1
|
Szentkirályi-Tóth S, Göcz B, Takács S, Sárvári M, Farkas I, Skrapits K, Rumpler É, Póliska S, Rácz G, Matolcsy A, Ternier G, Fernandois D, Giacobini P, Prévot V, Colledge WH, Wittmann G, Kádár A, Mohácsik P, Gereben B, Fekete C, Hrabovszky E. Estrogen-Regulated Lateral Septal Kisspeptin Neurons Abundantly Project to GnRH Neurons and the Hypothalamic Supramammillary Nucleus. J Neurosci 2025; 45:e1307242024. [PMID: 39746822 PMCID: PMC11841763 DOI: 10.1523/jneurosci.1307-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/04/2025] Open
Abstract
While hypothalamic kisspeptin (KP) neurons play well-established roles in the estrogen-dependent regulation of reproduction, little is known about extrahypothalamic KP-producing (KPLS) neurons of the lateral septum. As established previously, Kiss1 expression in this region is low and regulated by estrogen receptor- and GABAB receptor-dependent mechanisms. Our present experiments on Kiss1-Cre/ZsGreen knock-in mice revealed that transgene expression in the LS begins at Postnatal Day (P)33-36 in females and P40-45 in males and is stimulated by estrogen receptor signaling. Fluorescent cell numbers continue to increase in adulthood and are higher in females. Viral tracing uncovered that the bulk of KPLS fibers joins the medial forebrain bundle and terminates in the hypothalamic supramammillary nucleus. Smaller subsets innervate the medial amygdala or project to other limbic structures. One-quarter of gonadotropin-releasing hormone (GnRH)-immunoreactive perikarya in the preoptic area and their dendrites receive appositions from KPLS axons. OVX adult Kiss1-Cre/ZsGreen mice treated for 4 d with 17β-estradiol or vehicle were used for RNA sequencing studies of laser-microdissected KPLS neurons. The transcriptome included markers of GABAergic and neuropeptidergic (Penk, Cartpt, Vgf) cotransmission and 571 estrogen-regulated transcripts. Estrogen treatment upregulated the acetylcholine receptor transcript Chrm2 and, in slice electrophysiology experiments, caused enhanced muscarinic inhibition of KPLS neurons. Finally, we provided immunohistochemical evidence for homologous neurons in the postmortem human brain, suggesting that KPLS neurons may contribute to evolutionarily conserved regulatory mechanisms. Future studies will need to investigate the putative roles of KPLS neurons in the estrogen-dependent control of GnRH neurons and/or various hypothalamic/limbic functions.
Collapse
Affiliation(s)
- Soma Szentkirályi-Tóth
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Balázs Göcz
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Szabolcs Takács
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Miklós Sárvári
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Imre Farkas
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Katalin Skrapits
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Éva Rumpler
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Szilárd Póliska
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen 4032, Hungary
| | - Gergely Rácz
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest 1083, Hungary
| | - András Matolcsy
- Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest 1083, Hungary
| | - Gaëtan Ternier
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille F-59000, France
| | - Daniela Fernandois
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille F-59000, France
| | - Paolo Giacobini
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille F-59000, France
| | - Vincent Prévot
- Laboratory of Development and Plasticity of the Neuroendocrine Brain, FHU 1000 Days for Health, School of Medicine, Lille F-59000, France
- Univ. Lille, Inserm, CHU Lille, Lille Neuroscience & Cognition, UMR-S 1172, Lille F-59000, France
| | - William H Colledge
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Gábor Wittmann
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Andrea Kádár
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Petra Mohácsik
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Balázs Gereben
- Laboratory of Molecular Cell Metabolism, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| | - Erik Hrabovszky
- Laboratory of Reproductive Neurobiology, HUN-REN Institute of Experimental Medicine, Budapest 1083, Hungary
| |
Collapse
|
2
|
Alewel DI, Kodavanti UP. Neuroendocrine contribution to sex-related variations in adverse air pollution health effects. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2024; 27:287-314. [PMID: 39075643 DOI: 10.1080/10937404.2024.2383637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Air pollution exposure is ranked as a leading environmental risk factor for not only cardiopulmonary diseases but also for systemic health ailments including diabetes, reproductive abnormalities, and neuropsychiatric disorders, likely mediated by central neural stress mechanisms. Current experimental evidence links many air pollution health outcomes with activation of neuroendocrine sympathetic-adrenal-medullary and hypothalamic-pituitary-adrenal (HPA) stress axes associated with resultant increases in adrenal-derived hormone levels acting as circulating mediators of multi-organ stress reactions. Epidemiological and experimental investigations also demonstrated sex-specific responses to air pollutant inhalation, which may be attributed to hormonal interactions within the stress and reproductive axes. Sex hormones (androgens and estrogens) interact with neuroendocrine functions to influence hypothalamic responses, subsequently augmenting stress-mediated metabolic and immune changes. These neurohormonal interactions may contribute to innate sex-specific responses to inhaled irritants, inducing differing individual susceptibility. The aim of this review was to: (1) examine neuroendocrine co-regulation of the HPA axis by gonadal hormones, (2) provide experimental evidence demonstrating sex-specific respiratory and systemic effects attributed to air pollutant inhalation exposure, and (3) postulate proposed mechanisms of stress and sex hormone interactions during air pollution-related stress.
Collapse
Affiliation(s)
- Devin I Alewel
- Oak Ridge Institute for Science and Education Research Participation Program, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P Kodavanti
- Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
3
|
Zuloaga DG, Lafrican JJ, Zuloaga KL. Androgen regulation of behavioral stress responses and the hypothalamic-pituitary-adrenal axis. Horm Behav 2024; 162:105528. [PMID: 38503191 PMCID: PMC11144109 DOI: 10.1016/j.yhbeh.2024.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Testosterone is a powerful steroid hormone that can impact the brain and behavior in various ways, including regulating behavioral and neuroendocrine (hypothalamic-pituitary-adrenal (HPA) axis) stress responses. Early in life androgens can act to alter development of brain regions associated with stress regulation, which ultimately impacts the display of stress responses later in life. Adult circulating androgens can also influence the expression of distinct genes and proteins that regulate stress responses. These changes in the brain are hypothesized to underlie the potent effects of androgens in regulating behaviors related to stress and stress-induced activation of the HPA axis. Androgens can induce alterations in these functions through direct binding to the androgen receptor (AR) or following conversion to estrogens and subsequent binding to estrogen receptors including estrogen receptor alpha (ERα), beta (ERβ), and G protein-coupled estrogen receptor 1 (GPER1). In this review, we focus on the role of androgens in regulating behavioral and neuroendocrine stress responses at different stages of the lifespan and the sex hormone receptors involved in regulating these effects. We also review the specific brain regions and cell phenotypes upon which androgens are proposed to act to regulate stress responses with an emphasis on hypothalamic and extended amygdala subregions. This knowledge of androgen effects on these neural systems is critical for understanding how sex hormones regulate stress responses.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY, USA.
| | | | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
4
|
Zhang S, Zhang YD, Shi DD, Wang Z. Therapeutic uses of oxytocin in stress-related neuropsychiatric disorders. Cell Biosci 2023; 13:216. [PMID: 38017588 PMCID: PMC10683256 DOI: 10.1186/s13578-023-01173-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 11/18/2023] [Indexed: 11/30/2023] Open
Abstract
Oxytocin (OXT), produced and secreted in the paraventricular nucleus and supraoptic nucleus of magnocellular and parvocellular neurons. The diverse presence and activity of oxytocin suggests a potential for this neuropeptide in the pathogenesis and treatment of stress-related neuropsychiatric disorders (anxiety, depression and post-traumatic stress disorder (PTSD)). For a more comprehensive understanding of the mechanism of OXT's anti-stress action, the signaling cascade of OXT binding to targeting stress were summarized. Then the advance of OXT treatment in depression, anxiety, PTSD and the major projection region of OXT neuron were discussed. Further, the efficacy of endogenous and exogenous OXT in stress responses were highlighted in this review. To augment the level of OXT in stress-related neuropsychiatric disorders, current biological strategies were summarized to shed a light on the treatment of stress-induced psychiatric disorders. We also conclude some of the major puzzles in the therapeutic uses of OXT in stress-related neuropsychiatric disorders. Although some questions remain to be resolved, OXT has an enormous potential therapeutic use as a hormone that regulates stress responses.
Collapse
Affiliation(s)
- Sen Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Ying-Dan Zhang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China
| | - Dong-Dong Shi
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Zhen Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, 600 Wan Ping Nan Road, Shanghai, 200030, China.
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
5
|
Rybka KA, Lafrican JJ, Rosinger ZJ, Ariyibi DO, Brooks MR, Jacobskind JS, Zuloaga DG. Sex differences in androgen receptor, estrogen receptor alpha, and c-Fos co-expression with corticotropin releasing factor expressing neurons in restrained adult mice. Horm Behav 2023; 156:105448. [PMID: 38344954 PMCID: PMC10861933 DOI: 10.1016/j.yhbeh.2023.105448] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 02/15/2024]
Abstract
Gonadal hormone actions through androgen receptor (AR) and estrogen receptor alpha (ERα) regulate sex differences in hypothalamic-pituitary-adrenal (HPA) axis responsivity and stress-related behaviors. Here we tested whether corticotropin releasing factor (CRF) expressing neurons, which are widely known to regulate neuroendocrine and behavioral stress responses, co-express AR and ERα as a potential mechanism for gonadal hormone regulation of these responses. Using Crh-IRES-Cre::Ai9 reporter mice we report high co-localization of AR in CRF neurons within the medial preoptic area (MPOA), bed nucleus of the stria terminalis (BST), medial amygdala (MeA), and ventromedial hypothalamus (VMH), moderate levels within the central amygdala (CeA) and low levels in the paraventricular hypothalamus (PVN). Sex differences in CRF/AR co-expression were found in the principal nucleus of the BST (BSTmpl), CeA, MeA, and VMH (males>females). CRF co-localization with ERα was generally lower relative to AR co-localization. However, high co-expression was found within the MPOA, AVPV, and VMH, with moderate co-expression in the arcuate nucleus (ARC), BST, and MeA and low levels in the PVN and CeA. Sex differences in CRF/ERα co-localization were found in the BSTmpl and PVN (males>females). Finally, we assessed neural activation of CRF neurons in restraint-stressed mice and found greater CRF/c-Fos co-expression in females in the BSTmpl and periaqueductal gray, while co-expression was higher in males within the ARC and dorsal CA1. Given the known role of CRF in regulating behavioral stress responses and the HPA axis, AR/ERα co-expression and sex-specific activation of CRF cell groups indicate potential mechanisms for modulating sex differences in these functions.
