1
|
Li N, Wang P, Xie Y, Wang B, Zhu C, Xue L, Han X, Gu N, Sun J. Expression of clMagR/clCry4 protein in mBMSCs provides T 2-contrast enhancement of MRI. Acta Biomater 2023; 172:309-320. [PMID: 37778484 DOI: 10.1016/j.actbio.2023.09.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Here, we propose for the first time the evaluation of magnetosensitive clMagR/clCry4 as a magnetic resonance imaging (MRI) reporter gene that imparts sensitivity to endogenous contrast in eukaryotic organisms. Using a lentiviral vector, we introduced clMagR/clCry4 into C57BL/6 mice-derived bone marrow mesenchymal stem cells (mBMSCs), which could specifically bind with iron, significantly affected MRI transverse relaxation, and generated readily detectable contrast without adverse effects in vivo. Specifically, clMagR/clCry4 makes mBMSCs beneficial for enhancing the sensitivity of MRI-R2 for iron-bearing granules, in which cells recruit exogenous iron and convert these stores into an MRI-detectable contrast; this is not achievable with control cells. Additionally, Prussian blue staining was performed together with ultrathin cell slices to provide direct evidence of natural iron-bearing granules being detectable on MRI. Hence, it was inferred that the sensitivity of MRI detection should be correlated with clMagR/clCry4 and exogenous iron. Taken together, the clMagR/clCry4 has great potential as an MRI reporter gene. STATEMENT OF SIGNIFICANCE: In this study, we propose the evaluation of magnetosensitive clMagR/clCry4 as an MRI reporter gene, imparting detection sensitivity to eukaryotic mBMSCs for endogenous contrast. At this point, the clMagR and clCry4 were located within the cytoplasm and possibly influence each other. The clMagR/clCry4 makes mBMSCs beneficial for enhancing the sensitivity of MRI-R2 for iron-bearing granules, in which protein could specifically bind with iron and convert these stores into MRI-detectable contrast; this is not achieved by control cells. The viewpoint was speculated that the clMagR/clCry4 and exogenous iron were complementary to each other. Additionally, Prussian blue staining was performed together with TEM observations to provide direct evidence that the iron-bearing granules were sensitive to MRI.
Collapse
Affiliation(s)
- Nuan Li
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Peng Wang
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China; Department of Sports Medicine and Adult Reconstructive Surgery, the Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210008, China
| | - Yuanyuan Xie
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210008, China
| | - Bin Wang
- Clinical Stem Cell Center, the Affiliated Drum Tower Hospital of Nanjing University, Nanjing 210008, China
| | - Chenzhuo Zhu
- Southeast University-Monash University Joint Graduate School, Southeast University, Suzhou 215123, China
| | - Le Xue
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Xiaofeng Han
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing 210093, China
| | - Jianfei Sun
- Jiangsu Key Laboratory of Biomaterials and Devices, School of Biological Sciences and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
2
|
He XY, Zhou YR, Mu T, Liao YF, Jiang L, Qin Y, Cai JH. Magnetic resonance imaging focused on the ferritin heavy chain 1 reporter gene detects neuronal differentiation in stem cells. Neural Regen Res 2023; 18:1563-1569. [PMID: 36571363 PMCID: PMC10075097 DOI: 10.4103/1673-5374.358608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The neuronal differentiation of mesenchymal stem cells offers a new strategy for the treatment of neurological disorders. Thus, there is a need to identify a noninvasive and sensitive in vivo imaging approach for real-time monitoring of transplanted stem cells. Our previous study confirmed that magnetic resonance imaging, with a focus on the ferritin heavy chain 1 reporter gene, could track the proliferation and differentiation of bone marrow mesenchymal stem cells that had been transduced with lentivirus carrying the ferritin heavy chain 1 reporter gene. However, we could not determine whether or when bone marrow mesenchymal stem cells had undergone neuronal differentiation based on changes in the magnetic resonance imaging signal. To solve this problem, we identified a neuron-specific enolase that can be differentially expressed before and after neuronal differentiation in stem cells. In this study, we successfully constructed a lentivirus carrying the neuron-specific enolase promoter and expressing the ferritin heavy chain 1 reporter gene; we used this lentivirus to transduce bone marrow mesenchymal stem cells. Cellular and animal studies showed that the neuron-specific enolase promoter effectively drove the expression of ferritin heavy chain 1 after neuronal differentiation of bone marrow mesenchymal stem cells; this led to intracellular accumulation of iron and corresponding changes in the magnetic resonance imaging signal. In summary, we established an innovative magnetic resonance imaging approach focused on the induction of reporter gene expression by a neuron-specific promoter. This imaging method can be used to noninvasively and sensitively detect neuronal differentiation in stem cells, which may be useful in stem cell-based therapies.
