1
|
Sandoval KE, Witt KA. Somatostatin: Linking Cognition and Alzheimer Disease to Therapeutic Targeting. Pharmacol Rev 2024; 76:1291-1325. [PMID: 39013601 PMCID: PMC11549939 DOI: 10.1124/pharmrev.124.001117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/18/2024] Open
Abstract
Over 4 decades of research support the link between Alzheimer disease (AD) and somatostatin [somatotropin-releasing inhibitory factor (SRIF)]. SRIF and SRIF-expressing neurons play an essential role in brain function, modulating hippocampal activity and memory formation. Loss of SRIF and SRIF-expressing neurons in the brain rests at the center of a series of interdependent pathological events driven by amyloid-β peptide (Aβ), culminating in cognitive decline and dementia. The connection between the SRIF and AD further extends to the neuropsychiatric symptoms, seizure activity, and inflammation, whereas preclinical AD investigations show SRIF or SRIF receptor agonist administration capable of enhancing cognition. SRIF receptor subtype-4 activation in particular presents unique attributes, with the potential to mitigate learning and memory decline, reduce comorbid symptoms, and enhance enzymatic degradation of Aβ in the brain. Here, we review the links between SRIF and AD along with the therapeutic implications. SIGNIFICANCE STATEMENT: Somatostatin and somatostatin-expressing neurons in the brain are extensively involved in cognition. Loss of somatostatin and somatostatin-expressing neurons in Alzheimer disease rests at the center of a series of interdependent pathological events contributing to cognitive decline and dementia. Targeting somatostatin-mediated processes has significant therapeutic potential for the treatment of Alzheimer disease.
Collapse
Affiliation(s)
- Karin E Sandoval
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| | - Ken A Witt
- Pharmaceutical Sciences, School of Pharmacy, Southern Illinois University Edwardsville, Edwardsville, Illinois
| |
Collapse
|
2
|
Yazdan-Shahmorad P, Gibson S, Lee JC, Horwitz GD. Preferential transduction of parvalbumin-expressing cortical neurons by AAV-mDLX5/6 vectors. Front Neurosci 2024; 17:1269025. [PMID: 38410819 PMCID: PMC10894992 DOI: 10.3389/fnins.2023.1269025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/28/2023] [Indexed: 02/28/2024] Open
Abstract
A major goal of modern neuroscience is to understand the functions of the varied neuronal types that comprise the mammalian brain. Toward this end, some types of neurons can be targeted and manipulated with enhancer-bearing AAV vectors. These vectors hold great promise to advance basic and translational neuroscience, but to realize this potential, their selectivity must be characterized. In this study, we investigated the selectivity of AAV vectors carrying an enhancer of the murine Dlx5 and Dlx6 genes. Vectors were injected into the visual cortex of two macaque monkeys, the frontal cortex of two others, and the somatosensory/motor cortex of three rats. Post-mortem immunostaining revealed that parvalbumin-expressing neurons were transduced efficiently in all cases but calretinin-expressing neurons were not. We speculate that this specificity is a consequence of differential activity of this DLX5/6 enhancer in adult neurons of different developmental lineages.
Collapse
Affiliation(s)
- Padideh Yazdan-Shahmorad
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
- Washington National Primate Research Center, Seattle, WA, United States
| | - Shane Gibson
- Washington National Primate Research Center, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Joanne C Lee
- Washington National Primate Research Center, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| | - Gregory D Horwitz
- Washington National Primate Research Center, Seattle, WA, United States
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, United States
| |
Collapse
|
3
|
Pavon N, Diep K, Yang F, Sebastian R, Martinez-Martin B, Ranjan R, Sun Y, Pak C. Patterning ganglionic eminences in developing human brain organoids using a morphogen-gradient-inducing device. CELL REPORTS METHODS 2024; 4:100689. [PMID: 38228151 PMCID: PMC10831957 DOI: 10.1016/j.crmeth.2023.100689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/21/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
In early neurodevelopment, the central nervous system is established through the coordination of various neural organizers directing tissue patterning and cell differentiation. Better recapitulation of morphogen gradient production and signaling will be crucial for establishing improved developmental models of the brain in vitro. Here, we developed a method by assembling polydimethylsiloxane devices capable of generating a sustained chemical gradient to produce patterned brain organoids, which we termed morphogen-gradient-induced brain organoids (MIBOs). At 3.5 weeks, MIBOs replicated dorsal-ventral patterning observed in the ganglionic eminences (GE). Analysis of mature MIBOs through single-cell RNA sequencing revealed distinct dorsal GE-derived CALB2+ interneurons, medium spiny neurons, and medial GE-derived cell types. Finally, we demonstrate long-term culturing capabilities with MIBOs maintaining stable neural activity in cultures grown up to 5.5 months. MIBOs demonstrate a versatile approach for generating spatially patterned brain organoids for embryonic development and disease modeling.
