1
|
Aten S, Ramirez-Plascencia O, Blake C, Holder G, Fishbein E, Vieth A, Zarghani-Shiraz A, Keister E, Howe S, Appo A, Palmer B, Mahoney CE. A time for sex: circadian regulation of mammalian sexual and reproductive function. Front Neurosci 2025; 18:1516767. [PMID: 39834701 PMCID: PMC11743455 DOI: 10.3389/fnins.2024.1516767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
The circadian clock regulates physiological and biochemical processes in nearly every species. Sexual and reproductive behaviors are two processes controlled by the circadian timing system. Evidence supporting the importance of proper clock function on fertility comes from several lines of work demonstrating that misalignment of biological rhythms or disrupted function of the body's master clock, such as occurs from repeated shift work or chronic jet lag, negatively impacts reproduction by interfering with both male and female fertility. Along these lines, dysregulation of clock genes leads to impairments in fertility within mammals, and disruption of circadian clock timing negatively impacts sex hormone levels and semen quality in males, and it leads to ovulatory deficiencies in females. Here, we review the current understanding of the circadian modulation of both male and female reproductive hormones-from animal models to humans. Further, we discuss neural circuits within the hypothalamus that may regulate circadian changes in mammalian sexual behavior and reproduction, and we explore how knowledge of such circuits in animal models may help to improve human sexual function, fertility, and reproduction.
Collapse
Affiliation(s)
- Sydney Aten
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Oscar Ramirez-Plascencia
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Chiara Blake
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Gabriel Holder
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Emma Fishbein
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Biology, School of Arts and Sciences, Tufts University, Medford, MA, United States
| | - Adam Vieth
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Arman Zarghani-Shiraz
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Department of Psychological and Brain Sciences, College of Arts and Sciences, Boston University, Boston, MA, United States
| | - Evan Keister
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Shivani Howe
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Ashley Appo
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
- Behavioral Neuroscience, College of Science, Northeastern University, Boston, MA, United States
| | - Beatrice Palmer
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| | - Carrie E. Mahoney
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
2
|
Riesgo VR, Zumaski T, Willing J. Tyrosine hydroxylase expression and neuronal loss in the male and female adolescent ventral tegmental area. Neurosci Lett 2024; 841:137961. [PMID: 39227004 DOI: 10.1016/j.neulet.2024.137961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/20/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Adolescence is a critical period of development characterized by numerous behavioral and neuroanatomical changes. While studies of adolescent neurodevelopment typically compare adolescent age groups with young adults, there are fewer studies that assess developmental trajectories within the adolescent period. In the adolescent prefrontal cortex, some maturational changes take place linearly/chronologically, while others are associated specifically with pubertal onset. The adolescent ventral tegmental area (VTA), a primary source of forebrain dopamine, is relatively understudied during this period. In the present study, dopamine neuron number, total neuron number and tyrosine hydroxylase expression are assessed in the male and female rat VTA at three timepoints: postnatal day(P) 30 (pre-pubertal), P40 (post-pubertal for females, pre-pubertal for males) and P60 (post-pubertal). There was a non-significant trend for a reduction in total VTA neuron number between P30 and P60, but there was a significant reduction in dopamine neuron number across age. The expression of tyrosine hydroxylase did not change with age. However, in a second cohort of subjects, brain tissue was collected pre-pubertal, from recently post-pubertal males and females, and young adults. In this cohort, there was a sex-specific and transient decrease in tyrosine hydroxylase expression in recently post-pubertal males. These results suggest a selective pruning of VTA dopamine cells between early adolescence and young adulthood, while pubertal onset may coincide with a rapid maturation of these neurons. These findings may have implications for psychiatric disorders associated with dopamine dysfunction that tend to manifest during adolescence.
Collapse
Affiliation(s)
- Victoria R Riesgo
- Department of Psychology: Neural and Cognitive Sciences Program, Bowling Green State University, Bowling Green, OH 43403, United States; John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Theador Zumaski
- Department of Psychology: Neural and Cognitive Sciences Program, Bowling Green State University, Bowling Green, OH 43403, United States
| | - Jari Willing
- Department of Psychology: Neural and Cognitive Sciences Program, Bowling Green State University, Bowling Green, OH 43403, United States; John Paul Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403, United States.
| |
Collapse
|
3
|
Golden CEM, Martin AC, Kaur D, Mah A, Levy DH, Yamaguchi T, Lasek AW, Lin D, Aoki C, Constantinople CM. Estrogenic control of reward prediction errors and reinforcement learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.09.570945. [PMID: 38105956 PMCID: PMC10723450 DOI: 10.1101/2023.12.09.570945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Gonadal hormones act throughout the brain 1 , and neuropsychiatric disorders vary in symptom severity over the reproductive cycle, pregnancy, and perimenopause 2-4 . Yet how hormones influence cognitive processes is unclear. Exogenous 17 β -estradiol modulates dopamine signaling in the nucleus accumbens core (NAcc) 5,6 , which instantiates reward prediction errors (RPEs) for reinforcement learning 7-16 . Here we show that endogenous 17 β -estradiol enhances RPEs and sensitivity to previous rewards by reducing dopamine reuptake proteins in the NAcc. Rats performed a task with different reward states; they adjusted how quickly they initiated trials across states, balancing effort against expected rewards. NAcc dopamine reflected RPEs that predicted and causally influenced initiation times. Elevated endogenous 17 β -estradiol increased sensitivity to reward states by enhancing dopaminergic RPEs in the NAcc. Proteomics revealed reduced dopamine transporter expression. Finally, knockdown of midbrain estrogen receptors suppressed reinforcement learning. 17 β -estradiol therefore controls RPEs via dopamine reuptake, mechanistically revealing how hormones influence neural dynamics for motivation and learning.
Collapse
|
4
|
Hilz EN, Schnurer C, Bhamidipati S, Deka J, Thompson LM, Gore AC. Cognitive effects of early life exposure to PCBs: Sex-specific behavioral, hormonal and neuromolecular mechanisms involving the brain dopamine system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.13.612971. [PMID: 39314290 PMCID: PMC11419158 DOI: 10.1101/2024.09.13.612971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Endocrine-disrupting chemicals (EDCs) are environmental toxicants that disrupt hormonal and neurodevelopmental processes. Among these chemicals, polychlorinated biphenyls (PCBs) are particularly concerning due to their resistance to biodegradation and tendency to bioaccumulate. PCBs affect neurodevelopmental function and disrupt the brain's dopamine (DA) system, which is crucial for attentional, affective, and reward processing. These disruptions may contribute to the rising prevalence of DA-mediated neuropsychiatric disorders such as ADHD, depression, and substance use disorders. Notably, these behaviors are sexually dimorphic, in part due to differences in sex hormones and their receptors, which are targets of estrogenic PCBs. Therefore, this study determined effects of early life PCB exposure on behaviors and neurochemistry related to potential disruption of dopaminergic signaling. Male and female Sprague Dawley rats were exposed to PCBs or vehicle perinatally and then underwent a series of behavioral tests, including the sucrose preference test to measure affect, conditioned orienting to assess incentive-motivational phenotype, and attentional set-shifting to evaluate cognitive flexibility and response latency. Following these tests, rats were euthanized, and we measured serum estradiol (E2), midbrain DA cells, and gene expression in the midbrain. Female rats exposed perinatally to A1221 exhibited decreased sucrose preference, and both male and female A1221 rats had reduced response latency in the attentional set-shifting task compared to vehicle counterparts. Conditioned orienting, serum estradiol (E2), and midbrain DA cell numbers were not affected in either sex; however, A1221-exposed male rats displayed higher expression of estrogen receptor alpha ( Esr1 ) in the midbrain and non-significant effects on other DA-signaling genes. Additionally, E2 uniquely predicted behavioral outcomes and DAergic cell numbers in A1221-exposed female rats, whereas DA signaling genes were predictive of behavioral outcomes in males. These data highlight sex-specific effects of A1221 on neuromolecular and behavioral phenotypes.
Collapse
|
5
|
Herrera-Pérez JJ, Hernández-Hernández OT, Flores-Ramos M, Cueto-Escobedo J, Rodríguez-Landa JF, Martínez-Mota L. The intersection between menopause and depression: overview of research using animal models. Front Psychiatry 2024; 15:1408878. [PMID: 39081530 PMCID: PMC11287658 DOI: 10.3389/fpsyt.2024.1408878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 08/02/2024] Open
Abstract
Menopausal women may experience symptoms of depression, sometimes even progressing clinical depression requiring treatment to improve quality of life. While varying levels of estrogen in perimenopause may contribute to an increased biological vulnerability to mood disturbances, the effectiveness of estrogen replacement therapy (ERT) in the relief of depressive symptoms remains controversial. Menopausal depression has a complex, multifactorial etiology, that has limited the identification of optimal treatment strategies for the management of this psychiatric complaint. Nevertheless, clinical evidence increasingly supports the notion that estrogen exerts neuroprotective effects on brain structures related to mood regulation. Indeed, research using preclinical animal models continues to improve our understanding of menopause and the effectiveness of ERT and other substances at treating depression-like behaviors. However, questions regarding the efficacy of ERT in perimenopause have been raised. These questions may be answered by further investigation using specific animal models of reduced ovarian function. This review compares and discusses the advantages and pitfalls of different models emulating the menopausal stages and their relationship with the onset of depressive-like signs, as well as the efficacy and mechanisms of conventional and novel ERTs in treating depressive-like behavior. Ovariectomized young rats, middle-to-old aged intact rats, and females treated with reprotoxics have all been used as models of menopause, with stages ranging from surgical menopause to perimenopause. Additionally, this manuscript discusses the impact of organistic and therapeutic variables that may improve or reduce the antidepressant response of females to ERT. Findings from these models have revealed the complexity of the dynamic changes occurring in brain function during menopausal transition, reinforcing the idea that the best approach is timely intervention considering the opportunity window, in addition to the careful selection of treatment according to the presence or absence of reproductive tissue. Additionally, data from animal models has yielded evidence to support new promising estrogens that could be considered as ERTs with antidepressant properties and actions in endocrine situations in which traditional ERTs are not effective.
Collapse
Affiliation(s)
- José Jaime Herrera-Pérez
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Olivia Tania Hernández-Hernández
- Consejo Nacional de Humanidades, Ciencias y Tecnologías Research Fellow. Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Mónica Flores-Ramos
- Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| | - Jonathan Cueto-Escobedo
- Departamento de Investigación Clínica, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa-Enríquez, Mexico
| | | | - Lucía Martínez-Mota
- Laboratorio de Farmacología Conductual, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Mexico City, Mexico
| |
Collapse
|
6
|
Debs SR, Conn I, Navaneethan B, Penklis AG, Meyer U, Killcross S, Weickert CS, Purves-Tyson TD. Maternal immune activation and estrogen receptor modulation induce sex-specific dopamine-related behavioural and molecular alterations in adult rat offspring. Brain Behav Immun 2024; 118:236-251. [PMID: 38431238 DOI: 10.1016/j.bbi.2024.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/08/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024] Open
Abstract
Dopamine dysregulation contributes to psychosis and cognitive deficits in schizophrenia that can be modelled in rodents by inducing maternal immune activation (MIA). The selective estrogen receptor (ER) modulator, raloxifene, can improve psychosis and cognition in men and women with schizophrenia. However, few studies have examined how raloxifene may exert its therapeutic effects in mammalian brain in both sexes during young adulthood (age relevant to most prevalent age at diagnosis). Here, we tested the extent to which raloxifene alters dopamine-related behaviours and brain transcripts in young adult rats, both control and MIA-exposed females and males. We found that raloxifene increased amphetamine (AMPH)-induced locomotor activity in female controls, and in contrast, raloxifene reduced AMPH-induced locomotor activity in male MIA offspring. We did not detect overt prepulse inhibition (PPI) deficits in female or male MIA offspring, yet raloxifene enhanced PPI in male MIA offspring. Whereas, raloxifene ameliorated increased startle responsivity in female MIA offspring. In the substantia nigra (SN), we found reduced Drd2s mRNA in raloxifene-treated female offspring with or without MIA, and increased Comt mRNA in placebo-treated male MIA offspring relative to placebo-treated controls. These data demonstrate an underlying dopamine dysregulation in MIA animals that can become more apparent with raloxifene treatment, and may involve selective alterations in dopamine receptor levels and dopamine breakdown processes in the SN. Our findings support sex-specific, differential behavioural responses to ER modulation in MIA compared to control offspring, with beneficial effects of raloxifene treatment on dopamine-related behaviours relevant to schizophrenia found in male MIA offspring only.