Collapse
Affiliation(s)
- Xiao-Ya He
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Yi-Rui Zhou
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Tong Mu
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing; Department of Endocrinology and Metabolism, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yi-Fan Liao
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics; Department of Nuclear Medicine, The Second Hospital of the Army Medical University, Chongqing, China
| | - Li Jiang
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yong Qin
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| | - Jin-Hua Cai
- Department of Radiology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
3
|
Moonshi SS, Wu Y, Ta HT. Visualizing stem cells in vivo using magnetic resonance imaging. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 14:e1760. [PMID: 34651465 DOI: 10.1002/wnan.1760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 12/16/2022]
Abstract
Stem cell (SC) therapies displayed encouraging efficacy and clinical outcome in various disorders. Despite this huge hype, clinical translation of SC therapy has been disheartening due to contradictory results from clinical trials. The ability to monitor migration and engraftment of cells in vivo represents an ideal strategy in cell therapy. Therefore, suitable imaging approach to track MSCs would allow understanding of migratory and homing efficiency, optimal route of delivery and engraftment of cells at targeted location. Hence, longitudinal tracking of SCs is crucial for the optimization of treatment parameters, leading to improved clinical outcome and translation. Magnetic resonance imaging (MRI) represents a suitable imaging modality to observe cells non-invasively and repeatedly. Tracking is achieved when cells are incubated prior to implantation with appropriate contrast agents (CA) or tracers which can then be detected in an MRI scan. This review explores and emphasizes the importance of monitoring the distribution and fate of SCs post-implantation using current contrast agents, such as positive CAs including paramagnetic metals (gadolinium), negative contrast agents such as superparamagnetic iron oxides and 19 F containing tracers, specifically for the in vivo tracking of MSCs using MRI. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Shehzahdi Shebbrin Moonshi
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - Yuao Wu
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia
| | - Hang Thu Ta
- Queensland Microtechnology and Nanotechnology Centre, Griffith University, Nathan, Queensland, Australia.,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland, Australia
| |
Collapse
|
4
|
D’Hollander A, Van Roosbroeck R, Trekker J, Stakenborg T, Dresselaers T, Vande Velde G, Struys T, Lambrichts I, Lammertyn J, Lagae L, Himmelreich U. Synthetic Antiferromagnetic Gold Nanoparticles as Bimodal Contrast Agents in MRI and CT-An Experimental In Vitro and In Vivo Study. Pharmaceutics 2021; 13:pharmaceutics13091494. [PMID: 34575570 PMCID: PMC8472775 DOI: 10.3390/pharmaceutics13091494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 01/16/2023] Open
Abstract
The use of multimodal contrast agents can potentially overcome the intrinsic limitations of individual imaging methods. We have validated synthetic antiferromagnetic nanoparticles (SAF-NPs) as bimodal contrast agents for in vitro cell labeling and in vivo cell tracking using magnetic resonance imaging (MRI) and computed tomography (CT). SAF-NP-labeled cells showed high contrast in MRI phantom studies (r2* = 712 s−1 mM−1), while pelleted cells showed clear contrast enhancement in CT. After intravenous SAF-NP injection, nanoparticles accumulated in the liver and spleen, as visualized in vivo by significant MRI contrast enhancement. Intravenous injection of SAF-NP-labeled cells resulted in cell accumulation in the lungs, which was clearly detectable by using CT but not by using MRI. SAF-NPs proved to be very efficient cell labeling agents for complementary MRI- and CT-based cell tracking. Bimodal monitoring of SAF-NP labeled cells is in particular of interest for applications where the applied imaging methods are not able to visualize the particles and/or cells in all organs.
Collapse
Affiliation(s)
- Antoine D’Hollander
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
| | - Ruben Van Roosbroeck
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
- Division of Mechatronics, Department of Biosystems, Biostatistics and Sensors, KU Leuven, 3001 Leuven, Belgium;
| | - Jesse Trekker
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
| | - Tim Stakenborg
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
| | - Tom Dresselaers
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
| | - Greetje Vande Velde
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
| | - Tom Struys
- Lab of Histology, Biomedical Research Institute, Hasselt University, Agora Laan Gebouw C, 3590 Diepenbeek, Belgium; (T.S.); (I.L.)
| | - Ivo Lambrichts
- Lab of Histology, Biomedical Research Institute, Hasselt University, Agora Laan Gebouw C, 3590 Diepenbeek, Belgium; (T.S.); (I.L.)
| | - Jeroen Lammertyn
- Division of Mechatronics, Department of Biosystems, Biostatistics and Sensors, KU Leuven, 3001 Leuven, Belgium;
| | - Liesbet Lagae
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
- Department of Physics, Faculty of Sciences, Laboratory of Soft Matter and Biophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, KU Leuven, O&N 1, Herestraat 49, 3000 Leuven, Belgium; (A.D.); (J.T.); (T.D.); (G.V.V.)
- Department of Life Science Technology, IMEC, Kapeldreef 75, 3001 Leuven, Belgium; (R.V.R.); (T.S.); (L.L.)