Collapse
Affiliation(s)
- Krystyna A Rybka
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jennifer J Lafrican
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Zachary J Rosinger
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Deborah O Ariyibi
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Mecca R Brooks
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America.
| |
Collapse
|
6
|
Arjmand S, Bender D, Jakobsen S, Wegener G, Landau AM. Peering into the Brain's Estrogen Receptors: PET Tracers for Visualization of Nuclear and Extranuclear Estrogen Receptors in Brain Disorders. Biomolecules 2023; 13:1405. [PMID: 37759805 PMCID: PMC10526964 DOI: 10.3390/biom13091405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/12/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Estrogen receptors (ERs) play a multitude of roles in brain function and are implicated in various brain disorders. The use of positron emission tomography (PET) tracers for the visualization of ERs' intricate landscape has shown promise in oncology but remains limited in the context of brain disorders. Despite recent progress in the identification and development of more selective ligands for various ERs subtypes, further optimization is necessary to enable the reliable and efficient imaging of these receptors. In this perspective, we briefly touch upon the significance of estrogen signaling in the brain and raise the setbacks associated with the development of PET tracers for identification of specific ERs subtypes in the brain. We then propose avenues for developing efficient PET tracers to non-invasively study the dynamics of ERs in the brain, as well as neuropsychiatric diseases associated with their malfunction in a longitudinal manner. This perspective puts several potential candidates on the table and highlights the unmet needs and areas requiring further research to unlock the full potential of PET tracers for ERs imaging, ultimately aiding in deepening our understanding of ERs and forging new avenues for potential therapeutic strategies.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Dirk Bender
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Steen Jakobsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
| | - Anne M. Landau
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark;
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, 8200 Aarhus, Denmark; (D.B.); (S.J.)
| |
Collapse
|
7
|
Stincic TL, Kelly MJ. Estrogenic regulation of reproduction and energy homeostasis by a triumvirate of hypothalamic arcuate neurons. J Neuroendocrinol 2022; 34:e13145. [PMID: 35581942 DOI: 10.1111/jne.13145] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/31/2022] [Accepted: 04/15/2022] [Indexed: 11/29/2022]
Abstract
Pregnancy is energetically demanding and therefore, by necessity, reproduction and energy balance are inextricably linked. With insufficient or excessive energy stores a female is liable to suffer complications during pregnancy or produce unhealthy offspring. Gonadotropin-releasing hormone neurons are responsible for initiating both the pulsatile and subsequent surge release of luteinizing hormone to control ovulation. Meticulous work has identified two hypothalamic populations of kisspeptin (Kiss1) neurons that are critical for this pattern of release. The involvement of the hypothalamus is unsurprising because its quintessential function is to couple the endocrine and nervous systems, coordinating energy balance and reproduction. Estrogens, more specifically 17β-estradiol (E2 ), orchestrate the activity of a triumvirate of hypothalamic neurons within the arcuate nucleus (ARH) that govern the physiological underpinnings of these behavioral dynamics. Arising from a common progenitor pool, these cells differentiate into ARH kisspeptin, pro-opiomelanocortin (POMC), and agouti related peptide/neuropeptide Y (AgRP) neurons. Although the excitability of all these subpopulations is subject to genomic and rapid estrogenic regulation, Kiss1 neurons are the most sensitive, reflecting their integral function in female fertility. Based on the premise that E2 coordinates autonomic functions around reproduction, we review recent findings on how Kiss1 neurons interact with gonadotropin-releasing hormone, AgRP and POMC neurons, as well as how the rapid membrane-initiated and intracellular signaling cascades activated by E2 in these neurons are critical for control of homeostatic functions supporting reproduction. In particular, we highlight how Kiss1 and POMC neurons conspire to inhibit AgRP neurons and diminish food motivation in service of reproductive success.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
| | - Martin J Kelly
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR, USA
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR, USA
| |
Collapse
|
8
|
Role of Estrogens in Menstrual Migraine. Cells 2022; 11:cells11081355. [PMID: 35456034 PMCID: PMC9025552 DOI: 10.3390/cells11081355] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022] Open
Abstract
Migraine is a major neurological disorder affecting one in nine adults worldwide with a significant impact on health care and socioeconomic systems. Migraine is more prevalent in women than in men, with 17% of all women meeting the diagnostic criteria for migraine. In women, the frequency of migraine attacks shows variations over the menstrual cycle and pregnancy, and the use of combined hormonal contraception (CHC) or hormone replacement therapy (HRT) can unveil or modify migraine disease. In the general population, 18–25% of female migraineurs display a menstrual association of their headache. Here we present an overview on the evidence supporting the role of reproductive hormones, in particular estrogens, in the pathophysiology of migraine. We also analyze the efficacy and safety of prescribing exogenous estrogens as a potential treatment for menstrual-related migraine. Finally, we point to controversial issues and future research areas in the field of reproductive hormones and migraine.
Collapse
|
9
|
Grassi D, Marraudino M, Garcia-Segura LM, Panzica GC. The hypothalamic paraventricular nucleus as a central hub for the estrogenic modulation of neuroendocrine function and behavior. Front Neuroendocrinol 2022; 65:100974. [PMID: 34995643 DOI: 10.1016/j.yfrne.2021.100974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 12/18/2021] [Accepted: 12/21/2021] [Indexed: 12/17/2022]
Abstract
Estradiol and hypothalamic paraventricular nucleus (PVN) help coordinate reproduction with body physiology, growth and metabolism. PVN integrates hormonal and neural signals originating in the periphery, generating an output mediated both by its long-distance neuronal projections, and by a variety of neurohormones produced by its magnocellular and parvocellular neurosecretory cells. Here we review the cyto-and chemo-architecture, the connectivity and function of PVN and the sex-specific regulation exerted by estradiol on PVN neurons and on the expression of neurotransmitters, neuromodulators, neuropeptides and neurohormones in PVN. Classical and non-classical estrogen receptors (ERs) are expressed in neuronal afferents to PVN and in specific PVN interneurons, projecting neurons, neurosecretory neurons and glial cells that are involved in the input-output integration and coordination of neurohormonal signals. Indeed, PVN ERs are known to modulate body homeostatic processes such as autonomic functions, stress response, reproduction, and metabolic control. Finally, the functional implications of the estrogenic modulation of the PVN for body homeostasis are discussed.
Collapse
Affiliation(s)
- D Grassi
- Department of Anatomy, Histology and Neuroscience, Universidad Autonoma de Madrid, Madrid, Spain
| | - M Marraudino
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy
| | - L M Garcia-Segura
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - G C Panzica
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Torino, Italy; Department of Neuroscience Rita Levi Montalcini, University of Torino, Torino, Italy.
| |
Collapse
|
10
|
Hormonal influences in migraine - interactions of oestrogen, oxytocin and CGRP. Nat Rev Neurol 2021; 17:621-633. [PMID: 34545218 DOI: 10.1038/s41582-021-00544-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/16/2021] [Indexed: 02/07/2023]
Abstract
Migraine is ranked as the second highest cause of disability worldwide and the first among women aged 15-49 years. Overall, the incidence of migraine is threefold higher among women than men, though the frequency and severity of attacks varies during puberty, the menstrual cycle, pregnancy, the postpartum period and menopause. Reproductive hormones are clearly a key influence in the susceptibility of women to migraine. A fall in plasma oestrogen levels can trigger attacks of migraine without aura, whereas higher oestrogen levels seem to be protective. The basis of these effects is unknown. In this Review, we discuss what is known about sex hormones and their receptors in migraine-related areas in the CNS and the peripheral trigeminovascular pathway. We consider the actions of oestrogen via its multiple receptor subtypes and the involvement of oxytocin, which has been shown to prevent migraine attacks. We also discuss possible interactions of these hormones with the calcitonin gene-related peptide (CGRP) system in light of the success of anti-CGRP treatments. We propose a simple model to explain the hormone withdrawal trigger in menstrual migraine, which could provide a foundation for improved management and therapy for hormone-related migraine in women.
Collapse
|
11
|
Hypothalamic Expression of Neuropeptide Y (NPY) and Pro-OpioMelanoCortin (POMC) in Adult Male Mice Is Affected by Chronic Exposure to Endocrine Disruptors. Metabolites 2021; 11:metabo11060368. [PMID: 34207679 PMCID: PMC8228876 DOI: 10.3390/metabo11060368] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/04/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023] Open
Abstract
In the arcuate nucleus, neuropeptide Y (NPY) neurons, increase food intake and decrease energy expenditure, and control the activity of pro-opiomelanocortin (POMC) neurons, that decrease food intake and increase energy expenditure. Both systems project to other hypothalamic nuclei such as the paraventricular and dorsomedial hypothalamic nuclei. Endocrine disrupting chemicals (EDCs) are environmental contaminants that alter the endocrine system causing adverse health effects in an intact organism or its progeny. We investigated the effects of long-term exposure to some EDCs on the hypothalamic NPY and POMC systems of adult male mice that had been previously demonstrated to be a target of some of these EDCs after short-term exposure. Animals were chronically fed for four months with a phytoestrogen-free diet containing two different concentrations of bisphenol A, diethylstilbestrol, tributyltin, or E2. At the end, brains were processed for NPY and POMC immunohistochemistry and quantitatively analyzed. In the arcuate and dorsomedial nuclei, both NPY and POMC immunoreactivity showed a statistically significant decrease. In the paraventricular nucleus, only the NPY system was affected, while the POMC system was not affected. Finally, in the VMH the NPY system was affected whereas no POMC immunoreactive material was observed. These results indicate that adult exposure to different EDCs may alter the hypothalamic circuits that control food intake and energy metabolism.
Collapse
|
12
|
Liu H, He Y, Beck J, da Silva Teixeira S, Harrison K, Xu Y, Sisley S. Defining vitamin D receptor expression in the brain using a novel VDR Cre mouse. J Comp Neurol 2021; 529:2362-2375. [PMID: 33368246 DOI: 10.1002/cne.25100] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 12/10/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022]
Abstract
Vitamin D action has been linked to several diseases regulated by the brain including obesity, diabetes, autism, and Parkinson's. However, the location of the vitamin D receptor (VDR) in the brain is not clear due to conflicting reports. We found that two antibodies previously published as specific in peripheral tissues are not specific in the brain. We thus created a new knockin mouse with cre recombinase expression under the control of the endogenous VDR promoter (VDRCre ). We demonstrated that the cre activity in the VDRCre mouse brain (as reported by a cre-dependent tdTomato expression) is highly overlapping with endogenous VDR mRNAs. These VDR-expressing cells were enriched in multiple brain regions including the cortex, amygdala, caudate putamen, and hypothalamus among others. In the hypothalamus, VDR partially colocalized with vasopressin, oxytocin, estrogen receptor-α, and β-endorphin to various degrees. We further functionally validated our model by demonstrating that the endogenous VDR agonist 1,25-dihydroxyvitamin D activated all tested tdTomato+ neurons in the paraventricular hypothalamus but had no effect on neurons without tdTomato fluorescence. Thus, we have generated a new mouse tool that allows us to visualize VDR-expressing cells and to characterize their functions.
Collapse
Affiliation(s)
- Hailan Liu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA.,Department of Metabolism and Endocrinology, Metabolic Syndrome Research Center, Key Laboratory of Diabetes Immunology, National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Yang He
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Jessie Beck
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Silvania da Silva Teixeira
- Department of Pediatrics, Section of Nutrition, University of Colorado Denver, Anschutz Medical Campus, Aurora, Colorado, USA
| | - Keisha Harrison
- Department of Food Science and Technology, Oregon State University, Corvallis, Oregon, USA
| | - Yong Xu
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| | - Stephanie Sisley
- Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
13
|
P11 deficiency increases stress reactivity along with HPA axis and autonomic hyperresponsiveness. Mol Psychiatry 2021; 26:3253-3265. [PMID: 33005029 PMCID: PMC8505237 DOI: 10.1038/s41380-020-00887-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/02/2020] [Accepted: 09/11/2020] [Indexed: 12/22/2022]
Abstract
Patients suffering from mood disorders and anxiety commonly exhibit hypothalamic-pituitary-adrenocortical (HPA) axis and autonomic hyperresponsiveness. A wealth of data using preclinical animal models and human patient samples indicate that p11 deficiency is implicated in depression-like phenotypes. In the present study, we used p11-deficient (p11KO) mice to study potential roles of p11 in stress responsiveness. We measured stress response using behavioral, endocrine, and physiological readouts across early postnatal and adult life. Our data show that p11KO pups respond more strongly to maternal separation than wild-type pups, even though their mothers show no deficits in maternal behavior. Adult p11KO mice display hyperactivity of the HPA axis, which is paralleled by depression- and anxiety-like behaviors. p11 was found to be highly enriched in vasopressinergic cells of the paraventricular nucleus and regulates HPA hyperactivity in a V1B receptor-dependent manner. Moreover, p11KO mice display sympathetic-adrenal-medullary (SAM) axis hyperactivity, with elevated adrenal norepinephrine and epinephrine levels. Using conditional p11KO mice, we demonstrate that this SAM hyperactivity is partially regulated by the loss of p11 in serotonergic neurons of the raphe nuclei. Telemetric electrocardiogram measurements show delayed heart rate recovery in p11KO mice in response to novelty exposure and during expression of fear following auditory trace fear conditioning. Furthermore, p11KO mice have elevated basal heart rate in fear conditioning tests indicating increased autonomic responsiveness. This set of experiments provide strong and versatile evidence that p11 deficiency leads to HPA and SAM axes hyperresponsiveness along with increased stress reactivity.
