1
|
Sershen H, Guidotti A, Auta J, Drnevich J, Grayson DR, Veldic M, Meyers J, Youseff M, Zhubi A, Faurot K, Wu R, Zhao J, Jin H, Lajtha A, Davis JM, Smith RC. Gene Expression Of Methylation Cycle And Related Genes In Lymphocytes And Brain Of Patients With Schizophrenia And Non-Psychotic Controls. Biomark Neuropsychiatry 2021; 5. [PMID: 34368786 DOI: 10.1016/j.bionps.2021.100038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Some of the biochemical abnormalities underlying schizophrenia, involve differences in methylation and methylating enzymes, as well as other related target genes. We present results of a study of differences in mRNA expression in peripheral blood lymphocytes (PBLs) and post-mortem brains of chronic schizophrenics (CSZ) and non-psychotic controls (NPC), emphasizing the differential effects of sex and antipsychotic drug treatment on mRNA findings. We studied mRNA expression in lymphocytes of 61 CSZ and 49 NPC subjects using qPCR assays with TaqMan probes to assess levels of DNMT, TET, GABAergic, NR3C1, BDNF mRNAs, and several additional targets identified in a recent RNA sequence analysis. In parallel we studied DNMT1 and GAD67 in samples of brain tissues from 19 CSZ, 26 NPC. In PBLs DNMT1 and DNMT3A mRNA levels were significantly higher in male CSZ vs NPC. No significant differences were detected in females. The GAD1, NR3C1 and CNTNAP2 mRNA levels were significantly higher in CSZ than NPC. In CSZ patients treated with clozapine, GAD-1 related, CNTNAP2, and IMPA2 mRNAs were significantly higher than in CSZ subjects not treated with clozapine. Differences between CSZ vs NPC in these mRNAs was primarily attributable to the clozapine treatment. In the brain samples, DNMT1 was significantly higher and GAD67 was significantly lower in CSZ than in NPC, but there were no significant sex differences in diagnostic effects. These findings highlight the importance of considering sex and drug treatment effects in assessing the substantive significance of differences in mRNAs between CSZ and NPC.
Collapse
Affiliation(s)
- Henry Sershen
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,NYU Langone Medical Center, Department of Psychiatry, New York, New York, USA
| | - Alessandro Guidotti
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - James Auta
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - Jenny Drnevich
- High Performance Biological Computing group and the Roy J. Carver Biotechnology Center University of Illinois, Urbana, USA
| | - Dennis R Grayson
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - Marin Veldic
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Jordan Meyers
- Oregon Health and Science University, Portland, Oregon, USA
| | - Mary Youseff
- Harlem Hospital, Department of Psychiatry, New York, NY, US
| | - Adrian Zhubi
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - Keturah Faurot
- Department of Physical Medicine & Rehabilitation, University of North Carolina at Chapel Hill, North Carolina
| | - Renrong Wu
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, and Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingping Zhao
- Department of Psychiatry, the Second Xiangya Hospital, Central South University, Changsha, Hunan, and Mental Health Institute of the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hua Jin
- University of California San Diego, Department of Psychiatry, San Diego, and VA San Diego Healthcare System, San Diego, California, USA
| | - Abel Lajtha
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,NYU Langone Medical Center, Department of Psychiatry, New York, New York, USA
| | - John M Davis
- Psychiatric Institute University of Illinois, Department of Psychiatry, Chicago, Illinois, USA
| | - Robert C Smith
- Nathan Kline Institute for Psychiatric Research, Orangeburg, New York, USA.,NYU Langone Medical Center, Department of Psychiatry, New York, New York, USA
| |
Collapse
|
2
|
Disease-Specific Changes in Reelin Protein and mRNA in Neurodegenerative Diseases. Cells 2020; 9:cells9051252. [PMID: 32438605 PMCID: PMC7290479 DOI: 10.3390/cells9051252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/16/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Reelin is an extracellular glycoprotein that modulates neuronal function and synaptic plasticity in the adult brain. Decreased levels of Reelin activity have been postulated as a key factor during neurodegeneration in Alzheimer’s disease (AD) and in aging. Thus, changes in levels of full-length Reelin and Reelin fragments have been revealed in cerebrospinal fluid (CSF) and in post-mortem brains samples of AD patients with respect to non-AD patients. However, conflicting studies have reported decreased or unchanged levels of full-length Reelin in AD patients compared to control (nND) cases in post-mortem brains and CSF samples. In addition, a compelling analysis of Reelin levels in neurodegenerative diseases other than AD is missing. In this study, we analyzed brain levels of RELN mRNA and Reelin protein in post-mortem frontal cortex samples from different sporadic AD stages, Parkinson’s disease with dementia (PDD), and Creutzfeldt-Jakob disease (sCJD), obtained from five different Biobanks. In addition, we measured Reelin protein levels in CSF samples of patients with mild cognitive impairment (MCI), dementia, or sCJD diagnosis and a group of neurologically healthy cases. The results indicate an increase in RELN mRNA in the frontal cortex of advanced stages of AD and in sCJD(I) compared to controls. This was not observed in PDD and early AD stages. However, Reelin protein levels in frontal cortex samples were unchanged between nND and advanced AD stages and PDD. Nevertheless, they decreased in the CSF of patients with dementia in comparison to those not suffering with dementia and patients with MCI. With respect to sCJD, there was a tendency to increase in brain samples in comparison to nND and to decrease in the CSF with respect to nND. In conclusion, Reelin levels in CSF cannot be considered as a diagnostic biomarker for AD or PDD. However, we feel that the CSF Reelin changes observed between MCI, patients with dementia, and sCJD might be helpful in generating a biomarker signature in prodromal studies of unidentified dementia and sCJD.
Collapse
|
3
|
Oprisan SA, Imperatore J, Helms J, Tompa T, Lavin A. Cocaine-Induced Changes in Low-Dimensional Attractors of Local Field Potentials in Optogenetic Mice. Front Comput Neurosci 2018; 12:2. [PMID: 29445337 PMCID: PMC5797774 DOI: 10.3389/fncom.2018.00002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/04/2018] [Indexed: 12/13/2022] Open
Abstract
Optogenetically evoked local field potential (LFP) recorded from the medial prefrontal cortex (mPFC) of mice during basal conditions and following a systemic cocaine administration were analyzed. Blue light stimuli were delivered to mPFC through a fiber optic every 2 s and each trial was repeated 100 times. As in the previous study, we used a surrogate data method to check that nonlinearity was present in the experimental LFPs and only used the last 1.5 s of steady activity to measure the LFPs phase resetting induced by the brief 10 ms light stimulus. We found that the steady dynamics of the mPFC in response to light stimuli could be reconstructed in a three-dimensional phase space with topologically similar "8"-shaped attractors across different animals. Therefore, cocaine did not change the complexity of the recorded nonlinear data compared to the control case. The phase space of the reconstructed attractor is determined by the LFP time series and its temporally shifted versions by a multiple of some lag time. We also compared the change in the attractor shape between cocaine-injected and control using (1) dendrogram clustering and (2) Frechet distance. We found about 20% overlap between control and cocaine trials when classified using dendrogram method, which suggest that it may be possible to describe mathematically both data sets with the same model and slightly different model parameters. We also found that the lag times are about three times shorter for cocaine trials compared to control. As a result, although the phase space trajectories for control and cocaine may look similar, their dynamics is significantly different.
Collapse
Affiliation(s)
- Sorinel A Oprisan
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Julia Imperatore
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Jessica Helms
- Department of Physics and Astronomy, College of Charleston, Charleston, SC, United States
| | - Tamas Tompa
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States.,Department of Preventive Medicine, Faculty of Healthcare, University of Miskolc, Miskolc, Hungary
| | - Antonieta Lavin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
4
|
Mao S, Xiong G, Zhang L, Dong H, Liu B, Cohen NA, Cohen AS. Verification of the Cross Immunoreactivity of A60, a Mouse Monoclonal Antibody against Neuronal Nuclear Protein. Front Neuroanat 2016; 10:54. [PMID: 27242450 PMCID: PMC4865646 DOI: 10.3389/fnana.2016.00054] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 11/13/2022] Open
Abstract
A60, the mouse monoclonal antibody against the neuronal nuclear protein (NeuN), is the most widely used neuronal marker in neuroscience research and neuropathological assays. Previous studies identified fragments of A60-immunoprecipitated protein as Synapsin I (Syn I), suggesting the antibody will demonstrate cross immunoreactivity. However, the likelihood of cross reactivity has never been verified by immunohistochemical techniques. Using our established tissue processing and immunofluorescent staining protocols, we found that A60 consistently labeled mossy fiber terminals in hippocampal area CA3. These A60-positive mossy fiber terminals could also be labeled by Syn I antibody. After treating brain slices with saponin in order to better preserve various membrane and/or vesicular proteins for immunostaining, we observed that A60 could also label additional synapses in various brain areas. Therefore, we used A60 together with a rabbit monoclonal NeuN antibody to confirm the existence of this cross reactivity. We showed that the putative band positive for A60 and Syn I could not be detected by the rabbit anti-NeuN in Western blotting. As efficient as Millipore A60 to recognize neuronal nuclei, the rabbit NeuN antibody demonstrated no labeling of synaptic structures in immunofluorescent staining. The present study successfully verified the cross reactivity present in immunohistochemistry, cautioning that A60 may not be the ideal biomarker to verify neuronal identity due to its cross immunoreactivity. In contrast, the rabbit monoclonal NeuN antibody used in this study may be a better candidate to substitute for A60.