- Correspondence: ; Tel.: +32-16-330-925
| |
Collapse
|
5
|
Serganova I, Blasberg RG. Molecular Imaging with Reporter Genes: Has Its Promise Been Delivered? J Nucl Med 2020; 60:1665-1681. [PMID: 31792128 DOI: 10.2967/jnumed.118.220004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022] Open
Abstract
The first reporter systems were developed in the early 1980s and were based on measuring the activity of an enzyme-as a surrogate measure of promoter-driven transcriptional activity-which is now known as a reporter gene system. The initial objective and application of reporter techniques was to analyze the activity of a specific promoter (namely, the expression of a gene that is under the regulation of the specific promoter that is linked to the reporter gene). This system allows visualization of specific promoter activity with great sensitivity. In general, there are 2 classes of reporter systems: constitutively expressed (always-on) reporter constructs used for cell tracking, and inducible reporter systems sensitive to endogenous signaling molecules and transcription factors that characterize specific tissues, tumors, or signaling pathways.This review traces the development of different reporter systems, using fluorescent and bioluminescent proteins as well as radionuclide-based reporter systems. The development and application of radionuclide-based reporter systems is the focus of this review. The question at the end of the review is whether the "promise" of reporter gene imaging has been realized. What is required for moving forward with radionuclide-based reporter systems, and what is required for successful translation to clinical applications?
Collapse
Affiliation(s)
- Inna Serganova
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ronald G Blasberg
- Department of Neurology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York .,Department of Radiology, Memorial Hospital, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York; and.,Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
6
|
Longitudinal Visualization of Viable Cancer Cell Intratumoral Distribution in Mouse Models Using Oatp1a1-Enhanced Magnetic Resonance Imaging. Invest Radiol 2019; 54:302-311. [PMID: 30672844 DOI: 10.1097/rli.0000000000000542] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Multimodality reporter gene imaging provides valuable, noninvasive information on the fate of engineered cell populations. To complement magnetic resonance imaging (MRI) measures of tumor volume and 2-dimensional reporter-based optical measures of cell viability, reporter-based MRI may offer 3-dimensional information on the distribution of viable cancer cells in deep tissues. MATERIALS AND METHODS Here, we engineered human and murine triple-negative breast cancer cells with lentivirus encoding tdTomato and firefly luciferase for fluorescence imaging and bioluminescence imaging (BLI). A subset of these cells was additionally engineered with lentivirus encoding organic anion transporting polypeptide 1a1 (Oatp1a1) for MRI. Oatp1a1 operates by transporting gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA) into cells, and it concomitantly improves BLI substrate uptake. After orthotopic implantation of engineered cells expressing or not expressing Oatp1a1, longitudinal fluorescence imaging, BLI, and 3-Tesla MRI were performed. RESULTS Oatp1a1-expressing tumors displayed significantly increased BLI signals relative to control tumors at all time points (P < 0.05). On MRI, post-Gd-EOB-DTPA T1-weighted images of Oatp1a1-expressing tumors exhibited significantly increased contrast-to-noise ratios compared with control tumors and precontrast images (P < 0.05). At endpoint, tumors expressing Oatp1a1 displayed intratumoral MR signal heterogeneity not present at earlier time points. Pixel-based analysis of matched in vivo MR and ex vivo fluorescence microscopy images revealed a strong, positive correlation between MR intensity and tdTomato intensity for Oatp1a1-expressing tumors (P < 0.05), but not control tumors. CONCLUSIONS These results characterize Oatp1a1 as a sensitive, quantitative, positive contrast MRI reporter gene for 3-dimensional assessment of viable cancer cell intratumoral distribution and concomitant BLI enhancement. This multimodality reporter gene system can provide new insights into the influence of viable cancer cell intratumoral distribution on tumor progression and metastasis, as well as improved assessments of anticancer therapies.
Collapse
|
7
|
Brewer KD, Spitler R, Lee KR, Chan AC, Barrozo JC, Wakeel A, Foote CS, Machtaler S, Rioux J, Willmann JK, Chakraborty P, Rice BW, Contag CH, Bell CB, Rutt BK. Characterization of Magneto-Endosymbionts as MRI Cell Labeling and Tracking Agents. Mol Imaging Biol 2018; 20:65-73. [PMID: 28616842 DOI: 10.1007/s11307-017-1093-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Magneto-endosymbionts (MEs) show promise as living magnetic resonance imaging (MRI) contrast agents for in vivo cell tracking. Here we characterize the biomedical imaging properties of ME contrast agents, in vitro and in vivo. PROCEDURES By adapting and engineering magnetotactic bacteria to the intracellular niche, we are creating magneto-endosymbionts (MEs) that offer advantages relative to passive iron-based contrast agents (superparamagnetic iron oxides, SPIOs) for cell tracking. This work presents a biomedical imaging characterization of MEs including: MRI transverse relaxivity (r 2) for MEs and ME-labeled cells (compared to a commercially available iron oxide nanoparticle); microscopic validation of labeling efficiency and subcellular locations; and in vivo imaging of a MDA-MB-231BR (231BR) human breast cancer cells in a mouse brain. RESULTS At 7T, r 2 relaxivity of bare MEs was higher (250 s-1 mM-1) than that of conventional SPIO (178 s-1 mM-1). Optimized in vitro loading of MEs into 231BR cells yielded 1-4 pg iron/cell (compared to 5-10 pg iron/cell for conventional SPIO). r 2 relaxivity dropped by a factor of ~3 upon loading into cells, and was on the same order of magnitude for ME-loaded cells compared to SPIO-loaded cells. In vivo, ME-labeled cells exhibited strong MR contrast, allowing as few as 100 cells to be detected in mice using an optimized 3D SPGR gradient-echo sequence. CONCLUSIONS Our results demonstrate the potential of magneto-endosymbionts as living MR contrast agents. They have r 2 relaxivity values comparable to traditional iron oxide nanoparticle contrast agents, and provide strong MR contrast when loaded into cells and implanted in tissue.