Collapse
|
14
|
Jorgensen C, Wang Z. Hormonal Regulation of Mammalian Adult Neurogenesis: A Multifaceted Mechanism. Biomolecules 2020; 10:biom10081151. [PMID: 32781670 PMCID: PMC7465680 DOI: 10.3390/biom10081151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Adult neurogenesis—resulting in adult-generated functioning, integrated neurons—is still one of the most captivating research areas of neuroplasticity. The addition of new neurons in adulthood follows a seemingly consistent multi-step process. These neurogenic stages include proliferation, differentiation, migration, maturation/survival, and integration of new neurons into the existing neuronal network. Most studies assessing the impact of exogenous (e.g., restraint stress) or endogenous (e.g., neurotrophins) factors on adult neurogenesis have focused on proliferation, survival, and neuronal differentiation. This review will discuss the multifaceted impact of hormones on these various stages of adult neurogenesis. Specifically, we will review the evidence for hormonal facilitation (via gonadal hormones), inhibition (via glucocorticoids), and neuroprotection (via recruitment of other neurochemicals such as neurotrophin and neuromodulators) on newly adult-generated neurons in the mammalian brain.
Collapse
Affiliation(s)
- Claudia Jorgensen
- Behavioral Science Department, Utah Valley University, Orem, UT 84058, USA
- Correspondence:
| | - Zuoxin Wang
- Psychology Department and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA;
| |
Collapse
|
15
|
Zuloaga DG, Heck AL, De Guzman RM, Handa RJ. Roles for androgens in mediating the sex differences of neuroendocrine and behavioral stress responses. Biol Sex Differ 2020; 11:44. [PMID: 32727567 PMCID: PMC7388454 DOI: 10.1186/s13293-020-00319-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/09/2020] [Indexed: 12/17/2022] Open
Abstract
Estradiol and testosterone are powerful steroid hormones that impact brain function in numerous ways. During development, these hormones can act to program the adult brain in a male or female direction. During adulthood, gonadal steroid hormones can activate or inhibit brain regions to modulate adult functions. Sex differences in behavioral and neuroendocrine (i.e., hypothalamic pituitary adrenal (HPA) axis) responses to stress arise as a result of these organizational and activational actions. The sex differences that are present in the HPA and behavioral responses to stress are particularly important considering their role in maintaining homeostasis. Furthermore, dysregulation of these systems can underlie the sex biases in risk for complex, stress-related diseases that are found in humans. Although many studies have explored the role of estrogen and estrogen receptors in mediating sex differences in stress-related behaviors and HPA function, much less consideration has been given to the role of androgens. While circulating androgens can act by binding and activating androgen receptors, they can also act by metabolism to estrogenic molecules to impact estrogen signaling in the brain and periphery. This review focuses on androgens as an important hormone for modulating the HPA axis and behaviors throughout life and for setting up sex differences in key stress regulatory systems that could impact risk for disease in adulthood. In particular, impacts of androgens on neuropeptide systems known to play key roles in HPA and behavioral responses to stress (corticotropin-releasing factor, vasopressin, and oxytocin) are discussed. A greater knowledge of androgen action in the brain is key to understanding the neurobiology of stress in both sexes.
Collapse
Affiliation(s)
| | - Ashley L Heck
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
16
|
Sagoshi S, Maejima S, Morishita M, Takenawa S, Otubo A, Takanami K, Sakamoto T, Sakamoto H, Tsukahara S, Ogawa S. Detection and Characterization of Estrogen Receptor Beta Expression in the Brain with Newly Developed Transgenic Mice. Neuroscience 2020; 438:182-197. [PMID: 32387645 DOI: 10.1016/j.neuroscience.2020.04.047] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/26/2020] [Accepted: 04/28/2020] [Indexed: 12/11/2022]
Abstract
Two types of nuclear estrogen receptors, ERα and ERβ, have been shown to be differentially involved in the regulation of various types of behaviors. Due to a lack of tools for identifying ERβ expression, detailed anatomical distribution and neurochemical characteristics of ERβ expressing cells and cellular co-expression with ERα remain unclear. We have generated transgenic mice ERβ-RFPtg, in which RFP was inserted downstream of ERβ BAC promotor. We verified RFP signals as ERβ by confirming: (1) high ERβ mRNA levels in RFP-expressing cells collected by fluorescence-activated cell sorting; and (2) co-localization of ERβ mRNA and RFP proteins in the paraventricular nucleus (PVN). Strong ERβ-RFP signals were found in the PVN, medial preoptic area (MPOA), bed nucleus of the stria terminalis, medial amygdala (MeA), and dorsal raphe nucleus (DRN). In the MPOA and MeA, three types of cell populations were identified; those expressing both ERα and ERβ, and those expressing exclusively either ERα or ERβ. The majority of PVN and DRN cells expressed only ERβ-RFP. Further, ERβ-RFP positive cells co-expressed oxytocin in the PVN, and tryptophan hydroxylase 2 and progesterone receptors in the DRN. In the MeA, some ERβ-RFP positive cells co-expressed oxytocin receptors. These findings collectively suggest that ERβ-RFPtg mice can be a powerful tool for future studies on ERβ function in the estrogenic regulation of social behaviors.
Collapse
Affiliation(s)
- Shoko Sagoshi
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Sho Maejima
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Masahiro Morishita
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Satoshi Takenawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Akito Otubo
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Okayama 701-4303, Japan
| | - Keiko Takanami
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Okayama 701-4303, Japan
| | - Tatsuya Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Okayama 701-4303, Japan
| | - Hirotaka Sakamoto
- Ushimado Marine Institute (UMI), Graduate School of Natural Science and Technology, Okayama University, Setouchi, Okayama 701-4303, Japan
| | - Shinji Tsukahara
- Division of Life Science, Graduate School of Science and Engineering, Saitama University, Saitama, Saitama 338-8570, Japan
| | - Sonoko Ogawa
- Laboratory of Behavioral Neuroendocrinology, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan.
| |
Collapse
|
17
|
Balapattabi K, Little JT, Bachelor ME, Cunningham RL, Cunningham JT. Sex Differences in the Regulation of Vasopressin and Oxytocin Secretion in Bile Duct-Ligated Rats. Neuroendocrinology 2020; 111:237-248. [PMID: 32335554 PMCID: PMC7584765 DOI: 10.1159/000508104] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/23/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Hyponatremia due to elevated arginine vasopressin (AVP) secretion increases mortality in liver failure patients. No previous studies have addressed sex differences in hyponatremia in liver failure animal models. OBJECTIVE This study addressed this gap in our understanding of the potential sex differences in hyponatremia associated with increased AVP secretion. METHODS This study tested the role of sex in the development of hyponatremia using adult male, female, and ovariectomized (OVX) female bile duct-ligated (BDL) rats. RESULTS All BDL rats had significantly increased liver to body weight ratios compared to sham controls. Male BDL rats had hyponatremia with significant increases in plasma copeptin and FosB expression in supraoptic AVP neurons compared to male shams (all p < 0.05; 5-7). Female BDL rats did not become hyponatremic or demonstrate increased supraoptic AVP neuron activation and copeptin secretion compared to female shams. Plasma oxytocin was significantly higher in female BDL rats compared to female sham (p < 0.05; 6-10). This increase was not observed in male BDL rats. Ovariectomy significantly decreased plasma estradiol in sham rats compared to intact female sham (p < 0.05; 6-10). However, circulating estradiol was significantly elevated in OVX BDL rats compared to the OVX and female shams (p < 0.05; 6-10). Adrenal estradiol, testosterone, and dehydroepiandrosterone (DHEA) were measured to identify a possible source of circulating estradiol in OVX BDL rats. The OVX BDL rats had significantly increased adrenal estradiol along with significantly decreased adrenal testosterone and DHEA compared to OVX shams (all p < 0.05; 6-7). Plasma osmolality, hematocrit, copeptin, and AVP neuron activation were not significantly different between OVX BDL and OVX shams. Plasma oxytocin was significantly higher in OVX BDL rats compared to OVX sham. CONCLUSIONS Our results show that unlike male BDL rats, female and OVX BDL rats did not develop hyponatremia, supraoptic AVP neuron activation, or increased copeptin secretion compared to female shams. Adrenal estradiol might have compensated for the lack of ovarian estrogens in OVX BDL rats.
Collapse
Affiliation(s)
- Kirthikaa Balapattabi
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Joel T Little
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Martha E Bachelor
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - Rebecca L Cunningham
- Department of Pharmaceutical Sciences, School of Pharmacy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA
| | - J Thomas Cunningham
- Department of Physiology and Anatomy, University of North Texas Health Science Center at Fort Worth, Fort Worth, Texas, USA,
| |
Collapse
|
18
|
Neurochemical Characterization of Neurons Expressing Estrogen Receptor β in the Hypothalamic Nuclei of Rats Using in Situ Hybridization and Immunofluorescence. Int J Mol Sci 2019; 21:ijms21010115. [PMID: 31877966 PMCID: PMC6981915 DOI: 10.3390/ijms21010115] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
Estrogens play an essential role in multiple physiological functions in the brain, including reproductive neuroendocrine, learning and memory, and anxiety-related behaviors. To determine these estrogen functions, many studies have tried to characterize neurons expressing estrogen receptors known as ERα and ERβ. However, the characteristics of ERβ-expressing neurons in the rat brain still remain poorly understood compared to that of ERα-expressing neurons. The main aim of this study is to determine the neurochemical characteristics of ERβ-expressing neurons in the rat hypothalamus using RNAscope in situ hybridization (ISH) combined with immunofluorescence. Strong Esr2 signals were observed especially in the anteroventral periventricular nucleus (AVPV), bed nucleus of stria terminalis, hypothalamic paraventricular nucleus (PVN), supraoptic nucleus, and medial amygdala, as previously reported. RNAscope ISH with immunofluorescence revealed that more than half of kisspeptin neurons in female AVPV expressed Esr2, whereas few kisspeptin neurons were found to co-express Esr2 in the arcuate nucleus. In the PVN, we observed a high ratio of Esr2 co-expression in arginine-vasopressin neurons and a low ratio in oxytocin and corticotropin-releasing factor neurons. The detailed neurochemical characteristics of ERβ-expressing neurons identified in the current study can be very essential to understand the estrogen signaling via ERβ.
Collapse
|
19
|
Toepfer P, O'Donnell KJ, Entringer S, Garg E, Heim CM, Lin DTS, MacIsaac JL, Kobor MS, Meaney MJ, Provençal N, Binder EB, Wadhwa PD, Buss C. Dynamic DNA methylation changes in the maternal oxytocin gene locus (OXT) during pregnancy predict postpartum maternal intrusiveness. Psychoneuroendocrinology 2019; 103:156-162. [PMID: 30690225 PMCID: PMC6554513 DOI: 10.1016/j.psyneuen.2019.01.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 01/11/2019] [Accepted: 01/12/2019] [Indexed: 01/21/2023]
Abstract
Maternal behavior (MB) is observable across mammals and represents an important feature of environmental variation during early postnatal development. Oxytocin (OT) plays a crucial role in MB. Even prior to childbirth, pregnancy induces epigenetic and other downstream changes in the maternal OT-system, likely mediated by the actions of steroid hormones. However, little is known about the nature and consequences of epigenetic modifications in the maternal OT-encoding gene (OXT) during pregnancy. Our study aims to investigate temporal dynamics of OXT promoter DNA methylation (DNAm) throughout pregnancy in predicting MB in humans. In 107 mother-child dyads, maternal OXT DNAm was serially analyzed in whole blood in early, mid and late pregnancy. MB was coded based on standardized mother-child interactions at six months postpartum. After controlling for cellular heterogeneity, race/ethnicity, age, and socioeconomic status, OXT-promoter DNAm exhibited a dynamic profile during pregnancy (b = 0.026, t=-3.37, p < .001), with decreases in DNAm from early to mid-pregnancy and no further change until late pregnancy. Moreover, dynamic DNAm trajectories of the OXT-promoter region predicted MB (intrusiveness) at six months postpartum (b = 0.006, t = 2.0, p < 0.05), with 6% higher OXT DNAm in late pregnancy in intrusive compared to non-intrusive mothers. We here demonstrate that OXT promoter DNAm changes significantly throughout gestation in peripheral blood and that these changes are associated with variability in MB, providing a novel potential biomarker predicting postnatal MB.