Collapse
Affiliation(s)
- Shanping Mao
- Department of Neurology, Renmin Hospital, Wuhan University Wuhan, China
| | - Guoxiang Xiong
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennslyvania Philadelphia, PA, USA
| | - Lei Zhang
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennslyvania Philadelphia, PA, USA
| | - Huimin Dong
- Department of Neurology, Renmin Hospital, Wuhan University Wuhan, China
| | - Baohui Liu
- Department of Neurology, Renmin Hospital, Wuhan University Wuhan, China
| | - Noam A Cohen
- Philadelphia Veterans Affairs Medical Center, University of PennslyvaniaPhiladelphia, PA, USA; Departments of Otorhinolaryngology-Head and Neck Surgery, University of PennslyvaniaPhiladelphia, PA, USA
| | - Akiva S Cohen
- Department of Anesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of PennslyvaniaPhiladelphia, PA, USA; Department of Anesthesiology and Critical Care Medicine, Perelman School of Medicine, University of PennslyvaniaPhiladelphia, PA, USA
| |
Collapse
|
5
|
Caruncho HJ, Brymer K, Romay-Tallón R, Mitchell MA, Rivera-Baltanás T, Botterill J, Olivares JM, Kalynchuk LE. Reelin-Related Disturbances in Depression: Implications for Translational Studies. Front Cell Neurosci 2016; 10:48. [PMID: 26941609 PMCID: PMC4766281 DOI: 10.3389/fncel.2016.00048] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/11/2016] [Indexed: 02/02/2023] Open
Abstract
The finding that reelin expression is significantly decreased in mood and psychotic disorders, together with evidence that reelin can regulate key aspects of hippocampal plasticity in the adult brain, brought our research group and others to study the possible role of reelin in the pathogenesis of depression. This review describes recent progress on this topic using an animal model of depression that makes use of repeated corticosterone (CORT) injections. This methodology produces depression-like symptoms in both rats and mice that are reversed by antidepressant treatment. We have reported that CORT causes a decrease in the number of reelin-immunopositive cells in the dentate gyrus subgranular zone (SGZ), where adult hippocampal neurogenesis takes place; that down-regulation of the number of reelin-positive cells closely parallels the development of a depression-like phenotype during repeated CORT treatment; that reelin downregulation alters the co-expression of reelin with neuronal nitric oxide synthase (nNOS); that deficits in reelin might also create imbalances in glutamatergic and GABAergic circuits within the hippocampus and other limbic structures; and that co-treatment with antidepressant drugs prevents both reelin deficits and the development of a depression-like phenotype. We also observed alterations in the pattern of membrane protein clustering in peripheral lymphocytes in animals with low levels of reelin. Importantly, we found parallel changes in membrane protein clustering in depression patients, which differentiated two subpopulations of naïve depression patients that showed a different therapeutic response to antidepressant treatment. Here, we review these findings and develop the hypothesis that restoring reelin-related function could represent a novel approach for antidepressant therapies.
Collapse
Affiliation(s)
- Hector J Caruncho
- Neuroscience Cluster, College of Pharmacy and Nutrition, University of Saskatchewan Saskatoon, SK, Canada
| | - Kyle Brymer
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | | | - Milann A Mitchell
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | - Tania Rivera-Baltanás
- Department of Psychiatry, Alvaro Cunqueiro Hospital, Biomedical Research Institute of Vigo Galicia, Spain
| | - Justin Botterill
- Department of Psychology, University of Saskatchewan Saskatoon, SK, Canada
| | - Jose M Olivares
- Department of Psychiatry, Alvaro Cunqueiro Hospital, Biomedical Research Institute of Vigo Galicia, Spain
| | - Lisa E Kalynchuk
- Department of Medicine, University of Saskatchewan Saskatoon, SK, Canada
| |
Collapse
|
6
|
Schmidt MJ, Mirnics K. Neurodevelopment, GABA system dysfunction, and schizophrenia. Neuropsychopharmacology 2015; 40:190-206. [PMID: 24759129 PMCID: PMC4262918 DOI: 10.1038/npp.2014.95] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 04/03/2014] [Accepted: 04/11/2014] [Indexed: 02/07/2023]
Abstract
The origins of schizophrenia have eluded clinicians and researchers since Kraepelin and Bleuler began documenting their findings. However, large clinical research efforts in recent decades have identified numerous genetic and environmental risk factors for schizophrenia. The combined data strongly support the neurodevelopmental hypothesis of schizophrenia and underscore the importance of the common converging effects of diverse insults. In this review, we discuss the evidence that genetic and environmental risk factors that predispose to schizophrenia disrupt the development and normal functioning of the GABAergic system.
Collapse
Affiliation(s)
- Martin J Schmidt
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - Karoly Mirnics
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, University of Szeged, Szeged, Hungary
| |
Collapse
|
7
|
Nullmeier S, Panther P, Frotscher M, Zhao S, Schwegler H. Alterations in the hippocampal and striatal catecholaminergic fiber densities of heterozygous reeler mice. Neuroscience 2014; 275:404-19. [PMID: 24969133 DOI: 10.1016/j.neuroscience.2014.06.027] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 06/12/2014] [Accepted: 06/15/2014] [Indexed: 02/02/2023]
Abstract
The heterozygous reeler mouse (HRM), haploinsufficient for reelin, shares several neurochemical and behavioral similarities with patients suffering from schizophrenia. It has been shown that defective reelin signaling influences the mesolimbic dopaminergic pathways in a specific manner. However, there is only little information about the impact of reelin haploinsufficiency on the monoaminergic innervation of different brain areas, known to be involved in the pathophysiology of schizophrenia. In the present study using immunocytochemical procedures, we investigated HRM and wild-type mice (WT) for differences in the densities of tyrosine hydroxylase (TH)-immunoreactive (IR) and serotonin (5-HT)-IR fibers in prefrontal cortex, ventral and dorsal hippocampal formation, amygdala and ventral and dorsal striatum. We found that HRM, compared to WT, shows a significant increase in TH-IR fiber densities in dorsal hippocampal CA1, CA3 and ventral CA1. In contrast, HRM exhibits a significant decrease of TH-IR in the shell of the nucleus accumbens (AcbShell), but no differences in the other brain areas investigated. Overall, no genotype differences were found in the 5-HT-IR fiber densities. In conclusion, these results support the view that reelin haploinsufficiency differentially influences the catecholaminergic (esp. dopaminergic) systems in brain areas associated with schizophrenia. The reelin haploinsufficient mouse may provide a useful model for studying the role of reelin in hippocampal dysfunction and its effect on the dopaminergic system as related to schizophrenia.
Collapse
Affiliation(s)
- S Nullmeier
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - P Panther
- Department of Stereotactic Neurosurgery, University Hospital of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| | - M Frotscher
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - S Zhao
- Institute for Structural Neurobiology, Center for Molecular Neurobiology Hamburg (ZMNH), Martinistrasse 52, D-20246 Hamburg, Germany.
| | - H Schwegler
- Institute of Anatomy, University of Magdeburg, Leipziger Straße 44, D-39120 Magdeburg, Germany.