Collapse
Affiliation(s)
- Kimberly D Brewer
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia, Canada.,Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | - Ryan Spitler
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | | | | | | | | | | | - Steven Machtaler
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | - James Rioux
- Biomedical Translational Imaging Centre (BIOTIC), Halifax, Nova Scotia, Canada.,Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | - Juergen K Willmann
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | | | | | - Christopher H Contag
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA
| | | | - Brian K Rutt
- Radiology Department and Molecular Imaging Program (MIPS), Stanford University, Stanford, CA, USA. .,Richard M. Lucas Center for Imaging, Stanford University School of Medicine, The Lucas Expansion, Room PS-064, 1201 Welch Road, Stanford, CA, 94305-5488, USA.
| |
Collapse
|
8
|
Zhang F, Duan X, Lu L, Zhang X, Chen M, Mao J, Cao M, Shen J. In Vivo Long-Term Tracking of Neural Stem Cells Transplanted into an Acute Ischemic Stroke model with Reporter Gene-Based Bimodal MR and Optical Imaging. Cell Transplant 2018; 26:1648-1662. [PMID: 29251112 PMCID: PMC5753979 DOI: 10.1177/0963689717722560] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transplantation of neural stem cells (NSCs) is emerging as a new therapeutic approach for stroke. Real-time imaging of transplanted NSCs is essential for successful cell delivery, safety monitoring, tracking cell fate and function, and understanding the interactions of transplanted cells with the host environment. Magnetic resonance imaging (MRI) of magnetic nanoparticle-labeled cells has been the most widely used means to track stem cells in vivo. Nevertheless, it does not allow for the reliable discrimination between live and dead cells. Reporter gene-based MRI was considered as an alternative strategy to overcome this shortcoming. In this work, a class of lentiviral vector-encoding ferritin heavy chain (FTH) and enhanced green fluorescent protein (EGFP) was constructed to deliver reporter genes into NSCs. After these transgenic NSCs were transplanted into the contralateral hemisphere of rats with acute ischemic stroke, MRI and fluorescence imaging (FLI) were performed in vivo for tracking the fate of transplanted cells over a long period of 6 wk. The results demonstrated that the FTH and EGFP can be effectively and safely delivered to NSCs via the designed lentiviral vector. The distribution and migration of grafted stem cells could be monitored by bimodal MRI and FLI. FTH can be used as a robust MRI reporter for reliable reporting of the short-term viability of cell grafts, whereas its capacity for tracking the long-term viability of stem cells remains dependent on several confounding factors such as cell death and the concomitant reactive inflammation.
Collapse
Affiliation(s)
- Fang Zhang
- 1 Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiaohui Duan
- 1 Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Liejing Lu
- 1 Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiang Zhang
- 1 Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Meiwei Chen
- 1 Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jiaji Mao
- 1 Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Minghui Cao
- 1 Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jun Shen
- 1 Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
In Vitro Neural Differentiation of Bone Marrow Mesenchymal Stem Cells Carrying the FTH1 Reporter Gene and Detection with MRI. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1978602. [PMID: 30046590 PMCID: PMC6038692 DOI: 10.1155/2018/1978602] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/24/2018] [Accepted: 05/31/2018] [Indexed: 01/15/2023]
Abstract
Magnetic resonance imaging (MRI) based on the ferritin heavy chain 1 (FTH1) reporter gene has been used to trace stem cells. However, whether FTH1 expression is affected by stem cell differentiation or whether cell differentiation is affected by reporter gene expression remains unclear. Here, we explore the relationship between FTH1 expression and neural differentiation in the differentiation of mesenchymal stem cells (MSCs) carrying FTH1 into neuron-like cells and investigate the feasibility of using FTH1 as an MRI reporter gene to detect neurally differentiated cells. By inducing cell differentiation with all-trans retinoic acid and a modified neuronal medium, MSCs and MSCs-FTH1 were successfully differentiated into neuron-like cells (Neurons and Neurons-FTH1), and the neural differentiation rates were (91.56±7.89)% and (92.23±7.64)%, respectively. Neuron-specific markers, including nestin, neuron-specific enolase, and microtubule-associated protein-2, were significantly expressed in Neurons-FTH1 and Neurons without noticeable differences. On the other hand, FTH1 was significantly expressed in MSCs-FTH1 and Neurons-FTH1 cells, and the expression levels were not significantly different. The R2 value was significantly increased in MSCs-FTH1 and Neurons-FTH1 cells, which was consistent with the findings of Prussian blue staining, transmission electron microscopy, and intracellular iron measurements. These results suggest that FTH1 gene expression did not affect MSC differentiation into neurons and was not affected by neural differentiation. Thus, MRI reporter gene imaging based on FTH1 can be used for the detection of neurally differentiated cells from MSCs.