Collapse
Affiliation(s)
- Philipp Toepfer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany
| | - Kieran J O'Donnell
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, QC, Canada
| | - Sonja Entringer
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; University of California, Irvine, Development, Health, and Disease Research Program, Orange, CA, USA
| | - Elika Garg
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada
| | - Christine M Heim
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; Department of Biobehavioral Health, Pennsylvania State University, University Park, PA, USA
| | - David T S Lin
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Julia L MacIsaac
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver, BC, Canada
| | - Michael J Meaney
- Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, QC, Canada; Singapore Institute for Clinical Sciences, Singapore
| | - Nadine Provençal
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany; Simon Fraser University, Faculty of Health Sciences, Vancouver, BC, Canada
| | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany; Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Pathik D Wadhwa
- University of California, Irvine, Development, Health, and Disease Research Program, Orange, CA, USA; Departments of Psychiatry and Human Behavior, Obstetrics and Gynecology, and Epidemiology, University of California, Irvine, School of Medicine, Irvine, CA, USA
| | - Claudia Buss
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Institute of Medical Psychology, Berlin, Germany; University of California, Irvine, Development, Health, and Disease Research Program, Orange, CA, USA.
| |
Collapse
|
20
|
Vilhena-Franco T, Mecawi AS, Almeida-Pereira G, Lucio-Oliveira F, Elias LLK, Antunes-Rodrigues J. Oestradiol acts through its beta receptor to increase vasopressin neuronal activation and secretion induced by dehydration. J Neuroendocrinol 2019; 31:e12712. [PMID: 30887585 DOI: 10.1111/jne.12712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 03/11/2019] [Accepted: 03/13/2019] [Indexed: 01/22/2023]
Abstract
Vasopressinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei express oestrogen receptor (ER)β and receive afferent projections from osmosensitive neurones that express ERα. However, which subtype of these receptors mediates the effects of oestradiol on vasopressin (AVP) secretion induced by hydromineral challenge has not yet been demonstrated in vivo. Moreover, AVP secretion induced by hyperosmolality is known to involve activation of TRPV1 (transient receptor potential vanilloid, member 1) in magnocellular neurones, although whether oestradiol modulates expression of this receptor is unknown. Thus, the present study aimed to clarify the mechanisms involved in the modulation exerted by oestradiol on AVP secretion, specifically investigating the involvement of ERβ, ERα and TRPV1 receptors in response to water deprivation (WD). We observed that treatment with an ERβ agonist potentiated AVP secretion and vasopressinergic neuronal activation induced by WD. This increase in AVP secretion induced by WD was reversed by an ERβ antagonist. By contrast to ERβ, the ERα agonist did not alter plasma AVP concentrations or activation of AVP neurones in the SON and PVN. Additionally, Fos expression in the subfornical organ was not altered by the ERα agonist. TRPV1 mRNA expression was increased by WD in the SON, although this response was not altered by any treatment. The results of the present study suggest that ERβ mediates the effects of oestradiol on AVP secretion in response to WD, indicating that the effects of oestradiol occur directly in AVP neurones without affecting TRPV1.
Collapse
Affiliation(s)
- Tatiane Vilhena-Franco
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - André Souza Mecawi
- Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Gislaine Almeida-Pereira
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| | - Fabiana Lucio-Oliveira
- Federal Institute of Education, Science and Technology of Southern Minas Gerais, Muzambinho, Brazil
| | | | - José Antunes-Rodrigues
- Department of Physiology, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirao Preto, Brazil
| |
Collapse
|
21
|
Heck AL, Handa RJ. Sex differences in the hypothalamic-pituitary-adrenal axis' response to stress: an important role for gonadal hormones. Neuropsychopharmacology 2019; 44:45-58. [PMID: 30111811 PMCID: PMC6235871 DOI: 10.1038/s41386-018-0167-9] [Citation(s) in RCA: 274] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/19/2018] [Accepted: 07/22/2018] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis, a neuroendocrine network that controls hormonal responses to internal and external challenges in an organism's environment, exhibits strikingly sex-biased activity. In adult female rodents, acute HPA function following a stressor is markedly greater than it is in males, and this difference has largely been attributed to modulation by the gonadal hormones testosterone and estradiol. These gonadal hormones are produced by the hypothalamic-pituitary-gonadal (HPG) axis and have been shown to determine sex differences in adult HPA function after acute stress via their activational and organizational effects. Although these actions of gonadal hormones are well supported, the possibility that sex chromosomes similarly influence HPA activity is unexplored. Moreover, questions remain regarding sex differences in the activity of the HPA axis following chronic stress and the underlying contributions of gonadal hormones and sex chromosomes. The present review examines what is currently known about sex differences in the neuroendocrine response to stress, as well as outstanding questions regarding this sex bias. Although it primarily focuses on the rodent literature, a brief discussion of sex differences in the human HPA axis is also included.
Collapse
Affiliation(s)
- Ashley L. Heck
- 0000 0004 1936 8083grid.47894.36Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| | - Robert J. Handa
- 0000 0004 1936 8083grid.47894.36Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523 USA
| |
Collapse
|
22
|
Stincic TL, Rønnekleiv OK, Kelly MJ. Diverse actions of estradiol on anorexigenic and orexigenic hypothalamic arcuate neurons. Horm Behav 2018; 104:146-155. [PMID: 29626486 PMCID: PMC6196116 DOI: 10.1016/j.yhbeh.2018.04.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 12/13/2022]
Abstract
Contribution to Special Issue on Fast effects of steroids. There is now compelling evidence for membrane-associated estrogen receptors in hypothalamic neurons that are critical for the hypothalamic control of homeostatic functions. It has been known for some time that estradiol (E2) can rapidly alter hypothalamic neuronal activity within seconds, indicating that some cellular effects can occur via membrane initiated events. However, our understanding of how E2 signals via membrane-associated receptors and how these signals impact physiological functions is only just emerging. Thus, E2 can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell excitability and even gene transcription in hypothalamic neurons. One population of hypothalamic neurons, the anorexigenic proopiomelanocortin (POMC) neurons, has long been considered to be a target of E2's actions based on gene (Pomc) expression studies. However, we now know that E2 can rapidly alter POMC neuronal activity within seconds and activate several intracellular signaling cascades that ultimately affect gene expression, actions which are critical for maintaining sensitivity to insulin in metabolically stressed states. E2 also affects the orexigenic Neuropeptide Y/Agouti-related Peptide (NPY/AgRP) neurons in similarly rapid but antagonistic manner. Therefore, this review will summarize our current state of knowledge of how E2 signals via rapid membrane-initiated and intracellular signaling cascades in POMC and NPY/AgRP neurons to regulate energy homeostasis.
Collapse
Affiliation(s)
- Todd L Stincic
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Oline K Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA; Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA
| | - Martin J Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA; Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA.
| |
Collapse
|
23
|
Nowacka-Chmielewska MM, Kasprowska-Liśkiewicz D, Barski JJ, Obuchowicz E, Małecki A. The behavioral and molecular evaluation of effects of social instability stress as a model of stress-related disorders in adult female rats. Stress 2017; 20:549-561. [PMID: 28911267 DOI: 10.1080/10253890.2017.1376185] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The study aimed to test the hypotheses that chronic social instability stress (CSIS) alters behavioral and physiological parameters and expression of selected genes important for stress response and social behaviors. Adult female Sprague-Dawley rats were subjected to the 4-week CSIS procedure, which involves unpredictable rotation between phases of isolation and overcrowding. Behavioral analyses (Experiment 1) were performed on the same rats before and after CSIS (n = 16) and physiological and biochemical measurements (Experiment 2) were made on further control (CON; n = 7) and stressed groups (CSIS; n = 8). Behaviors in the open field test (locomotor and exploratory activities) and elevated-plus maze (anxiety-related behaviors) indicated anxiety after CSIS. CSIS did not alter the physiological parameters measured, i.e. body weight gain, regularity of estrous cycles, and circulating concentrations of stress hormones and sex steroids. QRT-PCR analysis of mRNA expression levels was performed on amygdala, hippocampus, prefrontal cortex (PFC), and hypothalamus. The main finding is that CSIS alters the mRNA levels for the studied genes in a region-specific manner. Hence, expression of POMC (pro-opiomelanocortin), AVPR1a (arginine vasopressin receptor), and OXTR (oxytocin receptor) significantly increased in the amygdala following CSIS, while in PFC and/or hypothalamus, POMC, AVPR1a, AVPR1b, OXTR, and ERβ (estrogen receptor beta) expression decreased. CSIS significantly reduced expression of CRH-R1 (corticotropin-releasing hormone receptor type 1) in the hippocampus. The directions of change in gene expression and the genes and regions affected indicate a molecular basis for the behavior changes. In conclusion, CSIS may be valuable for further analyzing the neurobiology of stress-related disorders in females.
Collapse
MESH Headings
- Amygdala/metabolism
- Animals
- Anxiety/genetics
- Anxiety/metabolism
- Behavior, Animal
- Brain/metabolism
- Chronic Disease
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Female
- Gene Expression
- Hippocampus/metabolism
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamus/metabolism
- Pituitary-Adrenal System/metabolism
- Prefrontal Cortex/metabolism
- Pro-Opiomelanocortin/genetics
- Pro-Opiomelanocortin/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Corticotropin-Releasing Hormone/genetics
- Receptors, Corticotropin-Releasing Hormone/metabolism
- Receptors, Oxytocin/genetics
- Receptors, Oxytocin/metabolism
- Receptors, Vasopressin/genetics
- Receptors, Vasopressin/metabolism
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
Collapse
Affiliation(s)
- Marta Maria Nowacka-Chmielewska
- a Laboratory of Molecular Biology, Faculty of Physiotherapy , The Jerzy Kukuczka Academy of Physical Education , Katowice , Poland
- b Department of Experimental Medicine, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Daniela Kasprowska-Liśkiewicz
- a Laboratory of Molecular Biology, Faculty of Physiotherapy , The Jerzy Kukuczka Academy of Physical Education , Katowice , Poland
- b Department of Experimental Medicine, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Jarosław Jerzy Barski
- b Department of Experimental Medicine, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
- c Department of Physiology, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Ewa Obuchowicz
- d Department of Pharmacology, School of Medicine in Katowice , Medical University of Silesia , Katowice , Poland
| | - Andrzej Małecki
- a Laboratory of Molecular Biology, Faculty of Physiotherapy , The Jerzy Kukuczka Academy of Physical Education , Katowice , Poland
| |
Collapse
|
24
|
Oyola MG, Handa RJ. Hypothalamic-pituitary-adrenal and hypothalamic-pituitary-gonadal axes: sex differences in regulation of stress responsivity. Stress 2017; 20:476-494. [PMID: 28859530 PMCID: PMC5815295 DOI: 10.1080/10253890.2017.1369523] [Citation(s) in RCA: 392] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gonadal hormones play a key role in the establishment, activation, and regulation of the hypothalamic-pituitary-adrenal (HPA) axis. By influencing the response and sensitivity to releasing factors, neurotransmitters, and hormones, gonadal steroids help orchestrate the gain of the HPA axis to fine-tune the levels of stress hormones in the general circulation. From early life to adulthood, gonadal steroids can differentially affect the HPA axis, resulting in sex differences in the responsivity of this axis. The HPA axis influences many physiological functions making an organism's response to changes in the environment appropriate for its reproductive status. Although the acute HPA response to stressors is a beneficial response, constant activation of this circuitry by chronic or traumatic stressful episodes may lead to a dysregulation of the HPA axis and cause pathology. Compared to males, female mice and rats show a more robust HPA axis response, as a result of circulating estradiol levels which elevate stress hormone levels during non-threatening situations, and during and after stressors. Fluctuating levels of gonadal steroids in females across the estrous cycle are a major factor contributing to sex differences in the robustness of HPA activity in females compared to males. Moreover, gonadal steroids may also contribute to epigenetic and organizational influences on the HPA axis even before puberty. Correspondingly, crosstalk between the hypothalamic-pituitary-gonadal (HPG) and HPA axes could lead to abnormalities of stress responses. In humans, a dysregulated stress response is one of the most common symptoms seen across many neuropsychiatric disorders, and as a result, such interactions may exacerbate peripheral pathologies. In this review, we discuss the HPA and HPG axes and review how gonadal steroids interact with the HPA axis to regulate the stress circuitry during all stages in life.