| |
Collapse
|
8
|
Bostrom JA, Sodhi M. A Look to the Future. Pharmacogenomics 2013. [DOI: 10.1016/b978-0-12-391918-2.00016-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
9
|
Guidotti A, Dong E, Gavin DP, Veldic M, Zhao W, Bhaumik DK, Pandey SC, Grayson DR. DNA methylation/demethylation network expression in psychotic patients with a history of alcohol abuse. Alcohol Clin Exp Res 2012; 37:417-24. [PMID: 22958170 DOI: 10.1111/j.1530-0277.2012.01947.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 07/23/2012] [Indexed: 11/29/2022]
Abstract
BACKGROUND Recent studies suggest that protracted and excessive alcohol use induces an epigenetic dysregulation in human and rodent brains. We recently reported that DNA methylation dynamics are altered in brains of psychotic (PS) patients, including schizophrenia and bipolar disorder patients. Because PS patients are often comorbid with chronic alcohol abuse, we examined whether the altered expression of multiple members of the DNA methylation/demethylation network observed in postmortem brains of PS patients was modified in PS patients with a history of chronic alcohol abuse. METHODS DNA-methyltransferase-1 (DNMT1) mRNA-positive neurons were counted in situ in prefrontal cortex samples obtained from the Harvard Brain Tissue Resource Center, Belmont, MA. 10-11-translocation (TETs 1, 2, 3), apolipoprotein B editing complex enzyme (APOBEC-3C), growth and DNA-damage-inducible protein 45β (GADD45β), and methyl-binding domain protein-4 (MBD4) mRNAs were measured by quantitative real-time polymerase chain reaction in inferior parietal cortical lobule samples obtained from the Stanley Foundation Neuropathology Consortium, Bethesda, MD. RESULTS We observed an increase in DNMT1 mRNA-positive neurons in PS patients compared with non-PS subjects. In addition, there was a pronounced decrease in APOBEC-3C and a pronounced increase in GADD45β and TET1 mRNAs in PS patients with no history of alcohol abuse. In PS patients with a history of chronic alcohol abuse, the numbers of DNMT1-positive neurons were not increased significantly. Furthermore, the decrease in APOBEC-3C mRNA was less pronounced, while the increase in TET1 mRNA had a tendency to be potentiated in those PS patients that were chronic alcohol abusers. GADD45β and MBD4 mRNAs were not influenced by alcohol abuse. The effect of chronic alcohol abuse on DNA methylation/demethylation network enzymes cannot be attributed to confounding demographic variables or to the type and dose of medication used. CONCLUSIONS Based on these results, we hypothesize that PS patients may abuse alcohol as a potential attempt at self-medication to normalize altered DNA methylation/demethylation network pathways. However, before accepting this conclusion, we need to study alterations in the DNA methylation/demethylation pathways and the DNA methylation dynamics in a substantial number of alcoholic PS and non-PS patients. Additional investigation may also be necessary to determine whether the altered DNA methylation dynamics are direct or the consequence of an indirect interaction of alcohol with the neuropathogenetic mechanisms underlying psychosis.
Collapse
Affiliation(s)
- Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Kadriu B, Guidotti A, Chen Y, Grayson DR. DNA methyltransferases1 (DNMT1) and 3a (DNMT3a) colocalize with GAD67-positive neurons in the GAD67-GFP mouse brain. J Comp Neurol 2012; 520:1951-64. [PMID: 22134929 DOI: 10.1002/cne.23020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA methylation is an epigenetic regulatory mechanism commonly associated with transcriptional silencing. DNA methyltransferases (DNMTs) are a family of related proteins that both catalyze the de novo formation of 5-methylcytosine and maintain these methylation marks in cell-specific patterns in virtually all mitotic cells of the body. In the adult brain, methylation occurs in progenitor cells of the neurogenic zones and in postmitotic neurons. Of the DNMTs, DNMT1 and DNMT3a are most highly expressed in postmitotic neurons. While it has been commonly thought all postmitotic neurons and glia express DNMTs at comparable levels, the coexpression of selected DNMTs with markers of distinct neurotransmitter phenotypes has not been previously examined in detail in the mouse. To this end, we analyzed the expression of DNMT1 and DNMT3a along with GAD67 in the brains of the glutamic acid decarboxylase67-enhanced green fluorescent protein (GAD67-GFP) knockin mice. After first confirming that GFP-immunopositive neurons were also GAD67-positive, we showed that in the motor cortex, piriform cortex, striatum, CA1 region of the hippocampus, dentate gyrus, and basolateral amygdala (BLA), GFP immunofluorescence coincided with the signal corresponding to DNMT1 and DNMT3a. A detailed examination of cortical neurons, showed that ≈30% of NeuN-immunopositive neurons were also DNMT1-positive. These data do not exclude the expression of DNMT1 or DNMT3a in glutamatergic neurons and glia. However, they suggest that their expression is low compared with the levels present in GABAergic neurons.
Collapse
Affiliation(s)
- Bashkim Kadriu
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | |
Collapse
|
11
|
Gavin DP, Sharma RP, Chase KA, Matrisciano F, Dong E, Guidotti A. Growth arrest and DNA-damage-inducible, beta (GADD45b)-mediated DNA demethylation in major psychosis. Neuropsychopharmacology 2012; 37:531-42. [PMID: 22048458 PMCID: PMC3242315 DOI: 10.1038/npp.2011.221] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aberrant neocortical DNA methylation has been suggested to be a pathophysiological contributor to psychotic disorders. Recently, a growth arrest and DNA-damage-inducible, beta (GADD45b) protein-coordinated DNA demethylation pathway, utilizing cytidine deaminases and thymidine glycosylases, has been identified in the brain. We measured expression of several members of this pathway in parietal cortical samples from the Stanley Foundation Neuropathology Consortium (SFNC) cohort. We find an increase in GADD45b mRNA and protein in patients with psychosis. In immunohistochemistry experiments using samples from the Harvard Brain Tissue Resource Center, we report an increased number of GADD45b-stained cells in prefrontal cortical layers II, III, and V in psychotic patients. Brain-derived neurotrophic factor IX (BDNF IXabcd) was selected as a readout gene to determine the effects of GADD45b expression and promoter binding. We find that there is less GADD45b binding to the BDNF IXabcd promoter in psychotic subjects. Further, there is reduced BDNF IXabcd mRNA expression, and an increase in 5-methylcytosine and 5-hydroxymethylcytosine at its promoter. On the basis of these results, we conclude that GADD45b may be increased in psychosis compensatory to its inability to access gene promoter regions.
Collapse
Affiliation(s)
- David P Gavin
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Rajiv P Sharma
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - Kayla A Chase
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - Francesco Matrisciano
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - Erbo Dong
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| | - Alessandro Guidotti
- Department of Psychiatry, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL, USA
| |
Collapse
|
12
|
Guidotti A, Grayson DR. A neurochemical basis for an epigenetic vision of psychiatric disorders (1994-2009). Pharmacol Res 2011; 64:344-9. [PMID: 21699980 DOI: 10.1016/j.phrs.2011.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In 1996, Dr. Costa was invited by Prof. Boris Astrachan, Chairman of the Department of Psychiatry at the University of Illinois at Chicago, to direct the research of the "Psychiatric Institute, Department of Psychiatry, School of Medicine, at the University of Illinois at Chicago." He was asked to develop a seminal research program on psychiatric disorders. Viewed in retrospect, Dr. Costa met and surpassed the challenge, as was usual for him. To elucidate the molecular mechanisms whereby nurture (epigenetic factors) and nature (genetic factors) interact to cause major psychiatric disorders was at the center of Dr. Costa's mission for the last 15 years of his research at the Psychiatric Institute. The challenge for Dr. Costa and his colleagues (Auta, Caruncho, Davis, Grayson, Guidotti, Impagnatiello, Kiedrowski, Larson, Manev, Pappas, Pesold, Pinna, Sharma, Smalheiser, Sugaya, Tueting, Veldic [1-111]) had always been to find new ways to prevent and treat psychiatric disorders with pharmacological agents that failed to have major unwanted side effects. In this list, we have quoted the first authors of the papers pertaining to the field of research highlighted in the title. As you know, Dr. Costa was an eclectic scientist and in his 15 years of studies at UIC, he touched many other aspects of neuroscience research that are not discussed in this overview.
Collapse
Affiliation(s)
- Alessandro Guidotti
- The Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 Taylor, Chicago, IL 60612, United States.
| | | |
Collapse
|
13
|
Lussier AL, Romay-Tallón R, Kalynchuk LE, Caruncho HJ. Reelin as a putative vulnerability factor for depression: Examining the depressogenic effects of repeated corticosterone in heterozygous reeler mice. Neuropharmacology 2011; 60:1064-74. [DOI: 10.1016/j.neuropharm.2010.09.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 09/01/2010] [Accepted: 09/07/2010] [Indexed: 12/20/2022]
|
14
|
Matrisciano F, Dong E, Gavin DP, Nicoletti F, Guidotti A. Activation of group II metabotropic glutamate receptors promotes DNA demethylation in the mouse brain. Mol Pharmacol 2011; 80:174-82. [PMID: 21505039 DOI: 10.1124/mol.110.070896] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Activation of group II metabotropic glutamate receptors (mGlu2 and -3 receptors) has shown a potential antipsychotic activity, yet the underlying mechanism is only partially known. Altered epigenetic mechanisms contribute to the pathogenesis of schizophrenia and currently used medications exert chromatin remodeling effects. Here, we show that systemic injection of the brain-permeant mGlu2/3 receptor agonist (-)-2-oxa-4-aminobicyclo[3.1.0]hexane-4,6-dicarboxylic acid (LY379268; 0.3-1 mg/kg i.p.) increased the mRNA and protein levels of growth arrest and DNA damage 45-β (Gadd45-β), a molecular player of DNA demethylation, in the mouse frontal cortex and hippocampus. Induction of Gadd45-β by LY379268 was abrogated by the mGlu2/3 receptor antagonist (2S)-2-amino-2-[(1S,2S)-2-carboxycycloprop-1-yl]-3-(xanth-9-yl) propanoic acid (LY341495; 1 mg/kg i.p.). Treatment with LY379268 also increased the amount of Gadd45-β bound to specific promoter regions of reelin, brain-derived neurotrophic factor (BDNF), and glutamate decarboxylase-67 (GAD67). We directly assessed gene promoter methylation in control mice and in mice pretreated for 7 days with the methylating agent methionine (750 mg/kg i.p.). Both single and repeated injections with LY379268 reduce cytosine methylation in the promoters of the three genes, although the effect on the GAD67 was significant only in response to repeated injections. Single and repeated treatment with LY379268 could also reverse the defect in social interaction seen in mice pretreated with methionine. The action of LY379268 on Gadd45-β was mimicked by valproate and clozapine but not haloperidol. These findings show that pharmacological activation of mGlu2/3 receptors has a strong impact on the epigenetic regulation of genes that have been linked to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Francesco Matrisciano
- Department of Psychiatry, College of Medicine, University of Illinois Chicago, Chicago, Illinois, USA.