Collapse
|
10
|
Quantifying iron content in magnetic resonance imaging. Neuroimage 2018; 187:77-92. [PMID: 29702183 DOI: 10.1016/j.neuroimage.2018.04.047] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 04/13/2018] [Accepted: 04/20/2018] [Indexed: 01/19/2023] Open
Abstract
Measuring iron content has practical clinical indications in the study of diseases such as Parkinson's disease, Huntington's disease, ferritinopathies and multiple sclerosis as well as in the quantification of iron content in microbleeds and oxygen saturation in veins. In this work, we review the basic concepts behind imaging iron using T2, T2*, T2', phase and quantitative susceptibility mapping in the human brain, liver and heart, followed by the applications of in vivo iron quantification in neurodegenerative diseases, iron tagged cells and ultra-small superparamagnetic iron oxide (USPIO) nanoparticles.
Collapse
|
11
|
Stem Cell Tracing Through MR Molecular Imaging. Tissue Eng Regen Med 2018; 15:249-261. [PMID: 30603551 DOI: 10.1007/s13770-017-0112-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 12/09/2017] [Accepted: 12/27/2017] [Indexed: 01/12/2023] Open
Abstract
Stem cell therapy opens a new window in medicine to overcome several diseases that remain incurable. It appears such diseases as cardiovascular disorders, brain injury, multiple sclerosis, urinary system diseases, cartilage lesions and diabetes are curable with stem cell transplantation. However, some questions related to stem cell therapy have remained unanswered. Stem cell imaging allows approval of appropriated strategies such as selection of the type and dose of stem cell, and also mode of cell delivery before being tested in clinical trials. MRI as a non-invasive imaging modality provides proper conditions for this aim. So far, different contrast agents such as superparamagnetic or paramagnetic nanoparticles, ultrasmall superparamagnetic nanoparticles, fluorine, gadolinium and some types of reporter genes have been used for imaging of stem cells. The core subject of these studies is to investigate the survival and differentiation of stem cells, contrast agent's toxicity and long term following of transplanted cells. The promising results of in vivo and some clinical trial studies may raise hope for clinical stem cells imaging with MRI.
Collapse
|
12
|
Jiang C, Wu D, Haacke EM. Ferritin-EGFP Chimera as an Endogenous Dual-Reporter for Both Fluorescence and Magnetic Resonance Imaging in Human Glioma U251 Cells. ACTA ACUST UNITED AC 2017; 3:1-8. [PMID: 30042970 PMCID: PMC6024424 DOI: 10.18383/j.tom.2015.00181] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A unique hybrid protein ferritin–enhanced green fluorescent protein (EGFP) was built to serve as an endogenous dual reporter for both fluorescence and magnetic resonance imaging (MRI). It consists of a human ferritin heavy chain (an iron-storage protein) at the N terminus, a flexible polypeptide in the middle as a linker, and an EGFP at the C terminus. Through antibiotic screening, we established stable human glioma U251 cell strains that expressed ferritin–EGFP under the control of tetracycline. These cells emitted bright green fluorescence and were easily detected by a fluorescent microscope. Ferritin–EGFP overexpression proved effective in triggering obvious intracellular iron accumulation as shown by Prussian blue staining and by MRI. Further, we found that ferritin–EGFP overexpression did not cause proliferation differences between experimental and control group cells when ferritin–EGFP was expressed for <96 hours. Application of this novel ferritin–EGFP chimera has a promising future for combined optical and MRI approaches to study in vivo imaging at a cellular level.