Collapse
Affiliation(s)
- Sophie R Debs
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia
| | - Illya Conn
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Brendan Navaneethan
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Andriane G Penklis
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia
| | - Urs Meyer
- Institute of Pharmacology and Toxicology, University of Zürich-Vetsuisse, Zürich, Switzerland; Switzerland Neuroscience Centre Zürich, Zürich, Switzerland
| | - Simon Killcross
- School of Psychology, University of New South Wales, Sydney, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia; Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, USA
| | - Tertia D Purves-Tyson
- Preclinical Neuropsychiatry Laboratory, Neuroscience Research Australia, Sydney, Australia; Discipline of Psychiatry & Mental Health, Faculty of Medicine, University of New South Wales, Sydney, Australia.
| |
Collapse
|
7
|
Giatti S, Diviccaro S, Cioffi L, Cosimo Melcangi R. Post-Finasteride Syndrome And Post-Ssri Sexual Dysfunction: Two Clinical Conditions Apparently Distant, But Very Close. Front Neuroendocrinol 2024; 72:101114. [PMID: 37993021 DOI: 10.1016/j.yfrne.2023.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/31/2023] [Accepted: 11/19/2023] [Indexed: 11/24/2023]
Abstract
Post-finasteride syndrome and post-SSRI sexual dysfunction, are two poorly explored clinical conditions in which men treated for androgenetic alopecia with finasteride or for depression with SSRI antidepressants show persistent side effects despite drug suspension (e.g., sexual dysfunction, psychological complaints, sleep disorders). Because of some similarities in the symptoms, common pathological mechanisms are proposed here. Indeed, as discussed, clinical studies and preclinical data obtained so far suggest an important role for brain modulators (i.e., neuroactive steroids), neurotransmitters (i.e., serotonin, and cathecolamines), and gut microbiota in the context of the gut-brain axis. In particular, the observed interconnections of these signals in these two clinical conditions may suggest similar etiopathogenetic mechanisms, such as the involvement of the enzyme converting norepinephrine into epinephrine (i.e., phenylethanolamine N-methyltransferase). However, despite the current efforts, more work is still needed to advance the understanding of these clinical conditions in terms of diagnostic markers and therapeutic strategies.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Lucia Cioffi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
8
|
Musich M, Costa AN, Salathe V, Miller MB, Curtis AF. Sex-Specific Contributions of Alcohol and Hypertension on Everyday Cognition in Middle-Aged and Older Adults. J Womens Health (Larchmt) 2023; 32:1086-1095. [PMID: 37023399 DOI: 10.1089/jwh.2022.0462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023] Open
Abstract
Background: Separate lines of research have linked hypertension and alcohol use disorder to cognition among adults. Despite known sex differences in both of these conditions, studies examining associations on cognition are limited. We aimed to determine whether hypertension impacts the relationship between alcohol use and everyday subjective cognition and whether sex moderates this relationship in middle-aged and older adults. Materials and Methods: Participants (N = 275) 50+ years of age, who reported drinking, completed surveys measuring alcohol use (Alcohol Use Disorder Identification Test consumption items), self-reported history of hypertension, and everyday subjective cognition (Cognitive Failures Questionnaire [CFQ]). Regression was used to test a moderated moderation model examining independent and interactive roles of alcohol use, hypertension, and sex on cognition (CFQ scores: total, memory, distractibility, blunders, and names). Analyses controlled for age, years of education, race, body mass index, smoking status, depressive symptoms, global subjective sleep quality, number of prescription medication used, and number of comorbid medical conditions. Results: Sex moderated the interactive associations of hypertension and alcohol use frequency on CFQ-distractibility. Specifically, in women with hypertension, more alcohol use was associated with greater CFQ-distractibility (B = 0.96, SE = 0.34, p = 0.005). Discussion: Sex moderates the interactive association of hypertension and alcohol use on some aspects of subjective cognition in mid-to-late life. In women with hypertension, alcohol use may exacerbate problems with attentional control. Further exploration of sex- and or gender-specific mechanisms underlying these is warranted.
Collapse
Affiliation(s)
- Madison Musich
- Department of Psychological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Amy N Costa
- Department of Psychological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Victoria Salathe
- Department of Biological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Mary Beth Miller
- Department of Psychiatry, University of Missouri-Columbia, Columbia, Missouri, USA
| | - Ashley F Curtis
- Department of Psychological Sciences, University of Missouri-Columbia, Columbia, Missouri, USA
- Department of Psychiatry, University of Missouri-Columbia, Columbia, Missouri, USA
- College of Nursing, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
9
|
Finn DA. Stress and gonadal steroid influences on alcohol drinking and withdrawal, with focus on animal models in females. Front Neuroendocrinol 2023; 71:101094. [PMID: 37558184 PMCID: PMC10840953 DOI: 10.1016/j.yfrne.2023.101094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/06/2023] [Accepted: 08/06/2023] [Indexed: 08/11/2023]
Abstract
Sexually dimorphic effects of alcohol, following binge drinking, chronic intoxication, and withdrawal, are documented at the level of the transcriptome and in behavioral and physiological responses. The purpose of the current review is to update and to expand upon contributions of the endocrine system to alcohol drinking and withdrawal in females, with a focus on animal models. Steroids important in the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-adrenal axes, the reciprocal interactions between these axes, the effects of chronic alcohol use on steroid levels, and the genomic and rapid membrane-associated effects of steroids and neurosteroids in models of alcohol drinking and withdrawal are described. Importantly, comparison between males and females highlight some divergent effects of sex- and stress-steroids on alcohol drinking- and withdrawal-related behaviors, and the distinct differences in response emphasize the importance of considering sex in the development of novel pharmacotherapies for the treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Deborah A Finn
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States; Department of Research, VA Portland Health Care System, Portland, OR, United States.
| |
Collapse
|
10
|
Furtado A, Costa D, Lemos MC, Cavaco JE, Santos CRA, Quintela T. The impact of biological clock and sex hormones on the risk of disease. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 137:39-81. [PMID: 37709381 DOI: 10.1016/bs.apcsb.2023.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Molecular clocks are responsible for defining 24-h cycles of behaviour and physiology that are called circadian rhythms. Several structures and tissues are responsible for generating these circadian rhythms and are named circadian clocks. The suprachiasmatic nucleus of the hypothalamus is believed to be the master circadian clock receiving light input via the optic nerve and aligning internal rhythms with environmental cues. Studies using both in vivo and in vitro methodologies have reported the relationship between the molecular clock and sex hormones. The circadian system is directly responsible for controlling the synthesis of sex hormones and this synthesis varies according to the time of day and phase of the estrous cycle. Sex hormones also directly interact with the circadian system to regulate circadian gene expression, adjust biological processes, and even adjust their own synthesis. Several diseases have been linked with alterations in either the sex hormone background or the molecular clock. So, in this chapter we aim to summarize the current understanding of the relationship between the circadian system and sex hormones and their combined role in the onset of several related diseases.
Collapse
Affiliation(s)
- André Furtado
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Diana Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Manuel C Lemos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - J Eduardo Cavaco
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Cecília R A Santos
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal
| | - Telma Quintela
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Portugal; UDI-IPG, Unidade de Investigação para o Desenvolvimento do Interior, Instituto Politécnico da Guarda, Guarda, Portugal.
| |
Collapse
|
11
|
Maher EE, Strzelecki AM, Weafer JJ, Gipson CD. The importance of translationally evaluating steroid hormone contributions to substance use. Front Neuroendocrinol 2023; 69:101059. [PMID: 36758769 PMCID: PMC10182261 DOI: 10.1016/j.yfrne.2023.101059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/22/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023]
Abstract
Clinically, women appear to be more susceptible to certain aspects of substance use disorders (SUDs). The steroid hormones 17β-estradiol (E2) and progesterone (Pg) have been linked to women-specific drug behaviors. Here, we review clinical and preclinical studies investigating how cycling ovarian hormones affect nicotine-, cocaine-, and opioid-related behaviors. We also highlight gaps in the literature regarding how synthetic steroid hormone use may influence drug-related behaviors. In addition, we explore how E2 and Pg are known to interact in brain reward pathways and provide evidence of how these interactions may influence drug-related behaviors. The synthesis of this review demonstrates the critical need to study women-specific factors that may influence aspects of SUDs, which may play important roles in addiction processes in a sex-specific fashion. It is important to understand factors that impact women's health and may be key to moving the field forward toward more efficacious and individualized treatment strategies.
Collapse
Affiliation(s)
- Erin E Maher
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States
| | - Ashley M Strzelecki
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Jessica J Weafer
- Department of Psychology, University of Kentucky, Lexington, KY, United States
| | - Cassandra D Gipson
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
12
|
Foster WB, Beach KF, Carson PF, Harris KC, Alonso BL, Costa LT, Simamora RC, Corbin JE, Hoag KF, Mercado SI, Bernhard AG, Leung CH, Nestler EJ, Been LE. Estradiol withdrawal following a hormone simulated pregnancy induces deficits in affective behaviors and increases ∆FosB in D1 and D2 neurons in the nucleus accumbens core in mice. Horm Behav 2023; 149:105312. [PMID: 36645923 PMCID: PMC9974842 DOI: 10.1016/j.yhbeh.2023.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/02/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
In placental mammals, estradiol levels are chronically elevated during pregnancy, but quickly drop to prepartum levels following birth. This may produce an "estrogen withdrawal" state that has been linked to changes in affective states in humans and rodents during the postpartum period. The neural mechanisms underlying these affective changes, however, are understudied. We used a hormone-simulated pseudopregnancy (HSP), a model of postpartum estrogen withdrawal, in adult female C57BL/6 mice to test the impact of postpartum estradiol withdrawal on several behavioral measures of anxiety and motivation. We found that estradiol withdrawal following HSP increased anxiety-like behavior in the elevated plus maze, but not in the open field or marble burying tests. Although hormone treatment during HSP consistently increased sucrose consumption, sucrose preference was generally not impacted by hormone treatment or subsequent estradiol withdrawal. In the social motivation test, estradiol withdrawal decreased the amount of time spent in proximity to a social stimulus animal. These behavioral changes were accompanied by changes in the expression of ∆FosB, a transcription factor correlated with stable long-term plasticity, in the nucleus accumbens (NAc). Specifically, estrogen-withdrawn females had higher ∆FosB expression in the nucleus accumbens core, but ∆FosB expression did not vary across hormone conditions in the nucleus accumbens shell. Using transgenic reporter mice, we found that this increase in ∆FosB occurred in both D1- and D2-expressing cells in the NAc core. Together, these results suggest that postpartum estrogen withdrawal impacts anxiety and motivation and increases ∆FosB in the NAc core.
Collapse
Affiliation(s)
| | | | - Paige F Carson
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Kagan C Harris
- Haverford College, Department of Psychology, Haverford, PA, USA
| | | | - Leo T Costa
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Roy C Simamora
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Jaclyn E Corbin
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Keegan F Hoag
- Haverford College, Department of Psychology, Haverford, PA, USA
| | | | - Anya G Bernhard
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Cary H Leung
- Widener College, Department of Biology, Chester, PA, USA
| | - Eric J Nestler
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Laura E Been
- Haverford College, Department of Psychology, Haverford, PA, USA.
| |
Collapse
|
13
|
La Barbera L, D'Amelio M. Alzheimer's Disease and Sex-Dependent Alterations in the Striatum: A Lesson from a Mouse Model. J Alzheimers Dis 2023; 94:1377-1380. [PMID: 37522213 DOI: 10.3233/jad-230681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
In the last years, many clinical studies highlighted sex-specific differences in the pathophysiology of Alzheimer's disease (AD). The recent paper published in the Journal of Alzheimer's Disease shows the influence of sex on amyloid-β plaque deposition, behavior, and dopaminergic signaling in the 5xFAD mouse model of AD, with worse alterations in female mice. This commentary focuses on the importance of recognizing sex as a key variable to consider for a more precise clinical practice, with the challenge to develop sex-specific therapeutic interventions in neurodegenerative diseases such as AD.