Collapse
Affiliation(s)
- Mario G Oyola
- a Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| | - Robert J Handa
- a Department of Biomedical Sciences , Colorado State University , Fort Collins , CO , USA
| |
Collapse
|
25
|
Oyola MG, Thompson MK, Handa AZ, Handa RJ. Distribution and chemical composition of estrogen receptor β neurons in the paraventricular nucleus of the female and male mouse hypothalamus. J Comp Neurol 2017; 525:3666-3682. [PMID: 28758220 DOI: 10.1002/cne.24295] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 12/11/2022]
Abstract
Activation of estrogen receptor beta (ERβ)-expressing neurons regulates the mammalian stress response via the hypothalamic-pituitary-adrenal (HPA) axis. These neurons densely populate the paraventricular nucleus of the hypothalamus (PVN). Recent research has revealed striking differences between rat and mouse PVN cytochemistry, but careful exploration of PVN ERβ neurons in mice has been hindered by a lack of specific ERβ antisera. Therefore, we used male and female transgenic mice expressing EGFP under the control of the mouse ERβ promoter (ERβ-EGFP) to examine the chemical architecture of PVN ERβ cells. Using immunohistochemistry, we found that 90% of ERβ-immunoreactivity (-ir) colocalized with EGFP. Cellular colocalization of EGFP with neuropeptides, transcription modulators, and neuronal tracers was examined throughout the PVN. ERβ-EGFP cells expressed oxytocin more abundantly in the rostral (71 ± 3%) than caudal (33 ± 8%) PVN. Arginine vasopressin colocalized with EGFP more often in females (18 ± 3%) than males (4 ± 1%). Moreover, estrogen receptor α-ir colocalized with ERβ-EGFP at low levels (15 ± 3%). Using a corticotropin releasing hormone-cre driver X tdTomato reporter mouse, we found a moderate colocalization with ERβ-ir (48 ± 16%) in the middle PVN. Peripheral injection of fluorogold revealed that the rostral PVN ERβ-EGFP cells are neuroendocrine neurons whereas non-neuroendocrine (presumably pre-autonomic) ERβ-EGFP neurons predominated in the posterior PVN. These data demonstrate chemoarchitectural differences in ERβ neurons of the mouse PVN that are different from that previously described for the rat, thus, elucidating potential neuronal pathways involved in the regulation of the HPA axis in mice.
Collapse
Affiliation(s)
- Mario G Oyola
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Maranda K Thompson
- Department of Basic Medical Sciences, Univ. Arizona College of Medicine, Phoenix, Arizona
| | - Aaron Z Handa
- Department of Basic Medical Sciences, Univ. Arizona College of Medicine, Phoenix, Arizona
| | - Robert J Handa
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
26
|
Nutsch VL, Bell MR, Will RG, Yin W, Wolfe A, Gillette R, Dominguez JM, Gore AC. Aging and estradiol effects on gene expression in the medial preoptic area, bed nucleus of the stria terminalis, and posterodorsal medial amygdala of male rats. Mol Cell Endocrinol 2017; 442:153-164. [PMID: 28007657 PMCID: PMC5276730 DOI: 10.1016/j.mce.2016.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 12/17/2016] [Accepted: 12/18/2016] [Indexed: 12/27/2022]
Abstract
Studies on the role of hormones in male reproductive aging have traditionally focused on testosterone, but estradiol (E2) also plays important roles in the control of masculine physiology and behavior. Our goal was to examine the effects of E2 on the expression of genes selected for E2-sensitivity, involvement in behavioral neuroendocrine functions, and impairments with aging. Mature adult (MAT, 5 mo) and aged (AG, 18 mo) Sprague-Dawley male rats were castrated, implanted with either vehicle or E2 subcutaneous capsules, and euthanized one month later. Bilateral punches were taken from the bed nucleus of the stria terminalis (BnST), posterodorsal medial amygdala (MePD) and the preoptic area (POA). RNA was extracted, and expression of 48 genes analyzed by qPCR using Taqman low-density arrays. Results showed that effects of age and E2 were age- and region-specific. In the POA, 5 genes were increased with E2 compared to vehicle, and there were no age effects. By contrast the BnST showed primarily age-related changes, with 6 genes decreasing with age. The MePD had 5 genes that were higher in aged than mature males, and 17 genes with significant interactions between age and E2. Gene families identified in the MePD included nuclear hormone receptors, neurotransmitters and neuropeptides and their receptors. Ten serum hormones were assayed in these same males, with results revealing both age- and E2-effects, in several cases quite profound. These results support the idea that the male brain continues to be highly sensitive to estradiol even with aging, but the nature of the response can be substantially different in mature and aging animals.
Collapse
Affiliation(s)
- Victoria L Nutsch
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Margaret R Bell
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Ryan G Will
- Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Weiling Yin
- Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA
| | - Andrew Wolfe
- Johns Hopkins University School of Medicine, Baltimore, MD, 21298, USA
| | - Ross Gillette
- Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Juan M Dominguez
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA
| | - Andrea C Gore
- Institute for Neuroscience, The University of Texas at Austin, Austin, TX, USA; Division of Pharmacology and Toxicology, The University of Texas at Austin, Austin, TX, USA; Department of Psychology, The University of Texas at Austin, Austin, TX, USA; Institute of Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
27
|
Marques-Lopes J, Tesfaye E, Israilov S, Van Kempen TA, Wang G, Glass MJ, Pickel VM, Iadecola C, Waters EM, Milner TA. Redistribution of NMDA Receptors in Estrogen-Receptor-β-Containing Paraventricular Hypothalamic Neurons following Slow-Pressor Angiotensin II Hypertension in Female Mice with Accelerated Ovarian Failure. Neuroendocrinology 2017; 104:239-256. [PMID: 27078860 PMCID: PMC5381723 DOI: 10.1159/000446073] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/09/2016] [Indexed: 12/11/2022]
Abstract
Hypertension in male and aging female rodents is associated with glutamate-dependent plasticity in the hypothalamus, but existing models have failed to capture distinct transitional menopausal phases that could have a significant impact on the synaptic plasticity and emergent hypertension. In rodents, accelerated ovarian failure (AOF) induced by systemic injection of 4-vinylcyclohexane diepoxide mimics the estrogen fluctuations seen in human menopause including the perimenopause transition (peri-AOF) and postmenopause (post-AOF). Thus, we used the mouse AOF model to determine the impact of slow-pressor angiotensin II (AngII) administration on blood pressure and on the subcellular distribution of obligatory N-methyl-D-aspartate (NMDA) receptor GluN1 subunits in the paraventricular hypothalamic nucleus (PVN), a key estrogen-responsive cardiovascular regulatory area. Estrogen-sensitive neuronal profiles were identified in mice expressing enhanced green fluorescent protein under the promoter for estrogen receptor (ER) β, a major ER in the PVN. Slow-pressor AngII increased arterial blood pressure in mice at peri- and post-AOF time points. In control oil-injected (nonhypertensive) mice, AngII decreased the total number of GluN1 in ERβ-containing PVN dendrites. In contrast, AngII resulted in a reapportionment of GluN1 from the cytoplasm to the plasma membrane of ERβ-containing PVN dendrites in peri-AOF mice. Moreover, in post-AOF mice, AngII increased total GluN1, dendritic size and radical production in ERβ-containing neurons. These results indicate that unique patterns of hypothalamic glutamate receptor plasticity and dendritic structure accompany the elevated blood pressure in peri- and post-AOF time points. Our findings suggest the possibility that distinct neurobiological processes are associated with the increased blood pressure during perimenopausal and postmenopausal periods.
Collapse
Affiliation(s)
- Jose Marques-Lopes
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Ephrath Tesfaye
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Sigal Israilov
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Tracey A. Van Kempen
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Gang Wang
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
| | - Michael J. Glass
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Costantino Iadecola
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
| | - Elizabeth M. Waters
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, N.Y., USA
| | - Teresa A. Milner
- Feil Family Brain and Mind Research Institute, The Rockefeller University, New York, N.Y., USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, The Rockefeller University, New York, N.Y., USA
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, New York, N.Y., USA
| |
Collapse
|
28
|
Estradiol variability, stressful life events, and the emergence of depressive symptomatology during the menopausal transition. Menopause 2016; 23:257-66. [PMID: 26529616 DOI: 10.1097/gme.0000000000000528] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE The aim of the study was to examine the role of estradiol fluctuation in triggering depressive symptoms in the menopausal transition and assess the role of recent very stressful life events (VSLEs) as a moderating factor in this relationship. METHODS A total of 52 euthymic women in the menopausal transition or early postmenopause (age 45-60) who were assigned to the placebo arm of a randomized controlled trial of hormone therapy provided the data for this report. At enrollment, women's experience of recent VSLEs, depressive symptoms, serum estradiol, and progesterone were assessed. At months 1, 8, and 14, depressive symptoms and hormones were reassessed, and participants underwent a stressor battery involving a speech and a mental arithmetic task. Participants rated their feelings of anxiety, fear, anger, and rejection. The standard deviation of estradiol provided an index of hormone variability over the entire 14 months. RESULTS Greater estradiol variability across the 14 months predicted greater depressive symptoms at month 14, though only in women reporting a higher number of VSLEs at baseline (39% of women reported ≤1 recent event). Greater estradiol variability also predicted greater feelings of rejection to the laboratory stressor at months 8 and 14. Furthermore, among women reporting higher VSLEs at baseline, feelings of rejection in response to the laboratory stressor at month 8 predicted depressive symptoms at month 14. CONCLUSIONS These data suggest that estradiol variability may enhance emotional sensitivity to psychosocial stress, particularly sensitivity to social rejection. Combined with VSLEs proximate to the menopausal transition, this increased sensitivity may contribute to the development of depressed mood.
Collapse
|
29
|
Vilhena-Franco T, Mecawi AS, Elias LLK, Antunes-Rodrigues J. Oestradiol effects on neuroendocrine responses induced by water deprivation in rats. J Endocrinol 2016; 231:167-180. [PMID: 27613338 DOI: 10.1530/joe-16-0311] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/09/2016] [Indexed: 12/18/2022]
Abstract
Water deprivation (WD) induces changes in plasma volume and osmolality, which in turn activate several responses, including thirst, the activation of the renin-angiotensin system (RAS) and vasopressin (AVP) and oxytocin (OT) secretion. These systems seem to be influenced by oestradiol, as evidenced by the expression of its receptor in brain areas that control fluid balance. Thus, we investigated the effects of oestradiol treatment on behavioural and neuroendocrine changes of ovariectomized rats in response to WD. We observed that in response to WD, oestradiol treatment attenuated water intake, plasma osmolality and haematocrit but did not change urinary volume or osmolality. Moreover, oestradiol potentiated WD-induced AVP secretion, but did not alter the plasma OT or angiotensin II (Ang II) concentrations. Immunohistochemical data showed that oestradiol potentiated vasopressinergic neuronal activation in the lateral magnocellular PVN (PaLM) and supraoptic (SON) nuclei but did not induce further changes in Fos expression in the median preoptic nucleus (MnPO) or subfornical organ (SFO) or in oxytocinergic neuronal activation in the SON and PVN of WD rats. Regarding mRNA expression, oestradiol increased OT mRNA expression in the SON and PVN under basal conditions and after WD, but did not induce additional changes in the mRNA expression for AVP in the SON or PVN. It also did not affect the mRNA expression of RAS components in the PVN. In conclusion, our results show that oestradiol acts mainly on the vasopressinergic system in response to WD, potentiating vasopressinergic neuronal activation and AVP secretion without altering AVP mRNA expression.
Collapse
Affiliation(s)
- Tatiane Vilhena-Franco
- Department of PhysiologyFaculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - André Souza Mecawi
- Department of Physiological SciencesInstitute of Biological and Healthy Sciences, Federal Rural University of Rio de Janeiro, Seropédica, Rio de Janeiro, Brazil
- Department of PhysiologyFaculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Lucila Leico Kagohara Elias
- Department of PhysiologyFaculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| | - José Antunes-Rodrigues
- Department of PhysiologyFaculty of Medicine of Ribeirao Preto, University of Sao Paulo, Ribeirao Preto, Sao Paulo, Brazil
| |
Collapse
|
30
|
Borrow AP, Handa RJ. Estrogen Receptors Modulation of Anxiety-Like Behavior. VITAMINS AND HORMONES 2016; 103:27-52. [PMID: 28061972 DOI: 10.1016/bs.vh.2016.08.004] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Estrogens exert profound effects on the expression of anxiety in humans and rodents; however, the directionality of these effects varies considerably within both clinical and preclinical literature. It is believed that discrepancies regarding the nature of estrogens' effects on anxiety are attributable to the differential effects of specific estrogen receptor (ER) subtypes. In this chapter we will discuss the relative impact on anxiety and anxiety-like behavior of each of the three main ERs: ERα, which has a generally anxiogenic effect, ERβ, which has a generally anxiolytic effect, and the G-protein-coupled ER known as GPR30, which has been found to both increase and decrease anxiety-like behavior. In addition, we will describe the known mechanisms by which these receptor subtypes exert their influence on emotional responses, focusing on the hypothalamic-pituitary-adrenal axis and the oxytocinergic and serotonergic systems. The impact of estrogens on the expression of anxiety is likely the result of their combined effects on all of these neurobiological systems.