Collapse
Affiliation(s)
- Caihong Jiang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China and
| | - Dongmei Wu
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China and
| | - E Mark Haacke
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, China and.,Department of Radiology, Wayne State University, Detroit, Michigan
| |
Collapse
|
13
|
Jurgielewicz P, Harmsen S, Wei E, Bachmann MH, Ting R, Aras O. New imaging probes to track cell fate: reporter genes in stem cell research. Cell Mol Life Sci 2017; 74:4455-4469. [PMID: 28674728 DOI: 10.1007/s00018-017-2584-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 06/06/2017] [Accepted: 06/26/2017] [Indexed: 01/09/2023]
Abstract
Cell fate is a concept used to describe the differentiation and development of a cell in its organismal context over time. It is important in the field of regenerative medicine, where stem cell therapy holds much promise but is limited by our ability to assess its efficacy, which is mainly due to the inability to monitor what happens to the cells upon engraftment to the damaged tissue. Currently, several imaging modalities can be used to track cells in the clinical setting; however, they do not satisfy many of the criteria necessary to accurately assess several aspects of cell fate. In recent years, reporter genes have become a popular option for tracking transplanted cells, via various imaging modalities in small mammalian animal models. This review article examines the reporter gene strategies used in imaging modalities such as MRI, SPECT/PET, Optoacoustic and Bioluminescence Imaging. Strengths and limitations of the use of reporter genes in each modality are discussed.
Collapse
Affiliation(s)
- Piotr Jurgielewicz
- Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Stefan Harmsen
- Department of Pediatrics, Stanford University, Stanford, CA, 94305, USA
| | | | | | - Richard Ting
- Department of Radiology, Weill Cornell Medicine, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Omer Aras
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 300 East 66th Street, Suite 1511, New York, NY, 10065, USA.
| |
Collapse
|
14
|
Xiong R, Joris F, Liang S, De Rycke R, Lippens S, Demeester J, Skirtach A, Raemdonck K, Himmelreich U, De Smedt SC, Braeckmans K. Cytosolic Delivery of Nanolabels Prevents Their Asymmetric Inheritance and Enables Extended Quantitative in Vivo Cell Imaging. NANO LETTERS 2016; 16:5975-5986. [PMID: 27684962 DOI: 10.1021/acs.nanolett.6b01411] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Long-term in vivo imaging of cells is crucial for the understanding of cellular fate in biological processes in cancer research, immunology, or in cell-based therapies such as beta cell transplantation in type I diabetes or stem cell therapy. Traditionally, cell labeling with the desired contrast agent occurs ex vivo via spontaneous endocytosis, which is a variable and slow process that requires optimization for each particular label-cell type combination. Following endocytic uptake, the contrast agents mostly remain entrapped in the endolysosomal compartment, which leads to signal instability, cytotoxicity, and asymmetric inheritance of the labels upon cell division. Here, we demonstrate that these disadvantages can be circumvented by delivering contrast agents directly into the cytoplasm via vapor nanobubble photoporation. Compared to classic endocytic uptake, photoporation resulted in 50 and 3 times higher loading of fluorescent dextrans and quantum dots, respectively, with improved signal stability and reduced cytotoxicity. Most interestingly, cytosolic delivery by photoporation prevented asymmetric inheritance of labels by daughter cells over subsequent cell generations. Instead, unequal inheritance of endocytosed labels resulted in a dramatic increase in polydispersity of the amount of labels per cell with each cell division, hindering accurate quantification of cell numbers in vivo over time. The combined benefits of cell labeling by photoporation resulted in a marked improvement in long-term cell visibility in vivo where an insulin producing cell line (INS-1E cell line) labeled with fluorescent dextrans could be tracked for up to two months in Swiss nude mice compared to 2 weeks for cells labeled by endocytosis.
Collapse
Affiliation(s)
- Ranhua Xiong
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University , 9000 Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University , 9000 Ghent, Belgium
| | - Freya Joris
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University , 9000 Ghent, Belgium
| | - Sayuan Liang
- Biomedical NMR Unit, Faculty of Medicine, Katholieke Universiteit Leuven , 3000 Leuven, Belgium
| | - Riet De Rycke
- Inflammation Research Center, Image Core Facility, VIB , 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University , 9052 Ghent, Belgium
| | - Saskia Lippens
- Inflammation Research Center, Image Core Facility, VIB , 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University , 9052 Ghent, Belgium
| | - Jo Demeester
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University , 9000 Ghent, Belgium
| | - Andre Skirtach
- Department of Molecular Biotechnology, Ghent University , 9000 Ghent, Belgium
- Max-Planck Institute of Colloids and Interfaces , 14424 Potsdam, Germany
| | - Koen Raemdonck
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University , 9000 Ghent, Belgium
| | - Uwe Himmelreich
- Biomedical NMR Unit, Faculty of Medicine, Katholieke Universiteit Leuven , 3000 Leuven, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University , 9000 Ghent, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent University , 9000 Ghent, Belgium
- Centre for Nano- and Biophotonics, Ghent University , 9000 Ghent, Belgium
- Univ Lille 1, Univ Lille Nord France, IEMN, UMR 8520, 59652 Villeneuve Dascq, France
- Univ Lille 1, Univ Lille Nord France, Lab Phys Lasers Atomes & Mol, UMR 8523, 59655 Villeneuve Dascq, France
| |
Collapse
|
15
|
Sharkey J, Scarfe L, Santeramo I, Garcia-Finana M, Park BK, Poptani H, Wilm B, Taylor A, Murray P. Imaging technologies for monitoring the safety, efficacy and mechanisms of action of cell-based regenerative medicine therapies in models of kidney disease. Eur J Pharmacol 2016; 790:74-82. [PMID: 27375077 PMCID: PMC5063540 DOI: 10.1016/j.ejphar.2016.06.056] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 06/30/2016] [Indexed: 12/16/2022]