Collapse
Affiliation(s)
- Livia La Barbera
- Università Campus Bio-Medico di Roma, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marcello D'Amelio
- Università Campus Bio-Medico di Roma, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| |
Collapse
|
14
|
Hilz EN, Lee HJ. Estradiol and progesterone in female reward-learning, addiction, and therapeutic interventions. Front Neuroendocrinol 2023; 68:101043. [PMID: 36356909 DOI: 10.1016/j.yfrne.2022.101043] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/24/2022] [Accepted: 10/28/2022] [Indexed: 11/09/2022]
Abstract
Sex steroid hormones like estradiol (E2) and progesterone (P4) guide the sexual organization and activation of the developing brain and control female reproductive behavior throughout the lifecycle; importantly, these hormones modulate functional activity of not just the endocrine system, but most of the nervous system including the brain reward system. The effects of E2 and P4 can be seen in the processing of and memory for rewarding stimuli and in the development of compulsive reward-seeking behaviors like those seen in substance use disorders. Women are at increased risk of developing substance use disorders; however, the origins of this sex difference are not well understood and therapeutic interventions targeting ovarian hormones have produced conflicting results. This article reviews the contribution of the E2 and P4 in females to functional modulation of the brain reward system, their possible roles in origins of addiction vulnerability, and the development and treatment of compulsive reward-seeking behaviors.
Collapse
Affiliation(s)
- Emily N Hilz
- The University of Texas at Austin, Department of Pharmacology, USA.
| | - Hongjoo J Lee
- The University of Texas at Austin, Department of Psychology, USA; The University of Texas at Austin, Institute for Neuroscience, USA
| |
Collapse
|
15
|
Grieb ZA, Lonstein JS. Oxytocin interactions with central dopamine and serotonin systems regulate different components of motherhood. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210062. [PMID: 35858105 PMCID: PMC9272149 DOI: 10.1098/rstb.2021.0062] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/09/2022] [Indexed: 08/31/2023] Open
Abstract
The role of oxytocin in maternal caregiving and other postpartum behaviours has been studied for more than five decades. How oxytocin interacts with other neurochemical systems to enact these behavioural changes, however, is only slowly being elucidated. The best-studied oxytocin-neurotransmitter interaction is with the mesolimbic dopamine system, and this interaction is essential for maternal motivation and active caregiving behaviours such as retrieval of pups. Considerably less attention has been dedicated to investigating how oxytocin interacts with central serotonin to influence postpartum behaviour. Recently, it has become clear that while oxytocin-dopamine interactions regulate the motivational and pup-approach aspects of maternal caregiving behaviours, oxytocin-serotonin interactions appear to regulate nearly all other aspects including postpartum nursing, aggression, anxiety-like behaviour and stress coping strategy. Collectively, oxytocin's interactions with central dopamine and serotonin systems are thus critical for the entire suite of behavioural adaptations exhibited in the postpartum period, and these sites of interaction are potential pharmacological targets for where oxytocin could help to ameliorate deficits in maternal caregiving and poor postpartum mental health. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Zachary A. Grieb
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Joseph S. Lonstein
- Psychology Department, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
16
|
Orsini CA, Truckenbrod LM, Wheeler AR. Regulation of sex differences in risk-based decision making by gonadal hormones: Insights from rodent models. Behav Processes 2022; 200:104663. [PMID: 35661794 PMCID: PMC9893517 DOI: 10.1016/j.beproc.2022.104663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 04/22/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023]
Abstract
Men and women differ in their ability to evaluate options that vary in their rewards and the risks that are associated with these outcomes. Most studies have shown that women are more risk averse than men and that gonadal hormones significantly contribute to this sex difference. Gonadal hormones can influence risk-based decision making (i.e., risk taking) by modulating the neurobiological substrates underlying this cognitive process. Indeed, estradiol, progesterone and testosterone modulate activity in the prefrontal cortex, amygdala and nucleus accumbens associated with reward and risk-related information. The use of animal models of decision making has advanced our understanding of the intersection between the behavioral, neural and hormonal mechanisms underlying sex differences in risk taking. This review will outline the current state of this literature, identify the current gaps in knowledge and suggest the neurobiological mechanisms by which hormones regulate risky decision making. Collectively, this knowledge can be used to understand the potential consequences of significant hormonal changes, whether endogenously or exogenously induced, on risk-based decision making as well as the neuroendocrinological basis of neuropsychiatric diseases that are characterized by impaired risk taking, such as substance use disorder and schizophrenia.
Collapse
Affiliation(s)
- Caitlin A. Orsini
- Department of Psychology, University of Texas at Austin, Austin, TX, USA,Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA,Correspondence to: Department of Psychology & Neurology, Waggoner Center for Alcohol and Addiction Research, 108 E. Dean Keaton St., Stop A8000, Austin, TX 78712, USA. (C.A. Orsini)
| | - Leah M. Truckenbrod
- Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| | - Alexa-Rae Wheeler
- Department of Neurology, University of Texas at Austin, Austin, TX, USA,Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, TX, USA,Institute for Neuroscience, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
17
|
Almey A, Milner TA, Brake WG. Estrogen receptors observed at extranuclear neuronal sites and in glia in the nucleus accumbens core and shell of the female rat: Evidence for localization to catecholaminergic and GABAergic neurons. J Comp Neurol 2022; 530:2056-2072. [PMID: 35397175 PMCID: PMC9167786 DOI: 10.1002/cne.25320] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/17/2022] [Accepted: 03/07/2022] [Indexed: 11/08/2022]
Abstract
Estrogens affect dopamine-dependent diseases/behavior and have rapid effects on dopamine release and receptor availability in the nucleus accumbens (NAc). Low levels of nuclear estrogen receptor (ER) α and ERβ are seen in the NAc, which cannot account for the rapid effects of estrogens in this region. G-protein coupled ER 1 (GPER1) is observed at low levels in the NAc shell, which also likely does not account for the array of estrogens' effects in this region. Prior studies demonstrated membrane-associated ERs in the dorsal striatum; these experiments extend those findings to the NAc core and shell. Single- and dual-immunolabeling electron microscopy determined whether ERα, ERβ, and GPER1 are at extranuclear sites in the NAc core and shell and whether ERα and GPER1 were localized to catecholaminergic or γ-aminobutyric acid-ergic (GABAergic) neurons. All three ERs are observed, almost exclusively, at extranuclear sites in the NAc, and similarly distributed in the core and shell. ERα, ERβ, and GPER1 are primarily in axons and axon terminals suggesting that estrogens affect transmission in the NAc via presynaptic mechanisms. About 10% of these receptors are found on glia. A small proportion of ERα and GPER1 are localized to catecholaminergic terminals, suggesting that binding at these ERs alters release of catecholamines, including dopamine. A larger proportion of ERα and GPER1 are localized to GABAergic dendrites and terminals, suggesting that estrogens alter GABAergic transmission to indirectly affect dopamine transmission in the NAc. Thus, the localization of ERs could account for the rapid effects of estrogen in the NAc.
Collapse
Affiliation(s)
- Anne Almey
- Department of Psychology, Centre for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, Canada
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York City, New York, USA.,Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York City, New York, USA
| | - Wayne G Brake
- Department of Psychology, Centre for Studies in Behavioral Neurobiology (CSBN), Concordia University, Montreal, Canada
| |
Collapse
|
18
|
Peart DR, Andrade AK, Logan CN, Knackstedt LA, Murray JE. Regulation of Cocaine-related Behaviors by Estrogen and Progesterone. Neurosci Biobehav Rev 2022; 135:104584. [DOI: 10.1016/j.neubiorev.2022.104584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 10/19/2022]
|
19
|
Jacobson MH, Ghassabian A, Gore AC, Trasande L. Exposure to environmental chemicals and perinatal psychopathology. Biochem Pharmacol 2022; 195:114835. [PMID: 34774531 PMCID: PMC8712457 DOI: 10.1016/j.bcp.2021.114835] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/03/2023]
Abstract
Women are nearly twice as likely to develop mood disorders compared with men, and incidence is greatest during reproductive transitions, including pregnancy and postpartum. Because these periods are characterized by dramatic hormonal and physiologic changes, there is heightened susceptibility to external factors, such as exposure to environmental toxicants, which may play a role in maternal psychopathology. The purpose of this scoping review was to provide an overview of studies conducted in humans and animal models on the effects of nonoccupational exposure to environmental chemicals on maternal psychopathology during the perinatal period. The largest number of studies examined exposure to environmental tobacco smoke and antenatal depression and showed consistently positive findings, although more prospective studies using biomarkers for exposure assessment are needed. The few studies examining persistent organic pollutants such as polybrominated diphenyl ethers and perinatal depression were consistent in showing associations with increased depressive symptoms. Results were mixed for exposure to heavy metals and non-persistent chemicals, but a strong literature in animal models supported an association between bisphenols and phthalates and reduced maternal behavior and care of pups after parturition. Biological mechanisms may include endocrine disruption, neurotransmitter system impairment, alterations in gene expression, and immune activation and inflammation. Additional longitudinal studies that include biospecimen collection are essential to furthering the understanding of how environmental toxicants during pregnancy may affect perinatal psychopathology and the underlying mechanisms of action. Future work should also leverage the parallels between animal and human maternal behavior, thereby highlighting the opportunity for multidisciplinary work in this avenue.
Collapse
Affiliation(s)
- Melanie H Jacobson
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA.
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA
| | - Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX 78712, USA; Division of Pharmacology & Toxicology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University Grossman School of Medicine, New York, NY, USA; Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY, USA; Department of Population Health, New York University Grossman School of Medicine, New York, NY, USA; New York University Wagner School of Public Service, New York, NY, USA; New York University College of Global Public Health, New York, NY, USA
| |
Collapse
|
20
|
Fernandes MF, Lau D, Sharma S, Fulton S. Anxiety-like behavior in female mice is modulated by STAT3 signaling in midbrain dopamine neurons. Brain Behav Immun 2021; 95:391-400. [PMID: 33872705 DOI: 10.1016/j.bbi.2021.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
The central signaling actions of cytokines are mediated by signal transducer and activator of transcription (STAT3). STAT3 activation plays a pivotal role in the behavioral responses to the adiposity hormone leptin, including in midbrain dopamine (DA) neurons where it mediates the influence of leptin to diminish physical activity and running reward in male mice. Leptin also has anxiolytic effects which have been tied to the mesolimbic DA system. To assess the contribution of STAT3 signaling in mesolimbic DA neurons on feeding, mesolimbic DA tone and anxiodepressive behaviors in female mice, we generated DA-specific STAT3 knockout mice by crossing mice expressing Cre under the control of the dopamine transporter with STAT3-LoxP mice. Feeding, locomotion, wheel running, conditioned place preference for palatable food and amphetamine locomotor sensitization were unaffected by DA-specific STAT3 deletion. Conversely, knockout mice exhibited heightened anxiety-like behavior (open field test and elevated plus maze) along with increased basal and stress-induced plasma corticosterone, whereas indices of behavioral despair (forced swim and tail-suspension tasks) were unchanged. In accordance with biochemical evidence of increased D1 receptor signaling (phospho-DARPP32Thr34) in the central nucleus of the amygdala (CeA) of knockout mice, local microinjections of a D1 receptor antagonist reversed the anxiogenic phenotype of knockout mice. In addition to alluding to sex differences in the signaling mechanisms mediating anxiety-like behavior, our findings suggest that activation of STAT3 in midbrain dopamine neurons projecting to the CeA dampens anxiety in a D1R-dependent manner in female mice.
Collapse
Affiliation(s)
- Maria F Fernandes
- Centre de Recherche du CHUM, Canada; Physiology and Pharmacology, Canada
| | - David Lau
- Centre de Recherche du CHUM, Canada; Neuroscience, Faculty of Medicine, University of Montreal, Québec, Canada
| | - Sandeep Sharma
- Centre de Recherche du CHUM, Canada; Department of Nutrition, Canada
| | - Stephanie Fulton
- Centre de Recherche du CHUM, Canada; Department of Nutrition, Canada; Montreal Diabetes Research Center, Canada; Center for Studies in Behavioural Neurobiology (Concordia University), Canada.
| |
Collapse
|
21
|
Mietlicki-Baase EG, Santollo J, Daniels D. Fluid intake, what's dopamine got to do with it? Physiol Behav 2021; 236:113418. [PMID: 33838203 DOI: 10.1016/j.physbeh.2021.113418] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/12/2021] [Accepted: 04/05/2021] [Indexed: 12/27/2022]
Abstract
Maintaining fluid balance is critical for life. The central components that control fluid intake are only partly understood. This contribution to the collection of papers highlighting work by members of the Society for the Study of Ingestive Behavior focuses on the role that dopamine has on fluid intake and describes the roles that various bioregulators can have on thirst and sodium appetite by influencing dopamine systems in the brain. The goal of the review is to highlight areas in need of more research and to propose a framework to guide that research. We hope that this framework will inspire researchers in the field to investigate these interesting questions in order to form a more complete understanding of how fluid intake is controlled.
