1
|
Liang Y, Ormazabal-Toledo R, Yao S, Shi YS, Herrera-Molina R, Montag D, Lin X. Deafness causing neuroplastin missense variants fail to promote plasma membrane Ca 2+-ATPase levels and Ca 2+ transient regulation in brain neurons. J Biol Chem 2024; 300:107474. [PMID: 38879011 PMCID: PMC11264175 DOI: 10.1016/j.jbc.2024.107474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/06/2024] [Accepted: 06/09/2024] [Indexed: 07/08/2024] Open
Abstract
Hearing, the ability to sense sounds, and the processing of auditory information are important for perception of the world. Mice lacking expression of neuroplastin (Np), a type-1 transmembrane glycoprotein, display deafness, multiple cognitive deficiencies, and reduced expression of plasma membrane calcium (Ca2+) ATPases (PMCAs) in cochlear hair cells and brain neurons. In this study, we transferred the deafness causing missense mutations pitch (C315S) and audio-1 (I122N) into human Np (hNp) constructs and investigated their effects at the molecular and cellular levels. Computational molecular dynamics show that loss of the disulfide bridge in hNppitch causes structural destabilization of immunoglobulin-like domain (Ig) III and that the novel asparagine in hNpaudio-1 results in steric constraints and an additional N-glycosylation site in IgII. Additional N-glycosylation of hNpaudio-1 was confirmed by PNGaseF treatment. In comparison to hNpWT, transfection of hNppitch and hNpaudio-1 into HEK293T cells resulted in normal mRNA levels but reduced the Np protein levels and their cell surface expression due to proteasomal/lysosomal degradation. Furthermore, hNppitch and hNpaudio-1 failed to promote exogenous PMCA levels in HEK293T cells. In hippocampal neurons, expression of additional hNppitch or hNpaudio-1 was less efficient than hNpWT to elevate endogenous PMCA levels and to accelerate the restoration of basal Ca2+ levels after electrically evoked Ca2+ transients. We propose that mutations leading to pathological Np variants, as exemplified here by the deafness causing Np mutants, can affect Np-dependent Ca2+ regulatory mechanisms and may potentially cause intellectual and cognitive deficits in humans.
Collapse
Affiliation(s)
- Yi Liang
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Rodrigo Ormazabal-Toledo
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Songhui Yao
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China
| | - Yun Stone Shi
- Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China
| | - Rodrigo Herrera-Molina
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany; Centro Integrativo de Biología y Química Aplicada, Universidad Bernardo O'Higgins, Santiago, Chile
| | - Dirk Montag
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Xiao Lin
- Neurogenetics Laboratory, Leibniz Institute for Neurobiology, Magdeburg, Germany; Guangdong Institute of Intelligence Science and Technology, Zhuhai, Guangdong, China.
| |
Collapse
|
2
|
Newton S, Kong F, Carlton AJ, Aguilar C, Parker A, Codner GF, Teboul L, Wells S, Brown SDM, Marcotti W, Bowl MR. Neuroplastin genetically interacts with Cadherin 23 and the encoded isoform Np55 is sufficient for cochlear hair cell function and hearing. PLoS Genet 2022; 18:e1009937. [PMID: 35100259 PMCID: PMC8830789 DOI: 10.1371/journal.pgen.1009937] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/10/2022] [Accepted: 01/13/2022] [Indexed: 11/25/2022] Open
Abstract
Mammalian hearing involves the mechanoelectrical transduction (MET) of sound-induced fluid waves in the cochlea. Essential to this process are the specialised sensory cochlear cells, the inner (IHCs) and outer hair cells (OHCs). While genetic hearing loss is highly heterogeneous, understanding the requirement of each gene will lead to a better understanding of the molecular basis of hearing and also to therapeutic opportunities for deafness. The Neuroplastin (Nptn) gene, which encodes two protein isoforms Np55 and Np65, is required for hearing, and homozygous loss-of-function mutations that affect both isoforms lead to profound deafness in mice. Here we have utilised several distinct mouse models to elaborate upon the spatial, temporal, and functional requirement of Nptn for hearing. While we demonstrate that both Np55 and Np65 are present in cochlear cells, characterisation of a Np65-specific mouse knockout shows normal hearing thresholds indicating that Np65 is functionally redundant for hearing. In contrast, we find that Nptn-knockout mice have significantly reduced maximal MET currents and MET channel open probabilities in mature OHCs, with both OHCs and IHCs also failing to develop fully mature basolateral currents. Furthermore, comparing the hearing thresholds and IHC synapse structure of Nptn-knockout mice with those of mice that lack Nptn only in IHCs and OHCs shows that the majority of the auditory deficit is explained by hair cell dysfunction, with abnormal afferent synapses contributing only a small proportion of the hearing loss. Finally, we show that continued expression of Neuroplastin in OHCs of adult mice is required for membrane localisation of Plasma Membrane Ca2+ ATPase 2 (PMCA2), which is essential for hearing function. Moreover, Nptn haploinsufficiency phenocopies Atp2b2 (encodes PMCA2) mutations, with heterozygous Nptn-knockout mice exhibiting hearing loss through genetic interaction with the Cdh23ahl allele. Together, our findings provide further insight to the functional requirement of Neuroplastin for mammalian hearing.
Collapse
Affiliation(s)
- Sherylanne Newton
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Fanbo Kong
- School of Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Adam J. Carlton
- School of Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Carlos Aguilar
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Andrew Parker
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Gemma F. Codner
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Lydia Teboul
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Sara Wells
- Mary Lyon Centre, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Steve D. M. Brown
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
| | - Walter Marcotti
- School of Sciences, University of Sheffield, Sheffield, United Kingdom
- Sheffield Neuroscience Institute, University of Sheffield, Sheffield, United Kingdom
| | - Michael R. Bowl
- Mammalian Genetics Unit, MRC Harwell Institute, Harwell Oxford, United Kingdom
- UCL Ear Institute, University College London, London, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Balog M, Blažetić S, Ivić V, Labak I, Krajnik B, Marin R, Canerina-Amaro A, de Pablo DP, Bardak A, Gaspar R, Szűcs KF, Vari SG, Heffer M. Disarranged neuroplastin environment upon aging and chronic stress recovery in female Sprague Dawley rats. Eur J Neurosci 2021; 55:2474-2490. [PMID: 33909305 PMCID: PMC9290558 DOI: 10.1111/ejn.15256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 04/14/2021] [Accepted: 04/21/2021] [Indexed: 11/27/2022]
Abstract
Chronic stress produces long-term metabolic changes throughout the superfamily of nuclear receptors, potentially causing various pathologies. Sex hormones modulate the stress response and generate a sex-specific age-dependent metabolic imprint, especially distinct in the reproductive senescence of females. We monitored chronic stress recovery in two age groups of female Sprague Dawley rats to determine whether stress and/or aging structurally changed the glycolipid microenvironment, a milieu playing an important role in cognitive functions. Old females experienced memory impairment even at basal conditions, which was additionally amplified by stress. On the other hand, the memory of young females was not disrupted. Stress recovery was followed by a microglial decrease and an increase in astrocyte count in the hippocampal immune system. Since dysfunction of the brain immune system could contribute to disturbed synaptogenesis, we analyzed neuroplastin expression and the lipid environment. Neuroplastin microenvironments were explored by analyzing immunofluorescent stainings using a newly developed Python script method. Stress reorganized glycolipid microenvironment in the Cornu Ammonis 1 (CA1) and dentate gyrus (DG) hippocampal regions of old females but in a very different fashion, thus affecting neuroplasticity. The postulation of four possible neuroplastin environments pointed to the GD1a ganglioside enrichment during reproductive senescence of stressed females, as well as its high dispersion in both regions and to GD1a and GM1 loss in the CA1 region. A specific lipid environment might influence neuroplastin functionality and underlie synaptic dysfunction triggered by a combination of aging and chronic stress.
