HIV fusion inhibitors targeting gp41. Bioorg Med Chem Lett 2018; 28:49-52. [DOI: 10.1016/j.bmcl.2017.08.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/18/2017] [Accepted: 08/22/2017] [Indexed: 11/18/2022]
|
23
|
Allen WJ, Fochtman BC, Balius TE, Rizzo RC. Customizable de novo design strategies for DOCK: Application to HIVgp41 and other therapeutic targets. J Comput Chem 2017; 38:2641-2663. [PMID: 28940386 DOI: 10.1002/jcc.25052] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022]
Abstract
De novo design can be used to explore vast areas of chemical space in computational lead discovery. As a complement to virtual screening, from-scratch construction of molecules is not limited to compounds in pre-existing vendor catalogs. Here, we present an iterative fragment growth method, integrated into the program DOCK, in which new molecules are built using rules for allowable connections based on known molecules. The method leverages DOCK's advanced scoring and pruning approaches and users can define very specific criteria in terms of properties or features to customize growth toward a particular region of chemical space. The code was validated using three increasingly difficult classes of calculations: (1) Rebuilding known X-ray ligands taken from 663 complexes using only their component parts (focused libraries), (2) construction of new ligands in 57 drug target sites using a library derived from ∼13M drug-like compounds (generic libraries), and (3) application to a challenging protein-protein interface on the viral drug target HIVgp41. The computational testing confirms that the de novo DOCK routines are robust and working as envisioned, and the compelling results highlight the potential utility for designing new molecules against a wide variety of important protein targets. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- William J Allen
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, 11794
| | - Brian C Fochtman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, 11794
| | - Trent E Balius
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, California, 94158
| | - Robert C Rizzo
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, New York, 11794.,Institute of Chemical Biology and Drug Discovery, Stony Brook University, Stony Brook, New York, 11794.,Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, 11794
| |
Collapse
|
24
|
Chu S, Zhou G, Gochin M. Evaluation of ligand-based NMR screening methods to characterize small molecule binding to HIV-1 glycoprotein-41. Org Biomol Chem 2017; 15:5210-5219. [PMID: 28590477 PMCID: PMC5530879 DOI: 10.1039/c7ob00954b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Small molecule inhibitors of glycoprotein-41 (gp41) are able to prevent HIV infection by binding to a hydrophobic pocket (HP) contained within the gp41 ectodomain, and preventing progression of fusion. There is little structural information on gp41-ligand complexes, owing to hydrophobicity of the ligands, occlusion of the HP in folded gp41 ectodomain, and failure to form crystals of complexes. Here we used an engineered gp41 ectodomain protein containing an exposed HP and a small molecule designed to bind with weak affinity to the HP. We evaluated NMR methods, including WaterLOGSY, Saturation Transfer Difference spectroscopy (STD-NMR) and 1H relaxation rate difference spectroscopy with and without target irradiation (DIRECTION) for their ability to probe complex formation and structure. WaterLOGSY was the most sensitive technique for monitoring formation of the complex. STD-NMR and DIRECTION experiments gave similar pharmacophore mapping profiles, although the low dynamic range of the DIRECTION experiment limited its discrimination and sensitivity. A unique binding pose was identified from the STD data and provided clues for future optimization. Advantages and disadvantages of the techniques are discussed. This is the first example of the use of STD for structural analysis of a gp41-small molecule complex.
Collapse
Affiliation(s)
- Shidong Chu
- Department of Basic Sciences, Touro University-California, Vallejo, CA 94592, USA.
| | - Guangyan Zhou
- Department of Basic Sciences, Touro University-California, Vallejo, CA 94592, USA.
| | - Miriam Gochin
- Department of Basic Sciences, Touro University-California, Vallejo, CA 94592, USA. and Department of Pharmaceutical Chemistry, University of California San Francisco, CA 94143, USA
| |
Collapse
|
25
|
Creating an Artificial Tail Anchor as a Novel Strategy To Enhance the Potency of Peptide-Based HIV Fusion Inhibitors. J Virol 2016; 91:JVI.01445-16. [PMID: 27795416 DOI: 10.1128/jvi.01445-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/05/2016] [Indexed: 11/20/2022] Open
Abstract
20 (enfuvirtide) and other peptides derived from the human immunodeficiency virus type 1 (HIV-1) gp41 C-terminal heptad repeat (CHR) region inhibit HIV fusion by binding to the hydrophobic grooves on the N-terminal heptad repeat (NHR) trimer and blocking six-helix-bundle (6-HB) formation. Several strategies focusing on the binding grooves of the NHR trimer have been adopted to increase the antiviral activity of the CHR peptides. Here, we developed a novel and simple strategy to greatly enhance the potency of the existing peptide-based HIV fusion inhibitors. First, we identified a shallow pocket adjacent to the groove in the N-terminal region of NHR trimer as a new drug target, and then we designed several short artificial peptides to fit this target. After the addition of IDL (Ile-Asp-Leu) to the C terminus of CHR peptide WQ or MT-WQ, the conjugated peptides, WQ-IDL and MT-WQ-IDL, showed much more potent activities than WQ and T20, respectively, in inhibiting HIV-1 IIIB infection. WQ-IDL and MT-WQ-IDL were also more effective than WQ in blocking HIV-1 Env-mediated membrane fusion and had higher levels of binding affinity with NHR peptide N46. We solved the crystal structure of the 6-HB formed by MT-WQ-IDL and N46 and found that, besides the N-terminal MT hook tail, the IDL tail anchor of MT-WQ-IDL also binds with the shallow hydrophobic pocket outside the groove of the NHR trimer, resulting in enhanced inhibition of HIV-1 fusion with the target cell. It is expected that this novel approach can be widely used to improve the potency of peptidic fusion inhibitors against other enveloped viruses with class I fusion proteins. IMPORTANCE The hydrophobic groove of the human immunodeficiency virus type 1 (HIV-1) gp41 NHR trimer has been known as the classic drug target to develop fusion inhibitors derived from the gp41 CHR. Here, we developed a novel and simple strategy to improve the existing peptide-based HIV fusion inhibitors. We identified a shallow pocket adjacent to the groove in the NHR trimer and added a short artificial peptide consisting of three amino acids (IDL) to the C terminus of a fusion inhibitor to fit this new target. The inhibition activity of this new conjugated peptide was significantly enhanced, by 77-fold, making it much more potent than T20 (enfuvirtide) and suggesting that the IDL tail can be adopted for optimizing existing HIV-1 CHR peptide fusion inhibitors. This new approach of identifying a potential binding pocket outside the traditional target and creating an artificial tail anchor can be widely applied to design novel fusion inhibitors against other class I enveloped viruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV).