Collapse
Affiliation(s)
- Elizabeth G Mietlicki-Baase
- Department of Exercise and Nutrition Sciences, University at Buffalo, State University of New York, Buffalo, NY 14214, United States; Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| | - Jessica Santollo
- Department of Biology, University of Kentucky, Lexington, KY 40506, United States
| | - Derek Daniels
- Center for Ingestive Behavior Research, University at Buffalo, State University of New York, Buffalo, NY 14260, United States; Department of Psychology, University at Buffalo, State University of New York, Buffalo, NY 14260, United States
| |
Collapse
|
22
|
Quigley JA, Logsdon MK, Turner CA, Gonzalez IL, Leonardo NB, Becker JB. Sex differences in vulnerability to addiction. Neuropharmacology 2021; 187:108491. [PMID: 33567305 PMCID: PMC7979496 DOI: 10.1016/j.neuropharm.2021.108491] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/27/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
This article reviews evidence for sex differences in vulnerability to addiction with an emphasis on the neural mechanisms underlying these differences. Sex differences in the way that the gonadal hormone, estradiol, interacts with the ascending telencephalic dopamine system results in sex differences in motivated behaviors, including drug-seeking. In rodents, repeated psychostimulant exposure enhances incentive sensitization to a greater extent in females than males. Estradiol increases females' motivation to attain psychostimulants and enhances the value of drug related cues, which ultimately increases their susceptibility towards spontaneous relapse. This, along with females' dampened ability to alter decisions regarding risky behaviors, enhances their vulnerability for escalation of drug use. In males, recent evidence suggests that estradiol may be protective against susceptibility towards drug-preference. Sex differences in the actions of estradiol are reviewed to provide a foundation for understanding how future research might enhance understanding of the mechanisms of sex differences in addiction-related behaviors, which are dependent on estradiol receptor (ER) subtype and the region of the brain they are acting in. A comprehensive review of the distribution of ERα, ERβ, and GPER1 throughout the rodent brain are provided along with a discussion of the possible ways in which these patterns differentially regulate drug-taking between the sexes. The article concludes with a brief discussion of the actions of gonadal hormones on the circuitry of the stress system, including the hypothalamic pituitary adrenal axis and regulation of corticotropin-releasing factor. Sex differences in the stress system can also contribute to females' enhanced vulnerability towards addiction.
Collapse
Affiliation(s)
- Jacqueline A Quigley
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Molly K Logsdon
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Christopher A Turner
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Ivette L Gonzalez
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - N B Leonardo
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA
| | - Jill B Becker
- Psychology Department, Ann Arbor MI, 48109 USA; Michigan Neuroscience Institute, University of Michigan, Ann Arbor MI, 48109 USA.
| |
Collapse
|
23
|
Zachry JE, Nolan SO, Brady LJ, Kelly SJ, Siciliano CA, Calipari ES. Sex differences in dopamine release regulation in the striatum. Neuropsychopharmacology 2021; 46:491-499. [PMID: 33318634 PMCID: PMC8027008 DOI: 10.1038/s41386-020-00915-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 01/05/2023]
Abstract
The mesolimbic dopamine system-which originates in the ventral tegmental area and projects to the striatum-has been shown to be involved in the expression of sex-specific behavior and is thought to be a critical mediator of many psychiatric diseases. While substantial work has focused on sex differences in the anatomy of dopamine neurons and relative dopamine levels between males and females, an important characteristic of dopamine release from axon terminals in the striatum is that it is rapidly modulated by local regulatory mechanisms independent of somatic activity. These processes can occur via homosynaptic mechanisms-such as presynaptic dopamine autoreceptors and dopamine transporters-as well as heterosynaptic mechanisms, such as retrograde signaling from postsynaptic cholinergic and GABAergic systems, among others. These regulators serve as potential targets for the expression of sex differences in dopamine regulation in both ovarian hormone-dependent and independent fashions. This review describes how sex differences in microcircuit regulatory mechanisms can alter dopamine dynamics between males and females. We then describe what is known about the hormonal mechanisms controlling/regulating these processes. Finally, we highlight the missing gaps in our knowledge of these systems in females. Together, a more comprehensive and mechanistic understanding of how sex differences in dopamine function manifest will be particularly important in developing evidence-based therapeutics that target this system and show efficacy in both sexes.
Collapse
Affiliation(s)
- Jennifer E. Zachry
- grid.152326.10000 0001 2264 7217Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
| | - Suzanne O. Nolan
- grid.152326.10000 0001 2264 7217Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
| | - Lillian J. Brady
- grid.152326.10000 0001 2264 7217Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
| | - Shannon J. Kelly
- grid.152326.10000 0001 2264 7217Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA
| | - Cody A. Siciliano
- grid.152326.10000 0001 2264 7217Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA ,grid.152326.10000 0001 2264 7217Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232 USA ,grid.152326.10000 0001 2264 7217Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232 USA
| | - Erin S. Calipari
- grid.152326.10000 0001 2264 7217Department of Pharmacology, Vanderbilt University, Nashville, TN 37232 USA ,grid.152326.10000 0001 2264 7217Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232 USA ,grid.152326.10000 0001 2264 7217Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN 37232 USA ,grid.152326.10000 0001 2264 7217Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232 USA ,grid.152326.10000 0001 2264 7217Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN 37232 USA
| |
Collapse
|
24
|
Eck SR, Bangasser DA. The effects of early life stress on motivated behaviors: A role for gonadal hormones. Neurosci Biobehav Rev 2020; 119:86-100. [PMID: 33022296 PMCID: PMC7744121 DOI: 10.1016/j.neubiorev.2020.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/22/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022]
Abstract
Motivated behaviors are controlled by the mesocorticolimbic dopamine (DA) system, consisting of projections from the ventral tegmental area (VTA) to the nucleus accumbens (NAc) and prefrontal cortex (PFC), with input from structures including the medial preoptic area (mPOA). Sex differences are present in this circuit, and gonadal hormones (e.g., estradiol and testosterone) are important for regulating DA transmission. Early life stress (ELS) also regulates the mesocorticolimbic DA system. ELS modifies motivated behaviors and the underlying DA circuitry, increasing risk for disorders such as substance use disorder, major depression, and schizophrenia. ELS has been shown to change gonadal hormone signaling in both sexes. Thus, one way that ELS could impact mesocorticolimbic DA is by altering the efficacy of gonadal hormones. This review provides evidence for this idea by integrating the gonadal hormone, motivation, and ELS literature to argue that ELS alters gonadal hormone signaling to impact motivated behavior. We also discuss the importance of these effects in the context of understanding risk and treatments for psychiatric disorders in men and women.
Collapse
Affiliation(s)
- Samantha R Eck
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA.
| | - Debra A Bangasser
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA, 19122, USA
| |
Collapse
|
25
|
Abstract
Sexually dimorphic effects of alcohol exposure throughout life have been documented in clinical and preclinical studies. In the past, rates of alcohol use disorder (AUD) were higher in men than in women, but over the past 10 years, the difference between sexes in prevalence of AUD and binge drinking has narrowed. Recent evidence adds to historical data regarding the influence of sex steroids on alcohol drinking and the interaction with stress-related steroids. This review considers the contribution of the endocrine system to alcohol drinking in females, with a focus on the hypothalamic pituitary gonadal axis and the hypothalamic pituitary adrenal axis and their reciprocal interactions. Emphasis is given to preclinical studies that examined genomic and rapid membrane effects of estrogen, progesterone, glucocorticoids, and GABAergic neurosteroids for their effects on alcohol drinking and models of relapse. Pertinent comparisons to data in males highlight divergent effects of sex and stress steroids on alcohol drinking and emphasize the importance of considering sex in the development of novel pharmacotherapeutic targets for the treatment of AUD. For instance, pharmacological strategies targeting the corticotropin releasing factor and glucocorticoid receptor systems may be differentially effective in males and females, whereas strategies to enhance GABAergic neurosteroids may represent a biomarker of treatment efficacy in both sexes.
Collapse
Affiliation(s)
- Deborah A Finn
- Oregon Health & Science University, Portland, Oregon.,Veterans Affairs Portland Health Care System, Portland, Oregon
| |
Collapse
|
26
|
Pritschet L, Santander T, Taylor CM, Layher E, Yu S, Miller MB, Grafton ST, Jacobs EG. Functional reorganization of brain networks across the human menstrual cycle. Neuroimage 2020; 220:117091. [PMID: 32621974 DOI: 10.1016/j.neuroimage.2020.117091] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 06/17/2020] [Accepted: 06/23/2020] [Indexed: 02/06/2023] Open
Abstract
The brain is an endocrine organ, sensitive to the rhythmic changes in sex hormone production that occurs in most mammalian species. In rodents and nonhuman primates, estrogen and progesterone's impact on the brain is evident across a range of spatiotemporal scales. Yet, the influence of sex hormones on the functional architecture of the human brain is largely unknown. In this dense-sampling, deep phenotyping study, we examine the extent to which endogenous fluctuations in sex hormones alter intrinsic brain networks at rest in a woman who underwent brain imaging and venipuncture for 30 consecutive days. Standardized regression analyses illustrate estrogen and progesterone's widespread associations with functional connectivity. Time-lagged analyses examined the temporal directionality of these relationships and suggest that cortical network dynamics (particularly in the Default Mode and Dorsal Attention Networks, whose hubs are densely populated with estrogen receptors) are preceded-and perhaps driven-by hormonal fluctuations. A similar pattern of associations was observed in a follow-up study one year later. Together, these results reveal the rhythmic nature in which brain networks reorganize across the human menstrual cycle. Neuroimaging studies that densely sample the individual connectome have begun to transform our understanding of the brain's functional organization. As these results indicate, taking endocrine factors into account is critical for fully understanding the intrinsic dynamics of the human brain.
Collapse
Affiliation(s)
- Laura Pritschet
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Tyler Santander
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Caitlin M Taylor
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Evan Layher
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Shuying Yu
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Michael B Miller
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA; Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | - Scott T Grafton
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA; Institute for Collaborative Biotechnologies, University of California, Santa Barbara, CA, USA
| | - Emily G Jacobs
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA.
| |
Collapse
|
27
|
Vandegrift BJ, Hilderbrand ER, Satta R, Tai R, He D, You C, Chen H, Xu P, Coles C, Brodie MS, Lasek AW. Estrogen Receptor α Regulates Ethanol Excitation of Ventral Tegmental Area Neurons and Binge Drinking in Female Mice. J Neurosci 2020; 40:5196-5207. [PMID: 32482639 PMCID: PMC7329299 DOI: 10.1523/jneurosci.2364-19.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/25/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Elevations in estrogen (17β-estradiol, E2) are associated with increased alcohol drinking by women and experimentally in rodents. E2 alters the activity of the dopamine system, including the VTA and its projection targets, which plays an important role in binge drinking. A previous study demonstrated that, during high E2 states, VTA neurons in female mice are more sensitive to ethanol excitation. However, the mechanisms responsible for the ability of E2 to enhance ethanol sensitivity of VTA neurons have not been investigated. In this study, we used selective agonists and antagonists to examine the role of ER subtypes (ERα and ERβ) in regulating the ethanol sensitivity of VTA neurons in female mice and found that ERα promotes the enhanced ethanol response of VTA neurons. We also demonstrated that enhancement of ethanol excitation requires the activity of the metabotropic glutamate receptor, mGluR1, which is known to couple with ERα at the plasma membrane. To investigate the behavioral relevance of these findings, we administered lentivirus-expressing short hairpin RNAs targeting either ERα or ERβ into the VTA and found that knockdown of each receptor in the VTA reduced binge-like ethanol drinking in female, but not male, mice. Reducing ERα in the VTA had a more dramatic effect on binge-like drinking than reducing ERβ, consistent with the ability of ERα to alter ethanol sensitivity of VTA neurons. These results provide important insight into sex-specific mechanisms that drive excessive alcohol drinking.SIGNIFICANCE STATEMENT Estrogen has potent effects on the dopamine system and increases the vulnerability of females to develop addiction to substances, such as alcohol. We investigated the mechanisms by which estrogen increases the response of neurons in the VTA to ethanol. We found that activation of the ERα increased the ethanol-induced excitation of VTA neurons. 17β-Estradiol-mediated enhancement of ethanol-induced excitation required the metabotropic glutamate receptor mGluR1. We also demonstrated that ERs in the VTA regulate binge-like alcohol drinking by female, but not male, mice. The influence of ERs on binge drinking in female mice suggests that treatments for alcohol use disorder in women may need to account for this sex difference.