Collapse
Affiliation(s)
- Marta Balog
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Senka Blažetić
- Department of Biology, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Vedrana Ivić
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Irena Labak
- Department of Biology, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Bartosz Krajnik
- Department of Experimental Physics, Wroclaw University of Science and Technology, Wroclaw, Poland
| | - Raquel Marin
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Health Sciences, Universidad de La Laguna, La Laguna, Spain
| | - Ana Canerina-Amaro
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Health Sciences, Universidad de La Laguna, La Laguna, Spain
| | - Daniel Pereda de Pablo
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, School of Health Sciences, Universidad de La Laguna, La Laguna, Spain
| | - Ana Bardak
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| | - Robert Gaspar
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Kálmán Ferenc Szűcs
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, Interdisciplinary Excellence Centre, University of Szeged, Szeged, Hungary
| | - Sandor G Vari
- Cedars-Sinai Medical Center, International Research and Innovation in Medicine Program, Los Angeles, CA, USA
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, J. J. Strossmayer University of Osijek, Osijek, Croatia
| |
Collapse
|
4
|
Fairweather SJ, Shah N, Brӧer S. Heteromeric Solute Carriers: Function, Structure, Pathology and Pharmacology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 21:13-127. [PMID: 33052588 DOI: 10.1007/5584_2020_584] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Solute carriers form one of three major superfamilies of membrane transporters in humans, and include uniporters, exchangers and symporters. Following several decades of molecular characterisation, multiple solute carriers that form obligatory heteromers with unrelated subunits are emerging as a distinctive principle of membrane transporter assembly. Here we comprehensively review experimentally established heteromeric solute carriers: SLC3-SLC7 amino acid exchangers, SLC16 monocarboxylate/H+ symporters and basigin/embigin, SLC4A1 (AE1) and glycophorin A exchanger, SLC51 heteromer Ost α-Ost β uniporter, and SLC6 heteromeric symporters. The review covers the history of the heteromer discovery, transporter physiology, structure, disease associations and pharmacology - all with a focus on the heteromeric assembly. The cellular locations, requirements for complex formation, and the functional role of dimerization are extensively detailed, including analysis of the first complete heteromer structures, the SLC7-SLC3 family transporters LAT1-4F2hc, b0,+AT-rBAT and the SLC6 family heteromer B0AT1-ACE2. We present a systematic analysis of the structural and functional aspects of heteromeric solute carriers and conclude with common principles of their functional roles and structural architecture.
Collapse
Affiliation(s)
- Stephen J Fairweather
- Research School of Biology, Australian National University, Canberra, ACT, Australia. .,Resarch School of Chemistry, Australian National University, Canberra, ACT, Australia.
| | - Nishank Shah
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Stefan Brӧer
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| |
Collapse
|
5
|
Ilic K, Mlinac-Jerkovic K, Jovanov-Milosevic N, Simic G, Habek N, Bogdanovic N, Kalanj-Bognar S. Hippocampal expression of cell-adhesion glycoprotein neuroplastin is altered in Alzheimer's disease. J Cell Mol Med 2018; 23:1602-1607. [PMID: 30488668 PMCID: PMC6349345 DOI: 10.1111/jcmm.13998] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/13/2018] [Indexed: 11/26/2022] Open
Abstract
Cell‐adhesion glycoprotein neuroplastin (Np) is involved in the regulation of synaptic plasticity and balancing hippocampal excitatory/inhibitory inputs which aids in the process of associative memory formation and learning. Our recent findings show that neuroplastin expression in the adult human hippocampus is specifically associated with major hippocampal excitatory pathways and is related to neuronal calcium regulation. Here, we investigated the hippocampal expression of brain‐specific neuroplastin isoform (Np65), its relationship with amyloid and tau pathology in Alzheimer's disease (AD), and potential involvement of neuroplastin in tissue response during the disease progression. Np65 expression and localization was analysed in six human hippocampi with confirmed AD neuropathology, and six age‐/gender‐matched control hippocampi by imunohistochemistry. In AD cases with shorter disease duration, the Np65 immunoreactivity was significantly increased in the dentate gyrus (DG), Cornu Ammonis 2/3 (CA2/3), and subiculum, with the highest level of Np expression being located on the dendrites of granule cells and subicular pyramidal neurons. Changes in the expression of neuroplastin in AD hippocampal areas seem to be related to the progression of disease. Our study suggests that cell‐adhesion protein neuroplastin is involved in tissue reorganization and is a potential molecular marker of plasticity response in the early neurodegeneration process of AD.
Collapse
Affiliation(s)
- Katarina Ilic
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Kristina Mlinac-Jerkovic
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Natasa Jovanov-Milosevic
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Goran Simic
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Nikola Habek
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| | - Nenad Bogdanovic
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Svjetlana Kalanj-Bognar
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
6
|
Absence of Neuroplastin-65 Affects Synaptogenesis in Mouse Inner Hair Cells and Causes Profound Hearing Loss. J Neurosci 2016; 36:222-34. [PMID: 26740663 DOI: 10.1523/jneurosci.1808-15.2016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
UNLABELLED The Neuroplastin gene encodes two synapse-enriched protein isoforms, Np55 and Np65, which are transmembrane glycoproteins that regulate several cellular processes, including the genesis, maintenance, and plasticity of synapses. We found that an absence of Np65 causes early-onset sensorineural hearing loss and prevented the normal synaptogenesis in inner hair cells (IHCs) in the newly identified mouse mutant pitch. In wild-type mice, Np65 is strongly upregulated in the cochlea from around postnatal day 12 (P12), which corresponds to the onset of hearing. Np65 was specifically localized at the presynaptic region of IHCs. We found that the colocalization of presynaptic IHC ribbons and postsynaptic afferent terminals is greatly reduced in pitch mutants. Moreover, IHC exocytosis is also reduced with mutant mice showing lower rates of vesicle release. Np65 appears to have a nonessential role in vision. We propose that Np65, by regulating IHC synaptogenesis, is critical for auditory function in mammals. SIGNIFICANCE STATEMENT In the mammalian cochlea, the sensory inner hair cells (IHCs) encode auditory information. They do this by converting sound wave-induced mechanical motion of their hair bundles into an electrical current. This current generates a receptor potential that controls release of glutamate neurotransmitter from their ribbon synapses onto the auditory afferent fiber. We show that the synapse-enriched protein Np65, encoded by the Neuroplastin gene, is localized at the IHC presynaptic region. In mutant mice, absence of Np65 causes early-onset sensorineural hearing loss and prevents normal neurotransmitter release in IHCs and colocalization of presynaptic ribbons with postsynaptic afferents. We identified Neuroplastin as a novel deafness gene required for ribbon synapse formation and function, which is critical for sound perception in mammals.
Collapse
|
7
|
Rahimi Balaei M, Jiao X, Ashtari N, Afsharinezhad P, Ghavami S, Marzban H. Cerebellar Expression of the Neurotrophin Receptor p75 in Naked-Ataxia Mutant Mouse. Int J Mol Sci 2016; 17:E115. [PMID: 26784182 PMCID: PMC4730356 DOI: 10.3390/ijms17010115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 01/08/2023] Open
Abstract
Spontaneous mutation in the lysosomal acid phosphatase 2 (Acp2) mouse (nax--naked-ataxia mutant mouse) correlates with severe cerebellar defects including ataxia, reduced size and abnormal lobulation as well as Purkinje cell (Pc) degeneration. Loss of Pcs in the nax cerebellum is compartmentalized and harmonized to the classic pattern of gene expression of the cerebellum in the wild type mouse. Usually, degeneration starts in the anterior and posterior zones and continues to the central and nodular zones of cerebellum. Studies have suggested that the p75 neurotrophin receptor (NTR) plays a role in Pc degeneration; thus, in this study, we investigated the p75NTR pattern and protein expression in the cerebellum of the nax mutant mouse. Despite massive Pc degeneration that was observed in the nax mouse cerebellum, p75NTR pattern expression was similar to the HSP25 pattern in nax mice and comparable with wild type sibling cerebellum. In addition, immunoblot analysis of p75NTR protein expression did not show any significant difference between nax and wild type sibling (p > 0.5). In comparison with wild type counterparts, p75NTR pattern expression is aligned with the fundamental cytoarchitecture organization of the cerebellum and is unchanged in the nax mouse cerebellum despite the severe neurodevelopmental disorder accompanied with Pc degeneration.