| | | | | | | | | |
Collapse
|
15
|
Lower number of cerebellar Purkinje neurons in psychosis is associated with reduced reelin expression. Proc Natl Acad Sci U S A 2010; 107:4407-11. [PMID: 20150511 DOI: 10.1073/pnas.0914483107] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Reelin is an extracellular matrix protein synthesized in cerebellar granule cells that plays an important role in Purkinje cell positioning during cerebellar development and in modulating adult synaptic function. In the cerebellum of schizophrenia (SZ) and bipolar (BP) disorder patients, there is a marked decrease ( approximately 50%) of reelin expression. In this study we measured Purkinje neuron density in the Purkinje cell layer of cerebella of 13 SZ and 17 BP disorder patients from the McLean 66 Cohort Collection, Harvard Brain Tissue Resource Center. The mean number of Purkinje neurons (linear density, neurons per millimeter) was 20% lower in SZ and BP disorder patients compared with nonpsychiatric subjects (NPS; n = 24). This decrease of Purkinje neuron linear density was unrelated to postmortem interval, pH, drugs of abuse, or to the presence, dose, or duration of antipsychotic medications. A comparative study in the cerebella of heterozygous reeler mice (HRM), in which reelin expression is down-regulated by approximately 50%, showed a significant loss in the number of Purkinje cells in HRM (10-15%) compared with age-matched (3-9 months) wild-type mice. This finding suggests that lack of reelin impairs GABAergic Purkinje neuron expression and/or positioning during cerebellar development.
Collapse
|
16
|
Abellan A, Menuet A, Dehay C, Medina L, Rétaux S. Differential expression of LIM-homeodomain factors in Cajal-Retzius cells of primates, rodents, and birds. Cereb Cortex 2009; 20:1788-98. [PMID: 19923199 DOI: 10.1093/cercor/bhp242] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Reelin-expressing Cajal-Retzius (CR) cells are among the earliest generated cells in the mammalian cerebral cortex and are believed to be crucial for both the development and the evolution of a laminated pattern in the pallial wall of the telencephalon. LIM-homeodomain (LIM-hd) transcription factors are expressed during brain development in a highly restricted and combinatorial manner, and they specify regional and cellular identity. We have investigated the expression of the LIM-hd members Lhx1/Lhx2/Lhx5/Lhx6/Lhx9 in the reelin-expressing cells, the pallium, and the regions of origin of CR cells including the cortical hem of 3 amniote species: the mouse, the chick, and the macaque monkey. We found major differences in the combinatorial LIM-hd expression in the marginal zone as well as in the hem. 1) Lhx5 is a "preferential LIM-hd" for CR cells in mammals but not expressed by these cells in chicks. 2) Lhx2 is expressed in the hem of the chick, whereas it is excluded from this region in mouse. 3) Whereas mouse CR cells express Lhx5/Lhx1, their monkey counterparts express 4 of these factors: Lhx1/Lhx2/Lhx5/Lhx9. We discuss our findings in evolutionary terms for the specification of the midline hem and CR cell type and the emergence of the cortical lamination pattern.
Collapse
Affiliation(s)
- Antonio Abellan
- Laboratory of Brain Development and Evolution, Department of Experimental Medicine, Faculty of Medicine, University of Lleida, Institute of Biomedical Research of Lleida, 25008 Lleida, Spain
| | | | | | | | | |
Collapse
|
17
|
Down-regulation of neurosteroid biosynthesis in corticolimbic circuits mediates social isolation-induced behavior in mice. Proc Natl Acad Sci U S A 2007; 104:18736-41. [PMID: 18003893 DOI: 10.1073/pnas.0709419104] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allopregnanolone (ALLO), synthesized by pyramidal neurons, is a potent positive allosteric modulator of the action of GABA at GABA(A) receptors expressing specific neurosteroid binding sites. In the brain, ALLO is synthesized from progesterone by the sequential action of two enzymes: 5alpha-reductase type I (5alpha-RI) and 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD). In the cortex, hippocampus, and amygdala, these enzymes are colocalized in principal glutamatergic output neurons [Agís-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E, Guidotti A (2006) Proc Natl Acad Sci USA 103:14602-14607], but they are not detectable in GABAergic interneurons. Using RT-PCR and in situ hybridization, this study compares 5alpha-RI and 3alpha-HSD mRNA brain expression levels in group housed and in socially isolated male mice for 4 weeks. In these socially isolated mice, the mRNA expression of 5alpha-RI was dramatically decreased in hippocampal CA3 glutamatergic pyramidal neurons, dentate gyrus granule cells, glutamatergic neurons of the basolateral amygdala, and glutamatergic pyramidal neurons of layer V/VI frontal (prelimbic, infralimbic) cortex (FC). In contrast, 5alpha-RI mRNA expression failed to change in CA1 pyramidal neurons, central amygdala neurons, pyramidal neurons of layer II/III FC, ventromedial thalamic nucleus neurons, and striatal medium spiny and reticular thalamic nucleus neurons. Importantly, 3alpha-HSD mRNA expression was unchanged by protracted social isolation (Si). These data suggest that, in male mice, after 4 weeks of Si, the expression of 5alpha-RI mRNA, which is the rate-limiting-step enzyme of ALLO biosynthesis, is specifically down-regulated in glutamatergic pyramidal neurons that converge on the amygdala from cortical and hippocampal regions. In socially isolated mice, this down-regulation may account for the appearance of behavioral disorders such as anxiety, aggression, and cognitive dysfunction.
Collapse
|
18
|
Matsuzaki H, Minabe Y, Nakamura K, Suzuki K, Iwata Y, Sekine Y, Tsuchiya KJ, Sugihara G, Suda S, Takei N, Nakahara D, Hashimoto K, Nairn AC, Mori N, Sato K. Disruption of reelin signaling attenuates methamphetamine-induced hyperlocomotion. Eur J Neurosci 2007; 25:3376-84. [PMID: 17553006 DOI: 10.1111/j.1460-9568.2007.05564.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
To clarify whether reelin signaling is involved in dopaminergic neurotransmission in the adult mouse brain, we investigated dopamine function in mice lacking reelin (reeler). We found that methamphetamine-induced locomotor activity is significantly attenuated in reeler mice. To elucidate the mechanism of this phenomenon, we first investigated presynaptic dopamine release; however, there were no significant differences in wildtype, heterozygous reeler and homozygous reeler mice. Next, we examined the locomotor response to intra-accumbens injection of dopamine D1 and D2 receptor agonists, and found that lack of reelin signaling results in decreases in both D1 and D2 receptor-mediated dopaminergic functions. In addition, we measured dopamine receptor binding in the striatum, and found that both D1 and D2 classes of dopamine receptors are reduced in reeler mice. Furthermore, we found that the phosphorylation levels of DARPP-32 are also changed by lack of reelin signaling. Finally, to distinguish between a developmental role of reelin or an acute role of reelin in adult mouse, we intraventricularly infused CR-50, a monoclonal antibody against reelin. Interestingly, infusion of CR-50 also significantly reduced methamphetamine-induced hyperlocomotion in wildtype mice, showing that reelin has an acute role in the dopaminergic system. These results indicate that reelin signaling plays a pivotal role in the dopaminergic system in adult mice, especially in postsynaptic levels.