Collapse
Affiliation(s)
- A P Borrow
- Colorado State University, Fort Collins, CO, United States
| | - R J Handa
- Colorado State University, Fort Collins, CO, United States.
| |
Collapse
|
31
|
Cacioppo JA, Koo Y, Lin PCP, Osmulski SA, Ko CD, Ko C. Generation of an estrogen receptor beta-iCre knock-in mouse. Genesis 2016; 54:38-52. [PMID: 26663382 DOI: 10.1002/dvg.22911] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 02/06/2023]
Abstract
A novel knock-in mouse that expresses codon-improved Cre recombinase (iCre) under regulation of the estrogen receptor beta (Esr2) promoter was developed for conditional deletion of genes and for the spatial and/or temporal localization of Esr2 expression. ESR2 is one of two classical nuclear estrogen receptors and displays a spatiotemporal expression pattern and functions that are different from the other estrogen receptor, ESR1. A cassette was constructed that contained iCre, a polyadenylation sequence, and a neomycin selection marker. This construct was used to insert iCre in front of the endogenous start codon of the Esr2 gene of a C57BL/6J embryonic stem cell line via homologous recombination. Resulting Esr2-iCre mice were bred with ROSA26-lacZ and Ai9-RFP reporter mice to visualize cells of functional iCre expression. Strong expression was observed in the ovary, the pituitary, the interstitium of the testes, the head and tail but not body of the epididymis, skeletal muscle, the coagulation gland (anterior prostate), the lung, and the preputial gland. Additional diffuse or patchy expression was observed in the cerebrum, the hypothalamus, the heart, the adrenal gland, the colon, the bladder, and the pads of the paws. Overall, Esr2-iCre mice will serve as a novel line for conditionally ablating genes in Esr2-expressing tissues, identifying novel Esr2-expressing cells, and differentiating the functions of ESR2 and ESR1.
Collapse
Affiliation(s)
- Joseph A Cacioppo
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, 61802
| | - Yongbum Koo
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, 61802.,School of Biological Sciences, Inje University, Gimhae, South Korea
| | - Po-Ching Patrick Lin
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, 61802
| | - Sarah A Osmulski
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, 61802
| | - Chunjoo D Ko
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, 61802
| | - CheMyong Ko
- Comparative Biosciences, College of Veterinary Medicine, University of Illinois, Urbana-Champaign, Illinois, 61802
| |
Collapse
|
32
|
Kalló I, Molnár CS, Szöke S, Fekete C, Hrabovszky E, Liposits Z. Area-specific analysis of the distribution of hypothalamic neurons projecting to the rat ventral tegmental area, with special reference to the GABAergic and glutamatergic efferents. Front Neuroanat 2015; 9:112. [PMID: 26388742 PMCID: PMC4559648 DOI: 10.3389/fnana.2015.00112] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 07/30/2015] [Indexed: 12/22/2022] Open
Abstract
The ventral tegmental area (VTA) is a main regulator of reward and integrates a wide scale of hormonal and neuronal information. Feeding-, energy expenditure-, stress, adaptation- and reproduction-related hypothalamic signals are processed in the VTA and influence the reward processes. However, the neuroanatomical origin and chemical phenotype of neurons mediating these signals to the VTA have not been fully characterized. In this study we have systematically mapped hypothalamic neurons that project to the VTA using the retrograde tracer Choleratoxin B subunit (CTB) and analyzed their putative gamma-aminobutyric acid (GABA) and/or glutamate character with in situ hybridization in male rats. 23.93 ± 3.91% of hypothalamic neurons projecting to the VTA was found in preoptic and 76.27 ± 4.88% in anterior, tuberal and mammillary hypothalamic regions. Nearly half of the retrogradely-labeled neurons in the preoptic, and more than one third in the anterior, tuberal and mammillary hypothalamus appeared in medially located regions. The analyses of vesicular glutamate transporter 2 (VGLUT2) and glutamate decarboxylase 65 (GAD65) mRNA expression revealed both amino acid markers in different subsets of retrogradely-labeled hypothalamic neurons, typically with the predominance of the glutamatergic marker VGLUT2. About one tenth of CTB-IR neurons were GAD65-positive even in hypothalamic nuclei expressing primarily VGLUT2. Some regions were populated mostly by GAD65 mRNA-containing retrogradely-labeled neurons. These included the perifornical part of the lateral hypothalamus where 58.63 ± 19.04% of CTB-IR neurons were GABAergic. These results indicate that both the medial and lateral nuclear compartments of the hypothalamus provide substantial input to the VTA. Furthermore, colocalization studies revealed that these projections not only use glutamate but also GABA for neurotransmission. These GABAergic afferents may underlie important inhibitory mechanism to fine-tune the reward value of specific signals in the VTA.
Collapse
Affiliation(s)
- Imre Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary ; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University Budapest, Hungary
| | - Csilla S Molnár
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Sarolta Szöke
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Csaba Fekete
- Laboratory of Integrative Neuroendocrinology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary ; Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Tupper Research Institute, Tufts Medical Center Boston, MA, USA
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences Budapest, Hungary ; Faculty of Information Technology and Bionics, Pázmány Péter Catholic University Budapest, Hungary
| |
Collapse
|
33
|
de Souza Mecawi A, Ruginsk SG, Elias LLK, Varanda WA, Antunes‐Rodrigues J. Neuroendocrine Regulation of Hydromineral Homeostasis. Compr Physiol 2015; 5:1465-516. [DOI: 10.1002/cphy.c140031] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
34
|
Kelly MJ, Rønnekleiv OK. Minireview: neural signaling of estradiol in the hypothalamus. Mol Endocrinol 2015; 29:645-57. [PMID: 25751314 PMCID: PMC4415204 DOI: 10.1210/me.2014-1397] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 03/02/2015] [Indexed: 12/22/2022] Open
Affiliation(s)
- Martin J Kelly
- Departments of Physiology and Pharmacology (M.J.K., O.K.R.) and Anesthesiology and Perioperative Medicine (O.K.R.), Oregon Health and Science University, Portland, Oregon 97239; and Division of Neuroscience (M.J.K., O.K.R.), Oregon National Primate Research Center; Oregon Health and Science University, Beaverton, Oregon 97006
| | | |
Collapse
|
35
|
Santollo J, Daniels D. Control of fluid intake by estrogens in the female rat: role of the hypothalamus. Front Syst Neurosci 2015; 9:25. [PMID: 25788879 PMCID: PMC4349057 DOI: 10.3389/fnsys.2015.00025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 02/13/2015] [Indexed: 01/25/2023] Open
Abstract
Body fluid homeostasis is maintained by a complex network of central and peripheral systems that regulate blood pressure, fluid and electrolyte excretion, and fluid intake. The behavioral components, which include well regulated water and saline intake, are influenced by a number of hormones and neuropeptides. Since the early 1970s, it has been known that the ovarian estrogens play an important role in regulating fluid intake in females by decreasing water and saline intake under a variety of hypovolemic conditions. Behavioral, electrophysiological, gene and protein expression studies have identified nuclei in the hypothalamus, along with nearby forebrain structures such as the subfornical organ (SFO), as sites of action involved in mediating these effects of estrogens and, importantly, all of these brain areas are rich with estrogen receptors (ERs). This review will discuss the multiple ER subtypes, found both in the cell nucleus and associated with the plasma membrane, that provide diversity in the mechanism through which estrogens can induce behavioral changes in fluid intake. We then focus on the relevant brain structures, hypothesized circuits, and various peptides, such as angiotensin, oxytocin, and vasopressin, implicated in the anti-dipsogenic and anti-natriorexigenic actions of the estrogens.
Collapse
Affiliation(s)
- Jessica Santollo
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| | - Derek Daniels
- Department of Psychology, University at Buffalo SUNY Buffalo, NY, USA
| |
Collapse
|
36
|
Lucio-Oliveira F, Traslaviña G, Borges B, Franci C. Modulation of the activity of vasopressinergic neurons by estrogen in rats refed with normal or sodium-free food after fasting. Neuroscience 2015; 284:325-336. [DOI: 10.1016/j.neuroscience.2014.09.076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/26/2014] [Accepted: 09/30/2014] [Indexed: 11/25/2022]
|
37
|
Handa RJ, Weiser MJ. Gonadal steroid hormones and the hypothalamo-pituitary-adrenal axis. Front Neuroendocrinol 2014; 35:197-220. [PMID: 24246855 PMCID: PMC5802971 DOI: 10.1016/j.yfrne.2013.11.001] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Revised: 10/04/2013] [Accepted: 11/07/2013] [Indexed: 12/17/2022]
Abstract
The hypothalamo-pituitary-adrenal (HPA) axis represents a complex neuroendocrine feedback loop controlling the secretion of adrenal glucocorticoid hormones. Central to its function is the paraventricular nucleus of the hypothalamus (PVN) where neurons expressing corticotropin releasing factor reside. These HPA motor neurons are a primary site of integration leading to graded endocrine responses to physical and psychological stressors. An important regulatory factor that must be considered, prior to generating an appropriate response is the animal's reproductive status. Thus, PVN neurons express androgen and estrogen receptors and receive input from sites that also express these receptors. Consequently, changes in reproduction and gonadal steroid levels modulate the stress response and this underlies sex differences in HPA axis function. This review examines the make up of the HPA axis and hypothalamo-pituitary-gonadal (HPG) axis and the interactions between the two that should be considered when exploring normal and pathological responses to environmental stressors.
Collapse
Affiliation(s)
- Robert J Handa
- Department of Basic Medical Science, The University of Arizona College of Medicine, Phoenix, AZ 85004, United States.
| | - Michael J Weiser
- DSM Nutritional Products Ltd., R&D Human Nutrition and Health, Boulder, CO 80301, United States
| |
Collapse
|
38
|
Estrogen receptor β and oxytocin interact to modulate anxiety-like behavior and neuroendocrine stress reactivity in adult male and female rats. Physiol Behav 2014; 129:287-96. [PMID: 24631553 DOI: 10.1016/j.physbeh.2014.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 02/09/2014] [Accepted: 03/07/2014] [Indexed: 11/20/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is activated in response to stressors and is controlled by neurons residing in the paraventricular nucleus of the hypothalamus (PVN). Although gonadal steroid hormones can influence HPA reactivity to stressors, the exact mechanism of action is not fully understood. It is known, however, that estrogen receptor β (ERβ) inhibits HPA reactivity and decreases anxiety-like behavior in rodents. Since ERβ is co-expressed with oxytocin (OT) in neurons of the PVN, an ERβ-selective agonist was utilized to test the whether ERβ decreases stress-induced HPA reactivity and anxiety-like behaviors via an OTergic pathway. Adult gonadectomized male and female rats were administered diarylpropionitrile, or vehicle, peripherally for 5days. When tested for anxiety-like behavior on the elevated plus maze (EPM), diarylpropionitrile-treated males and females significantly increased time on the open arm of the EPM compared to vehicle controls indicating that ERβ reduces anxiety-like behaviors. One week after behavioral evaluation, rats were subjected to a 20minute restraint stress. Treatment with diarylpropionitrile reduced CORT and ACTH responses in both males and females. Subsequently, another group of animals was implanted with cannulae directed at the lateral ventricle. One week later, rats underwent the same protocol as above but with the additional treatment of intracerebroventricular infusion with an OT antagonist (des Gly-NH2 d(CH2)5 [Tyr(Me)(2), Thr(4)] OVT) or VEH, 20min prior to behavioral evaluation. OT antagonist treatment blocked the effects of diarylpropionitrile on the display of anxiety-like behaviors and plasma CORT levels. These data indicate that ERβ and OT interact to modulate the HPA reactivity and the display of anxiety-like behaviors.