Collapse
Affiliation(s)
- Maryam Rahimi Balaei
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaodan Jiao
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Niloufar Ashtari
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Pegah Afsharinezhad
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Saeid Ghavami
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Health Policy Research Center, Shiraz University of Medical Science, Shiraz 713484579, Iran.
| | - Hassan Marzban
- Department of Human Anatomy & Cell Science, Faculty of Health Sciences, College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
8
|
Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci 2015; 16:79-93. [PMID: 25601779 DOI: 10.1038/nrn3886] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adult mammalian cerebellar cortex is generally assumed to have a uniform cytoarchitecture. Differences in cerebellar function are thought to arise primarily through distinct patterns of input and output connectivity rather than as a result of variations in cortical microcircuitry. However, evidence from anatomical, physiological and genetic studies is increasingly challenging this orthodoxy, and there are now various lines of evidence indicating that the cerebellar cortex is not uniform. Here, we develop the hypothesis that regional differences in properties of cerebellar cortical microcircuits lead to important differences in information processing.
Collapse
|
9
|
Zhao B, Wu Z, Grillet N, Yan L, Xiong W, Harkins-Perry S, Müller U. TMIE is an essential component of the mechanotransduction machinery of cochlear hair cells. Neuron 2014; 84:954-67. [PMID: 25467981 PMCID: PMC4258123 DOI: 10.1016/j.neuron.2014.10.041] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2014] [Indexed: 12/18/2022]
Abstract
Hair cells are the mechanosensory cells of the inner ear. Mechanotransduction channels in hair cells are gated by tip links. The molecules that connect tip links to transduction channels are not known. Here we show that the transmembrane protein TMIE forms a ternary complex with the tip-link component PCDH15 and its binding partner TMHS/LHFPL5. Alternative splicing of the PCDH15 cytoplasmic domain regulates formation of this ternary complex. Transducer currents are abolished by a homozygous Tmie-null mutation, and subtle Tmie mutations that disrupt interactions between TMIE and tip links affect transduction, suggesting that TMIE is an essential component of the hair cell's mechanotransduction machinery that functionally couples the tip link to the transduction channel. The multisubunit composition of the transduction complex and the regulation of complex assembly by alternative splicing is likely critical for regulating channel properties in different hair cells and along the cochlea's tonotopic axis.
Collapse
Affiliation(s)
- Bo Zhao
- Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Zizhen Wu
- Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Nicolas Grillet
- Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Linxuan Yan
- Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Wei Xiong
- Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Sarah Harkins-Perry
- Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ulrich Müller
- Dorris Neuroscience Center, Department of Molecular and Cellular Neuroscience, The Scripps Research Institute, 10550 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Beesley PW, Herrera-Molina R, Smalla KH, Seidenbecher C. The Neuroplastin adhesion molecules: key regulators of neuronal plasticity and synaptic function. J Neurochem 2014; 131:268-83. [PMID: 25040546 DOI: 10.1111/jnc.12816] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Revised: 07/02/2014] [Accepted: 07/03/2014] [Indexed: 01/21/2023]
Abstract
The Neuroplastins Np65 and Np55 are neuronal and synapse-enriched immunoglobulin superfamily molecules that play important roles in a number of key neuronal and synaptic functions including, for Np65, cell adhesion. In this review we focus on the physiological roles of the Neuroplastins in promoting neurite outgrowth, regulating the structure and function of both inhibitory and excitatory synapses in brain, and in neuronal and synaptic plasticity. We discuss the underlying molecular and cellular mechanisms by which the Neuroplastins exert their physiological effects and how these are dependent upon the structural features of Np65 and Np55, which enable them to bind to a diverse range of protein partners. In turn this enables the Neuroplastins to interact with a number of key neuronal signalling cascades. These include: binding to and activation of the fibroblast growth factor receptor; Np65 trans-homophilic binding leading to activation of p38 MAPK and internalization of glutamate (GluR1) receptor subunits; acting as accessory proteins for monocarboxylate transporters, thus affecting neuronal energy supply, and binding to GABAA α1, 2 and 5 subunits, thus regulating the composition and localization of GABAA receptors. An emerging theme is the role of the Neuroplastins in regulating the trafficking and subcellular localization of specific binding partners. We also discuss the involvement of Neuroplastins in a number of pathophysiological conditions, including ischaemia, schizophrenia and breast cancer and the role of a single nucleotide polymorphism in the human Neuroplastin (NPTN) gene locus in impairment of cortical development and cognitive functions. Neuroplastins are neuronal cell adhesion molecules, which induce neurite outgrowth and play important roles in synaptic maturation and plasticity. This review summarizes the functional implications of Neuroplastins for correct synaptic membrane protein localization, neuronal energy supply, expression of LTP and LTD, animal and human behaviour, and pathophysiology and disease. It focuses particularly on Neuroplastin binding partners and signalling mechanisms, and proposes perspectives for future research on these important immunoglobulin superfamily members.
Collapse
Affiliation(s)
- Philip W Beesley
- School of Biological Sciences, Royal Holloway University of London, Egham, UK
| | | | | | | |
Collapse
|
11
|
Bailey K, Rahimi Balaei M, Mehdizadeh M, Marzban H. Spatial and temporal expression of lysosomal acid phosphatase 2 (ACP2) reveals dynamic patterning of the mouse cerebellar cortex. THE CEREBELLUM 2014; 12:870-81. [PMID: 23780826 DOI: 10.1007/s12311-013-0502-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Acp2 gene encodes lysosomal acid phosphatase 2 (ACP2), an isoenzyme that hydrolyzes orthophosphoric monoesters to alcohol and phosphate. Mutations in this gene compromise lysosomal function and cause acid phosphatase deficiency. Loss of Acp2 in the brain causes defects in the cerebellum. Here, we performed an in-depth protein expression analysis in the mouse cerebellum to understand how Acp2 controls cellular function in the developing and adult brain. We have found that during development, ACP2 expression marks the caudal midbrain and cerebellum, two regions that are linked by multiple signaling mechanisms during embryogenesis. By around P8, ACP2 was localized predominantly to the somata of Purkinje cells, the principal neurons of the cerebellar cortex. During the second postnatal week, we found that ACP2 expression expanded into the dendrites and axon terminals of Purkinje cells. However, at 2 weeks of age, only a subset of Purkinje cells strongly express ACP2. Further expression analyses revealed that in the mature cerebellum, ACP2 expression divided Purkinje cells into a pattern of molecular zones that are associated with the functional topography of sensory-motor circuitry. These data suggest that ACP2 expression is dynamically regulated during development, and in the adult, it may function within a complex architecture that is linked to cerebellar modular organization.
Collapse
Affiliation(s)
- Karen Bailey
- Department of Human Anatomy and Cell Science, Manitoba Institute of Child Health (MICH), Faculty of Medicine, University of Manitoba, Winnipeg, MB, Canada
| | | | | | | |
Collapse
|
12
|
Hawkes R. Purkinje cell stripes and long-term depression at the parallel fiber-Purkinje cell synapse. Front Syst Neurosci 2014; 8:41. [PMID: 24734006 PMCID: PMC3975104 DOI: 10.3389/fnsys.2014.00041] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 03/07/2014] [Indexed: 12/13/2022] Open
Abstract
The cerebellar cortex comprises a stereotyped array of transverse zones and parasagittal stripes, built around multiple Purkinje cell subtypes, which is highly conserved across birds and mammals. This architecture is revealed in the restricted expression patterns of numerous molecules, in the terminal fields of the afferent projections, in the distribution of interneurons, and in the functional organization. This review provides an overview of cerebellar architecture with an emphasis on attempts to relate molecular architecture to the expression of long-term depression (LTD) at the parallel fiber-Purkinje cell (pf-PC) synapse.