Collapse
Affiliation(s)
- Hideo Matsuzaki
- Department of Anatomy and Neuroscience, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Ruzicka WB, Zhubi A, Veldic M, Grayson DR, Costa E, Guidotti A. Selective epigenetic alteration of layer I GABAergic neurons isolated from prefrontal cortex of schizophrenia patients using laser-assisted microdissection. Mol Psychiatry 2007; 12:385-97. [PMID: 17264840 DOI: 10.1038/sj.mp.4001954] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Among the most consistent results of studies of post-mortem brain tissue from schizophrenia patients (SZP) is the finding that in this disease, several genes expressed by GABAergic neurons are downregulated. This downregulation may be caused by hypermethylation of the relevant promoters in affected neurons. Indeed, increased numbers of GABAergic interneurons expressing DNA methyltransferase 1 (DNMT1) mRNA have been demonstrated in the prefrontal cortex (PFC) of SZP using in situ hybridization. The present study expands upon these findings using nested competitive reverse transcription-polymerase chain reaction combined with laser-assisted microdissection to quantitate the extent of DNMT1 mRNA overexpression in distinct populations of GABAergic neurons obtained from either layer I or layer V of the PFC of SZP. In a cohort of eight SZP and eight non-psychiatric subject (NPS) post-mortem BA9 tissue samples, DNMT1 mRNA was found to be selectively expressed in GABAergic interneurons and virtually absent in pyramidal neurons. DNMT1 mRNA expression was approximately threefold higher in GABAergic interneurons microdissected from layer I of SZP relative to the same neurons microdissected from NPS. GABAergic interneurons obtained from layer V of the same samples displayed no difference in DNMT1 mRNA expression between groups. In the same samples, the GABAergic neuron-specific glutamic acid-decarboxylase(67) (GAD(67)) and reelin mRNAs were underexpressed twofold in GABAergic interneurons isolated from layer I of SZP relative to GABAergic interneurons microdissected from layer I of NPS, and unaltered in GABAergic interneurons of layer V. These findings implicate an epigenetically mediated layer I GABAergic dysfunction in the pathogenesis of schizophrenia, and suggest novel strategies for treatment of the disease.
Collapse
Affiliation(s)
- W B Ruzicka
- 1Department of Psychiatry, College of Medicine, The Psychiatric Institute, University of Illinois at Chicago, Chicago, IL 60612, USA
| | | | | | | | | | | |
Collapse
|
20
|
Veldic M, Kadriu B, Maloku E, Agis-Balboa RC, Guidotti A, Davis JM, Costa E. Epigenetic mechanisms expressed in basal ganglia GABAergic neurons differentiate schizophrenia from bipolar disorder. Schizophr Res 2007; 91:51-61. [PMID: 17270400 PMCID: PMC1876737 DOI: 10.1016/j.schres.2006.11.029] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2006] [Revised: 11/17/2006] [Accepted: 11/26/2006] [Indexed: 01/17/2023]
Abstract
In the cerebral prefrontal cortex (PFC), DNA-methyltransferase 1 (DNMT1), the enzyme that catalyzes the methylation of cytosine at carbon atoms in position 5 in CpG dinucleotides, is expressed selectively in GABAergic neurons and is upregulated in layers I and II of schizophrenia (SZ) and bipolar disorder patients with psychosis (BDP). To replicate these earlier findings and to verify whether overexpression of DNMT1 and the consequent epigenetic decrease of reelin and glutamic acid decarboxylase (GAD) 67 mRNA expression also occur in GABAergic medium spiny neurons of the caudate nucleus (CN) and putamen (PT) of SZ and BDP, we studied the entire McLean 66 Cohort (Harvard Brain Tissue Resource Center, McLean Hospital, Belmont, MA) including SZ and BDP, which were matched with nonpsychiatric subjects. The data demonstrate that in GABAergic medium spiny neurons of CN and PT, unlike in GABAergic neurons of layer I and II PFC, the increased expression of DNMT1 and the decrease of reelin and GAD67 occur in SZ but not in BDP. This suggests that different epigenetic mechanisms must exist in the pathogenesis underlying SZ and BDP and implies that these disorders might involve two separate entities that are characterized by a well-defined neuropathology.
Collapse
Affiliation(s)
- Marin Veldic
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, 1601 West Taylor Street, Chicago, IL 60612
| | - Bashkim Kadriu
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, 1601 West Taylor Street, Chicago, IL 60612
| | - Ekrem Maloku
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, 1601 West Taylor Street, Chicago, IL 60612
| | - Roberto C. Agis-Balboa
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, 1601 West Taylor Street, Chicago, IL 60612
| | - Alessandro Guidotti
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, 1601 West Taylor Street, Chicago, IL 60612
| | - John M. Davis
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, 1601 West Taylor Street, Chicago, IL 60612
| | - Erminio Costa
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, 1601 West Taylor Street, Chicago, IL 60612
- *Corresponding author. Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, 1601 West Taylor Street, Chicago, IL 60612 Tel.: +1 312 413 4591; fax: +1 312 413 4569
| |
Collapse
|
21
|
Yabut O, Renfro A, Niu S, Swann JW, Marín O, D'Arcangelo G. Abnormal laminar position and dendrite development of interneurons in the reeler forebrain. Brain Res 2006; 1140:75-83. [PMID: 16996039 DOI: 10.1016/j.brainres.2005.09.070] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2005] [Revised: 09/14/2005] [Accepted: 09/16/2005] [Indexed: 10/24/2022]
Abstract
The majority of cortical and hippocampal interneurons originate in the subcortical telencephalon and migrate tangentially into pallial regions before settling in various cortical layers. The molecular cues that regulate final positioning of specific interneurons in cortical structures have not yet been identified. The positioning of radially migrating principal neurons of the cortex and hippocampus depends upon Reelin, an extracellular protein expressed near the pial surface during embryonic development that is absent in reeler mutant mice. To determine whether the layer specification of interneurons, like that of principal neurons, requires Reelin, we crossed reeler with transgenic mice that contain Green Fluorescent Protein (GFP)-expressing Inhibitory Neurons (GINs). These neurons express basal forebrain markers Dlx1/2 in normal and reeler mice. In normal mice, GINs express Reelin and are localized to specific layers of the cortex and hippocampus. In reeler mutant mice, we show that GINs migrate normally into the pallium, but fail to acquire proper layer position. Double labeling experiments indicate that the neurochemical profile of these interneurons is not generally altered in reeler mice. However, the extension of their cellular processes is abnormal. Quantitative analysis of GINs in the cortex revealed that they are hypertrophic, bearing longer neuritic branches than normal. Thus, the lack of Reelin signaling results in abnormal positioning and altered morphology of forebrain interneurons.
Collapse
Affiliation(s)
- Odessa Yabut
- The Cain Foundation Laboratories, Texas Children's Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
22
|
Agís-Balboa RC, Pinna G, Zhubi A, Maloku E, Veldic M, Costa E, Guidotti A. Characterization of brain neurons that express enzymes mediating neurosteroid biosynthesis. Proc Natl Acad Sci U S A 2006; 103:14602-7. [PMID: 16984997 PMCID: PMC1600006 DOI: 10.1073/pnas.0606544103] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Allopregnanolone (ALLO) and tetrahydrodeoxycorticosterone (THDOC) are potent positive allosteric modulators of GABA action at GABA(A) receptors. ALLO and THDOC are synthesized in the brain from progesterone or deoxycorticosterone, respectively, by the sequential action of two enzymes: 5alpha-reductase (5alpha-R) type I and 3alpha-hydroxysteroid dehydrogenase (3alpha-HSD). This study evaluates 5alpha-R type I and 3alpha-HSD mRNA expression level in mouse brain by using in situ hybridization combined with glutamic acid decarboxylase 67/65, vesicular glutamate transporter 2, glial fibrillary acidic protein, and S100beta immunohistochemistry. We demonstrate that 5alpha-R type I and 3alpha-HSD colocalize in cortical, hippocampal, and olfactory bulb glutamatergic principal neurons and in some output neurons of the amygdala and thalamus. Neither 5alpha-R type I nor 3alpha-HSD mRNAs are expressed in S100beta- or glial fibrillary acidic protein-positive glial cells. Using glutamic acid decarboxylase 67/65 antibodies to mark GABAergic neurons, we failed to detect 5alpha-R type I and 3alpha-HSD in cortical and hippocampal GABAergic interneurons. However, 5alpha-R type I and 3alpha-HSD are significantly expressed in principal GABAergic output neurons, such as striatal medium spiny, reticular thalamic nucleus, and cerebellar Purkinje neurons. A similar distribution and cellular location of neurosteroidogenic enzymes was observed in rat brain. Taken together, these data suggest that ALLO and THDOC, which can be synthesized in principal output neurons, modulate GABA action at GABA(A) receptors, either with an autocrine or a paracrine mechanism or by reaching GABA(A) receptor intracellular sites through lateral membrane diffusion.