Collapse
Affiliation(s)
- Narciso Pavon
- Graduate Program in Neuroscience and Behavior, UMass Amherst, Amherst, MA 01003, USA; Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA
| | - Karmen Diep
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA
| | - Feiyu Yang
- Department of Mechanical and Industrial Engineering, UMass Amherst, Amherst, MA 01003, USA
| | - Rebecca Sebastian
- Graduate Program in Neuroscience and Behavior, UMass Amherst, Amherst, MA 01003, USA; Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA
| | - Beatriz Martinez-Martin
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA; Graduate Program in Molecular and Cellular Biology, UMass Amherst, Amherst, MA 01003, USA
| | - Ravi Ranjan
- Genomics Core, Institute of Applied Life Sciences, UMass Amherst, Amherst, MA 01003, USA
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, UMass Amherst, Amherst, MA 01003, USA.
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, UMass Amherst, Amherst, MA 01003, USA.
| |
Collapse
|
4
|
Sohn J. Synaptic configuration and reconfiguration in the neocortex are spatiotemporally selective. Anat Sci Int 2024; 99:17-33. [PMID: 37837522 PMCID: PMC10771605 DOI: 10.1007/s12565-023-00743-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/14/2023] [Indexed: 10/16/2023]
Abstract
Brain computation relies on the neural networks. Neurons extend the neurites such as dendrites and axons, and the contacts of these neurites that form chemical synapses are the biological basis of signal transmissions in the central nervous system. Individual neuronal outputs can influence the other neurons within the range of the axonal spread, while the activities of single neurons can be affected by the afferents in their somatodendritic fields. The morphological profile, therefore, binds the functional role each neuron can play. In addition, synaptic connectivity among neurons displays preference based on the characteristics of presynaptic and postsynaptic neurons. Here, the author reviews the "spatial" and "temporal" connection selectivity in the neocortex. The histological description of the neocortical circuitry depends primarily on the classification of cell types, and the development of gene engineering techniques allows the cell type-specific visualization of dendrites and axons as well as somata. Using genetic labeling of particular cell populations combined with immunohistochemistry and imaging at a subcellular spatial resolution, we revealed the "spatial selectivity" of cortical wirings in which synapses are non-uniformly distributed on the subcellular somatodendritic domains in a presynaptic cell type-specific manner. In addition, cortical synaptic dynamics in learning exhibit presynaptic cell type-dependent "temporal selectivity": corticocortical synapses appear only transiently during the learning phase, while learning-induced new thalamocortical synapses persist, indicating that distinct circuits may supervise learning-specific ephemeral synapse and memory-specific immortal synapse formation. The selectivity of spatial configuration and temporal reconfiguration in the neural circuitry may govern diverse functions in the neocortex.