Collapse
|
26
|
Yi HA, Fochtman BC, Rizzo RC, Jacobs A. Inhibition of HIV Entry by Targeting the Envelope Transmembrane Subunit gp41. Curr HIV Res 2016; 14:283-94. [PMID: 26957202 DOI: 10.2174/1570162x14999160224103908] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022]
Abstract
BACKGROUND The transmembrane subunit of the HIV envelope protein, gp41 is a vulnerable target to inhibit HIV entry. There is one fusion inhibitor T20 (brand name: Fuzeon, generic name: enfuvirtide) available by prescription. However, it has several drawbacks such as a high level of development of drug resistance, a short-half life in vivo, rapid renal clearance, low oral bioavailability, and it is only used as a salvage therapy. Therefore, investigators have been studying a variety of different modalities to attempt to overcome these limitations. METHODS Comprehensive literature searches were performed on HIV gp41, inhibition mechanisms, and inhibitors. The latest structural information was collected, and multiple inhibition strategies targeting gp41 were reviewed. RESULTS Many of the recent advances in inhibitors were peptide-based. Several creative modification strategies have also been performed to improve inhibitory efficacy of peptides and to overcome the drawbacks of T20 treatment. Small compounds have also been an area of intense research. There is a wide variety in development from those identified by virtual screens targeting specific regions of the protein to natural products. Finally, broadly neutralizing antibodies have also been important area of research. The inaccessible nature of the target regions for antibodies is a challenge, however, extensive efforts to develop better neutralizing antibodies are ongoing. CONCLUSION The fusogenic protein, gp41 has been extensively studied as a promising target to inhibit membrane fusion between the virus and target cells. At the same time, it is a challenging target because the vulnerable conformations of the protein are exposed only transiently. However, advances in biochemical, biophysical, structural, and immunological studies are coming together to move the field closer to an understanding of gp41 structure and function that will lead to the development of novel drugs and vaccines.
Collapse
Affiliation(s)
| | | | | | - Amy Jacobs
- Department of Microbiology and Immunology, School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
27
|
Shi S, Nguyen PK, Cabral HJ, Diez-Barroso R, Derry PJ, Kanahara SM, Kumar VA. Development of peptide inhibitors of HIV transmission. Bioact Mater 2016; 1:109-121. [PMID: 29744399 PMCID: PMC5883972 DOI: 10.1016/j.bioactmat.2016.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 08/18/2016] [Accepted: 09/07/2016] [Indexed: 12/26/2022] Open
Abstract
Treatment of HIV has long faced the challenge of high mutation rates leading to rapid development of resistance, with ongoing need to develop new methods to effectively fight the infection. Traditionally, early HIV medications were designed to inhibit RNA replication and protein production through small molecular drugs. Peptide based therapeutics are a versatile, promising field in HIV therapy, which continues to develop as we expand our understanding of key protein-protein interactions that occur in HIV replication and infection. This review begins with an introduction to HIV, followed by the biological basis of disease, current clinical management of the disease, therapeutics on the market, and finally potential avenues for improved drug development.