Collapse
Affiliation(s)
- Roberto C. Agís-Balboa
- Department of Psychiatry, Psychiatric Institute, University of Illinois, 1601 Taylor Street, Chicago, IL 60612
| | - Graziano Pinna
- Department of Psychiatry, Psychiatric Institute, University of Illinois, 1601 Taylor Street, Chicago, IL 60612
| | - Adrian Zhubi
- Department of Psychiatry, Psychiatric Institute, University of Illinois, 1601 Taylor Street, Chicago, IL 60612
| | - Ekrem Maloku
- Department of Psychiatry, Psychiatric Institute, University of Illinois, 1601 Taylor Street, Chicago, IL 60612
| | - Marin Veldic
- Department of Psychiatry, Psychiatric Institute, University of Illinois, 1601 Taylor Street, Chicago, IL 60612
| | - Erminio Costa
- Department of Psychiatry, Psychiatric Institute, University of Illinois, 1601 Taylor Street, Chicago, IL 60612
- To whom correspondence should be addressed. E-mail:
| | - Alessandro Guidotti
- Department of Psychiatry, Psychiatric Institute, University of Illinois, 1601 Taylor Street, Chicago, IL 60612
| |
Collapse
|
23
|
Akbarian S, Huang HS. Molecular and cellular mechanisms of altered GAD1/GAD67 expression in schizophrenia and related disorders. ACTA ACUST UNITED AC 2006; 52:293-304. [PMID: 16759710 DOI: 10.1016/j.brainresrev.2006.04.001] [Citation(s) in RCA: 257] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 03/31/2006] [Accepted: 04/04/2006] [Indexed: 12/29/2022]
Abstract
The 67 and 65 kDa isoforms of glutamic acid decarboxylase, the key enzymes for GABA biosynthesis, are expressed at altered levels in postmortem brain of subjects diagnosed with schizophrenia and related disorders, including autism and bipolar illness. The predominant finding is a decrease in GAD67 mRNA levels, affecting multiple brain regions, including prefrontal and temporal cortex. Postmortem studies, in conjunction with animal models, identified several mechanisms that contribute to the dysregulation of GAD67 in cerebral cortex. These include disordered connectivity formation during development, abnormal expression of Reelin and neural cell adhesion molecule (NCAM) glycoproteins, defects in neurotrophin signaling and alterations in dopaminergic and glutamatergic neurotransmission. These mechanisms are likely to operate in conjunction with genetic risk factors for psychosis, including sequence polymorphisms residing in the promoter of GAD1 (2q31), the gene encoding GAD67. We propose an integrative model, with multiple molecular and cellular mechanisms contributing to transcriptional dysregulation of GAD67 and cortical dysfunction in psychosis.
Collapse
Affiliation(s)
- Schahram Akbarian
- Department of Psychiatry, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Medical School, 303 Belmont Street, Worcester, 01604, USA.
| | | |
Collapse
|
24
|
Ramos-Moreno T, Galazo MJ, Porrero C, Martínez-Cerdeño V, Clascá F. Extracellular matrix molecules and synaptic plasticity: immunomapping of intracellular and secreted Reelin in the adult rat brain. Eur J Neurosci 2006; 23:401-22. [PMID: 16420448 DOI: 10.1111/j.1460-9568.2005.04567.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Reelin, a large extracellular matrix glycoprotein, is secreted by several neuron populations in the developing and adult rodent brain. Secreted Reelin triggers a complex signaling pathway by binding lipoprotein and integrin membrane receptors in target cells. Reelin signaling regulates migration and dendritic growth in developing neurons, while it can modulate synaptic plasticity in adult neurons. To identify which adult neural circuits can be modulated by Reelin-mediated signaling, we systematically mapped the distribution of Reelin in adult rat brain using sensitive immunolabeling techniques. Results show that the distribution of intracellular and secreted Reelin is both very widespread and specific. Some interneuron and projection neuron populations in the cerebral cortex contain Reelin. Numerous striatal neurons are weakly immunoreactive for Reelin and these cells are preferentially located in striosomes. Some thalamic nuclei contain Reelin-immunoreactive cells. Double-immunolabeling for GABA and Reelin reveals that the Reelin-immunoreactive cells in the visual thalamus are the intrinsic thalamic interneurons. High local concentrations of extracellular Reelin selectively outline several dendrite spine-rich neuropils. Together with previous mRNA data, our observations suggest abundant axoplasmic transport and secretion in pathways such as the retino-collicular tract, the entorhino-hippocampal ('perforant') path, the lateral olfactory tract or the parallel fiber system of the cerebellum. A preferential secretion of Reelin in these neuropils is consistent with reports of rapid, activity-induced structural changes in adult brain circuits.
Collapse
Affiliation(s)
- Tania Ramos-Moreno
- Department of Anatomy and Neuroscience, School of Medicine, Autónoma University, Ave. Arzobispo Morcillo s/n., Madrid 28029, Spain
| | | | | | | | | |
Collapse
|
25
|
D'Arcangelo G. Reelin mouse mutants as models of cortical development disorders. Epilepsy Behav 2006; 8:81-90. [PMID: 16266828 DOI: 10.1016/j.yebeh.2005.09.005] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 09/09/2005] [Accepted: 09/10/2005] [Indexed: 11/23/2022]
Abstract
Developmental defects in neuronal positioning and synaptic connectivity are commonly found in neurological diseases, and they are believed to underlie many cognitive and affective disorders. Several mouse mutants are currently available that model at least some aspects of human developmental brain disorders. With the identification of the genes mutated in these animals and the study of the cellular basis of the phenotypes, we have taken significant strides toward an understanding of the mechanisms controlling proper brain development and the consequences of their dysfunction. In particular, mouse mutants deficient in the Reelin gene have provided valuable insights into the mechanisms of cortical development. Absence of Reelin expression in the spontaneous mutant mouse reeler leads to extensive defects in neuronal position and dendrite development. In humans, loss of Reelin results in a type of lissencephaly with severe cortical and cerebellar malformation. Genetic and biochemical studies using mouse mutants suggest that the Lis1 protein may participate in the Reelin signaling pathway controlling cortical development. Reduced levels of Reelin are also present in postmortem brains of patients with schizophrenia, suggesting a possible link with this cognitive disorder. The regulation of the Reelin gene may thus provide insights into the mechanisms of this disease.
Collapse
Affiliation(s)
- Gabriella D'Arcangelo
- The Cain Foundation Laboratories, Texas Children's Hospital, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
26
|
Costa E, Dong E, Grayson DR, Ruzicka WB, Simonini MV, Veldic M, Guidotti A. Epigenetic Targets in GABAergic Neurons to Treat Schizophrenia. GABA 2006; 54:95-117. [PMID: 17175812 DOI: 10.1016/s1054-3589(06)54005-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- E Costa
- Department of Psychiatry, Psychiatric Institute, University of Illinois at Chicago, Chicago, Illinois 60612, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Yee BK, Keist R, von Boehmer L, Studer R, Benke D, Hagenbuch N, Dong Y, Malenka RC, Fritschy JM, Bluethmann H, Feldon J, Möhler H, Rudolph U. A schizophrenia-related sensorimotor deficit links alpha 3-containing GABAA receptors to a dopamine hyperfunction. Proc Natl Acad Sci U S A 2005; 102:17154-9. [PMID: 16284244 PMCID: PMC1288020 DOI: 10.1073/pnas.0508752102] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Overactivity of the dopaminergic system in the brain is considered to be a contributing factor to the development and symptomatology of schizophrenia. Therefore, the GABAergic control of dopamine functions was assessed by disrupting the gene encoding the alpha3 subunit of the GABA(A) receptor. alpha3 knockout (alpha3KO) mice exhibited neither an obvious developmental defect nor apparent morphological brain abnormalities, and there was no evidence for compensatory up-regulation of other major GABA(A)-receptor subunits. Anxiety-related behavior in the elevated-plus-maze test was undisturbed, and the anxiolytic-like effect of diazepam, which is mediated by alpha2-containing GABA(A) receptors, was preserved. As a result of the loss of alpha3 GABA(A) receptors, the GABA-induced whole-cell current recorded from midbrain dopamine neurons was significantly reduced. Spontaneous locomotor activity was slightly elevated in alpha3KO mice. Most notably, prepulse inhibition of the acoustic startle reflex was markedly attenuated in the alpha3KO mice, pointing to a deficit in sensorimotor information processing. This deficit was completely normalized by treatment with the antipsychotic D2-receptor antagonist haloperidol. The amphetamine-induced hyperlocomotion was not altered in alpha3KO mice compared with WT mice. These results suggest that the absence of alpha3-subunit-containing GABA(A) receptors induces a hyperdopaminergic phenotype, including a severe deficit in sensorimotor gating, a common feature among psychiatric conditions, including schizophrenia. Hence, agonists acting at alpha3-containing GABA(A) receptors may constitute an avenue for an effective treatment of sensorimotor-gating deficits in various psychiatric conditions.