Collapse
Affiliation(s)
- Richard Hawkes
- Department of Cell Biology and Anatomy, University of Calgary Calgary, AB, Canada ; Hotchkiss Brain Institute, University of Calgary Calgary, AB, Canada ; Genes and Development Research Group, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| |
Collapse
|
13
|
Dagley LF, White CA, Liao Y, Shi W, Smyth GK, Orian JM, Emili A, Purcell AW. Quantitative proteomic profiling reveals novel region-specific markers in the adult mouse brain. Proteomics 2014; 14:241-61. [PMID: 24259518 DOI: 10.1002/pmic.201300196] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 11/07/2013] [Accepted: 11/11/2013] [Indexed: 11/06/2022]
Abstract
Despite major advances in neuroscience, a comprehensive understanding of the structural and functional components of the adult brain compartments remains to be fully elucidated at a quantitative molecular level. Indeed, over half of the soluble- and membrane-annotated proteins are currently unmapped within online digital brain atlases. In this study, two complementary approaches were used to assess the unique repertoire of proteins enriched within select regions of the adult mouse CNS, including the brain stem, cerebellum, and remaining brain hemispheres. Of the 1200 proteins visualized by 2D-DIGE, approximately 150 (including cytosolic and membrane proteins) were found to exhibit statistically significant changes in relative abundance thus representing putative region-specific brain markers. In addition to using a high-precision (18) O-labeling strategy for the quantitative LC-MS/MS mapping of membrane proteins isolated from myelin-enriched fractions, we have identified over 1000 proteins that have yet to be described in any other mammalian myelin proteome. A comparison of our myelin proteome was made to an existing transcriptome database containing mRNA abundance profiles during oligodendrocyte differentiation and has confirmed statistically significant abundance changes for ∼500 of these newly mapped proteins, thus revealing new roles in oligodendrocyte and myelin biology. These data offer a resource for the neuroscience community studying the molecular basis for specialized neuronal activities in the CNS and myelin-related disorders. The MS proteomics data associated with this manuscript have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD000327 (http://proteomecentral.proteomexchange.org/dataset/PXD000327).
Collapse
Affiliation(s)
- Laura F Dagley
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia; Banting and Best Department of Medical Research, Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada; Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Beesley P, Kraus M, Parolaro N. The neuroplastins: multifunctional neuronal adhesion molecules--involvement in behaviour and disease. ADVANCES IN NEUROBIOLOGY 2014; 8:61-89. [PMID: 25300133 DOI: 10.1007/978-1-4614-8090-7_4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The neuroplastins np65 and np55 are neuronal and synapse-enriched immunoglobulin (Ig) superfamily cell adhesion molecules that contain 3 and 2 Ig domains, respectively. Np65 is neuron specific whereas np55 is expressed in many tissues. They are multifunctional proteins whose physiological roles are defined by the partner proteins they bind to and the signalling pathways they activate. The neuroplastins are implicated in activity-dependent long-term synaptic plasticity. Thus neuroplastin-specific antibodies and a recombinant peptide inhibit long-term potentiation in hippocampal neurones. This is mediated by activation of the p38MAP kinase signalling pathway, resulting in the downregulation of the surface expression of GluR1 receptors. Np65, but not np55, exhibits trans-homophilic binding. Both np65 and np55 induce neurite outgrowth and both activate the FGF receptor and associated downstream signalling pathways. Np65 binds to and colocalises with GABA(A) receptor subtypes and may play a role in anchoring them to specific synaptic and extrasynaptic sites. Most recently the neuroplastins have been shown to chaperone and support the monocarboxylate transporter MCT2 in transporting lactate across the neuronal plasma membrane. Thus the neuroplastins are multifunctional adhesion molecules which support neurite outgrowth, modulate long-term activity-dependent synaptic plasticity, regulate surface expression of GluR1 receptors, modulate GABA(A) receptor localisation, and play a key role in delivery of monocarboxylate energy substrates both to the synapse and to extrasynaptic sites. The diverse functions and range of signalling pathways activated by the neuroplastins suggest that they are important in modulating behaviour and in relation to human disease.
Collapse
|
15
|
Pischedda F, Szczurkowska J, Cirnaru MD, Giesert F, Vezzoli E, Ueffing M, Sala C, Francolini M, Hauck SM, Cancedda L, Piccoli G. A cell surface biotinylation assay to reveal membrane-associated neuronal cues: Negr1 regulates dendritic arborization. Mol Cell Proteomics 2013; 13:733-48. [PMID: 24382801 DOI: 10.1074/mcp.m113.031716] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A complex and still not comprehensively resolved panel of transmembrane proteins regulates the outgrowth and the subsequent morphological and functional development of neuronal processes. In order to gain a more detailed description of these events at the molecular level, we have developed a cell surface biotinylation assay to isolate, detect, and quantify neuronal membrane proteins. When we applied our assay to investigate neuron maturation in vitro, we identified 439 differentially expressed proteins, including 20 members of the immunoglobulin superfamily. Among these candidates, we focused on Negr1, a poorly described cell adhesion molecule. We demonstrated that Negr1 controls the development of neurite arborization in vitro and in vivo. Given the tight correlation existing among synaptic cell adhesion molecules, neuron maturation, and a number of neurological disorders, our assay results are a useful tool that can be used to support the understanding of the molecular bases of physiological and pathological brain function.
Collapse
|
16
|
Wilson MC, Kraus M, Marzban H, Sarna JR, Wang Y, Hawkes R, Halestrap AP, Beesley PW. The neuroplastin adhesion molecules are accessory proteins that chaperone the monocarboxylate transporter MCT2 to the neuronal cell surface. PLoS One 2013; 8:e78654. [PMID: 24260123 PMCID: PMC3832594 DOI: 10.1371/journal.pone.0078654] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 09/13/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND The neuroplastins np65 and np55 are two synapse-enriched immunoglobulin (Ig) superfamily adhesion molecules that contain 3 and 2 Ig domains respectively. Np65 is implicated in long term, activity dependent synaptic plasticity, including LTP. Np65 regulates the surface expression of GluR1 receptor subunits and the localisation of GABA(A) receptor subtypes in hippocampal neurones. The brain is dependent not only on glucose but on monocarboxylates as sources of energy. The. monocarboxylate transporters (MCTs) 1-4 are responsible for the rapid proton-linked translocation of monocarboxylates including pyruvate and lactate across the plasma membrane and require association with either embigin or basigin, proteins closely related to neuroplastin, for plasma membrane expression and activity. MCT2 plays a key role in providing lactate as an energy source to neurons. METHODOLOGY/FINDINGS Here we use co-transfection of neuroplastins and monocarboxylate transporters into COS-7 cells to demonstrate that neuroplastins can act as ancillary proteins for MCT2. We also show that Xenopus laevis oocytes contain endogenous neuroplastin and its knockdown with antisense RNA reduces the surface expression of MCT2 and associated lactate transport. Immunocytochemical studies show that MCT2 and the neuroplastins are co-localised in rat cerebellum. Strikingly neuroplastin and MCT2 are enriched in the same parasagittal zebrin II-negative stripes. CONCLUSIONS These data strongly suggest that neuroplastins act as key ancillary proteins for MCT2 cell surface localisation and activity in some neuronal populations, thus playing an important role in facilitating the uptake of lactate for use as a respiratory fuel.