Collapse
Key Words
- AIDS, acquired immunodeficiency syndrome
- ART, antiretroviral therapy
- CDC, Centers for Disease Control and Prevention
- Drug development
- FDA, US Food and Drug Administration
- FY, fiscal year
- HAART, highly active antiretroviral therapy
- HCV, hepatitis C Virus
- HIV
- HIV treatment
- HIV, human immunodeficiency virus
- INSTI, Integrase strand transfer inhibitors
- LEDGF, lens epithelium-derived growth factor
- NNRTI, Non-nucleoside reverse transcriptase inhibitors
- NRTI, Nucleoside/Nucleotide Reverse Transcriptase Inhibitors
- Peptide inhibitor
- Peptide therapeutic
- R&D, research and development
- RT, reverse transcriptase
Collapse
Affiliation(s)
- Siyu Shi
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | - Peter K. Nguyen
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | - Henry J. Cabral
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| | | | - Paul J. Derry
- Department of Chemistry, Rice University, Houston, TX 77030, USA
| | | | - Vivek A. Kumar
- Department of Biomedical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
- Department of Chemical, Biological and Pharmaceutical Engineering, New Jersey Institute of Technology, University Heights, Newark, NJ 07102, USA
| |
Collapse
|
28
|
Site-specific Isopeptide Bridge Tethering of Chimeric gp41 N-terminal Heptad Repeat Helical Trimers for the Treatment of HIV-1 Infection. Sci Rep 2016; 6:32161. [PMID: 27562370 PMCID: PMC4999862 DOI: 10.1038/srep32161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022] Open
Abstract
Peptides derived from the N-terminal heptad repeat (NHR) of HIV-1 gp41 can be potent inhibitors against viral entry when presented in a nonaggregating trimeric coiled-coil conformation via the introduction of exogenous trimerization motifs and intermolecular disulfide bonds. We recently discovered that crosslinking isopeptide bridges within the de novo helical trimers added exceptional resistance to unfolding. Herein, we attempted to optimize (CCIZN17)3, a representative disulfide bond-stabilized chimeric NHR-trimer, by incorporating site-specific interhelical isopeptide bonds as the redox-sensitive disulfide surrogate. In this process, we systematically examined the effect of isopeptide bond position and molecular sizes of auxiliary trimeric coiled-coil motif and NHR fragments on the antiviral potency of these NHR-trimers. Pleasingly, (IZ14N24N)3 possessed promising inhibitory activity against HIV-1 infection and markedly increased proteolytic stability relative to its disulfide-tethered counterpart, suggesting good potential for further development as an effective antiviral agent for treatment of HIV-1 infection.
Collapse
|
29
|
Liang G, Wang H, Chong H, Cheng S, Jiang X, He Y, Wang C, Liu K. An effective conjugation strategy for designing short peptide-based HIV-1 fusion inhibitors. Org Biomol Chem 2016; 14:7875-82. [PMID: 27454320 DOI: 10.1039/c6ob01334a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lengthy peptides corresponding to the C-terminal heptad repeat (C-peptides) of human immunodeficiency virus type 1 (HIV-1) gp41 are potent inhibitors against virus-cell fusion. Designing short C-peptide-based HIV-1 fusion inhibitors could potentially redress the physicochemical and technical liabilities of a long-peptide therapeutic. However, designing such inhibitors with high potency has been challenging. We generated a conjugated architecture by incorporating small-molecule inhibitors of gp41 into the N-terminus of a panel of truncated C-peptides. Among these small molecule-capped short peptides, the 26-residue peptide Indole-T26 inhibited HIV-1 Env-mediated cell-cell fusion and viral replication at low nanomolar levels, reaching the potency of the only clinically used 36-residue peptide T20 (enfuvirtide). Collectively, our work opens up a new avenue for developing short peptide-based HIV-1 fusion inhibitors, and may have broad applicability to the development of modulators of other class I fusion proteins.
Collapse
Affiliation(s)
- Guodong Liang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing, 100850, China.
| | - Huixin Wang
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huihui Chong
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 9, Dong Dan San Tiao, Beijing 100730, China
| | - Siqi Cheng
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xifeng Jiang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing, 100850, China.
| | - Yuxian He
- MOH Key Laboratory of Systems Biology of Pathogens and AIDS Research Center, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, No. 9, Dong Dan San Tiao, Beijing 100730, China
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing, 100850, China.
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing, 100850, China.
| |
Collapse
|
30
|
Lai W, Wang C, Yu F, Lu L, Wang Q, Jiang X, Xu X, Zhang T, Wu S, Zheng X, Zhang Z, Dong F, Jiang S, Liu K. An effective strategy for recapitulating N-terminal heptad repeat trimers in enveloped virus surface glycoproteins for therapeutic applications. Chem Sci 2016; 7:2145-2150. [PMID: 29899942 PMCID: PMC5968561 DOI: 10.1039/c5sc04046a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 11/30/2015] [Indexed: 11/21/2022] Open
Abstract
Sequestering peptides derived from the N-terminal heptad repeat (NHR) of class I viral fusion proteins into a non-aggregating trimeric coiled-coil conformation remains a major challenge. Here, we implemented a synthetic strategy to stabilize NHR-helical trimers, with the human immunodeficiency virus type 1 (HIV-1) gp41 fusion protein as the initial focus. A set of trimeric scaffolds was realized in a synthetic gp41 NHR-derived peptide sequence by relying on the tractability of coiled-coil structures and an additional isopeptide bridge-tethering strategy. Among them, (N36M)3 folded as a highly stable helical trimer and exhibited promising inhibitory activity against HIV-1 infection, exceptional resistance to proteolysis, and effective native ligand-binding capability. We anticipate that the trimeric coiled-coil recapitulation methodology described herein may have broader applicability to yield NHR trimers of other class I enveloped viruses and to prepare helical tertiary structure mimetics of certain natural protein-protein interactions for biomedical applications.