Collapse
|
39
|
Chaube R, Singh RK, Joy KP. Effects of ovaprim, a commercial spawning inducer, on vasotocin and steroid hormone profiles in the catfish Heteropneustes fossilis: in vivo and in vitro studies. Gen Comp Endocrinol 2014; 195:190-200. [PMID: 24246310 DOI: 10.1016/j.ygcen.2013.11.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 10/17/2013] [Accepted: 11/04/2013] [Indexed: 12/16/2022]
Abstract
Ovaprim (OVP) is used as an effective spawning inducer for artificial breeding of fishes and contains a salmon gonadotropin-releasing hormone analogue and a dopamine receptor-2 antagonist, domperidone. Previously, we have shown that vasotocin (VT) stimulates ovarian final oocyte maturation, hydration, and ovulation through a mechanism involving induction of a steroidogenic shift, favouring the production of a maturation-inducing hormone (MIH). In the present study, we demonstrated that OVP stimulated brain, plasma and ovarian VT levels, suggesting multiple sites of action, apart from its well established role in the induction of a preovulatory LH surge. An intraperitoneal injection of 0.5μL/g body weight of OVP for different time intervals (0, 4, 8, 12, 16 and 24h) induced ovulation as well as increased significantly brain and plasma VT levels in a time-dependent manner. Plasma steroids were differentially altered; the levels of estradiol-17β (E2) and testosterone (T) decreased, and the MIH (17, 20β-dihydroxy-4-pregnen-3-one; 17, 20β-DP) level increased time-dependently. In order to demonstrate whether OVP acts at the level of the ovary directly, in vitro experiments were conducted. The incubation of ovarian slices/follicles with OVP (1, 5 and 10μL/mL) for different time points (0, 4, 8, 12, 16 and 24h) induced germinal vesicle breakdown (GVBD) in a concentration- and time-dependent manner. Ovarian VT increased significantly in a concentration- and time-dependent manner with a maximal increment at 16h. Ovarian T and E2 levels decreased concurrently with the rise in the MIH level, dose- and duration-dependently. The results show that OVP stimulates VT at the brain and ovarian level. The direct OVP-VT cascade has the potential to stimulate FOM and ovulation, sidelining the pituitary glycoprotein hormone (LH) surge.
Collapse
Affiliation(s)
- R Chaube
- Zoology Department, Mahila Mahavidhyalaya, Banaras Hindu University, Varanasi 221005, India.
| | - R K Singh
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005, India; Zoology Department, Mahila Mahavidhyalaya, Banaras Hindu University, Varanasi 221005, India
| | - K P Joy
- Department of Zoology, Centre of Advanced Study, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
40
|
Goldstein JM, Handa RJ, Tobet SA. Disruption of fetal hormonal programming (prenatal stress) implicates shared risk for sex differences in depression and cardiovascular disease. Front Neuroendocrinol 2014; 35:140-58. [PMID: 24355523 PMCID: PMC3917309 DOI: 10.1016/j.yfrne.2013.12.001] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 10/31/2013] [Accepted: 12/04/2013] [Indexed: 12/19/2022]
Abstract
Comorbidity of major depressive disorder (MDD) and cardiovascular disease (CVD) represents the fourth leading cause of morbidity and mortality worldwide, and women have a two times greater risk than men. Thus understanding the pathophysiology has widespread implications for attenuation and prevention of disease burden. We suggest that sex-dependent MDD-CVD comorbidity may result from alterations in fetal programming consequent to the prenatal maternal environments that produce excess glucocorticoids, which then drive sex-dependent developmental alterations of the fetal hypothalamic-pituitary-adrenal (HPA) axis circuitry impacting mood, stress regulation, autonomic nervous system (ANS), and the vasculature in adulthood. Evidence is consistent with the hypothesis that disruptions of pathways associated with gamma aminobutyric acid (GABA) in neuronal and vascular development and growth factors have critical roles in key developmental periods and adult responses to injury in heart and brain. Understanding the potential fetal origins of these sex differences will contribute to development of novel sex-dependent therapeutics.
Collapse
Affiliation(s)
- J M Goldstein
- Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA; Brigham and Women's Hospital (BWH), Connors Center for Women's Health & Gender Biology, 1620 Tremont St. BC-3-34, Boston, MA 02120, USA; BWH, Departments of Psychiatry and Medicine, 1620 Tremont St. BC-3-34, Boston, MA 02120, USA.
| | - R J Handa
- Department of Basic Medical Sciences, University of Arizona College of Medicine, 425 N. Fifth Street, Phoenix, AZ 85004, USA
| | - S A Tobet
- Department of Biomedical Sciences and School of Biomedical Engineering, Colorado State University, 1617 Campus Delivery, Fort Collins, CO 80523, USA
| |
Collapse
|
41
|
Hiroi R, Lacagnina AF, Hinds LR, Carbone DG, Uht RM, Handa RJ. The androgen metabolite, 5α-androstane-3β,17β-diol (3β-diol), activates the oxytocin promoter through an estrogen receptor-β pathway. Endocrinology 2013; 154:1802-12. [PMID: 23515287 PMCID: PMC3628024 DOI: 10.1210/en.2012-2253] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Testosterone has been shown to suppress the acute stress-induced activation of the hypothalamic-pituitary-adrenal axis; however, the mechanisms underlying this response remain unclear. The hypothalamic-pituitary-adrenal axis is regulated by a neuroendocrine subpopulation of medial parvocellular neurons in the paraventricular nucleus of the hypothalamus (PVN). These neurons are devoid of androgen receptors (ARs). Therefore, a possibility is that the PVN target neurons respond to a metabolite in the testosterone catabolic pathway via an AR-independent mechanism. The dihydrotestosterone metabolite, 5α-androstane-3β,17β-diol (3β-diol), binds and activates estrogen receptor-β (ER-β), the predominant ER in the PVN. In the PVN, ER-β is coexpressed with oxytocin (OT). Therefore, we tested the hypothesis that 3β-diol regulates OT expression through ER-β activation. Treatment of ovariectomized rats with estradiol benzoate or 3β-diol for 4 days increased OT mRNA selectively in the midcaudal, but not rostral PVN compared with vehicle-treated controls. 3β-Diol treatment also increased OT mRNA in the hypothalamic N38 cell line in vitro. The functional interactions between 3β-diol and ER-β with the human OT promoter were examined using an OT promoter-luciferase reporter construct (OT-luc). In a dose-dependent manner, 3β-diol treatment increased OT-luc activity when cells were cotransfected with ER-β, but not ER-α. The 3β-diol-induced OT-luc activity was reduced by deletion of the promoter region containing the composite hormone response element (cHRE). Point mutations of the cHRE also prevented OT-luc activation by 3β-diol. These results indicate that 3β-diol induces OT promoter activity via ER-β-cHRE interactions.
Collapse
Affiliation(s)
- Ryoko Hiroi
- Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Building ABC1, Room 422, 425 North Fifth Street, Phoenix, Arizona 85004, USA
| | | | | | | | | | | |
Collapse
|
42
|
Antunes-Rodrigues J, Ruginsk SG, Mecawi AS, Margatho LO, Cruz JC, Vilhena-Franco T, Reis WL, Ventura RR, Reis LC, Vivas LM, Elias LLK. Mapping and signaling of neural pathways involved in the regulation of hydromineral homeostasis. Braz J Med Biol Res 2013; 46:327-38. [PMID: 23579631 PMCID: PMC3854407 DOI: 10.1590/1414-431x20132788] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 02/05/2013] [Indexed: 11/22/2022] Open
Abstract
Several forebrain and brainstem neurochemical circuitries interact with
peripheral neural and humoral signals to collaboratively maintain both the
volume and osmolality of extracellular fluids. Although much progress has been
made over the past decades in the understanding of complex mechanisms underlying
neuroendocrine control of hydromineral homeostasis, several issues still remain
to be clarified. The use of techniques such as molecular biology, neuronal
tracing, electrophysiology, immunohistochemistry, and microinfusions has
significantly improved our ability to identify neuronal phenotypes and their
signals, including those related to neuron-glia interactions. Accordingly,
neurons have been shown to produce and release a large number of chemical
mediators (neurotransmitters, neurohormones and neuromodulators) into the
interstitial space, which include not only classic neurotransmitters, such as
acetylcholine, amines (noradrenaline, serotonin) and amino acids (glutamate,
GABA), but also gaseous (nitric oxide, carbon monoxide and hydrogen sulfide) and
lipid-derived (endocannabinoids) mediators. This efferent response, initiated
within the neuronal environment, recruits several peripheral effectors, such as
hormones (glucocorticoids, angiotensin II, estrogen), which in turn modulate
central nervous system responsiveness to systemic challenges. Therefore, in this
review, we shall evaluate in an integrated manner the physiological control of
body fluid homeostasis from the molecular aspects to the systemic and integrated
responses.
Collapse
Affiliation(s)
- J Antunes-Rodrigues
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Alvarez-Crespo M, Skibicka KP, Farkas I, Molnár CS, Egecioglu E, Hrabovszky E, Liposits Z, Dickson SL. The amygdala as a neurobiological target for ghrelin in rats: neuroanatomical, electrophysiological and behavioral evidence. PLoS One 2012; 7:e46321. [PMID: 23071554 PMCID: PMC3468604 DOI: 10.1371/journal.pone.0046321] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Accepted: 08/29/2012] [Indexed: 12/20/2022] Open
Abstract
Here, we sought to demonstrate that the orexigenic circulating hormone, ghrelin, is able to exert neurobiological effects (including those linked to feeding control) at the level of the amygdala, involving neuroanatomical, electrophysiological and behavioural studies. We found that ghrelin receptors (GHS-R) are densely expressed in several subnuclei of the amygdala, notably in ventrolateral (LaVL) and ventromedial (LaVM) parts of the lateral amygdaloid nucleus. Using whole-cell patch clamp electrophysiology to record from cells in the lateral amygdaloid nucleus, we found that ghrelin reduced the frequency of mEPSCs recorded from large pyramidal-like neurons, an effect that could be blocked by co-application of a ghrelin receptor antagonist. In ad libitum fed rats, intra-amygdala administration of ghrelin produced a large orexigenic response that lasted throughout the 4 hr of testing. Conversely, in hungry, fasted rats ghrelin receptor blockade in the amygdala significantly reduced food intake. Finally, we investigated a possible interaction between ghrelin's effects on feeding control and emotional reactivity exerted at the level of the amygdala. In rats allowed to feed during a 1-hour period between ghrelin injection and anxiety testing (elevated plus maze and open field), intra-amygdala ghrelin had no effect on anxiety-like behavior. By contrast, if the rats were not given access to food during this 1-hour period, a decrease in anxiety-like behavior was observed in both tests. Collectively, these data indicate that the amygdala is a valid target brain area for ghrelin where its neurobiological effects are important for food intake and for the suppression of emotional (anxiety-like) behaviors if food is not available.
Collapse
Affiliation(s)
- Mayte Alvarez-Crespo
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Karolina P. Skibicka
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Imre Farkas
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Csilla S. Molnár
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Emil Egecioglu
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Erik Hrabovszky
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Liposits
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Department of Neuroscience, Faculty of Information Technology, Pázmány Péter Catholic University, Budapest, Hungary
| | - Suzanne L. Dickson
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
44
|
Kelly MJ, Rønnekleiv OK. Membrane-initiated actions of estradiol that regulate reproduction, energy balance and body temperature. Front Neuroendocrinol 2012; 33:376-87. [PMID: 22871514 PMCID: PMC3618441 DOI: 10.1016/j.yfrne.2012.07.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/07/2012] [Accepted: 07/11/2012] [Indexed: 12/21/2022]
Abstract
It is well known that many of the actions of estrogens in the central nervous system are mediated via intracellular receptor/transcription factors that interact with steroid response elements on target genes. However, there now exists compelling evidence for membrane estrogen receptors in hypothalamic and other brain neurons. But, it is not well understood how estrogens signal via membrane receptors, and how these signals impact not only membrane excitability but also gene transcription in neurons. Indeed, it has been known for sometime that estrogens can rapidly alter neuronal activity within seconds, indicating that some cellular effects can occur via membrane delimited events. In addition, estrogens can affect second messenger systems including calcium mobilization and a plethora of kinases to alter cell signaling. Therefore, this review will consider our current knowledge of rapid membrane-initiated and intracellular signaling by estrogens in the hypothalamus, the nature of receptors involved and how they contribute to homeostatic functions.