Collapse
Affiliation(s)
| | - Michaela Kraus
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
| | - Hassan Marzban
- Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Justyna R. Sarna
- Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Yisong Wang
- Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Richard Hawkes
- Department of Cell Biology and Anatomy and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | | | - Philip W. Beesley
- School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, United Kingdom
- * E-mail:
| |
Collapse
|
17
|
Affiliation(s)
| | - Richard Hawkes
- Department of Cell Biology and Anatomy, Genes and Development Research Group and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary
| |
Collapse
|
18
|
Consalez GG, Hawkes R. The compartmental restriction of cerebellar interneurons. Front Neural Circuits 2013; 6:123. [PMID: 23346049 PMCID: PMC3551280 DOI: 10.3389/fncir.2012.00123] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/26/2012] [Indexed: 11/13/2022] Open
Abstract
The Purkinje cells (PC's) of the cerebellar cortex are subdivided into multiple different molecular phenotypes that form an elaborate array of parasagittal stripes. This array serves as a scaffold around which afferent topography is organized. The ways in which cerebellar interneurons may be restricted by this scaffolding are less well-understood. This review begins with a brief survey of cerebellar topography. Next, it reviews the development of stripes in the cerebellum with a particular emphasis on the embryological origins of cerebellar interneurons. These data serve as a foundation to discuss the hypothesis that cerebellar compartment boundaries also restrict cerebellar interneurons, both excitatory [granule cells, unipolar brush cells (UBCs)] and inhibitory (e.g., Golgi cells, basket cells). Finally, it is proposed that the same PC scaffold that restricts afferent terminal fields to stripes may also act to organize cerebellar interneurons.
Collapse
Affiliation(s)
- G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute Milan, Italy
| | | |
Collapse
|
19
|
Neuroplastin expression in the hippocampus of mice lacking complex gangliosides. J Mol Neurosci 2012; 48:161-6. [PMID: 22638855 DOI: 10.1007/s12031-012-9801-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 04/30/2012] [Indexed: 01/31/2023]
Abstract
We report changes in neuroplastin gene and protein expression in the hippocampus of B4galnt1 null mice, which lacks complex ganglioside structures, compared with that of wild-type mice. Neuroplastin mRNA expression was significantly higher in the hippocampi of B4galnt1 null mice than in wild-type mice. Moreover, Western blot analysis shows increased neuroplastin protein levels of neuroplastin-55 isoform in B4galnt1 null hippocampal homogenates. Immunohistochemistry revealed a substantially different distribution of neuroplastin immunoreactivity in sagittal sections of the hippocampi derived from B4galnt1 null in comparison with those from wild-type mice. Most strikingly, B4galnt1 null mice had relatively little neuroplastin immunoreactivity in the pyramidal layer of CA1 and CA3, whereas wild-type mice had strong neuroplastin staining of pyramidal cells. Results of this study support the hypothesis that alterations of brain ganglioside expression influence the expression of neuroplastin. As both neuroplastin and gangliosides have important roles in synaptic transmission, synaptic plasticity, and neurite outgrowth, it will be of particular interest to unravel the molecular mechanisms underlying the relationship between ganglioside composition and neuroplastin transcript and protein expression in the mammalian nervous system.
Collapse
|
20
|
Marzban H, Hawkes R. On the architecture of the posterior zone of the cerebellum. THE CEREBELLUM 2012; 10:422-34. [PMID: 20838950 DOI: 10.1007/s12311-010-0208-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The mammalian cerebellum is histologically uniform. However, underlying the simple laminar architecture is a complex arrangement of parasagittal stripes and transverse zones that can be revealed by the expression of many molecules, in particular, zebrin II/aldolase C. By using a combination of Purkinje cell antigenic markers and afferent tracing, four transverse zones have been identified: in mouse, these are the anterior zone (∼lobules I-V), the central zone (∼lobules VI-VII), the posterior zone (PZ: ∼lobules VIII-dorsal IX), and the nodular zone (∼ventral lobule IX + lobule X). A fifth transverse zone-the lingular zone (∼lobule I)-is found in birds and bats. Within the anterior and posterior zones, parasagittal stripes of Purkinje cells expressing zebrin II alternate with those that do not. To explore this model further and to broaden our understanding of the evolution of cerebellar patterning, stripes in the PZ have been compared in multiple mammalian species. We conclude that a posterior zone with a conserved stripe organization is a common feature of the mammalian and avian cerebellar vermis and that zonal boundaries are independent of cerebellar lobulation.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology & Anatomy, Faculty of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4N1, Canada
| | | |
Collapse
|
21
|
Owczarek S, Berezin V. Neuroplastin: Cell adhesion molecule and signaling receptor. Int J Biochem Cell Biol 2012; 44:1-5. [DOI: 10.1016/j.biocel.2011.10.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/12/2011] [Accepted: 10/13/2011] [Indexed: 12/29/2022]
|
22
|
Vernes SC, Oliver PL, Spiteri E, Lockstone HE, Puliyadi R, Taylor JM, Ho J, Mombereau C, Brewer A, Lowy E, Nicod J, Groszer M, Baban D, Sahgal N, Cazier JB, Ragoussis J, Davies KE, Geschwind DH, Fisher SE. Foxp2 regulates gene networks implicated in neurite outgrowth in the developing brain. PLoS Genet 2011; 7:e1002145. [PMID: 21765815 PMCID: PMC3131290 DOI: 10.1371/journal.pgen.1002145] [Citation(s) in RCA: 193] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 05/07/2011] [Indexed: 11/19/2022] Open
Abstract
Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.
Collapse
Affiliation(s)
- Sonja C. Vernes
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter L. Oliver
- Medical Research Council Functional Genetics Unit, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Spiteri
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
| | - Helen E. Lockstone
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Rathi Puliyadi
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jennifer M. Taylor
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Joses Ho
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Cedric Mombereau
- INSERM Institute du Fer à Moulin, University Pierre and Marie Curie, UMR-S 839, Paris, France
| | - Ariel Brewer
- INSERM Institute du Fer à Moulin, University Pierre and Marie Curie, UMR-S 839, Paris, France
| | - Ernesto Lowy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jérôme Nicod
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Matthias Groszer
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- INSERM Institute du Fer à Moulin, University Pierre and Marie Curie, UMR-S 839, Paris, France
| | - Dilair Baban
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Natasha Sahgal
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jean-Baptiste Cazier
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Jiannis Ragoussis
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kay E. Davies
- Medical Research Council Functional Genetics Unit, University of Oxford, Oxford, United Kingdom
| | - Daniel H. Geschwind
- Program in Neurogenetics, Department of Neurology, University of California Los Angeles, Los Angeles, California, United States of America
- Semel Institute and Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Simon E. Fisher
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- * E-mail:
| |
Collapse
|
23
|
Chung SH, Marzban H, Aldinger K, Dixit R, Millen K, Schuurmans C, Hawkes R. Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum. Neural Dev 2011. [PMID: 21592321 DOI: 10.1186/1749‐8104‐6‐25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND The cerebellum is composed of a diverse array of neuronal subtypes. Here we have used a candidate approach to identify Zac1, a tumor suppressor gene encoding a zinc finger transcription factor, as a new player in the transcriptional network required for the development of a specific subset of cerebellar nuclei and a population of Golgi cells in the cerebellar cortex. RESULTS We found that Zac1 has a complex expression profile in the developing cerebellum, including in two proliferating progenitor populations; the cerebellar ventricular zone and the external granular layer overlying posterior cerebellar lobules IX and X. Zac1 is also expressed in some postmitotic cerebellar neurons, including a subset of GABAergic interneurons in the medial cerebellar nuclei. Notably, GABAergic interneurons in the cerebellar nuclei are derived from the cerebellar ventricular zone, where Zac1 is also expressed, consistent with a lineage relationship between these two Zac1+ populations. Zac1 is also expressed in a small subset of cells in the posterior vermis, including some neurogranin-immunoreactive (NG+) Golgi cells, which, based on short-term birthdating, are derived from the EGL, where Zac1 is also expressed. However, Zac1+ cells and NG+ Golgi cells in the cerebellar cortex also display unique properties, as they are generated within different, albeit overlapping, time windows. Finally, consistent with the expression profile of Zac1, two conspicuous abnormalities were found in the cerebellum of Zac1 null mice: the medial cerebellar nuclei, and not the others, were significantly reduced in size; and the number of Golgi cells in cerebellar lobule IX was reduced by approximately 60% compared to wild-type littermates. CONCLUSIONS The data presented here indicate that the tumor suppressor gene Zac1 is expressed in a complex fashion in the developing cerebellum, including in two dividing progenitor populations and in specific subsets of postmitotic neurons, including Golgi cells and GABAergic neurons in the medial nuclei, which require Zac1 for their differentiation. We thus conclude that Zac1 is a critical regulator of normal cerebellar development, adding a new transcriptional regulator to the growing list of factors involved in generating neuronal diversity in the developing cerebellum.