Collapse
Affiliation(s)
- Jaerin Sohn
- Department of Systematic Anatomy and Neurobiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
5
|
Grieco SF, Johnston KG, Gao P, Garduño BM, Tang B, Yi E, Sun Y, Horwitz GD, Yu Z, Holmes TC, Xu X. Anatomical and molecular characterization of parvalbumin-cholecystokinin co-expressing inhibitory interneurons: implications for neuropsychiatric conditions. Mol Psychiatry 2023; 28:5293-5308. [PMID: 37443194 DOI: 10.1038/s41380-023-02153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/15/2023] [Accepted: 06/19/2023] [Indexed: 07/15/2023]
Abstract
Inhibitory interneurons are crucial to brain function and their dysfunction is implicated in neuropsychiatric conditions. Emerging evidence indicates that cholecystokinin (CCK)-expressing interneurons (CCK+) are highly heterogenous. We find that a large subset of parvalbumin-expressing (PV+) interneurons express CCK strongly; between 40 and 56% of PV+ interneurons in mouse hippocampal CA1 express CCK. Primate interneurons also exhibit substantial PV/CCK co-expression. Mouse PV+/CCK+ and PV+/CCK- cells show distinguishable electrophysiological and molecular characteristics. Analysis of single nuclei RNA-seq and ATAC-seq data shows that PV+/CCK+ cells are a subset of PV+ cells, not of synuclein gamma positive (SNCG+) cells, and that they strongly express oxidative phosphorylation (OXPHOS) genes. We find that mitochondrial complex I and IV-associated OXPHOS gene expression is strongly correlated with CCK expression in PV+ interneurons at both the transcriptomic and protein levels. Both PV+ interneurons and dysregulation of OXPHOS processes are implicated in neuropsychiatric conditions, including autism spectrum (ASD) disorder and schizophrenia (SCZ). Analysis of human brain samples from patients with these conditions shows alterations in OXPHOS gene expression. Together these data reveal important molecular characteristics of PV-CCK co-expressing interneurons and support their implication in neuropsychiatric conditions.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
| | - Kevin G Johnston
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
- Department of Mathematics, School of Physical Sciences, University of California, Irvine, CA, 92697, USA
| | - Pan Gao
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - B Maximiliano Garduño
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Bryan Tang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Elsie Yi
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Yanjun Sun
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Gregory D Horwitz
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, 98195, USA
| | - Zhaoxia Yu
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
- Department of Statistics, Donald Bren School of Information and Computer Sciences, University of California, Irvine, CA, 92697, USA
| | - Todd C Holmes
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA, 92697, USA.
- Center for Neural Circuit Mapping, University of California, Irvine, CA, 92697, USA.
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California, Irvine, CA, 92697, USA.
- Department of Computer Science, University of California, Irvine, CA, 92697, USA.
| |
Collapse
|
6
|
Rudy MJ, Salois G, Cubello J, Newell R, Mayer-Proschel M. Gestational iron deficiency affects the ratio between interneuron subtypes in the postnatal cerebral cortex in mice. Development 2023; 150:dev201068. [PMID: 36805633 PMCID: PMC10110419 DOI: 10.1242/dev.201068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/30/2023] [Indexed: 02/22/2023]
Abstract
Gestational iron deficiency (gID) is highly prevalent and associated with an increased risk of intellectual and developmental disabilities in affected individuals that are often defined by a disrupted balance of excitation and inhibition (E/I) in the brain. Using a nutritional mouse model of gID, we previously demonstrated a shift in the E/I balance towards increased inhibition in the brains of gID offspring that was refractory to postnatal iron supplementation. We thus tested whether gID affects embryonic progenitor cells that are fated towards inhibitory interneurons. We quantified relevant cell populations during embryonic inhibitory neuron specification and found an increase in the proliferation of Nkx2.1+ interneuron progenitors in the embryonic medial ganglionic eminence at E14 that was associated with increased Shh signaling in gID animals at E12. When we quantified the number of mature inhibitory interneurons that are known to originate from the MGE, we found a persistent disruption of differentiated interneuron subtypes in early adulthood. Our data identify a cellular target that links gID with a disruption of cortical interneurons which play a major role in the establishment of the E/I balance.
Collapse
Affiliation(s)
- Michael J. Rudy
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
- Department of Neurology, University of Colorado Denver – Anschutz Medical Campus, 13001 East 17th Place, Aurora, CO 80045, USA
| | - Garrick Salois
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Janine Cubello
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Robert Newell
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Margot Mayer-Proschel
- Department of Biomedical Genetics, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Hostetler RE, Hu H, Agmon A. Genetically Defined Subtypes of Somatostatin-Containing Cortical Interneurons. eNeuro 2023; 10:ENEURO.0204-23.2023. [PMID: 37463742 PMCID: PMC10414551 DOI: 10.1523/eneuro.0204-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 06/30/2023] [Indexed: 07/20/2023] Open
Abstract
Inhibitory interneurons play a crucial role in proper development and function of the mammalian cerebral cortex. Of the different inhibitory subclasses, dendritic-targeting, somatostatin-containing (SOM) interneurons may be the most diverse. Earlier studies used GFP-expressing and recombinase-expressing mouse lines to characterize genetically defined subtypes of SOM interneurons by morphologic, electrophysiological, and neurochemical properties. More recently, large-scale studies classified SOM interneurons into 13 morpho-electric transcriptomic (MET) types. It remains unclear, however, how these various classification schemes relate to each other, and experimental access to MET types has been limited by the scarcity of specific mouse driver lines. To address these issues, we crossed Flp and Cre driver lines with a dual-color intersectional reporter, allowing experimental access to several combinatorially defined SOM subsets. Brains from adult mice of both sexes were retrogradely dye labeled from the pial surface to identify layer 1-projecting neurons and immunostained against several marker proteins, revealing correlations between genetic label, axonal target, and marker protein expression in the same neurons. Lastly, using whole-cell recordings ex vivo, we analyzed and compared electrophysiological properties between different intersectional subsets. We identified two layer 1-targeting subtypes with nonoverlapping marker protein expression and electrophysiological properties, which, together with a previously characterized layer 4-targeting subtype, account for >50% of all layer 5 SOM cells and >40% of all SOM cells, and appear to map onto 5 of the 13 MET types. Genetic access to these subtypes will allow researchers to determine their synaptic inputs and outputs and uncover their roles in cortical computations and animal behavior.