Collapse
Affiliation(s)
- Martin J. Kelly
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
- Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| | - Oline K. Rønnekleiv
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239
- Division of Neuroscience, Oregon Regional Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
- Department of Anesthesiology and Perioperative Medicine, Oregon Health & Science University, Portland, OR 97239
| |
Collapse
|
45
|
Hrabovszky E, Wittmann G, Kalló I, Füzesi T, Fekete C, Liposits Z. Distribution of type 1 cannabinoid receptor-expressing neurons in the septal-hypothalamic region of the mouse: colocalization with GABAergic and glutamatergic markers. J Comp Neurol 2012; 520:1005-20. [PMID: 21935941 DOI: 10.1002/cne.22766] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Type 1 cannabinoid receptor (CB1) is the principal mediator of retrograde endocannabinoid signaling in the brain. In this study, we addressed the topographic distribution and amino acid neurotransmitter phenotype of endocannabinoid-sensitive hypothalamic neurons in mice. The in situ hybridization detection of CB1 mRNA revealed high levels of expression in the medial septum (MS) and the diagonal band of Broca (DBB), moderate levels in the preoptic area and the hypothalamic lateroanterior (LA), paraventricular (Pa), ventromedial (VMH), lateral mammillary (LM), and ventral premammillary (PMV) nuclei, and low levels in many other hypothalamic regions including the suprachiasmatic (SCh) and arcuate (Arc) nuclei. This regional distribution pattern was compared with location of γ-aminobutyric acid (GABA)ergic and glutamatergic cell groups, as identified by the expression of glutamic acid decarboxylase 65 (GAD65) and type 2 vesicular glutamate transporter (VGLUT2) mRNAs, respectively. The MS, DBB, and preoptic area showed overlaps between GABAergic and CB1-expressing neurons, whereas hypothalamic sites with moderate CB1 signals, including the LA, Pa, VMH, LM, and PMV, were dominated by glutamatergic neurons. Low CB1 mRNA levels were also present in other glutamatergic and GABAergic regions. Dual-label in situ hybridization experiments confirmed the cellular co-expression of CB1 with both glutamatergic and GABAergic markers. In this report we provide a detailed anatomical map of hypothalamic glutamatergic and GABAergic systems whose neurotransmitter release is controlled by retrograde endocannabinoid signaling from hypothalamic and extrahypothalamic target neurons. This neuroanatomical information contributes to an understanding of the role that the endocannabinoid system plays in the regulation of endocrine and metabolic functions.
Collapse
Affiliation(s)
- Erik Hrabovszky
- Department of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
46
|
GPR30 is necessary for estradiol-induced desensitization of 5-HT1A receptor signaling in the paraventricular nucleus of the rat hypothalamus. Psychoneuroendocrinology 2012; 37:1248-60. [PMID: 22265196 PMCID: PMC3342396 DOI: 10.1016/j.psyneuen.2011.12.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/12/2011] [Accepted: 12/19/2011] [Indexed: 11/21/2022]
Abstract
Estrogen therapy used in combination with selective serotonin reuptake inhibitor (SSRI) treatment improves SSRI efficacy for the treatment of mood disorders. Desensitization of serotonin 1A (5-HT(1A)) receptors, which takes one to two weeks to develop in animals, is necessary for SSRI therapeutic efficacy. Estradiol modifies 5-HT(1A) receptor signaling and induces a partial desensitization in the paraventricular nucleus (PVN) of the rat within two days, but the mechanisms underlying this effect are currently unknown. The purpose of this study was to identify the estrogen receptor necessary for estradiol-induced 5-HT(1A) receptor desensitization. We previously showed that estrogen receptor β is not necessary for 5-HT(1A) receptor desensitization and that selective activation of estrogen receptor GPR30 mimics the effects of estradiol in rat PVN. Here, we used a recombinant adenovirus containing GPR30 siRNAs to decrease GPR30 expression in the PVN. Reduction of GPR30 prevented estradiol-induced desensitization of 5-HT(1A) receptor as measured by hormonal responses to the selective 5-HT(1A) receptor agonist, (+)8-OH-DPAT. To determine the possible mechanisms underlying these effects, we investigated protein and mRNA levels of 5-HT(1A) receptor signaling components including 5-HT(1A) receptor, Gαz, and RGSz1. We found that two days of estradiol increased protein and mRNA expression of RGSz1, and decreased 5-HT(1A) receptor protein but increased 5-HT(1A) mRNA; GPR30 knockdown prevented the estradiol-induced changes in 5-HT(1A) receptor protein in the PVN. Taken together, these data demonstrate that GPR30 is necessary for estradiol-induced changes in the 5-HT(1A) receptor signaling pathway and desensitization of 5-HT(1A) receptor signaling.
Collapse
|
47
|
Farkas I, Sárvári M, Aller M, Okada N, Okada H, Likó I, Liposits Z. Estrogen receptor alpha and beta differentially mediate C5aR agonist evoked Ca2+-influx in neurons through L-type voltage-gated Ca2+ channels. Neurochem Int 2012; 60:631-9. [DOI: 10.1016/j.neuint.2012.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 12/19/2011] [Accepted: 02/21/2012] [Indexed: 01/19/2023]
|
48
|
Kalló I, Vida B, Deli L, Molnár CS, Hrabovszky E, Caraty A, Ciofi P, Coen CW, Liposits Z. Co-localisation of kisspeptin with galanin or neurokinin B in afferents to mouse GnRH neurones. J Neuroendocrinol 2012; 24:464-76. [PMID: 22129075 DOI: 10.1111/j.1365-2826.2011.02262.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The gonadotrophin-releasing hormone (GnRH) secreting neurones, which form the final common pathway for the central regulation of reproduction, are directly targeted by kisspeptin (KP) via the G protein-coupled receptor, GPR54. In these multiple labelling studies, we used ovariectomised mice treated with 17β-oestradiol (OVX + E(2)) or vehicle (OVX + oil) to determine: (i) the ultrastructural characteristics of KP-immunoreactive (IR) afferents to GnRH neurones; (ii) their galanin or neurokinin B (NKB) content; and (iii) the co-expression of galanin or NKB with KP in the two major subpopulations of KP neurones located in the rostral periventricular area of the third ventricle (RP3V) and the arcuate nucleus (Arc). Electron microscopic investigation of the neuronal juxtapositions revealed axosomatic and axodendritic synapses; these showed symmetrical or asymmetrical characteristics, suggesting a phenotypic diversity of KP afferents. Heterogeneity of afferents was also demonstrated by differential co-expression of neuropeptides; in OVX + E(2) mice, KP afferents to GnRH neurones showed galanin-immunoreactivity with an incidence of 22.50 ± 2.41% and NKB-immunoreactivity with an incidence of 5.61 ± 2.57%. In OVX + oil animals, galanin-immunoreactivity in the KP afferents showed a major reduction, appearing in only 5.78 ± 1.57%. Analysis for co-localisation of galanin or NKB with KP was extended to the perikaryal level in animal models, which showed the highest KP incidence; these were OVX + E(2) females for the RP3V and OVX + oil females for the ARC. In the RP3V of colchicine-treated OVX + E(2) animals, 87.84 ± 2.65% of KP-IR neurones were galanin positive. In the Arc of the colchicine-treated OVX + oil animals, galanin immunoreactivity was detected in only 12.50 ± 1.92% of the KP expressing neurones. By contrast, the incidence of co-localisation with NKB in the Arc of those animals was 98.09 ± 1.30%. In situ hybridisation histochemistry of sections from OVX + E(2) animals identified galanin message in more than a third of the KP neurones in the RP3V (38.67 ± 11.57%) and in the Arc (42.50 ± 12.52%). These data suggest that GnRH neurones are innervated by chemically heterogeneous KP cell populations, with a small proportion deriving from the Arc group. The presence of galanin within KP axons innervating GnRH neurones and the oestrogen-dependent regulation of that presence add a new dimension to the roles played by galanin in the central regulation of reproduction.
Collapse
Affiliation(s)
- I Kalló
- Laboratory of Endocrine Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Lucio-Oliveira F, Franci CR. Effect of the interaction between food state and the action of estrogen on oxytocinergic system activity. J Endocrinol 2012; 212:129-38. [PMID: 22083216 DOI: 10.1530/joe-11-0272] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Increased plasma osmolality by food intake evokes augmentation of plasma oxytocin (OT). Ovarian steroids may also influence the balance of body fluids by acting on OT neurones. Our aim was to determine if estrogen influences the activity of OT neurones in paraventricular nucleus (PVN) and supraoptic nucleus (SON) under different osmotic situations. Ovariectomized rats (OVX) were treated with either estradiol (E(2)) or vehicle and were divided into three groups: group I was fed ad libitum, group II underwent 48 h of fasting, and group III was refed after 48 h of fasting. On the day of the experiment, blood samples were collected to determine the plasma osmolality and OT. The animals were subsequently perfused, and OT/FOS immunofluorescence analysis was conducted on neurones in the PVN and the SON. When compared to animals which were fasted or fed ad libitum, the plasma osmolality of refed animals was higher, regardless of whether they were treated with vehicle or E(2). We observed neural activation of OT cells in vehicle- or E(2)-treated OVX rats refed after 48 h of fasting, but not in animals fed ad libitum or in animals that only underwent 48 h of fasting. Finally, the percentage of neurones that co-expressed OT and FOS was lower in both the PVN and the SON of animals treated with E(2) and refed, when compared to vehicle-treated animals. These results suggest that E(2) may have an inhibitory effect on OT neurones and may modulate the secretion of OT in response to the increase of osmolality induced by refeeding.
Collapse
Affiliation(s)
- F Lucio-Oliveira
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Avenida Bandeirantes, 3900, 14049-900 Ribeirão Preto - SP, Brazil
| | | |
Collapse
|
50
|
Vilhena-Franco T, Mecawi AS, Elias LLK, Antunes-Rodrigues J. Oestradiol potentiates hormone secretion and neuronal activation in response to hypertonic extracellular volume expansion in ovariectomised rats. J Neuroendocrinol 2011; 23:481-9. [PMID: 21470318 DOI: 10.1111/j.1365-2826.2011.02133.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Secretion of vasopressin (VP), oxytocin (OT) and atrial natriuretic peptide (ANP) is an essential mechanism for the maintenance of hydromineral homeostasis. Secretion of these hormones is modulated by several circulating factors, including oestradiol. However, it remains unclear how oestradiol exerts this modulation. In the present study we investigated the participation of oestradiol in the secretion of VP, OT and ANP and in activation of vasopressinergic and oxytocinergic neurones of the supraoptic (SON) and paraventricular (PVN) nuclei of the hypothalamus in response to extracellular volume expansion (EVE). For this purpose, ovariectomised (OVX) rats treated for 7 days with vehicle (corn oil, 0.1 ml/rat, OVX+O group) or oestradiol (oestradiol cypionate, 10 μg/kg, OVX+E group) were subjected to either isotonic (0.15 m NaCl, 2 ml/100 g b.w., i.v.) or hypertonic (0.30 m NaCl, 2 ml/100 g b.w., i.v.) EVE. Blood samples were collected for plasma VP, OT and ANP determination. Another group of rats was subjected to cerebral perfusion, and brain sections were processed for c-Fos-VP and c-Fos-OT double-labelling immunohistochemistry. In OVX+O rats, we observed that both isotonic and hypertonic EVE increased plasma OT and ANP concentrations, although no changes were observed in VP secretion. Oestradiol replacement did not alter hormonal secretion in response to isotonic EVE, but it increased VP secretion and potentiated plasma OT and ANP concentrations in response to hypertonic EVE. Immunohistochemical data showed that, in the OVX+O group, hypertonic EVE increased the number of c-Fos-OT and c-Fos-VP double-labelled neurones in the PVN and SON. Oestradiol replacement did not alter neuronal activation in response to isotonic EVE, but it potentiated vasopressinergic and oxytocinergic neuronal activation in the medial magnocellular PVN (PaMM) and SON. Taken together, these results suggest that oestradiol increases the responsiveness of vasopressinergic and oxytocinergic magnocellular neurones in the PVN and SON in response to osmotic stimulation.
Collapse
Affiliation(s)
- T Vilhena-Franco
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirao Preto, Universidade de Sao Paulo, Brasil
| | | | | | | |
Collapse
|