Collapse
Affiliation(s)
- Bertha J Vandegrift
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
- Department of Physiology and Biophysics
| | | | - Rosalba Satta
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Rex Tai
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Donghong He
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Chang You
- Department of Physiology and Biophysics
| | - Hu Chen
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Pingwen Xu
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Illinois at Chicago, Chicago, Illinois 60612
| | - Cassandre Coles
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| | - Mark S Brodie
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
- Department of Physiology and Biophysics
| | - Amy W Lasek
- Center for Alcohol Research in Epigenetics and Department of Psychiatry
| |
Collapse
|
28
|
Kokane SS, Perrotti LI. Sex Differences and the Role of Estradiol in Mesolimbic Reward Circuits and Vulnerability to Cocaine and Opiate Addiction. Front Behav Neurosci 2020; 14:74. [PMID: 32508605 PMCID: PMC7251038 DOI: 10.3389/fnbeh.2020.00074] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/22/2020] [Indexed: 12/15/2022] Open
Abstract
Although both men and women become addicted to drugs of abuse, women transition to addiction faster, experience greater difficulties remaining abstinent, and relapse more often than men. In both humans and rodents, hormonal cycles are associated with females' faster progression to addiction. Higher concentrations and fluctuating levels of ovarian hormones in females modulate the mesolimbic reward system and influence reward-directed behavior. For example, in female rodents, estradiol (E2) influences dopamine activity within the mesolimbic reward system such that drug-directed behaviors that are normally rewarding and reinforcing become enhanced when circulating levels of E2 are high. Therefore, neuroendocrine interactions, in part, explain sex differences in behaviors motivated by drug reward. Here, we review sex differences in the physiology and function of the mesolimbic reward system in order to explore the notion that sex differences in response to drugs of abuse, specifically cocaine and opiates, are the result of molecular neuroadaptations that differentially develop depending upon the hormonal state of the animal. We also reconsider the notion that ovarian hormones, specifically estrogen/estradiol, sensitize target neurons thereby increasing responsivity when under the influence of either cocaine or opiates or in response to exposure to drug-associated cues. These adaptations may ultimately serve to guide the motivational behaviors that underlie the factors that cause women to be more vulnerable to cocaine and opiate addiction than men.
Collapse
Affiliation(s)
- Saurabh S Kokane
- Department of Psychology, University of Texas at Arlington, Arlington, TX, United States
| | - Linda I Perrotti
- Department of Psychology, University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
29
|
Wang YX, Zhu L, Li LX, Xu HN, Wang HG, An D, Heng B, Zhao Q, Liu YQ. Postnatal Expression Patterns of Estrogen Receptor Subtypes and Choline Acetyltransferase in Different Regions of the Papez Circuit. Dev Neurosci 2019; 41:203-211. [PMID: 31536986 DOI: 10.1159/000502686] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/12/2019] [Indexed: 11/19/2022] Open
Abstract
The Papez circuit is crucial for several brain functions, including long-term memory and emotion. Estradiol modulates cognitive functions based on the expression pattern of its receptor subtypes including estrogen receptor (ER) α, β, and G protein-coupled receptor 30 (GPR30). Similarly, the activity in the cholinergic system correlates with several brain functions, such as learning and memory. In this study, we used immunofluorescence to examine the expression patterns of ERβ and Western blotting to analyze GPR30 and choline acetyltransferase (ChAT) expression, in different regions of the Papez circuit, including the prefrontal cortex, hippocampus, hypothalamus, anterior nucleus of the thalamus, and cingulum in female rats at postnatal days (PND) 1, 10, and 56. Our main finding was that the highest expression of ERβ and GPR30 was noted in each brain area of the Papez circuit in the PND1 rats, whereas the expression of ChAT was the highest in PND10 rats. These results provide vital information on the postnatal expression patterns of ER subtypes and ChAT in different regions of the Papez circuit.
Collapse
Affiliation(s)
- Yu-Xiang Wang
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Lin Zhu
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Li-Xia Li
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Hui-Nan Xu
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Hong-Gang Wang
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Di An
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Bin Heng
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Qiang Zhao
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China
| | - Yan-Qiang Liu
- Department of Zoology and Developmental Biology,College of Life Sciences, Nankai University, Tianjin, China,
| |
Collapse
|
30
|
Becker JB, Chartoff E. Sex differences in neural mechanisms mediating reward and addiction. Neuropsychopharmacology 2019; 44:166-183. [PMID: 29946108 PMCID: PMC6235836 DOI: 10.1038/s41386-018-0125-6] [Citation(s) in RCA: 285] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/27/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022]
Abstract
There is increasing evidence in humans and laboratory animals for biologically based sex differences in every phase of drug addiction: acute reinforcing effects, transition from occasional to compulsive use, withdrawal-associated negative affective states, craving, and relapse. There is also evidence that many qualitative aspects of the addiction phases do not differ significantly between males and females, but one sex may be more likely to exhibit a trait than the other, resulting in population differences. The conceptual framework of this review is to focus on hormonal, chromosomal, and epigenetic organizational and contingent, sex-dependent mechanisms of four neural systems that are known-primarily in males-to be key players in addiction: dopamine, mu-opioid receptors (MOR), kappa opioid receptors (KOR), and brain-derived neurotrophic factor (BDNF). We highlight data demonstrating sex differences in development, expression, and function of these neural systems as they relate-directly or indirectly-to processes of reward and addictive behavior, with a focus on psychostimulants and opioids. We identify gaps in knowledge about how these neural systems interact with sex to influence addictive behavior, emphasizing throughout that the impact of sex can be highly nuanced and male/female data should be reported regardless of the outcome.
Collapse
Affiliation(s)
- Jill B Becker
- Department of Psychology and the Molecular & Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| | - Elena Chartoff
- Department of Psychiatry, Harvard Medical School, McLean Hospital, Belmont, MA, USA.
| |
Collapse
|
31
|
Yoest KE, Cummings JA, Becker JB. Oestradiol influences on dopamine release from the nucleus accumbens shell: sex differences and the role of selective oestradiol receptor subtypes. Br J Pharmacol 2018; 176:4136-4148. [PMID: 30381823 DOI: 10.1111/bph.14531] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 10/15/2018] [Accepted: 10/18/2018] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND AND PURPOSE Females are more sensitive than males to both the acute and prolonged effects of psychomotor stimulants. In females, this is regulated by oestradiol, which enhances dopamine release in the dorsal striatum. In this study, we tested the acute effect of oestradiol on dopamine release in the nucleus accumbens (NAc) shell after cocaine administration and investigated which oestradiol receptors (ERs) contribute to sex differences in the response to cocaine. EXPERIMENTAL APPROACH The ability of oestradiol benzoate (EB) to acutely modulate the effect of cocaine on phasic dopamine release in the NAc shell was measured by fast-scan cyclic voltammetry in anaesthetized male and female rats. The roles of ER subtypes, ERα and ERβ, was determined with selective agonists. KEY RESULTS EB acutely enhanced the effect of cocaine on stimulated dopamine release from the NAc shell in females but not in male rats only at levels of stimulation expected to optimally saturate dopamine transporters. Enhanced dopamine release after cocaine administration was also observed in females after selective activation of ERβ but not ERα. EB attenuated the effect of cocaine on NAc shell dopamine reuptake in males but not in females. CONCLUSIONS AND IMPLICATIONS Oestradiol acutely and rapidly regulates dopamine release in females and dopamine reuptake in males. In females, oestradiol rapidly enhances the effect of cocaine on dopamine release, likely via activation of ERβ. The effect of oestradiol in males is not seen with selective receptor subtype activation, a topic deserving of further study. LINKED ARTICLES This article is part of a themed section on The Importance of Sex Differences in Pharmacology Research. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.21/issuetoc.
Collapse
Affiliation(s)
- Katie E Yoest
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | | | - Jill B Becker
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, USA.,Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
32
|
Yoest KE, Quigley JA, Becker JB. Rapid effects of ovarian hormones in dorsal striatum and nucleus accumbens. Horm Behav 2018; 104:119-129. [PMID: 29626485 PMCID: PMC6197937 DOI: 10.1016/j.yhbeh.2018.04.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/30/2018] [Accepted: 04/02/2018] [Indexed: 12/31/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. Estradiol and progesterone rapidly induce changes in dopaminergic signaling within the dorsal striatum and nucleus accumbens of female rats. In ovariectomized females, estradiol rapidly enhances dopamine release and modulates binding of dopamine receptors. Progesterone further potentiates the effect of estradiol on dopamine release. The effects of both estradiol and progesterone are time course dependent, with increases in dopamine release immediately after acute hormone administration followed by later inhibition of dopamine release. Importantly, these changes are also seen in naturally cycling females, indicating their importance for normal physiological states and relevant reproductive behaviors. Here, we summarize the literature establishing the rapid effects of estradiol and progesterone on dopamine release and receptor expression in dorsal striatum and nucleus accumbens of both males and females. Integrating this literature with the larger body of work focusing on dopamine regulated behaviors, we propose hypotheses for adaptive reasons (i.e., ultimate causes) as to why changes in ovarian hormones modulate dopamine release. Finally, we note the importance of these studies for understanding sex differences in vulnerability to drug addiction. Research on how dopaminergic systems regulate behavior in both males and females is crucial for developing a full appreciation of dopamine's role in both natural and drug-induced behaviors.
Collapse
Affiliation(s)
- Katie E Yoest
- Department of Psychology, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jacqueline A Quigley
- Department of Psychology, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jill B Becker
- Department of Psychology, Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
33
|
Giatti S, Diviccaro S, Panzica G, Melcangi RC. Post-finasteride syndrome and post-SSRI sexual dysfunction: two sides of the same coin? Endocrine 2018; 61:180-193. [PMID: 29675596 DOI: 10.1007/s12020-018-1593-5] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 04/05/2018] [Indexed: 12/27/2022]
Abstract
Sexual dysfunction is a clinical condition due to different causes including the iatrogenic origin. For instance, it is well known that sexual dysfunction may occur in patients treated with antidepressants like selective serotonin reuptake inhibitors (SSRI). A similar side effect has been also reported during treatment with finasteride, an inhibitor of the enzyme 5alpha-reductase, for androgenetic alopecia. Interestingly, sexual dysfunction persists in both cases after drug discontinuation. These conditions have been named post-SSRI sexual dysfunction (PSSD) and post-finasteride syndrome (PFS). In particular, feeling of a lack of connection between the brain and penis, loss of libido and sex drive, difficulty in achieving an erection and genital paresthesia have been reported by patients of both conditions. It is interesting to note that the incidence of these diseases is probably so far underestimated and their etiopathogenesis is not sufficiently explored. To this aim, the present review will report the state of art of these two different pathologies and discuss, on the basis of the role exerted by three different neuromodulators such as dopamine, serotonin and neuroactive steroids, whether the persistent sexual dysfunction observed could be determined by common mechanisms.
Collapse
Affiliation(s)
- Silvia Giatti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Silvia Diviccaro
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - Giancarlo Panzica
- Dipartimento di Neuroscienze "Rita Levi Montalcini", Università degli studi di Torino, Neuroscience Institute Cavallieri Ottolenghi (NICO), Orbassano, Italy
| | - Roberto Cosimo Melcangi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
34
|
You C, Vandegrift B, Brodie MS. Ethanol actions on the ventral tegmental area: novel potential targets on reward pathway neurons. Psychopharmacology (Berl) 2018; 235:1711-1726. [PMID: 29549390 PMCID: PMC5949141 DOI: 10.1007/s00213-018-4875-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 03/06/2018] [Indexed: 12/14/2022]
Abstract
The ventral tegmental area (VTA) evaluates salience of environmental stimuli and provides dopaminergic innervation to many brain areas affected by acute and chronic ethanol exposure. While primarily associated with rewarding and reinforcing stimuli, recent evidence indicates a role for the VTA in aversion as well. Ethanol actions in the VTA may trigger neuroadaptation resulting in reduction of the aversive responses to alcohol and a relative increase in the rewarding responses. In searching for effective pharmacotherapies for the treatment of alcohol abuse and alcoholism, recognition of this imbalance may reveal novel strategies. In addition to conventional receptor/ion channel pharmacotherapies, epigenetic factors that control neuroadaptation to chronic ethanol treatment can be targeted as an avenue for development of therapeutic approaches to restore the balance. Furthermore, when exploring therapies to address reward/aversion imbalance in the action of alcohol in the VTA, sex differences have to be taken into account to ensure effective treatment for both men and women. These principles apply to a VTA-centric approach to therapies, but should hold true when thinking about the overall approach in the development of neuroactive drugs to treat alcohol use disorders. Although the functions of the VTA itself are complex, it is a useful model system to evaluate the reward/aversion imbalance that occurs with ethanol exposure and could be used to provide new leads in the efforts to develop novel drugs to treat alcoholism.