Collapse
Affiliation(s)
- Wenqing Lai
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| | - Chao Wang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| | - Fei Yu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health , Shanghai Medical College , Shanghai Public Health Clinical Center , Fudan University , Shanghai 200032 , China . ; ; Tel: +86-21-54237673
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health , Shanghai Medical College , Shanghai Public Health Clinical Center , Fudan University , Shanghai 200032 , China . ; ; Tel: +86-21-54237673
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health , Shanghai Medical College , Shanghai Public Health Clinical Center , Fudan University , Shanghai 200032 , China . ; ; Tel: +86-21-54237673
| | - Xifeng Jiang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| | - Xiaoyu Xu
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| | - Tianhong Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| | - Shengming Wu
- National Center of Biomedical Analysis , 27 Tai-Ping Road , Beijing , 100850 , China
| | - Xi Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| | - Zhenqing Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| | - Fangting Dong
- National Center of Biomedical Analysis , 27 Tai-Ping Road , Beijing , 100850 , China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health , Shanghai Medical College , Shanghai Public Health Clinical Center , Fudan University , Shanghai 200032 , China . ; ; Tel: +86-21-54237673
- Lindsley F. Kimball Research Institute , New York Blood Center , New York , NY 10065 , USA
| | - Keliang Liu
- State Key Laboratory of Toxicology and Medical Countermeasures , Beijing Institute of Pharmacology & Toxicology , 27 Tai-Ping Road , Beijing , 100850 , China . ; ; Tel: +86-10-6816-9363
| |
Collapse
|
31
|
Lu L, Yu F, Cai L, Debnath AK, Jiang S. Development of Small-molecule HIV Entry Inhibitors Specifically Targeting gp120 or gp41. Curr Top Med Chem 2016; 16:1074-90. [PMID: 26324044 PMCID: PMC4775441 DOI: 10.2174/1568026615666150901114527] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 05/17/2015] [Accepted: 05/27/2015] [Indexed: 12/31/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) envelope (Env) glycoprotein surface subunit gp120 and transmembrane subunit gp41 play important roles in HIV-1 entry, thus serving as key targets for the development of HIV-1 entry inhibitors. T20 peptide (enfuvirtide) is the first U.S. FDA-approved HIV entry inhibitor; however, its clinical application is limited by the lack of oral availability. Here, we have described the structure and function of the HIV-1 gp120 and gp41 subunits and reviewed advancements in the development of small-molecule HIV entry inhibitors specifically targeting these two Env glycoproteins. We then compared the advantages and disadvantages of different categories of HIV entry inhibitor candidates and further predicted the future trend of HIV entry inhibitor development.
Collapse
Affiliation(s)
| | | | | | | | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of MOE/MOH, Shanghai Medical College, Fudan University, 130 Dong An Road, Building #13, Shanghai 200032, China.
| |
Collapse
|
32
|
Cell–cell fusion induced by the Ig3 domain of receptor FGFRL1 in CHO cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1853:2273-85. [DOI: 10.1016/j.bbamcr.2015.05.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/18/2015] [Accepted: 05/22/2015] [Indexed: 11/29/2022]
|
33
|
Gogineni V, Schinazi RF, Hamann MT. Role of Marine Natural Products in the Genesis of Antiviral Agents. Chem Rev 2015; 115:9655-706. [PMID: 26317854 PMCID: PMC4883660 DOI: 10.1021/cr4006318] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Vedanjali Gogineni
- Department of Pharmacognosy, Pharmacology, Chemistry & Biochemistry, University of Mississippi, School of Pharmacy, University, Mississippi 38677, United States
| | - Raymond F. Schinazi
- Center for AIDS Research, Department of Pediatrics, Emory University/Veterans Affairs Medical Center, 1760 Haygood Drive NE, Atlanta, Georgia 30322, United States
| | - Mark T. Hamann
- Department of Pharmacognosy, Pharmacology, Chemistry & Biochemistry, University of Mississippi, School of Pharmacy, University, Mississippi 38677, United States
| |
Collapse
|
34
|
Zhu X, Yu F, Liu K, Lu L, Jiang S. An artificial peptide-based HIV-1 fusion inhibitor containing M-T hook structure exhibiting improved antiviral potency and drug resistance profile. Future Virol 2015. [DOI: 10.2217/fvl.15.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
SUMMARY Aim: We previously designed an artificial HIV-1 fusion inhibitor, PBDtrp-m4HR. Here, we have added two amino acid residues that can form an M-T hook structure at its N-terminus, with the aim of improving its antiviral potency and drug-resistance profile. Methods: Peptides were synthesized and tested for their inhibitory activity on HIV-1 Env-mediated cell–cell fusion and infection by HIV-1 strains, including those resistant to T2635, the third generation HIV fusion inhibitor, as well as its binding affinity to the gp41 NHR-peptide N36. Results: MT-PBDtrp-m4HR exhibited improved inhibitory activity on HIV-1 infection and Env-mediated cell–cell fusion, displayed an improved drug-resistance profile and increased NHR-binding affinity. Conclusion: The added M-T hook is able to enhance or stabilize the interaction between MT-PBDtrp-m4HR and the viral gp41 NHR domain. Therefore, MT-PBDtrp-m4HR has potential to be further developed as a new HIV fusion inhibitor. The approach described in this study can also be used for designing artificial peptides against other enveloped viruses with class I membrane fusion proteins.