Abstract
The incidence of end stage kidney disease is rising annually and it is now a global public health problem. Current treatment options are dialysis or renal transplantation, which apart from their significant drawbacks in terms of increased morbidity and mortality, are placing an increasing economic burden on society. Cell-based Regenerative Medicine Therapies (RMTs) have shown great promise in rodent models of kidney disease, but clinical translation is hampered due to the lack of adequate safety and efficacy data. Furthermore, the mechanisms whereby the cell-based RMTs ameliorate injury are ill-defined. For instance, it is not always clear if the cells directly replace damaged renal tissue, or whether paracrine effects are more important. Knowledge of the mechanisms responsible for the beneficial effects of cell therapies is crucial because it could lead to the development of safer and more effective RMTs in the future. To address these questions, novel in vivo imaging strategies are needed to monitor the biodistribution of cell-based RMTs and evaluate their beneficial effects on host tissues and organs, as well as any potential adverse effects. In this review we will discuss how state-of-the-art imaging modalities, including bioluminescence, magnetic resonance, nuclear imaging, ultrasound and an emerging imaging technology called multispectral optoacoustic tomography, can be used in combination with various imaging probes to track the fate and biodistribution of cell-based RMTs in rodent models of kidney disease, and evaluate their effect on renal function.
Collapse
Affiliation(s)
- Jack Sharkey
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Lauren Scarfe
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Ilaria Santeramo
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Marta Garcia-Finana
- Department of Biostatistics, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Brian K Park
- Department of Molecular and Clinical Pharmacology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK
| | - Harish Poptani
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Arthur Taylor
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3GE, UK; Centre for Preclinical Imaging, University of Liverpool, Liverpool L69 3GE, UK.
| |
Collapse
|
16
|
Pereira SM, Williams SR, Murray P, Taylor A. MS-1 magA: Revisiting Its Efficacy as a Reporter Gene for MRI. Mol Imaging 2016; 15:15/0/1536012116641533. [PMID: 27118760 PMCID: PMC5470133 DOI: 10.1177/1536012116641533] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/25/2016] [Indexed: 12/30/2022] Open
Abstract
Bacterial genes involved in the biomineralization of magnetic nanoparticles in magnetotactic bacteria have recently been proposed as reporters for magnetic resonance imaging (MRI). In such systems, the expression of the bacterial genes in mammalian cells purportedly leads to greater concentrations of intracellular iron or the biomineralization of iron oxides, thus leading to an enhancement in relaxation rate that is detectable via MRI. Here, we show that the constitutive expression of the magA gene from Magnetospirillum magnetotacticum is tolerated by human embryonic kidney (HEK) cells but induces a strong toxic effect in murine mesenchymal/stromal cells and kidney-derived stem cells, severely restricting its effective use as a reporter gene for stem cells. Although it has been suggested that magA is involved in iron transport, when expressed in HEK cells, it does not affect the transcription of endogenous genes related to iron homeostasis. Furthermore, the magA-induced enhancement in iron uptake in HEK cells is insignificant, suggesting this gene is a poor reporter even for cell types that can tolerate its expression. We suggest that the use of magA for stem cells should be approached with caution, and its efficacy as a reporter gene requires a careful assessment on a cell-by-cell basis.
Collapse
Affiliation(s)
- Sofia M Pereira
- Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, United Kingdom
| | - Steve R Williams
- Centre for Imaging Sciences, University of Manchester, Oxford Road, Manchester, United Kingdom
| | - Patricia Murray
- Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, United Kingdom
| | - Arthur Taylor
- Institute of Translational Medicine, University of Liverpool, Crown Street, Liverpool, United Kingdom
| |
Collapse
|
17
|
Rossi M, Massai L, Diamanti D, Fiengo P, De Rosa A, Magrini R, Magnoni L, Chellini S, Coniglio S, Diodato E, Pilli E, Caradonna NP, Sardone G, Monti M, Roggeri R, Lionetti V, Recchia F, Tunici P, Valensin S, Scali C, Pollio G, Porcari V. Multimodal molecular imaging system for pathway-specific reporter gene expression. Eur J Pharm Sci 2016; 86:136-42. [PMID: 26987608 DOI: 10.1016/j.ejps.2016.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/07/2016] [Indexed: 02/06/2023]
Abstract
Preclinical imaging modalities represent an essential tool to develop a modern and translational biomedical research. To date, Optical Imaging (OI) and Magnetic Resonance Imaging (MRI) are used principally in separate studies for molecular imaging studies. We decided to combine OI and MRI together through the development of a lentiviral vector to monitor the Wnt pathway response to Lithium Chloride (LiCl) treatment. The construct was stably infected in glioblastoma cells and, after intracranial transplantation in mice, serial MRI and OI imaging sessions were performed to detect human ferritin heavy chain protein (hFTH) and firefly luciferase enzyme (FLuc) respectively. The system allowed also ex vivo analysis using a constitutive fluorescence protein expression. In mice, LiCl administration has shown significantly increment of luminescence signal and a lower signal of T2 values (P<0.05), recorded noninvasively with OI and a 7 Tesla MRI scanner. This study indicates that OI and MRI can be performed in a single in vivo experiment, providing an in vivo proof-of-concept for drug discovery projects in preclinical phase.