Collapse
Affiliation(s)
- Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bertha Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mark S Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, 835 S. Wolcott Ave, Room E-202, M/C 901, Chicago, IL, 60612, USA.
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
35
|
Hadjimarkou MM, Vasudevan N. GPER1/GPR30 in the brain: Crosstalk with classical estrogen receptors and implications for behavior. J Steroid Biochem Mol Biol 2018; 176:57-64. [PMID: 28465157 DOI: 10.1016/j.jsbmb.2017.04.012] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/16/2017] [Accepted: 04/23/2017] [Indexed: 12/31/2022]
Abstract
The GPER1/GPR30 is a membrane estrogen receptor (mER) that binds 17β-estradiol (17β-E) with high affinity and is thought to play a role in cancer progression and cardiovascular health. Though widespread in the central nervous system, less is known about this receptor's function in the brain. GPER1 has been shown to activate kinase cascades and calcium flux within cells rapidly, thus fitting in with the idea of being a mER that mediates non-genomic signaling by estrogens. Signaling from GPER1 has been shown to improve spatial memory, possibly via release of neurotransmitters and generation of new spines on neurons in the hippocampus. In addition, GPER1 activation contributes to behaviors that denote anxiety and to social behaviors such as social memory and lordosis behavior in mice. In the male hippocampus, GPER1 activation has also been shown to phosphorylate the classical intracellular estrogen receptor (ER)α, suggesting that crosstalk with ERα is important in the display of these behaviors, many of which are absent in ERα-null mice. In this review, we present a number of categories of such crosstalk, using examples from literature. The function of GPER1 as an ERα collaborator or as a mER in different tissues is relevant to understanding both normal physiology and abnormal pathology, mediated by estrogen signaling.
Collapse
Affiliation(s)
- Maria M Hadjimarkou
- School of Humanities and Social Sciences, University of Nicosia, 1700 Nicosia, Cyprus.
| | - Nandini Vasudevan
- School of Biological Sciences, University of Reading, Reading, United Kingdom RG6 6AS, United Kingdom.
| |
Collapse
|
36
|
Hill LD, Lorenzetti MS, Lyle SM, Fins AI, Tartar A, Tartar JL. Catechol-O-methyltransferase Val158Met polymorphism associates with affect and cortisol levels in women. Brain Behav 2018; 8:e00883. [PMID: 29484256 PMCID: PMC5822566 DOI: 10.1002/brb3.883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/10/2017] [Accepted: 10/22/2017] [Indexed: 11/10/2022] Open
Abstract
Introduction We tested the extent to which the catechol-O-methyltransferase (COMT) Val158Met polymorphism is associated with affective state and evening cortisol levels. We limited our study to women as previous research suggests that the link between COMT genotype and psychological health is entangled by sex differences. Materials and Methods The participants were assessed on measures of anxiety, mood disturbance, depressive symptomatology, and perceived stress. We also evaluated participants on a quality of life measures that included two emotion domains and two physical domains (physical health and environment). Results We found that under normal (nonstress) conditions, the COMT A allele (Met carriers, higher dopamine) associates with healthier affect and lower afternoon cortisol levels in women. These effects were limited to affective measures and not to physical or environmental quality of life. Conclusions These findings help to shed light on the complex nature of COMT and emotion, and suggest that both sex and task condition (stress vs. nonstress) should be considered when examining the relationship between COMT genotype and emotion.
Collapse
Affiliation(s)
- Lauren D. Hill
- Department of Psychology and NeuroscienceNova Southeastern UniversityFort LauderdaleFLUSA
| | - Margaret S. Lorenzetti
- Department of Clinical and School PsychologyNova Southeastern UniversityFort LauderdaleFLUSA
| | - Sarah M. Lyle
- Department of Psychology and NeuroscienceNova Southeastern UniversityFort LauderdaleFLUSA
| | - Ana I. Fins
- Department of Clinical and School PsychologyNova Southeastern UniversityFort LauderdaleFLUSA
| | - Aurélien Tartar
- Department of Biological SciencesNova Southeastern UniversityFort LauderdaleFLUSA
| | - Jaime L. Tartar
- Department of Psychology and NeuroscienceNova Southeastern UniversityFort LauderdaleFLUSA
| |
Collapse
|
37
|
Zovkic IB, McCormick CM. A rapid enhancement of locomotor sensitization to amphetamine by estradiol in female rats. Physiol Behav 2017; 203:51-59. [PMID: 29154785 DOI: 10.1016/j.physbeh.2017.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 09/25/2017] [Accepted: 11/12/2017] [Indexed: 01/14/2023]
Abstract
Estradiol moderates the effects of drugs of abuse in both humans and rodents. Estradiol's enhancement of behavioral effects resulting from high (>2.5mg/kg) doses of amphetamine is established in rats; there is less evidence for the role of estradiol in locomotor effects elicited by lower doses, which are less aversive, increase incentive motivation, involve different neural mechanisms than higher doses, and often more readily reveal group differences than do higher doses. Further, the extent to which estradiol is required for the induction versus the expression of sensitization is unknown. To establish a protocol, we replicated the effects of estradiol on locomotor sensitization to amphetamine reported in a previous study that involved a high locomotor-activating dose (1.5mg/kg) of amphetamine, but with a lower dose. Ovariectomized female rats received 5μg of estradiol benzoate (EB) or OIL 30min before each of 5 treatments of 1.0mg/kg amphetamine or saline; all received a 0.5mg/kg challenge dose three days later. Compared with results for OIL, EB enhanced the locomotor-activating effects of repeated 1.0mg/kg amphetamine across treatment days. In contrast, on challenge day, there was no difference between EB-saline and EB-amphetamine to the lower dose (i.e., no sensitization). Experiments 2 and 3 involved a shorter induction (2days) and a lengthier withdrawal (9days) before the challenge test for the expression of sensitization to better differentiate the induction phase from the expression phase. In Expt2, EB-, and not OIL-, treated rats showed sensitization to 0.5mg/kg amphetamine; neither group showed sensitization to 1.5mg/kg amphetamine (ceiling effect?). In Expt3, rats were treated with EB either in both the induction and expression phases, in one of the phases only, or in neither phase. There was an effect of hormone treatment on challenge day and not on induction day; rats given EB on Challenge day showed sensitization to 0.5mg/kg amphetamine; OIL rats did not. The results suggest rapid effects of estradiol on amphetamine sensitization consistent with rapid effects of estradiol reported for other behaviours.
Collapse
Affiliation(s)
- Iva B Zovkic
- Department of Psychology, University of Toronto, Canada
| | - Cheryl M McCormick
- Department of Psychology and Centre for Neuroscience, Brock University, St. Catharines L2S 3A1, ON, Canada.
| |
Collapse
|
38
|
Vandegrift BJ, You C, Satta R, Brodie MS, Lasek AW. Estradiol increases the sensitivity of ventral tegmental area dopamine neurons to dopamine and ethanol. PLoS One 2017; 12:e0187698. [PMID: 29107956 PMCID: PMC5673180 DOI: 10.1371/journal.pone.0187698] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/24/2017] [Indexed: 12/19/2022] Open
Abstract
Gender differences in psychiatric disorders such as addiction may be modulated by the steroid hormone estrogen. For instance, 17β-estradiol (E2), the predominant form of circulating estrogen in pre-menopausal females, increases ethanol consumption, suggesting that E2 may affect the rewarding properties of ethanol and thus the development of alcohol use disorder in females. The ventral tegmental area (VTA) is critically involved in the rewarding and reinforcing effects of ethanol. In order to determine the role of E2 in VTA physiology, gonadally intact female mice were sacrificed during diestrus II (high E2) or estrus (low E2) for electrophysiology recordings. We measured the excitation by ethanol and inhibition by dopamine (DA) of VTA DA neurons and found that both excitation by ethanol and inhibition by dopamine were greater in diestrus II compared with estrus. Treatment of VTA slices from mice in diestrus II with an estrogen receptor antagonist (ICI 182,780) reduced ethanol-stimulated neuronal firing, but had no effect on ethanol-stimulated firing of neurons in slices from mice in estrus. Surprisingly, ICI 182,780 did not affect the inhibition by DA, indicating different mechanisms of action of estrogen receptors in altering ethanol and DA responses. We also examined the responses of VTA DA neurons to ethanol and DA in ovariectomized mice treated with E2 and found that E2 treatment enhanced the responses to ethanol and DA in a manner similar to what we observed in mice in diestrus II. Our data indicate that E2 modulates VTA neuron physiology, which may contribute to both the enhanced reinforcing and rewarding effects of alcohol and the development of other psychiatric disorders in females that involve alterations in DA neurotransmission.
Collapse
Affiliation(s)
- Bertha J. Vandegrift
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Chang You
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Rosalba Satta
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Mark S. Brodie
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois, United States of America
| | - Amy W. Lasek
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
39
|
Piekarski DJ, Johnson CM, Boivin JR, Thomas AW, Lin WC, Delevich K, M Galarce E, Wilbrecht L. Does puberty mark a transition in sensitive periods for plasticity in the associative neocortex? Brain Res 2017; 1654:123-144. [PMID: 27590721 PMCID: PMC5283387 DOI: 10.1016/j.brainres.2016.08.042] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 08/17/2016] [Accepted: 08/29/2016] [Indexed: 02/08/2023]
Abstract
Postnatal brain development is studded with sensitive periods during which experience dependent plasticity is enhanced. This enables rapid learning from environmental inputs and reorganization of cortical circuits that matches behavior with environmental contingencies. Significant headway has been achieved in characterizing and understanding sensitive period biology in primary sensory cortices, but relatively little is known about sensitive period biology in associative neocortex. One possible mediator is the onset of puberty, which marks the transition to adolescence, when animals shift their behavior toward gaining independence and exploring their social world. Puberty onset correlates with reduced behavioral plasticity in some domains and enhanced plasticity in others, and therefore may drive the transition from juvenile to adolescent brain function. Pubertal onset is also occurring earlier in developed nations, particularly in unserved populations, and earlier puberty is associated with vulnerability for substance use, depression and anxiety. In the present article we review the evidence that supports a causal role for puberty in developmental changes in the function and neurobiology of the associative neocortex. We also propose a model for how pubertal hormones may regulate sensitive period plasticity in associative neocortex. We conclude that the evidence suggests puberty onset may play a causal role in some aspects of associative neocortical development, but that further research that manipulates puberty and measures gonadal hormones is required. We argue that further work of this kind is urgently needed to determine how earlier puberty may negatively impact human health and learning potential. This article is part of a Special Issue entitled SI: Adolescent plasticity.