Collapse
Affiliation(s)
- Xiaojie Zhu
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Fei Yu
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Keliang Liu
- Beijing Institute of Pharmacology & Toxicology, Beijing, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries of Education & Health, Shanghai Medical College & Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Allen WJ, Yi HA, Gochin M, Jacobs A, Rizzo RC. Small molecule inhibitors of HIVgp41 N-heptad repeat trimer formation. Bioorg Med Chem Lett 2015; 25:2853-9. [PMID: 26013847 PMCID: PMC4459904 DOI: 10.1016/j.bmcl.2015.04.067] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Revised: 04/16/2015] [Accepted: 04/20/2015] [Indexed: 10/23/2022]
Abstract
Identification of mechanistically novel anti-HIV fusion inhibitors was accomplished using a computer-aided structure-based design approach with the goal of blocking the formation of the N-heptad repeat (NHR) trimer of the viral protein gp41. A virtual screening strategy that included per-residue interaction patterns (footprints) was employed to identify small molecules compatible with putative binding pockets at the internal interface of the NHR helices at the core native viral six-helix bundle. From a screen of ∼2.8 million compounds using the DOCK program, 120 with favorable energetic and footprint overlap characteristics were purchased and experimentally tested leading to two compounds with favorable cell-cell fusion (IC50) and cytotoxicity profiles. Importantly, both hits were identified on the basis of scores containing footprint overlap terms and would not have been identified using the standard DOCK energy function alone. To our knowledge, these compounds represent the first reported small molecules that inhibit viral entry via the proposed NHR-trimer obstruction mechanism.
Collapse
Affiliation(s)
- William J Allen
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, United States
| | - Hyun Ah Yi
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Miriam Gochin
- Department of Basic Sciences, Touro University-California, Mare Island, Vallejo, CA 94592, United States; Department of Pharmaceutical Chemistry, University of California San Francisco, CA 94143, United States
| | - Amy Jacobs
- Department of Microbiology and Immunology, State University of New York at Buffalo, Buffalo, NY 14214, United States
| | - Robert C Rizzo
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, United States; Institute of Chemical Biology & Drug Discovery, Stony Brook University, Stony Brook, NY 11794, United States; Laufer Center for Physical & Quantitative Biology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
36
|
Interactions of HIV-1 proteins as targets for developing anti-HIV-1 peptides. Future Med Chem 2015; 7:1055-77. [DOI: 10.4155/fmc.15.46] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein–protein interactions (PPI) are essential in every step of the HIV replication cycle. Mapping the interactions between viral and host proteins is a fundamental target for the design and development of new therapeutics. In this review, we focus on rational development of anti-HIV-1 peptides based on mapping viral–host and viral–viral protein interactions all across the HIV-1 replication cycle. We also discuss the mechanism of action, specificity and stability of these peptides, which are designed to inhibit PPI. Some of these peptides are excellent tools to study the mechanisms of PPI in HIV-1 replication cycle and for the development of anti-HIV-1 drug leads that modulate PPI.
Collapse
|
37
|
Jiang J, Luo S, Castle SL. Solid-phase synthesis of peptides containing bulky dehydroamino acids. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2014.12.097] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
38
|
Chu S, Kaur H, Nemati A, Walsh JD, Partida V, Zhang SQ, Gochin M. Swapped-domain constructs of the glycoprotein-41 ectodomain are potent inhibitors of HIV infection. ACS Chem Biol 2015; 10:1247-57. [PMID: 25646644 DOI: 10.1021/cb501021j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The conformational rearrangement of N- and C-heptad repeats (NHR, CHR) of the HIV-1 glycoprotein-41 (gp41) ectodomain into a trimer of hairpins triggers virus-cell fusion by bringing together membrane-spanning N- and C-terminal domains. Peptides derived from the NHR and CHR inhibit fusion by targeting a prehairpin intermediate state of gp41. Typically, peptides derived from the CHR are low nanomolar inhibitors, whereas peptides derived from the NHR are low micromolar inhibitors. Here, we describe the inhibitory activity of swapped-domain gp41 mimics of the form CHR-loop-NHR, which were designed to form reverse hairpin trimers exposing NHR grooves. We observed low nanomolar inhibition of HIV fusion in constructs that possessed the following properties: an extended NHR C-terminus, an exposed conserved hydrophobic pocket on the NHR, high helical content, and trimer stability. Low nanomolar activity was independent of CHR length. CD studies in membrane mimetic dodecylphosphocholine micelles suggested that bioactivity could be related to the ability of the inhibitors to interact with a membrane-associated prehairpin intermediate. The swapped-domain design resolves the problem of unstable and weakly active NHR peptides and suggests a different mechanism of action from that of CHR peptides in inhibition of HIV-1 fusion.