Collapse
Affiliation(s)
- B K Yee
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Guidotti A, Auta J, Davis JM, Dong E, Grayson DR, Veldic M, Zhang X, Costa E. GABAergic dysfunction in schizophrenia: new treatment strategies on the horizon. Psychopharmacology (Berl) 2005; 180:191-205. [PMID: 15864560 DOI: 10.1007/s00213-005-2212-8] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2004] [Accepted: 02/11/2005] [Indexed: 01/15/2023]
Abstract
RATIONALE Cortical gamma-aminobutyric acid (GABA)ergic neurons contribute to the orchestration of pyramidal neuron population firing as follows: (1) by releasing GABA on GABA(A) and GABA(B) receptors, (2) by releasing reelin in the proximity of integrin receptors located on cortical pyramidal neuron dendritic spines, and (3) through reelin contributing to the regulation of dendritic spine plasticity by modulating dendritic resident mRNA translation. In schizophrenia (SZ) and bipolar (BP) postmortem brains, the downregulation of mRNAs encoding glutamic acid decarboxylase 67 (GAD(67)) and reelin decreases the cognate proteins coexpressed in prefrontal cortex (PFC) GABAergic neurons. This finding has been replicated in several laboratories. Such downregulation suggests that the neuropil hypoplasticity found in the PFC of SZ and BP disorder patients may depend on a downregulation of GABAergic function, which is associated with a decrease in reelin secretion from GABAergic neuron axon terminals on dendrites, somata, or axon initial segments of pyramidal neurons. Indirectly, this GABAergic neuron downregulation may play a key role in the expression of positive and negative symptoms of SZ and BP disorders. OBJECTIVES The above described GABAergic dysfunction may be addressed by pharmacological interventions to treat SZ and BP disorders using specific benzodiazepines (BZs), which are devoid of intrinsic activity at GABA(A) receptors including alpha(1) subunits but that act as full positive allosteric modulators of GABA action at GABA(A) receptors containing alpha(2), alpha(3), or alpha(5) subunits. These drugs are expected to enhance GABAergic signal transduction without eliciting sedation, amnesia, and tolerance or dependence liabilities. RESULTS AND CONCLUSIONS BZs, such as diazepam, although they are efficient in equilibrating GABA(A) receptor signal transduction in a manner beneficial in the treatment of positive and negative symptoms of SZ, may not be ideal drugs, because by mediating a full positive allosteric modulation of GABA(A) receptors containing the alpha(1) subunit, they contribute to sedation and to the development of tolerance after even a brief period of treatment. In contrast, other BZ-binding site ligands, such as 6-(2bromophenyl)-8-fluoro-4H-imidazo [1,5-a][1,4] benzodiazepine-3-carboxamide (imidazenil), which fail to allosterically and positively modulate the action of GABA at GABA(A) receptors with alpha(1) subunits but that selectively allosterically modulate cortical GABA(A) receptors containing alpha(5) subunits, contribute to the anxiolytic, antipanic, and anticonvulsant actions of these ligands without producing sedation, amnesia, or tolerance. Strong support for the use of imidazenil in psychosis emerges from experiments with reeler mice or with methionine-treated mice, which express a pronounced reelin and GAD(67) downregulation that is also operative in SZ and BP disorders. In mice that model SZ symptoms, imidazenil increases signal transduction at GABA(A) receptors containing alpha(5) subunits and contributes to the reduction of behavioral deficits without producing sedation or tolerance liability. Hence, we suggest that imidazenil may be considered a prototype for a new generation of positive allosteric modulators of GABA(A) receptors, which, either alone or in combination with neuroleptics, should be evaluated in GABAergic dysfunction operative in the treatment of SZ and BP disorders with psychosis.
Collapse
Affiliation(s)
- Alessandro Guidotti
- Psychiatric Institute, Department of Psychiatry, University of Illinois at Chicago, 1601 Taylor St, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Tremolizzo L, Doueiri MS, Dong E, Grayson DR, Davis J, Pinna G, Tueting P, Rodriguez-Menendez V, Costa E, Guidotti A. Valproate corrects the schizophrenia-like epigenetic behavioral modifications induced by methionine in mice. Biol Psychiatry 2005; 57:500-9. [PMID: 15737665 DOI: 10.1016/j.biopsych.2004.11.046] [Citation(s) in RCA: 216] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2004] [Revised: 10/14/2004] [Accepted: 11/23/2004] [Indexed: 02/01/2023]
Abstract
BACKGROUND Reelin and GAD(67) expression is downregulated in cortical interneurons of schizophrenia (SZ) patients. This downregulation is probably mediated by epigenetic hypermethylation of the respective promoters caused by the selective increase of DNA-methyltransferase 1 in GABAergic neurons. Mice receiving methionine (MET) provide an epigenetic model for neuropathologies related to SZ. We studied whether MET-induced epigenetic reelin promoter hypermethylation and the associated behavioral alterations can be reduced by valproate in doses that inhibit histone deacetylases (HDACs). METHODS Mice treated with either methionine (MET) (5.2 mmol/kg/SC/twice daily) or valproate (1.5 mmol/kg/SC/twice daily) or MET+ valproate combination were tested for prepulse inhibition of startle (PPI) and social interaction (SI). S-adenosylmethionine, acetylated histone 3, reelin promoter methylation, and reelin mRNA were assayed in the frontal cortex. RESULTS Valproate enhances acetylated histone 3 content, and prevents MET-induced reelin promoter hypermethylation, reelin mRNA downregulation, and PPI and SI deficits. Imidazenil, a positive allosteric modulator at GABA(A) receptors containing alpha(5) subunits but inactive at receptors including alpha(1) subunits, normalizes MET-induced behavioral changes. CONCLUSION This MET-induced epigenetic mouse models the neurochemical and behavioral aspects of SZ that can be corrected by positively modulating the action of GABA at alpha(5)-containing GABA(A) receptors with imidazenil or by inhibiting HDACs with valproate, thus opening exciting new avenues for treatment of epigenetically modified chromatin in SZ morbidity.
Collapse
MESH Headings
- Aggression/drug effects
- Animals
- Anticonvulsants/administration & dosage
- Behavior, Animal/drug effects
- Behavior, Animal/physiology
- Benzodiazepines/administration & dosage
- Blotting, Western/methods
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Chromosome Mapping/methods
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drug Administration Schedule
- Drug Interactions
- Epilepsy/drug therapy
- Epilepsy/etiology
- Extracellular Matrix Proteins/genetics
- Extracellular Matrix Proteins/metabolism
- Frontal Lobe/drug effects
- Frontal Lobe/metabolism
- GABA Modulators/administration & dosage
- Histones/metabolism
- Imidazoles/administration & dosage
- Immunohistochemistry/methods
- Interpersonal Relations
- Male
- Methionine
- Methylation/drug effects
- Mice
- Motor Activity/drug effects
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neural Inhibition/drug effects
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- Reelin Protein
- Reflex, Startle/drug effects
- Reverse Transcriptase Polymerase Chain Reaction
- S-Adenosylmethionine/metabolism
- Schizophrenia/chemically induced
- Schizophrenia/complications
- Schizophrenia/drug therapy
- Serine Endopeptidases/genetics
- Serine Endopeptidases/metabolism
- Time Factors
- Valproic Acid/administration & dosage
Collapse
Affiliation(s)
- Lucio Tremolizzo
- Department of Psychiatry, Psychiatric Institute, College of Medicine, University of Illinois at Chicago, Illinois 60612, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Coyle JT. The GABA-glutamate connection in schizophrenia: which is the proximate cause? Biochem Pharmacol 2005; 68:1507-14. [PMID: 15451393 DOI: 10.1016/j.bcp.2004.07.034] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Schizophrenia is a chronic, disabling psychiatric disorder that genetic studies have shown to be highly heritable. Although the dopamine hypothesis has dominated the thinking about the cause of schizophrenia for 40 years, post-mortem and genetic studies have provided little support for it. Rather, post-mortem studies point to hypofunction of subsets of GABAergic interneurons in the prefrontal cortex and the hippocampus. Furthermore, clinical pharmacologic, post-mortem and genetic studies have provided compelling evidence of hypofunction of a subpopulation of NMDA receptors in schizophrenia. In support of this inference, agents that directly or indirectly activate the glycine modulatory site on the NMDA receptor (the Glycine B receptor) reduce symptoms in chronic schizophrenia, especially negative symptoms and cognitive impairments. Electrophysiologic and pharmacologic studies suggest that the vulnerable NMDA receptors in schizophrenia may be concentrated on cortico-limbic GABAergic interneurons, thereby linking these two neuropathologic features of the disorder.
Collapse
Affiliation(s)
- Joseph T Coyle
- Department of Psychiatry, Harvard Medical School, McLean Hospital, 115 Mill St., Belmont, MA 02478, USA.
| |
Collapse
|
31
|
Veldic M, Guidotti A, Maloku E, Davis JM, Costa E. In psychosis, cortical interneurons overexpress DNA-methyltransferase 1. Proc Natl Acad Sci U S A 2005; 102:2152-7. [PMID: 15684088 PMCID: PMC548582 DOI: 10.1073/pnas.0409665102] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Cortical DNA-methyltransferase 1 (DNMT1) is preferentially expressed in interneurons secreting GABA where it very likely contributes to promoter CpG island hypermethylation, thus causing a down-regulation of promoter functions. To consolidate and expand on previous findings that, in the cortex of schizophrenia (SZ) brains, glutamic acid decarboxylase 67 (GAD67) expression is down-regulated whereas that of DNMT1 is up-regulated, we studied both parameters in Brodmann's area (BA) 9 from the McLean 66 Cohort Collection (Harvard Brain Tissue Resource Center, Belmont, MA). In BA9 of SZ and bipolar disorder patients with psychosis, DNMT1 mRNA and protein expression preferentially increases in layer I, II, and IV interneurons, and this increase is paralleled by a decreased number of GAD67 mRNA-positive neurons. The increase in DNMT1 and the decrease in GAD67-expressing neurons were unrelated to postmortem interval, pH, RNA quality, or to the presence, dose, or duration of antipsychotic (APS) medication, with the exception of a subgroup of SZ patients treated with a combination of valproate and APS in which the expression of DNMT1 failed to change. The DNMT1 increase and the GAD67 decrease in BA9 interneurons are significant features of SZ and bipolar disorder with psychosis. Interestingly, the DNMT1 increase failed to occur when patients with psychosis received a combination of valproate and APS treatment but not APS monotherapy.