Collapse
Affiliation(s)
- David J Piekarski
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Carolyn M Johnson
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Josiah R Boivin
- Neuroscience Graduate Program, University of California, San Francisco, San Francisco CA 94158, USA
| | - A Wren Thomas
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley CA 94720, USA
| | - Wan Chen Lin
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Kristen Delevich
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA
| | - Ezequiel M Galarce
- School of Public Health, University of California, Berkeley, Berkeley CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, Berkeley CA 94720, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley CA 94720, USA.
| |
Collapse
|
40
|
Marques-Lopes J, Tesfaye E, Israilov S, Van Kempen TA, Wang G, Glass MJ, Pickel VM, Iadecola C, Waters EM, Milner TA. Redistribution of NMDA Receptors in Estrogen-Receptor-β-Containing Paraventricular Hypothalamic Neurons following Slow-Pressor Angiotensin II Hypertension in Female Mice with Accelerated Ovarian Failure. Neuroendocrinology 2017; 104:239-256. [PMID: 27078860 PMCID: PMC5381723 DOI: 10.1159/000446073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Hypertension in male and aging female rodents is associated with glutamate-dependent plasticity in the hypothalamus, but existing models have failed to capture distinct transitional menopausal phases that could have a significant impact on the synaptic plasticity and emergent hypertension. In rodents, accelerated ovarian failure (AOF) induced by systemic injection of 4-vinylcyclohexane diepoxide mimics the estrogen fluctuations seen in human menopause including the perimenopause transition (peri-AOF) and postmenopause (post-AOF). Thus, we used the mouse AOF model to determine the impact of slow-pressor angiotensin II (AngII) administration on blood pressure and on the subcellular distribution of obligatory N-methyl-D-aspartate (NMDA) receptor GluN1 subunits in the paraventricular hypothalamic nucleus (PVN), a key estrogen-responsive cardiovascular regulatory area. Estrogen-sensitive neuronal profiles were identified in mice expressing enhanced green fluorescent protein under the promoter for estrogen receptor (ER) β, a major ER in the PVN. Slow-pressor AngII increased arterial blood pressure in mice at peri- and post-AOF time points. In control oil-injected (nonhypertensive) mice, AngII decreased the total number of GluN1 in ERβ-containing PVN dendrites. In contrast, AngII resulted in a reapportionment of GluN1 from the cytoplasm to the plasma membrane of ERβ-containing PVN dendrites in peri-AOF mice. Moreover, in post-AOF mice, AngII increased total GluN1, dendritic size and radical production in ERβ-containing neurons. These results indicate that unique patterns of hypothalamic glutamate receptor plasticity and dendritic structure accompany the elevated blood pressure in peri- and post-AOF time points. Our findings suggest the possibility that distinct neurobiological processes are associated with the increased blood pressure during perimenopausal and postmenopausal periods.
Collapse
Affiliation(s)
- Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Ephrath Tesfaye
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Sigal Israilov
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Tracey A. Van Kempen
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, N.Y., USA
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, N.Y., USA
| |
Collapse
|
41
|
Locklear MN, Michaelos M, Collins WF, Kritzer MF. Gonadectomy but not biological sex affects burst-firing in dopamine neurons of the ventral tegmental area and in prefrontal cortical neurons projecting to the ventral tegmentum in adult rats. Eur J Neurosci 2016; 45:106-120. [PMID: 27564091 DOI: 10.1111/ejn.13380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 08/03/2016] [Accepted: 08/22/2016] [Indexed: 12/25/2022]
Abstract
The mesocortical and mesolimbic dopamine systems regulate cognitive and motivational processes and are strongly implicated in neuropsychiatric disorders in which these processes are disturbed. Sex differences and sex hormone modulation are also known for these dopamine-sensitive behaviours in health and disease. One relevant mechanism of hormone impact appears to be regulation of cortical and subcortical dopamine levels. This study asked whether this regulation of dopamine tone is a consequence of sex or sex hormone impact on the firing modes of ventral midbrain dopamine neurons. To address this, single unit extracellular recordings made in the ventral tegmental area and substantia nigra were compared among urethane-anaesthetized adult male, female, gonadectomized male rats. These comparisons showed that gonadectomy had no effect on nigral cells and no effects on pacemaker, bursty, single-spiking or random modes of dopamine activity in the ventral tegmental area. However, it did significantly and selectively increase burst firing in these cells in a testosterone-sensitive, estradiol-insensitive manner. Given the roles of prefrontal cortex (PFC) in modulating midbrain dopamine cell firing, we next asked whether gonadectomy's effects on dopamine cell bursting had correlated effects on the activity of ventral tegmentally projecting prefrontal cortical neurons. We found that gonadectomy indeed significantly and selectively increased burst firing in ventral tegmentally projecting but not neighbouring prefrontal cells. These effects were also androgen-sensitive. Together, these findings suggest a working model wherein androgen influence over the activity of PFC neurons regulates its top-down modulation of mesocortical and mesolimbic dopamine systems and related dopamine-sensitive behaviours.
Collapse
Affiliation(s)
- Mallory N Locklear
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Michalis Michaelos
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - William F Collins
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| | - Mary F Kritzer
- Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794-5230, USA
| |
Collapse
|
42
|
Mikelman S, Mardirossian N, Gnegy ME. Tamoxifen and amphetamine abuse: Are there therapeutic possibilities? J Chem Neuroanat 2016; 83-84:50-58. [PMID: 27585851 DOI: 10.1016/j.jchemneu.2016.08.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 08/05/2016] [Accepted: 08/14/2016] [Indexed: 12/11/2022]
Abstract
Although best known as a selective estrogen receptor modulator (SERM), tamoxifen is a drug with a wide range of activities. Tamoxifen has demonstrated some efficacy has a therapeutic for bipolar mania and is believed to exert these effects through inhibition of protein kinase C (PKC). As the symptoms of amphetamine treatment in rodents are believed to mimic the symptoms of a manic episode, many of the preclinical studies for this indication have demonstrated that tamoxifen inhibits amphetamine action. The amphetamine-induced increase in extracellular dopamine which gives rise to the 'manic' effects is due to interaction of amphetamine with the dopamine transporter. We and others have demonstrated that PKC reduces amphetamine-induced reverse transport through the dopamine transporter. In this review, we will outline the actions of tamoxifen as a SERM and further detail another known action of tamoxifen-inhibition of PKC. We will summarize the literature showing how tamoxifen affects amphetamine action. Finally, we will present our hypothesis that tamoxifen, or an analog, could be used therapeutically to reduce amphetamine abuse in addition to treating mania.
Collapse
Affiliation(s)
- Sarah Mikelman
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States
| | - Natalie Mardirossian
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States
| | - Margaret E Gnegy
- Department of Pharmacology, 2220E MSRB III, 1150 West Medical Center Drive, University of Michigan Medical School, Ann Arbor, MI 28109-5632, United States.
| |
Collapse
|
43
|
Rossetti MF, Cambiasso MJ, Holschbach MA, Cabrera R. Oestrogens and Progestagens: Synthesis and Action in the Brain. J Neuroendocrinol 2016; 28. [PMID: 27306650 DOI: 10.1111/jne.12402] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 06/14/2016] [Accepted: 06/14/2016] [Indexed: 12/25/2022]
Abstract
When steroids, such as pregnenolone, progesterone and oestrogen, are synthesised de novo in neural tissues, they are more specifically referred to as neurosteroids. These neurosteroids bind specific receptors to promote essential brain functions. Pregnenolone supports cognition and protects mouse hippocampal cells against glutamate and amyloid peptide-induced cell death. Progesterone promotes myelination, spinogenesis, synaptogenesis, neuronal survival and dendritic growth. Allopregnanolone increases hippocampal neurogenesis, neuronal survival and cognitive functions. Oestrogens, such as oestradiol, regulate synaptic plasticity, reproductive behaviour, aggressive behaviour and learning. In addition, neurosteroids are neuroprotective in animal models of Alzheimer's disease, Parkinson's disease, brain injury and ageing. Using in situ hybridisation and/or immunohistochemistry, steroidogenic enzymes, including cytochrome P450 side-chain cleavage, 3β-hydroxysteroid dehydrogenase/Δ5-Δ4 isomerase, cytochrome P450arom, steroid 5α-reductase and 3α-hydroxysteroid dehydrogenase, have been detected in numerous brain regions, including the hippocampus, hypothalamus and cerebral cortex. In the present review, we summarise some of the studies related to the synthesis and function of oestrogens and progestagens in the central nervous system.
Collapse
Affiliation(s)
- M F Rossetti
- Departamento de Bioquímica Clínica, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Instituto de Salud y Ambiente del Litoral, CONICET-Universidad Nacional del Litoral, Santa Fe, Argentina
| | - M J Cambiasso
- Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET-Universidad Nacional de Córdoba, Córdoba, Argentina
- Departamento de Biología Bucal, Facultad de Odontología, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M A Holschbach
- Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - R Cabrera
- Instituto de Investigaciones Biomédicas, INBIOMED-IMBECU-CONICET, Universidad de Mendoza, Mendoza, Argentina
| |
Collapse
|
44
|
Pisani SL, Neese SL, Katzenellenbogen JA, Schantz SL, Korol DL. Estrogen Receptor-Selective Agonists Modulate Learning in Female Rats in a Dose- and Task-Specific Manner. Endocrinology 2016; 157:292-303. [PMID: 26465198 PMCID: PMC4701887 DOI: 10.1210/en.2015-1616] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogens are well known for their enhancing effects on hippocampus-sensitive cognition. However, estrogens can also impair learning and memory, particularly the acquisition of striatum-sensitive tasks. These cognitive shifts appear to be mediated through local estrogen receptor (ER) activation in each neural structure, but little information is known regarding which specific ER subtypes drive the opposing effects on learning. Elucidating the mnemonic roles of discrete ER subtypes is essential for predicting how treatments with distinct ER pharmacology such as drugs, hormone therapies, and phytoestrogen supplements affect cognitive abilities in and thus the daily lives of the women who take them. The present study examined the effects of the ERα-selective compound propyl pyrazole triol and the ERβ-selective compounds diarylpropionitrile and Br-ERb-041 on place and response learning in young adult female rats. Long-Evans rats were ovariectomized and maintained on phytoestrogen-free chow for 3 weeks before behavioral training, with treatments administered via subcutaneous injection 48 and 24 hours before testing. A dose-response paradigm was used, with each compound tested at 4 different doses in separate groups of rats. Propyl pyrazole triol, diarylpropionitrile, and Br-ERb-041 all enhanced place learning and impaired response learning, albeit with distinct dose-response patterns for each compound and task. These results are consistent with the detection of ERα and ERβ in the hippocampus and striatum and suggest that learning is modulated via activation of either ER subtype.
Collapse
Affiliation(s)
- Samantha L Pisani
- Neuroscience Program (S.L.P., S.L.N., S.L.S., D.L.K.) and Department of Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Comparative Biosciences (S.L.N., S.L.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Department of Psychology and Neuroscience (S.L.N.), Baldwin Wallace University, Berea, Ohio 44017; and Department of Biology (D.L.K.), Syracuse University, Syracuse, New York 13244
| | - Steven L Neese
- Neuroscience Program (S.L.P., S.L.N., S.L.S., D.L.K.) and Department of Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Comparative Biosciences (S.L.N., S.L.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Department of Psychology and Neuroscience (S.L.N.), Baldwin Wallace University, Berea, Ohio 44017; and Department of Biology (D.L.K.), Syracuse University, Syracuse, New York 13244
| | - John A Katzenellenbogen
- Neuroscience Program (S.L.P., S.L.N., S.L.S., D.L.K.) and Department of Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Comparative Biosciences (S.L.N., S.L.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Department of Psychology and Neuroscience (S.L.N.), Baldwin Wallace University, Berea, Ohio 44017; and Department of Biology (D.L.K.), Syracuse University, Syracuse, New York 13244
| | - Susan L Schantz
- Neuroscience Program (S.L.P., S.L.N., S.L.S., D.L.K.) and Department of Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Comparative Biosciences (S.L.N., S.L.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Department of Psychology and Neuroscience (S.L.N.), Baldwin Wallace University, Berea, Ohio 44017; and Department of Biology (D.L.K.), Syracuse University, Syracuse, New York 13244
| | - Donna L Korol
- Neuroscience Program (S.L.P., S.L.N., S.L.S., D.L.K.) and Department of Chemistry (J.A.K.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801; Department of Comparative Biosciences (S.L.N., S.L.S.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Department of Psychology and Neuroscience (S.L.N.), Baldwin Wallace University, Berea, Ohio 44017; and Department of Biology (D.L.K.), Syracuse University, Syracuse, New York 13244
| |
Collapse
|
45
|
Marques-Lopes J, Van Kempen T, Waters EM, Pickel VM, Iadecola C, Milner TA. Slow-pressor angiotensin II hypertension and concomitant dendritic NMDA receptor trafficking in estrogen receptor β-containing neurons of the mouse hypothalamic paraventricular nucleus are sex and age dependent. J Comp Neurol 2015; 522:3075-90. [PMID: 24639345 DOI: 10.1002/cne.23569] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 01/28/2014] [Accepted: 02/20/2014] [Indexed: 12/20/2022]
Abstract
The incidence of hypertension increases after menopause. Similar to humans, "slow-pressor" doses of angiotensin II (AngII) increase blood pressure in young males, but not in young female mice. However, AngII increases blood pressure in aged female mice, paralleling reproductive hormonal changes. These changes could influence receptor trafficking in central cardiovascular circuits and contribute to hypertension. Increased postsynaptic N-methyl-D-aspartate (NMDA) receptor activity in the hypothalamic paraventricular nucleus (PVN) is crucial for the sympathoexcitation driving AngII hypertension. Estrogen receptors β (ERβs) are present in PVN neurons. We tested the hypothesis that changes in ovarian hormones with age promote susceptibility to AngII hypertension, and influence NMDA receptor NR1 subunit trafficking in ERβ-containing PVN neurons. Transgenic mice expressing enhanced green fluorescent protein (EGFP) in ERβ-containing cells were implanted with osmotic minipumps delivering AngII (600 ng/kg/min) or saline for 2 weeks. AngII increased blood pressure in 2-month-old males and 18-month-old females, but not in 2-month-old females. By electron microscopy, NR1-silver-intensified immunogold (SIG) was mainly in ERβ-EGFP dendrites. At baseline, NR1-SIG density was greater in 2-month-old females than in 2-month-old males or 18-month-old females. After AngII infusion, NR1-SIG density was decreased in 2-month-old females, but increased in 2-month-old males and 18-month-old females. These findings suggest that, in young female mice, NR1 density is decreased in ERβ-PVN dendrites thus reducing NMDA receptor activity and preventing hypertension. Conversely, in young males and aged females, NR1 density is upregulated in ERβ-PVN dendrites and ultimately leads to the neurohumoral dysfunction driving hypertension.