Collapse
Affiliation(s)
- Shidong Chu
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Hardeep Kaur
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Ariana Nemati
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Joseph D. Walsh
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| | - Vivian Partida
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
| | - Shao-Qing Zhang
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
- Department
of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19014, United States
| | - Miriam Gochin
- Department
of Basic Sciences, Touro University−California, Vallejo, California 94592, United States
- Department
of Pharmaceutical Chemistry, University of California, San Francisco, California 94143, United States
| |
Collapse
|
39
|
De Feo CJ, Wang W, Hsieh ML, Zhuang M, Vassell R, Weiss CD. Resistance to N-peptide fusion inhibitors correlates with thermodynamic stability of the gp41 six-helix bundle but not HIV entry kinetics. Retrovirology 2014; 11:86. [PMID: 25274545 PMCID: PMC4190581 DOI: 10.1186/s12977-014-0086-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/12/2014] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The HIV-1 envelope glycoprotein (Env) undergoes conformational changes that mediate fusion between virus and host cell membranes. These changes involve transient exposure of two heptad-repeat domains (HR1 and HR2) in the gp41 subunit and their subsequent self-assembly into a six-helix bundle (6HB) that drives fusion. Env residues and features that influence conformational changes and the rate of virus entry, however, are poorly understood. Peptides corresponding to HR1 and HR2 (N and C peptides, respectively) interrupt formation of the 6HB by binding to the heptad repeats of a fusion-intermediate conformation of Env, making the peptides valuable probes for studying Env conformational changes. RESULTS Using a panel of Envs that are resistant to N-peptide fusion inhibitors, we investigated relationships between virus entry kinetics, 6HB stability, and resistance to peptide fusion inhibitors to elucidate how HR1 and HR2 mutations affect Env conformational changes and virus entry. We found that gp41 resistance mutations increased 6HB stability without increasing entry kinetics. Similarly, we show that increased 6HB thermodynamic stability does not correlate with increased entry kinetics. Thus, N-peptide fusion inhibitors do not necessarily select for Envs with faster entry kinetics, nor does faster entry kinetics predict decreased potency of peptide fusion inhibitors. CONCLUSIONS These findings provide new insights into the relationship between 6HB stability and viral entry kinetics and mechanisms of resistance to inhibitors targeting fusion-intermediate conformations of Env. These studies further highlight how residues in HR1 and HR2 can influence virus entry by altering stability of the 6HB and possibly other conformations of Env that affect rate-limiting steps in HIV entry.
Collapse
Affiliation(s)
- Christopher J De Feo
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Wei Wang
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Meng-Lun Hsieh
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA. .,Present address: Michigan State University, Department of Biochemistry and Molecular Biology, Lansing, MI, 48824, USA.
| | - Min Zhuang
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA. .,Present address: Department of Microbiology, Harbin Medical University, Harbin, Heilongjiang, China.
| | - Russell Vassell
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| | - Carol D Weiss
- Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, MD, 20993, USA.
| |
Collapse
|
40
|
A cyclic GB virus C derived peptide with anti-HIV-1 activity targets the fusion peptide of HIV-1. Eur J Med Chem 2014; 86:589-604. [DOI: 10.1016/j.ejmech.2014.09.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 12/23/2022]
|
41
|
Wang C, Lu L, Na H, Li X, Wang Q, Jiang X, Xu X, Yu F, Zhang T, Li J, Zhang Z, Zheng B, Liang G, Cai L, Jiang S, Liu K. Conjugation of a Nonspecific Antiviral Sapogenin with a Specific HIV Fusion Inhibitor: A Promising Strategy for Discovering New Antiviral Therapeutics. J Med Chem 2014; 57:7342-54. [PMID: 25156906 DOI: 10.1021/jm500763m] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Chao Wang
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of Ministries
of Education and Health, Shanghai Medical College and Institute of
Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Heya Na
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Xiangpeng Li
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Qian Wang
- Key Laboratory of Medical Molecular Virology of Ministries
of Education and Health, Shanghai Medical College and Institute of
Medical Microbiology, Fudan University, Shanghai 200032, China
| | - Xifeng Jiang
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Xiaoyu Xu
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Fei Yu
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| | - Tianhong Zhang
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Jinglai Li
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Zhenqing Zhang
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Baohua Zheng
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Guodong Liang
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Lifeng Cai
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| | - Shibo Jiang
- Key Laboratory of Medical Molecular Virology of Ministries
of Education and Health, Shanghai Medical College and Institute of
Medical Microbiology, Fudan University, Shanghai 200032, China
- Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York 10065, United States
| | - Keliang Liu
- Beijing Institute of Pharmacology & Toxicology, 27 Tai-Ping Road, Beijing 100850, China
| |
Collapse
|
42
|
Savage AM, Li Y, Matolyak LE, Doncel GF, Turner SR, Gandour RD. Anti-HIV Activities of Precisely Defined, Semirigid, Carboxylated Alternating Copolymers. J Med Chem 2014; 57:6354-63. [DOI: 10.1021/jm401913w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Alice M. Savage
- Department
of Chemistry MC0212 and Macromolecules and Interfaces Institute MC0344, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yi Li
- Department
of Chemistry MC0212 and Macromolecules and Interfaces Institute MC0344, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Lindsay E. Matolyak
- Department
of Chemistry MC0212 and Macromolecules and Interfaces Institute MC0344, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Gustavo F. Doncel
- CONRAD, Eastern Virginia Medical School, 601 Colley Avenue, Norfolk, Virginia 23507, United States
| | - S. Richard Turner
- Department
of Chemistry MC0212 and Macromolecules and Interfaces Institute MC0344, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Richard D. Gandour
- Department
of Chemistry MC0212 and Macromolecules and Interfaces Institute MC0344, Virginia Tech, Blacksburg, Virginia 24061, United States
- Virginia
Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
43
|
Hydrophobic mutations in buried polar residues enhance HIV-1 gp41 N-terminal heptad repeat-C-terminal heptad repeat interactions and C-peptides' anti-HIV activity. AIDS 2014; 28:1251-60. [PMID: 24625369 DOI: 10.1097/qad.0000000000000255] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE To investigate the effect of mutations in a highly conserved buried polar area on the function of HIV-1 gp41. DESIGN During HIV-1 entry, a six helical bundle (6-HB) formation between the C-terminal and N-terminal heptad repeat (CHR and NHR) of gp41 provides energy for virus cell membrane fusion. In 6-HB, residues at a and d (a-d) positions of CHR directly interact with NHR and are buried. They are considered critical residues for 6-HB stability and for anti-HIV-1 activity of CHR-derived peptides (C-peptides). Most of a-d residues in CHR are hydrophobic, as buried hydrophobic residues facilitate protein stability. However, HIV-1 gp41 CHR contains a highly conserved polar area with four successive buried a-d polar residues: S649/Q652/N656/E659. We mutated these buried polar residues to hydrophobic residues, either Leu or Ile, and studied its effect on the gp41 NHR-CHR interactions and anti-HIV activities of the C-peptides. METHODS We measured the C-peptide mutants' ability to form 6-HB with NHR, thermal stability of the 6-HBs and C-peptides' inhibitory activity against both T20-sensitive and resistant HIV-1 strains. RESULTS All the mutated C-peptides retained their ability to form stable 6-HB with NHR and strongly inhibited HIV-1 replication. Strikingly, S649L and E659I mutations endow C-peptide with a significantly enhanced activity against T20-resistant HIV-1 strains. CONCLUSION The highly conserved buried a-d polar residues in HIV-1 gp41 CHR can be mutated as a means of developing new fusion inhibitors against drug-resistant HIV-1 strains. The concept can also be utilized to design fusion inhibitors against other viruses with similar mechanisms.