Collapse
Affiliation(s)
- Seung-Hyuk Chung
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | | | |
Collapse
|
24
|
Chung SH, Marzban H, Aldinger K, Dixit R, Millen K, Schuurmans C, Hawkes R. Zac1 plays a key role in the development of specific neuronal subsets in the mouse cerebellum. Neural Dev 2011; 6:25. [PMID: 21592321 PMCID: PMC3113315 DOI: 10.1186/1749-8104-6-25] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 05/18/2011] [Indexed: 11/20/2022] Open
Abstract
Background The cerebellum is composed of a diverse array of neuronal subtypes. Here we have used a candidate approach to identify Zac1, a tumor suppressor gene encoding a zinc finger transcription factor, as a new player in the transcriptional network required for the development of a specific subset of cerebellar nuclei and a population of Golgi cells in the cerebellar cortex. Results We found that Zac1 has a complex expression profile in the developing cerebellum, including in two proliferating progenitor populations; the cerebellar ventricular zone and the external granular layer overlying posterior cerebellar lobules IX and X. Zac1 is also expressed in some postmitotic cerebellar neurons, including a subset of GABAergic interneurons in the medial cerebellar nuclei. Notably, GABAergic interneurons in the cerebellar nuclei are derived from the cerebellar ventricular zone, where Zac1 is also expressed, consistent with a lineage relationship between these two Zac1+ populations. Zac1 is also expressed in a small subset of cells in the posterior vermis, including some neurogranin-immunoreactive (NG+) Golgi cells, which, based on short-term birthdating, are derived from the EGL, where Zac1 is also expressed. However, Zac1+ cells and NG+ Golgi cells in the cerebellar cortex also display unique properties, as they are generated within different, albeit overlapping, time windows. Finally, consistent with the expression profile of Zac1, two conspicuous abnormalities were found in the cerebellum of Zac1 null mice: the medial cerebellar nuclei, and not the others, were significantly reduced in size; and the number of Golgi cells in cerebellar lobule IX was reduced by approximately 60% compared to wild-type littermates. Conclusions The data presented here indicate that the tumor suppressor gene Zac1 is expressed in a complex fashion in the developing cerebellum, including in two dividing progenitor populations and in specific subsets of postmitotic neurons, including Golgi cells and GABAergic neurons in the medial nuclei, which require Zac1 for their differentiation. We thus conclude that Zac1 is a critical regulator of normal cerebellar development, adding a new transcriptional regulator to the growing list of factors involved in generating neuronal diversity in the developing cerebellum.
Collapse
Affiliation(s)
- Seung-Hyuk Chung
- Department of Cell Biology and Anatomy, Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada.
| | | | | | | | | | | | | |
Collapse
|
25
|
On the architecture of the posterior zone of the cerebellum. CEREBELLUM (LONDON, ENGLAND) 2010. [PMID: 20838950 DOI: 10.1007/s12311‐010‐0208‐3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 09/29/2022]
Abstract
The mammalian cerebellum is histologically uniform. However, underlying the simple laminar architecture is a complex arrangement of parasagittal stripes and transverse zones that can be revealed by the expression of many molecules, in particular, zebrin II/aldolase C. By using a combination of Purkinje cell antigenic markers and afferent tracing, four transverse zones have been identified: in mouse, these are the anterior zone (∼lobules I-V), the central zone (∼lobules VI-VII), the posterior zone (PZ: ∼lobules VIII-dorsal IX), and the nodular zone (∼ventral lobule IX + lobule X). A fifth transverse zone-the lingular zone (∼lobule I)-is found in birds and bats. Within the anterior and posterior zones, parasagittal stripes of Purkinje cells expressing zebrin II alternate with those that do not. To explore this model further and to broaden our understanding of the evolution of cerebellar patterning, stripes in the PZ have been compared in multiple mammalian species. We conclude that a posterior zone with a conserved stripe organization is a common feature of the mammalian and avian cerebellar vermis and that zonal boundaries are independent of cerebellar lobulation.
Collapse
|
26
|
Marzban H, Chung SH, Pezhouh MK, Feirabend H, Watanabe M, Voogd J, Hawkes R. Antigenic compartmentation of the cerebellar cortex in the chicken (Gallus domesticus). J Comp Neurol 2010; 518:2221-39. [PMID: 20437525 DOI: 10.1002/cne.22328] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The chick is a well-understood developmental model of cerebellar pattern formation,but we know much less about the patterning of the adult chicken cerebellum. Therefore an expression study of two Purkinje cell stripe antigens-zebrin II/aldolase C and phospholipase Cbeta4 (PLCbeta4)-has been carried out in the adult chicken (Gallus domesticus). The mammalian cerebellar cortex is built around transverse expression domains ("transverse zones"), each of which is further subdivided into parasagittally oriented stripes. The results from the adult chicken reveal a similar pattern. Five distinct transverse domains were identified. In the anterior lobe a uniformly zebrin II-immunopositive/PLCbeta4-immunonegative lingular zone (LZ; lobule I) and a striped anterior zone (AZ; lobules II-VIa) were distinguished. A central zone (CZ; approximately lobules VIa-VIIIa,b) and a posterior zone (PZ; approximately lobules VIIIa,b-IXc,d) were distinguished in the posterior lobe. Finally, the nodular zone (NZ; lobule X) is uniformly zebrin II-immunoreactive and is innervated by vestibular mossy fibers. Lobule IXc,d is considered as a transitional region between the PZ and the NZ, because the vestibular mossy fiber projection extends into these lobules and because they receive optokinetic mossy and climbing fiber input. It is proposed that the zebrin II-immunonegative P3- stripe corresponds to the lateral vermal B zone of the mammalian cerebellum and that the border between the avian homologs of the mammalian vermis and hemispheres is located immediately lateral to P3-. Thus, there seem to be transverse zones in chicken that are plausible homologs of those identified in mammals, together with an LZ that is characteristic of birds.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology & Anatomy, Genes and Development Research Group, and Hotchkiss Brain Institute, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | |
Collapse
|
27
|
Owczarek S, Kiryushko D, Larsen MH, Kastrup JS, Gajhede M, Sandi C, Berezin V, Bock E, Soroka V. Neuroplastin-55 binds to and signals through the fibroblast growth factor receptor. FASEB J 2009; 24:1139-50. [PMID: 19952283 DOI: 10.1096/fj.09-140509] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neuroplastin (Np) is a glycoprotein belonging to the immunoglobulin superfamily of cell adhesion molecules (CAMs) and existing in two isoforms, Np55 and Np65, named according to their molecular weights. The extracellular part of Np65 contains three immunoglobulin (Ig)-like modules (Ig1, Ig2, and Ig3), whereas Np55 lacks the Ig1 module. Of these two isoforms, only Np65 is involved in homophilic interactions resulting in cell adhesion, whereas the role of Np55 is poorly understood. The present study reports for the first time the crystal structure of the ectodomain of Np55 at 1.95-A resolution and demonstrates that Np55 binds to and activates the fibroblast growth factor receptor 1 (FGFR1). Furthermore, we identify a sequence motif in the Ig2 module of Np55 interacting with FGFR1 and show that a synthetic peptide encompassing this motif, termed narpin, binds to and activates FGFR1. We show that both Np55 and the narpin peptide induce neurite outgrowth through FGFR1 activation and that Np55 increases synaptic calcium concentration in an FGFR1-dependent manner. Moreover, we demonstrate that narpin has an antidepressive-like effect in rats subjected to the forced swim test, suggesting that Np55-induced signaling may be involved in synaptic plasticity in vivo. Owczarek, S., Kiryushko, D., Larsen, M. H., Kastrup, J. S., Gajhede, M., Sandi, C., Berezin, V., Bock, E., Soroka, V. Neuroplastin-55 binds to and signals through the fibroblast growth factor receptor.