Collapse
Affiliation(s)
- Jose Marques-Lopes
- Brain and Mind Research Institute, Weill Cornell Medical College, New York, New York, 10065
| | | | | | | | | | | |
Collapse
|
46
|
Sex differences in NMDA GluN1 plasticity in rostral ventrolateral medulla neurons containing corticotropin-releasing factor type 1 receptor following slow-pressor angiotensin II hypertension. Neuroscience 2015; 307:83-97. [PMID: 26306872 DOI: 10.1016/j.neuroscience.2015.08.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/12/2015] [Accepted: 08/14/2015] [Indexed: 11/15/2022]
Abstract
There are profound, yet incompletely understood, sex differences in the neurogenic regulation of blood pressure. Both corticotropin signaling and glutamate receptor plasticity, which differ between males and females, are known to play important roles in the neural regulation of blood pressure. However, the relationship between hypertension and glutamate plasticity in corticotropin-releasing factor (CRF)-receptive neurons in brain cardiovascular regulatory areas, including the rostral ventrolateral medulla (RVLM) and paraventricular nucleus of the hypothalamus (PVN), is not understood. In the present study, we used dual-label immuno-electron microscopy to analyze sex differences in slow-pressor angiotensin II (AngII) hypertension with respect to the subcellular distribution of the obligatory NMDA glutamate receptor subunit 1 (GluN1) subunit of the N-methyl-D-aspartate receptor (NMDAR) in the RVLM and PVN. Studies were conducted in mice expressing the enhanced green fluorescence protein (EGFP) under the control of the CRF type 1 receptor (CRF1) promoter (i.e., CRF1-EGFP reporter mice). By light microscopy, GluN1-immunoreactivity (ir) was found in CRF1-EGFP neurons of the RVLM and PVN. Moreover, in both regions tyrosine hydroxylase (TH) was found in CRF1-EGFP neurons. In response to AngII, male mice showed an elevation in blood pressure that was associated with an increase in the proportion of GluN1 on presumably functional areas of the plasma membrane (PM) in CRF1-EGFP dendritic profiles in the RVLM. In female mice, AngII was neither associated with an increase in blood pressure nor an increase in PM GluN1 in the RVLM. Unlike the RVLM, AngII-mediated hypertension had no effect on GluN1 localization in CRF1-EGFP dendrites in the PVN of either male or female mice. These studies provide an anatomical mechanism for sex-differences in the convergent modulation of RVLM catecholaminergic neurons by CRF and glutamate. Moreover, these results suggest that sexual dimorphism in AngII-induced hypertension is reflected by NMDA receptor trafficking in presumptive sympathoexcitatory neurons in the RVLM.
Collapse
|
47
|
Korol DL, Pisani SL. Estrogens and cognition: Friends or foes?: An evaluation of the opposing effects of estrogens on learning and memory. Horm Behav 2015; 74:105-15. [PMID: 26149525 PMCID: PMC4573330 DOI: 10.1016/j.yhbeh.2015.06.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/19/2015] [Accepted: 06/25/2015] [Indexed: 12/19/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Estrogens are becoming well known for their robust enhancement on cognition particularly for learning and memory that relies upon functioning of the hippocampus and related neural systems. What is also emerging is that estrogen modulation of cognition is not uniform, at times enhancing yet at other times impairing learning. This review explores the bidirectional effects of estrogens on learning from a multiple memory systems view, focusing on the hippocampus and striatum, whereby modulation by estrogens sorts according to task attributes and neural systems engaged during cognition. We highlight our findings showing that the ability to solve hippocampus-sensitive tasks typically improves under relatively high estrogen status while the ability to solve striatum-sensitive tasks degrades with estrogen exposures. Though constrained by dose and timing of exposure, these opposing enhancements and impairments of cognition can be observed following treatments with different estrogenic compounds including the hormone estradiol, the isoflavone genistein found in soybeans, and agonists that are selective for specific estrogen receptors, suggesting that activation of a single receptor type is sufficient to produce the observed shifts in learning strategies. Using this multi-dimensional framework will allow us to extend our thinking of the relationship between estrogens and cognition to other brain regions and cognitive functions.
Collapse
Affiliation(s)
- Donna L Korol
- Department of Biology, Syracuse University, Department of Neuroscience and Physiology, SUNY-Upstate Medical University, Syracuse, NY 13244, USA.
| | - Samantha L Pisani
- Neuroscience Program and Medical Scholars Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
48
|
Almey A, Milner TA, Brake WG. Estrogen receptors in the central nervous system and their implication for dopamine-dependent cognition in females. Horm Behav 2015; 74:125-38. [PMID: 26122294 PMCID: PMC4820286 DOI: 10.1016/j.yhbeh.2015.06.010] [Citation(s) in RCA: 202] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 06/08/2015] [Accepted: 06/09/2015] [Indexed: 12/12/2022]
Abstract
This article is part of a Special Issue "Estradiol and cognition". Over the past 30 years, research has demonstrated that estrogens not only are important for female reproduction, but also play a role in a diverse array of cognitive functions. Originally, estrogens were thought to have only one receptor, localized exclusively to the cytoplasm and nucleus of cells. However, it is now known that there are at least three estrogen receptors (ERs): ERα, ERβ and G-protein coupled ER1 (GPER1). In addition to being localized to nuclei, ERα and ERβ are localized to the cell membrane, and GPER1 is also observed at the cell membrane. The mechanism through which ERs are associated with the membrane remains unclear, but palmitoylation of receptors and associations between ERs and caveolin are implicated in membrane association. ERα and ERβ are mostly observed in the nucleus using light microscopy unless they are particularly abundant. However, electron microscopy has revealed that ERs are also found at the membrane in complimentary distributions in multiple brain regions, many of which are innervated by dopamine inputs and were previously thought to contain few ERs. In particular, membrane-associated ERs are observed in the prefrontal cortex, dorsal striatum, nucleus accumbens, and hippocampus, all of which are involved in learning and memory. These findings provide a mechanism for the rapid effects of estrogens in these regions. The effects of estrogens on dopamine-dependent cognition likely result from binding at both nuclear and membrane-associated ERs, so elucidating the localization of membrane-associated ERs helps provide a more complete understanding of the cognitive effects of these hormones.
Collapse
Affiliation(s)
- Anne Almey
- Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada.
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medical College, New York, NY USA; Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, NY, USA.
| | - Wayne G Brake
- Centre for Studies in Behavioral Neurobiology (CSBN), Department of Psychology, Concordia University, Montreal, QC, Canada.
| |
Collapse
|
49
|
Brown ECZ, Steadman CJ, Lee TM, Padmanabhan V, Lehman MN, Coolen LM. Sex differences and effects of prenatal exposure to excess testosterone on ventral tegmental area dopamine neurons in adult sheep. Eur J Neurosci 2015; 41:1157-66. [PMID: 25784297 DOI: 10.1111/ejn.12871] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 01/19/2015] [Accepted: 02/10/2015] [Indexed: 10/23/2022]
Abstract
Prenatal testosterone (T) excess in sheep results in a wide array of reproductive neuroendocrine deficits and alterations in motivated behavior. The ventral tegmental area (VTA) plays a critical role in reward and motivated behaviors and is hypothesised to be targeted by prenatal T. Here we report a sex difference in the number VTA dopamine cells in the adult sheep, with higher numbers of tyrosine hydroxylase (TH)-immunoreactive (-ir) cells in males than females. Moreover, prenatal exposure to excess T during either gestational days 30-90 or 60-90 resulted in increased numbers of VTA TH-ir cells in adult ewes compared to control females. Stereological analysis confirmed significantly greater numbers of neurons in the VTA of males and prenatal T-treated ewes, which was primarily accounted for by greater numbers of TH-ir cells. In addition, immunoreactivity for TH in the cells was denser in males and prenatal T-treated females, suggesting that sex differences and prenatal exposure to excess T affects both numbers of cells expressing TH and the protein levels within dopamine cells. Sex differences were also noted in numbers of TH-ir cells in the substantia nigra, with more cells in males than females. However, prenatal exposure to excess T did not affect numbers of TH-ir cells in the substantia nigra, suggesting that this sex difference is organised independently of prenatal actions of T. Together, these results demonstrate sex differences in the sheep VTA dopamine system which are mimicked by prenatal treatment with excess T.
Collapse
Affiliation(s)
- Erinna C Z Brown
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, N6A 5C1, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Marques-Lopes J, Lynch MK, Van Kempen TA, Waters EM, Wang G, Iadecola C, Pickel VM, Milner TA. Female protection from slow-pressor effects of angiotensin II involves prevention of ROS production independent of NMDA receptor trafficking in hypothalamic neurons expressing angiotensin 1A receptors. Synapse 2015; 69:148-65. [PMID: 25559190 PMCID: PMC4355104 DOI: 10.1002/syn.21800] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/23/2014] [Indexed: 12/21/2022]
Abstract
Renin–angiotensin system overactivity, upregulation of postsynaptic NMDA receptor function, and increased reactive oxygen species (ROS) production in the hypothalamic paraventricular nucleus (PVN) are hallmarks of angiotensin II (AngII)-induced hypertension, which is far more common in young males than in young females. We hypothesize that the sex differences in hypertension are related to differential AngII-induced changes in postsynaptic trafficking of the essential NMDA receptor GluN1 subunit and ROS production in PVN cells expressing angiotensin Type 1a receptor (AT1aR). We tested this hypothesis using slow-pressor (14-day) infusion of AngII (600 ng/kg/min) in mice, which elicits hypertension in males but not in young females. Two-month-old male and female transgenic mice expressing enhanced green fluorescent protein (EGFP) in AT1aR-containing cells were used. In males, but not in females, AngII increased blood pressure and ROS production in AT1aR–EGFP PVN cells at baseline and following NMDA treatment. Electron microscopy showed that AngII increased cytoplasmic and total GluN1–silver-intensified immunogold (SIG) densities and induced a trend toward an increase in near plasmalemmal GluN1–SIG density in AT1aR–EGFP dendrites of males and females. Moreover, AngII decreased dendritic area and diameter in males, but increased dendritic area of small (<1 µm) dendrites and decreased diameter of large (>1 µm) dendrites in females. Fluorescence microscopy revealed that AT1aR and estrogen receptor β do not colocalize, suggesting that if estrogen is involved, its effect is indirect. These data suggest that the sexual dimorphism in AngII-induced hypertension is associated with sex differences in ROS production in AT1aR-containing PVN cells but not with postsynaptic NMDA receptor trafficking.
Collapse
Affiliation(s)
- Jose Marques-Lopes
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Mary-Katherine Lynch
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Tracey A. Van Kempen
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| | - Gang Wang
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Costantino Iadecola
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Virginia M. Pickel
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
| | - Teresa A. Milner
- Brain and Mind Research Institute, Weill Cornell Medical College, 407 East 61st Street, New York, NY 10065
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY 10065
| |
Collapse
|