Collapse
|
44
|
Tsvetkov VB, Serbin AV. Molecular dynamics modeling the synthetic and biological polymers interactions pre-studied via docking: anchors modified polyanions interference with the HIV-1 fusion mediator. J Comput Aided Mol Des 2014; 28:647-73. [PMID: 24862639 PMCID: PMC4050303 DOI: 10.1007/s10822-014-9749-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/05/2014] [Indexed: 11/28/2022]
Abstract
In previous works we reported the design, synthesis and in vitro evaluations of synthetic anionic polymers modified by alicyclic pendant groups (hydrophobic anchors), as a novel class of inhibitors of the human immunodeficiency virus type 1 (HIV-1) entry into human cells. Recently, these synthetic polymers interactions with key mediator of HIV-1 entry-fusion, the tri-helix core of the first heptad repeat regions [HR1]3 of viral envelope protein gp41, were pre-studied via docking in terms of newly formulated algorithm for stepwise approximation from fragments of polymeric backbone and side-group models toward real polymeric chains. In the present article the docking results were verified under molecular dynamics (MD) modeling. In contrast with limited capabilities of the docking, the MD allowed of using much more large models of the polymeric ligands, considering flexibility of both ligand and target simultaneously. Among the synthesized polymers the dinorbornen anchors containing alternating copolymers of maleic acid were selected as the most representative ligands (possessing the top anti-HIV activity in vitro in correlation with the highest binding energy in the docking). To verify the probability of binding of the polymers with the [HR1]3 in the sites defined via docking, various starting positions of polymer chains were tried. The MD simulations confirmed the main docking-predicted priority for binding sites, and possibilities for axial and belting modes of the ligands-target interactions. Some newly MD-discovered aspects of the ligand's backbone and anchor units dynamic cooperation in binding the viral target clarify mechanisms of the synthetic polymers anti-HIV activity and drug resistance prevention.
Collapse
Affiliation(s)
- Vladimir B. Tsvetkov
- Biomodulators and Drugs Research Center, Health RDF, Adm. Ushakova 14-209, 117042 Moscow, Russia
- Topchiev Institute of Petrochemical Synthesis, RAS, Leninsky Pr. 29, 119991 Moscow, Russia
- Institute for Physical-Chemical Medicine, Malaya Pirogovskaya Str. 1a, 119828 Moscow, Russia
| | - Alexander V. Serbin
- Biomodulators and Drugs Research Center, Health RDF, Adm. Ushakova 14-209, 117042 Moscow, Russia
- Topchiev Institute of Petrochemical Synthesis, RAS, Leninsky Pr. 29, 119991 Moscow, Russia
| |
Collapse
|
45
|
Abstract
Virus-cell fusion is the primary means by which the human immunodeficiency virus-1 (HIV) delivers its genetic material into the human T-cell host. Fusion is mediated in large part by the viral glycoprotein 41 (gp41) which advances through four distinct conformational states: (i) native, (ii) pre-hairpin intermediate, (iii) fusion active (fusogenic), and (iv) post-fusion. The pre-hairpin intermediate is a particularly attractive step for therapeutic intervention given that gp41 N-terminal heptad repeat (NHR) and C-terminal heptad repeat (CHR) domains are transiently exposed prior to the formation of a six-helix bundle required for fusion. Most peptide-based inhibitors, including the FDA-approved drug T20, target the intermediate and there are significant efforts to develop small molecule alternatives. Here, we review current approaches to studying interactions of inhibitors with gp41 with an emphasis on atomic-level computer modeling methods including molecular dynamics, free energy analysis, and docking. Atomistic modeling yields a unique level of structural and energetic detail, complementary to experimental approaches, which will be important for the design of improved next generation anti-HIV drugs.