Collapse
Affiliation(s)
- Sylwia Owczarek
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute, University of Copenhagen, Blegdamsvej 3C, Bldg. 24.2, 2200 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Phospholipase Cbeta4 expression identifies a novel subset of unipolar brush cells in the adult mouse cerebellum. THE CEREBELLUM 2009; 8:267-76. [PMID: 19165551 DOI: 10.1007/s12311-009-0092-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Unipolar brush cells (UBCs) are glutamatergic cerebellar interneurons of the granular layer. Previous studies have shown that there are two distinct subsets of UBCs present in the mice cerebellar cortex: calcium-binding protein calretinin (CR) positive and metabotropic glutamate receptor (mGluR)1alpha positive. In this study, we identify phospholipase C (PLC) beta4 as an antigenic marker of a novel subset of UBCs. Double immunolabeling reveals that none of the CR+ subset expresses PLCbeta4. In contrast, most members of the mGluR1alpha subset also express PLCbeta4. In addition, 65% of the PLCbeta4+ subset does not express mGluR1alpha. Thus, there are three distinct UBC subsets in the mouse cerebellum: CR+/PLCbeta4-/mGluR1alpha-, PLCbeta4+/mGluR1alpha-/CR-, and mGluR1alpha+/PLCbeta4+/CR-. Each has a different topographical distribution, both between lobules and mediolaterally within the vermis. The development of PLCbeta4 expression in UBCs is exclusively postnatal--first seen only at P12 and mature at about 3 weeks. A distinct subset of PLCbeta4+ UBCs is also present in primary cerebellar cultures.
Collapse
|
29
|
|
30
|
Chung SH, Marzban H, Croci L, Consalez GG, Hawkes R. Purkinje cell subtype specification in the cerebellar cortex: early B-cell factor 2 acts to repress the zebrin II-positive Purkinje cell phenotype. Neuroscience 2008; 153:721-32. [PMID: 18403128 DOI: 10.1016/j.neuroscience.2008.01.090] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2007] [Revised: 01/23/2008] [Accepted: 01/30/2008] [Indexed: 11/16/2022]
Abstract
The mammalian cerebellar cortex is highly compartmentalized. First, it is subdivided into four transverse expression domains: the anterior zone (AZ), the central zone (CZ), the posterior zone (PZ), and the nodular zone (NZ). Within each zone, the cortex is further subdivided into a symmetrical array of parasagittal stripes. The most extensively studied compartmentation antigen is zebrin II/aldolase c, which is expressed by a subset of Purkinje cells forming parasagittal stripes. Stripe phenotypes are specified early in cerebellar development, in part through the action of early B-cell factor 2 (Ebf2), a member of the atypical helix-loop-helix transcription factor family Collier/Olf1/EBF. In the murine cerebellum, Ebf2 expression is restricted to the zebrin II-immunonegative (zebrin II-) Purkinje cell population. We have identified multiple cerebellar defects in the Ebf2 null mouse involving a combination of selective Purkinje cell death and ectopic expression of multiple genes normally restricted to the zebrin II- subset. The nature of the cerebellar defect in the Ebf2 null is different in each transverse zone. In contrast to the ectopic expression of genes characteristic of the zebrin II+ Purkinje cell phenotype, phospholipase Cbeta4 expression, restricted to zebrin II- Purkinje cells in control mice, is well maintained, and the normal number of stripes is present. Taken together, these data suggest that Ebf2 regulates the expression of genes associated with the zebrin II+ Purkinje cell phenotype and that the zebrin II- Purkinje cell subtype is specified independently.
Collapse
Affiliation(s)
- S-H Chung
- Department of Cell Biology and Anatomy, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|
31
|
Marzban H, Hawkes R. Fibroblast growth factor promotes the development of deep cerebellar nuclear neurons in dissociated mouse cerebellar cultures. Brain Res 2007; 1141:25-36. [PMID: 17300764 DOI: 10.1016/j.brainres.2007.01.031] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2006] [Revised: 01/03/2007] [Accepted: 01/08/2007] [Indexed: 01/24/2023]
Abstract
Neurons of the deep cerebellar nuclei and excitatory cerebellar interneurons arise from the rhombic lip of the cerebellar anlage. In contrast, Purkinje cells and inhibitory interneurons arise in the neuroepithelium of the fourth ventricle. During development, the projection neurons of the cerebellar nuclei are born first (embryo age (E)9-E12 in mouse) followed closely by the Purkinje cells (E10-E13). Cerebellar interneurons arise later and differentiate postnatally. We have examined the development of cerebellar nuclear neurons in primary cultures. Embryonic cerebella from E15 to E18 pups were cultured 21 days in vitro. Three distinct classes of large neurons were identified: those expressing calbindin, typical of Purkinje cells; those expressing neurogranin (Golgi cells); and a third class expressing parvalbumin but not calbindin, consistent with the morphology of large projection neurons of the cerebellar nuclei. These neurons also express Tbr1, a specific antigenic marker of cerebellar nuclear neurons. Birthdating by using BrdU incorporation shows that the putative DCN neurons are not born in vitro. To confirm their identity the E18 cerebellum was dissected into cerebellar nuclear-containing (ventral) and -lacking (dorsal) halves, which were then dissociated and cultured separately. Only the ventral cultures produce putative cerebellar nuclear neurons. In contrast to E15-E18 cultures, dissociated E13-E14 cerebella in vitro do not yield putative cerebellar nuclear neurons. However, E14 cultures do produce them when fibroblast growth factors are added to the medium. We conclude that FGF signaling is required for the maturation of cerebellar nuclear neurons.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology and Anatomy, Genes and Development Research Group, and Hotchkiss Brain Institute, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1
| | | |
Collapse
|
32
|
Bernstein HG, Smalla KH, Bogerts B, Gordon-Weeks PR, Beesley PW, Gundelfinger ED, Kreutz MR. The immunolocalization of the synaptic glycoprotein neuroplastin differs substantially between the human and the rodent brain. Brain Res 2007; 1134:107-12. [PMID: 17196182 DOI: 10.1016/j.brainres.2006.11.090] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2006] [Revised: 11/25/2006] [Accepted: 11/28/2006] [Indexed: 10/23/2022]
Abstract
Neuroplastin is a cell adhesion molecule of the immunoglobulin superfamily that exists in two splice isoforms, np65/np55, and that was reported to play a prominent role in synaptic plasticity processes. The splice isoform np65 associates with synapses in an activity-dependent manner and has been shown to play a role for the induction of hippocampal long-term potentiation in rodents. We have therefore analyzed the distribution of neuroplastins in human brain. Neuroplastin is present in many neuronal cell types of the forebrain and cerebellum and immunoreactive label covers the cell soma, neurites and also puncta in the neuropil were visible. Interestingly, we found some remarkable species differences in the expression patterns of neuroplastins between the human and the rodent brain. In human brain np65 is prominently present in cerebellum while np55 is the predominant isoform in mouse and rat cerebellum. Moreover, the parasagittal stripe-type of staining seen with np55 in mouse cerebellum is not found in human brain. In addition we found no segregation of np65 immunolabel in hippocampal subregions like it was reported previously for the rat. These results might indicate different cellular functions of the molecule in different species.