Collapse
Affiliation(s)
- Marco Rossi
- Siena Biotech Medicine Research Centre, Siena, Italy.
| | - Luisa Massai
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | | | | | | | | - Sara Chellini
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | | - Elena Pilli
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | | | | | | - Vincenzo Lionetti
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Fabio Recchia
- Laboratory of Medical Science, Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | | | | | - Carla Scali
- Siena Biotech Medicine Research Centre, Siena, Italy
| | | | | |
Collapse
|
18
|
Pereira SM, Herrmann A, Moss D, Poptani H, Williams SR, Murray P, Taylor A. Evaluating the effectiveness of transferrin receptor-1 (TfR1) as a magnetic resonance reporter gene. CONTRAST MEDIA & MOLECULAR IMAGING 2016; 11:236-44. [PMID: 26929139 PMCID: PMC4981909 DOI: 10.1002/cmmi.1686] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 01/06/2016] [Accepted: 01/08/2016] [Indexed: 12/13/2022]
Abstract
Magnetic resonance (MR) reporter genes have the potential for tracking the biodistribution and fate of cells in vivo, thus allowing the safety, efficacy and mechanisms of action of cell-based therapies to be comprehensively assessed. In this study, we evaluate the effectiveness of the iron importer transferrin receptor-1 (TfR1) as an MR reporter gene in the model cell line CHO-K1. Overexpression of the TfR1 transgene led to a reduction in the levels of endogenous TfR1 mRNA, but to a 60-fold increase in total TfR1 protein levels. Although the mRNA levels of ferritin heavy chain-1 (Fth1) did not change, Fth1 protein levels increased 13-fold. The concentration of intracellular iron increased significantly, even when cells were cultured in medium that was not supplemented with iron and the amount of iron in the extracellular environment was thus at physiological levels. However, we found that, by supplementing the cell culture medium with ferric citrate, a comparable degree of iron uptake and MR contrast could be achieved in control cells that did not express the TfR1 transgene. Sufficient MR contrast to enable the cells to be detected in vivo following their administration into the midbrain of chick embryos was obtained irrespective of the reporter gene. We conclude that TfR1 is not an effective reporter and that, to track the biodistribution of cells with MR imaging in the short term, it is sufficient to simply culture cells in the presence of ferric citrate. Copyright © 2016 The Authors Contrast Media & Molecular Imaging Published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Sofia M Pereira
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Anne Herrmann
- Institute of Integrative Biology, University of Liverpool, Liverpool, UK
| | - Diana Moss
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Harish Poptani
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Steve R Williams
- Centre for Imaging Sciences, Oxford Road, University of Manchester, Manchester, UK
| | - Patricia Murray
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Arthur Taylor
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
19
|
Barsanti C, Lenzarini F, Kusmic C. Diagnostic and prognostic utility of non-invasive imaging in diabetes management. World J Diabetes 2015; 6:792-806. [PMID: 26131322 PMCID: PMC4478576 DOI: 10.4239/wjd.v6.i6.792] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/23/2014] [Accepted: 04/14/2015] [Indexed: 02/05/2023] Open
Abstract
Medical imaging technologies are acquiring an increasing relevance to assist clinicians in diagnosis and to guide management and therapeutic treatment of patients, thanks to their non invasive and high resolution properties. Computed tomography, magnetic resonance imaging, and ultrasonography are the most used imaging modalities to provide detailed morphological reconstructions of tissues and organs. In addition, the use of contrast dyes or radionuclide-labeled tracers permits to get functional and quantitative information about tissue physiology and metabolism in normal and disease state. In recent years, the development of multimodal and hydrid imaging techniques is coming to be the new frontier of medical imaging for the possibility to overcome limitations of single modalities and to obtain physiological and pathophysiological measurements within an accurate anatomical framework. Moreover, the employment of molecular probes, such as ligands or antibodies, allows a selective in vivo targeting of biomolecules involved in specific cellular processes, so expanding the potentialities of imaging techniques for clinical and research applications. This review is aimed to give a survey of characteristics of main diagnostic non-invasive imaging techniques. Current clinical appliances and future perspectives of imaging in the diagnostic and prognostic assessment of diabetic complications affecting different organ systems will be particularly addressed.
Collapse
|