Collapse
Affiliation(s)
- Marin Veldic
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, 1601 West Taylor Street, Chicago, IL 60612, USA
| | | | | | | | | |
Collapse
|
32
|
Carboni G, Tueting P, Tremolizzo L, Sugaya I, Davis J, Costa E, Guidotti A. Enhanced dizocilpine efficacy in heterozygous reeler mice relates to GABA turnover downregulation. Neuropharmacology 2004; 46:1070-1081. [PMID: 15111013 DOI: 10.1016/j.neuropharm.2004.02.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2003] [Revised: 01/27/2004] [Accepted: 02/03/2004] [Indexed: 11/18/2022]
Abstract
Reelin synthesized by cortical GABAergic interneurons throughout the telencephalon is secreted into the extracellular matrix (ECM) and binds with nM affinity to integrin receptors located at dendritic spine postsynaptic densities and positively modulates Arc and other dendritic resident mRNAs translation, thereby facilitating the onset of synaptic plasticity and LTP consolidation. Accordingly, the reelin haploinsufficient heterozygous reeler mice (HRM) express a marked decrease of cortical thickness, of cortical and hippocampal dendritic spine density, and of cortical GAD67 expression. Behaviorally, HRM manifest a sensorimotor deficit, an exaggerated response to fear, and a deficit in olfactory discrimination learning. HRM and wild-type mice (WTM) were trained to retrieve to criterion palatable chocolate-flavored food pellets in an eight-arm radial maze. In 9-14 days of training HRM and WTM learned the task equally well committing only a few errors. However, HRM, when compared with WTM, show a greater cognitive impairment following the administration of dizocilpine. Also, HRM are more susceptible to the increased locomotion and stereotypic behavior elicited by dizolcipine. The enhanced dizocilpine susceptibility of HRM is not due to differences in pharmacokinetics because the levels of dizocilpine in cortices of HRM and WTM were virtually equal. We also failed to detect differences between HRM and WTM in glutamate brain content and in the rate of 13C-glucose incorporation into the glutamate brain pools. In contrast we found that the conversion index of glutamate into GABA (an indirect measurement of GABA turnover rate) is decreased in cortex, hippocampus and striatum of HRM when compared to WTM. Thus, HRM recapitulate several neurochemical and behavioral endophenotypes reminiscent of schizophrenia and these mice can be proposed as a relevant animal model for the study of pharmacological treatments aimed at alleviating the sensory-motor and cognitive dysregulation associated with schizophrenia.
Collapse
Affiliation(s)
- G Carboni
- Department of Psychiatry, Psychiatric Institute, College of Medicine, University of Illinois at Chicago, 1601 W Taylor, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Pérez-Costas E, Meléndez-Ferro M, Pérez-García CG, Caruncho HJ, Rodicio MC. Reelin immunoreactivity in the adult sea lamprey brain. J Chem Neuroanat 2004; 27:7-21. [PMID: 15036359 DOI: 10.1016/j.jchemneu.2003.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2002] [Revised: 05/12/2003] [Accepted: 08/12/2003] [Indexed: 11/18/2022]
Abstract
The expression of reelin, a large extracellular matrix glycoprotein, was studied in the brain of pre-spawning adult sea lampreys by immunohistochemistry using two monoclonal antibodies against this protein. Reelin immunoreactive (reln-ir) neurons were observed in the olfactory bulb, and pallial and subpallial regions in the telencephalon. In the diencephalon, reln-ir cells were observed in some hypothalamic nuclei, in the nucleus of Bellonci, and in the habenula. In the mesencephalon, this protein was detected in several nuclei related with the centrifugal visual system, although the optic tectum was devoid of immunoreactivity. The hindbrain showed several nuclei with immunopositive neurons, including the branchiomeric nerve motor nuclei and also some groups of non-giant cells of the reticular formation. The rostral spinal cord showed some immunopositive neurons mainly located in lateral and ventral positions. Overall, the pattern of distribution of reelin in the adult sea lamprey correlates with the previously reported in other adult vertebrates. Furthermore, the wide distribution of reelin in the adult lamprey brain is consistent with a possible existence of different roles for this protein not related with development in the central nervous system (CNS) of vertebrates (i.e. neuronal plasticity and/or maintenance).
Collapse
Affiliation(s)
- Emma Pérez-Costas
- Departamento de Biología Celular y Ecología, Area de Biología Celular, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | | | |
Collapse
|
34
|
Veldic M, Caruncho HJ, Liu WS, Davis J, Satta R, Grayson DR, Guidotti A, Costa E. DNA-methyltransferase 1 mRNA is selectively overexpressed in telencephalic GABAergic interneurons of schizophrenia brains. Proc Natl Acad Sci U S A 2003; 101:348-53. [PMID: 14684836 PMCID: PMC314188 DOI: 10.1073/pnas.2637013100] [Citation(s) in RCA: 213] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
A down-regulation of reelin and glutamic acid decarboxylase (GAD) 67 mRNAs was detected in gamma-aminobutyric acid (GABA)ergic cortical interneurons of schizophrenia (SZ) postmortem brains (10), suggesting that the availability of GABA and reelin may be decreased in SZ cortex. In situ hybridization of the mRNA encoding for DNA-methyltransferase 1, which catalyzes the methylation of promoter CpG islands, shows that the expression of this mRNA is increased in cortical GABAergic interneurons but not in pyramidal neurons of SZ brains. Counts of reelin mRNA-positive neurons in Brodmann's area 10 of either nonpsychiatric subjects or SZ patients show that the expression of reelin mRNA is decreased in layer-I, -II, and -IV GABAergic interneurons of SZ patients. These findings are consistent with the hypothesis that the increase of DNA-methyltransferase 1 expression in telencephalic GABAergic interneurons of SZ patients causes a promoter hypermethylation of reelin and GAD(67) and perhaps of other genes expressed in these interneurons. It is difficult to decide whether this dysfunction of GABAergic neurons detected in SZ is responsible for this disease or is a consequence of this disorder. Although at present we cannot differentiate between these two alternatives, it is important to consider that so far a molecular pathology of cortical GABAergic neurons appears to be the most consistent finding associated with SZ morbidity.
Collapse
Affiliation(s)
- M Veldic
- Psychiatric Institute, Department of Psychiatry, College of Medicine, University of Illinois, 1601 West Taylor Street, Chicago, IL 60612, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Martínez-Cerdeño V, Galazo MJ, Clascá F. Reelin-immunoreactive neurons, axons, and neuropil in the adult ferret brain: evidence for axonal secretion of reelin in long axonal pathways. J Comp Neurol 2003; 463:92-116. [PMID: 12811805 DOI: 10.1002/cne.10748] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Reelin is a large secretable protein which, when developmentally defective, causes the reeler brain malformation in mice and a recessive form of lissencephaly with cerebellar hypoplasia in humans. In addition, Reelin is heavily expressed throughout the adult brain, although its function/s there are still poorly understood. To gain insight into which adult neuronal circuits may be under the influence of Reelin, we systematically mapped Reelin-immunoreactive neuronal somata, axons, and neuropil in the brain and brainstem of ferrets. Results show that Reelin immunoreactivity is found in widespread but specific sets of neuronal bodies, axonal tracts, and gray matter neuropil regions. Depending on the region, the immunoreactive neuronal somata correspond to interneurons, projection neurons, or both. Some well-defined axonal projection systems are immunoreactive, whereas most other white matter tracts are unlabeled. The labeled pathways include, among others, the lateral olfactory tract, the entorhinohippocampal (perforant) pathway, the retroflex bundle, and the stria terminalis. Labeled axons in these tracts contain large numbers of discrete, very small, immunoreactive particles, suggestive of secretory vesicles under the light microscope. The neuropil in the terminal arborization fields of these axons is also heavily immunoreactive. Taken together, our observations are consistent with the notion that some neurons may anterogradely transport Reelin along their axons in large membrane-bound secretory vesicles (Derer et al. [2001] J. Comp. Neurol. 440:136-143) and secrete it into their terminal arborization fields, which may be quite distant from the somata synthesizing the protein. These findings have implications for identifying where Reelin acts in adult brain circuits.
Collapse
Affiliation(s)
- Verónica Martínez-Cerdeño
- Neurodevelopment Laboratory, Department of Morphology, Autonoma University School of Medicine, E-28029 Madrid, Spain
| | | | | |
Collapse
|