Collapse
Affiliation(s)
- Hans-Gert Bernstein
- Department of Psychiatry, Faculty of Medicine, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Marzban H, Chung S, Watanabe M, Hawkes R. Phospholipase cβ4 expression reveals the continuity of cerebellar topography through development. J Comp Neurol 2007; 502:857-71. [PMID: 17436294 DOI: 10.1002/cne.21352] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mediolateral boundaries divide the mouse cerebellar cortex into four transverse zones, and within each zone the cortex is further subdivided into a symmetrical array of parasagittal stripes. Various expression markers reveal this complexity, and detailed maps have been constructed based on the differential expression of zebrin II/aldolase C in a Purkinje cell subset. Recently, phospholipase (PL) Cbeta4 expression in adult mice was shown to be restricted to, and coextensive with, the zebrin II-immunonegative Purkinje cell subset. The Purkinje cell expression of PLCbeta4 during embryogenesis and postnatal development begins just before birth in a subset of Purkinje cells that are clustered to form a reproducible array of parasagittal stripes. Double label and serial section immunocytochemistry revealed that the early PLCbeta4-immunoreactive clusters in the neonate are complementary to those previously identified by neurogranin expression. The PLCbeta4 expression pattern can be traced continuously from embryo to adult, revealing the continuity of the topographical map from perinatal to adult cerebella. The only exception, as has been seen for other antigenic markers, is that transient PLCbeta4 expression (which subsequently disappears) is seen in some Purkinje cell stripes during the second postnatal week. Furthermore, the data confirm that some adult Purkinje cell stripes are composite in origin, being derived from two or more distinct embryonic clusters. Thus, the zone and stripe topography of the cerebellum is conserved from embryo to adult, confirming that the early- and late-antigenic markers share a common cerebellar topography.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology and Anatomy, Genes and Development Research Group, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
34
|
Pakan JMP, Iwaniuk AN, Wylie DRW, Hawkes R, Marzban H. Purkinje cell compartmentation as revealed by Zebrin II expression in the cerebellar cortex of pigeons (Columba livia). J Comp Neurol 2007; 501:619-30. [PMID: 17278140 DOI: 10.1002/cne.21266] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Purkinje cells in the cerebellum express the antigen zebrin II (aldolase C) in many vertebrates. In mammals, zebrin is expressed in a parasagittal fashion, with alternating immunopositive and immunonegative stripes. Whether a similar pattern is expressed in birds is unknown. Here we present the first investigation into zebrin II expression in a bird: the adult pigeon (Columba livia). Western blotting of pigeon cerebellar homogenates reveals a single polypeptide with an apparent molecular weight of 36 kDa that is indistinguishable from zebrin II in the mouse. Zebrin II expression in the pigeon cerebellum is prominent in Purkinje cells, including their dendrites, somata, axons, and axon terminals. Parasagittal stripes were apparent with bands of Purkinje cells that strongly expressed zebrin II (+ve) alternating with bands that expressed zebrin II weakly or not at all (-ve). The stripes were most prominent in folium IXcd, where there were seven +ve/-ve stripes, bilaterally. In folia VI-IXab, several thin stripes were observed spanning the mediolateral extent of the folia, including three pairs of +ve/-ve stripes that extended across the lateral surface of the cerebellum. In folium VI the zebrin II expression in Purkinje cells was stronger overall, resulting in less apparent stripes. In folia II-V, four distinct +ve/-ve stripes were apparent. Finally, in folia I (lingula) and X (nodulus) all Purkinje cells strongly expressed zebrin II. These data are compared with studies of zebrin II expression in other species, as well as physiological and neuroanatomical studies that address the parasagittal organization of the pigeon cerebellum.
Collapse
Affiliation(s)
- Janelle M P Pakan
- University Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | | | | | | | | |
Collapse
|
35
|
Sarna JR, Marzban H, Watanabe M, Hawkes R. Complementary stripes of phospholipase Cβ3 and Cβ4 expression by Purkinje cell subsets in the mouse cerebellum. J Comp Neurol 2006; 496:303-13. [PMID: 16566000 DOI: 10.1002/cne.20912] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Transverse boundaries divide the cerebellar cortex into four transverse zones, and within each zone the cortex is further subdivided into a symmetrical array of parasagittal stripes. Several molecules believed to mediate long-term depression at the parallel fiber-Purkinje cell synapse are known to be expressed in stripes. We have therefore explored the distributions of phospholipase Cbeta3 and phospholipase Cbeta4, key components in the transduction of type 1 metabotropic glutamate receptor-mediated responses. The data reveal that both phospholipase Cbeta isotypes are expressed strongly in the mouse cerebellum in subsets of Purkinje cells. The two distributions are distinct and largely nonoverlapping. The pattern of phospholipase Cbeta3 expression is unique, revealing stripes in three of the four transverse zones and a uniform distribution in the fourth. In contrast, phospholipase Cbeta4 appears to be confined largely to the Purkinje cells that are phospholipase Cbeta3-negative. PLCbeta3 is restricted to the zebrin II-immunopositive Purkinje cell subset. Not all zebrin II-immunoreactive Purkinje cells express PLCbeta3: in lobules IX and X it is restricted to that zebrin II-immunopositive subset that also expresses the small heat shock protein HSP25. PLCbeta4 expression is restricted to, and coextensive with, the zebrin II-immunonegative Purkinje cell subset. These nonoverlapping expression patterns suggest that long-term depression may be manifested differently between cerebellar modules.
Collapse
Affiliation(s)
- Justyna R Sarna
- Department of Cell Biology and Anatomy, Genes and Development Research Group, Faculty of Medicine, The University of Calgary, Alberta, Canada
| | | | | | | |
Collapse
|
36
|
Buckby LE, Mummery R, Crompton MR, Beesley PW, Empson RM. Comparison of neuroplastin and synaptic marker protein expression in acute and cultured organotypic hippocampal slices from rat. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2004; 150:1-7. [PMID: 15126032 DOI: 10.1016/j.devbrainres.2004.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/26/2004] [Indexed: 11/23/2022]
Abstract
Organotypic hippocampal slice cultures can be used to study hippocampal biochemistry and physiology over a chronic period on the days to weeks timescale. In order to validate the organotypic hippocampal slice culture for our ongoing studies of synaptic function, we have compared, using Western blotting, the levels of a number of synaptic proteins from in vitro organotypic hippocampal slice cultures with those from in vivo hippocampal slices prepared from age-matched controls. We chose to follow the developmental expression of the neuroplastin (np) family of immunoglobulin related cell adhesion molecules (CAMs), np65, a brain specific isoform highly expressed in hippocampal neurones and np55 a more widely expressed isoform and two synaptic marker proteins, synaptophysin, a pre-synaptic marker and post-synaptic density protein-95, PSD95, a post-synaptic marker. All showed increasing expression over the developmental time period, both in vivo and in vitro. The level of both neuroplastins was also consistent between the in vivo and in vitro preparations, whereas the level of PSD95 was markedly increased in the organotypic hippocampal slice cultures while the level of synaptophysin was slightly decreased. Whilst these findings may indicate some differences in the composition and organisation of synapses, the developmental expression profiles of these synaptic proteins within organotypic hippocampal slice cultures suggests they are a valid model for the study of synapse function and development in vitro.
Collapse
Affiliation(s)
- Lucy E Buckby
- School of Biological Sciences, Royal Holloway University of London, Egham Hill, Egham, Surrey, TW20 0EX, UK
| | | | | | | | | |
Collapse
|