Collapse
|
46
|
Wang C, Shi W, Cai L, Lu L, Yu F, Wang Q, Jiang X, Xu X, Wang K, Xu L, Jiang S, Liu K. Artificial peptides conjugated with cholesterol and pocket-specific small molecules potently inhibit infection by laboratory-adapted and primary HIV-1 isolates and enfuvirtide-resistant HIV-1 strains. J Antimicrob Chemother 2014; 69:1537-45. [DOI: 10.1093/jac/dku010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
47
|
Bon I, Lembo D, Rusnati M, Clò A, Morini S, Miserocchi A, Bugatti A, Grigolon S, Musumeci G, Landolfo S, Re MC, Gibellini D. Peptide-derivatized SB105-A10 dendrimer inhibits the infectivity of R5 and X4 HIV-1 strains in primary PBMCs and cervicovaginal histocultures. PLoS One 2013; 8:e76482. [PMID: 24116111 PMCID: PMC3792046 DOI: 10.1371/journal.pone.0076482] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/30/2013] [Indexed: 11/19/2022] Open
Abstract
Peptide dendrimers are a class of molecules that exhibit a large array of biological effects including antiviral activity. In this report, we analyzed the antiviral activity of the peptide-derivatized SB105-A10 dendrimer, which is a tetra-branched dendrimer synthetized on a lysine core, in activated peripheral blood mononuclear cells (PBMCs) that were challenged with reference and wild-type human immunodeficiency virus type 1 (HIV-1) strains. SB105-A10 inhibited infections by HIV-1 X4 and R5 strains, interfering with the early phases of the viral replication cycle. SB105-A10 targets heparan sulfate proteoglycans (HSPGs) and, importantly, the surface plasmon resonance (SPR) assay revealed that SB105-A10 strongly binds gp41 and gp120, most likely preventing HIV-1 attachment/entry through multiple mechanisms. Interestingly, the antiviral activity of SB105-A10 was also detectable in an organ-like structure of human cervicovaginal tissue, in which SB105-A10 inhibited the HIV-1ada R5 strain infection without altering the tissue viability. These results demonstrated the strong antiviral activity of SB105-A10 and suggest a potential microbicide use of this dendrimer to prevent the heterosexual transmission of HIV-1.
Collapse
Affiliation(s)
- Isabella Bon
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, Bologna, Italy
| | - David Lembo
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino, Italy
| | - Marco Rusnati
- Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy
| | - Alberto Clò
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, Bologna, Italy
| | - Silvia Morini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, Bologna, Italy
| | - Anna Miserocchi
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, Bologna, Italy
| | - Antonella Bugatti
- Department of Biomedical Sciences and Biotechnology, University of Brescia, Brescia, Italy
| | | | - Giuseppina Musumeci
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, Bologna, Italy
| | - Santo Landolfo
- Department of Public Health and Microbiology, University of Torino, Torino, Italy
| | - Maria Carla Re
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, Bologna, Italy
- Interuniversity Consortium, National Institute Biostructure and Biosystems (INBB) Roma, Italy
| | - Davide Gibellini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Microbiology Section, University of Bologna, Bologna, Italy
| |
Collapse
|
48
|
Ling Y, Xue H, Jiang X, Cai L, Liu K. Increase of anti-HIV activity of C-peptide fusion inhibitors using a bivalent drug design approach. Bioorg Med Chem Lett 2013; 23:4770-3. [DOI: 10.1016/j.bmcl.2013.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/04/2013] [Accepted: 07/09/2013] [Indexed: 10/26/2022]
|
49
|
Shi W, Cai L, Lu L, Wang C, Wang K, Xu L, Zhang S, Han H, Jiang X, Zheng B, Jiang S, Liu K. Design of highly potent HIV fusion inhibitors based on artificial peptide sequences. Chem Commun (Camb) 2013; 48:11579-81. [PMID: 23093045 DOI: 10.1039/c2cc35973a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Specific interactions were introduced between an artificial heptad repeat peptide template and HIV-1 gp41 for fusion inhibitor design, using a structure based rational design strategy. The designed peptides are nonhomologous with naturally occurring peptide and protein sequences, specifically interact with HIV-1 gp41, and show strong anti-HIV activity.
Collapse
Affiliation(s)
- Weiguo Shi
- Department of Medicinal Chemistry, Beijing Institute of Pharmacology & Toxicology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Chu S, Gochin M. Identification of fragments targeting an alternative pocket on HIV-1 gp41 by NMR screening and similarity searching. Bioorg Med Chem Lett 2013; 23:5114-8. [PMID: 23932360 DOI: 10.1016/j.bmcl.2013.07.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 07/02/2013] [Accepted: 07/16/2013] [Indexed: 01/12/2023]
Abstract
The HIV-1 envelope glycoprotein gp41 fusion intermediate is a promising drug target for inhibiting viral entry. However, drug development has been impeded by challenges inherent in mediating the underlying protein-protein interaction. Here we report on the identification of fragments that bind to a C-terminal sub-pocket adjacent to the well-known hydrophobic pocket on the NHR coiled coil. Using a specifically designed assay and ligand-based NMR screening of a fragment library, we identified a thioenylaminopyrazole compound with a dissociation constant of ~500 μM. Interaction with the C-terminal sub-pocket was confirmed by paramagnetic relaxation enhancement NMR experiments, which also yielded the binding mode. Shape-based similarity searching detected additional phenylpyrazole and phenyltriazole fragments within the library, enriching the hit rate over random screening, and revealing molecular features required for activity. Discovery of the novel scaffolds and binding mechanism suggests avenues for extending the interaction surface and improving the potency of a hydrophobic pocket binding inhibitor.
Collapse
Affiliation(s)
- Shidong Chu
- Department of Basic Sciences, College of Osteopathic Medicine, Touro University California, Mare Island, Vallejo, CA 94592, USA
| | | |
Collapse
|