Collapse
Affiliation(s)
- Rachel E Hostetler
- Department of Neuroscience, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV 26506
| | - Hang Hu
- Department of Neuroscience, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV 26506
| | - Ariel Agmon
- Department of Neuroscience, West Virginia University Rockefeller Neuroscience Institute, Morgantown, WV 26506
| |
Collapse
|
8
|
Jung K, Choi Y, Kwon HB. Cortical control of chandelier cells in neural codes. Front Cell Neurosci 2022; 16:992409. [PMID: 36299494 PMCID: PMC9588934 DOI: 10.3389/fncel.2022.992409] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Various cortical functions arise from the dynamic interplay of excitation and inhibition. GABAergic interneurons that mediate synaptic inhibition display significant diversity in cell morphology, electrophysiology, plasticity rule, and connectivity. These heterogeneous features are thought to underlie their functional diversity. Emerging attention on specific properties of the various interneuron types has emphasized the crucial role of cell-type specific inhibition in cortical neural processing. However, knowledge is still limited on how each interneuron type forms distinct neural circuits and regulates network activity in health and disease. To dissect interneuron heterogeneity at single cell-type precision, we focus on the chandelier cell (ChC), one of the most distinctive GABAergic interneuron types that exclusively innervate the axon initial segments (AIS) of excitatory pyramidal neurons. Here we review the current understanding of the structural and functional properties of ChCs and their implications in behavioral functions, network activity, and psychiatric disorders. These findings provide insights into the distinctive roles of various single-type interneurons in cortical neural coding and the pathophysiology of cortical dysfunction.
Collapse
|
9
|
Banovac I, Sedmak D, Esclapez M, Petanjek Z. The Distinct Characteristics of Somatostatin Neurons in the Human Brain. Mol Neurobiol 2022; 59:4953-4965. [PMID: 35665897 DOI: 10.1007/s12035-022-02892-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/18/2022] [Indexed: 11/26/2022]
Abstract
Somatostatin cells are frequently described as a major population of GABAergic neurons in the cerebral cortex. In this study, we performed a comprehensive analysis of their molecular expression, morphological features, and laminar distribution. We provided a detailed description of somatostatin neurons in the human prefrontal cortex, including their proportion in the total neuron population, laminar distribution, neurotransmitter phenotype, as well as their molecular and morphological characteristics using immunofluorescence and RNAscope in situ hybridization. We found that somatostatin neurons comprise around 7% of neocortical neurons in the human Brodmann areas 9 and 14r, without significant difference between the two regions. Somatostatin cells were NeuN positive and synthesized vesicular GABA transporter and glutamate decarboxylase 1 and 2, confirming their neuronal nature and GABAergic phenotype. Somatostatin cells in the upper cortical layers were small, had a high expression of somatostatin mRNA, a relatively low expression of somatostatin peptide, and co-expressed calbindin. In the lower cortical layers, somatostatin cells were larger with complex somato-dendritic morphology, typically showed a lower expression of somatostatin mRNA and a high expression of somatostatin peptide, and co-expressed neuronal nitric oxide synthase (nNOS) and neuropeptide Y (NPY), but not calbindin. Somatostatin neurons in the white matter co-expressed MAP2. Based on their somato-dendritic morphology, cortical somatostatin neurons could be classified into at least five subtypes. The somatostatin neurons of the human prefrontal cortex show remarkable morphological and molecular complexity, which implies that they have equally complex and distinct functions in the human brain.
Collapse
Affiliation(s)
- Ivan Banovac
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
| | - Dora Sedmak
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, 10000, Zagreb, Croatia.
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, 10000, Zagreb, Croatia.
| | - Monique Esclapez
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix Marseille University, Marseille, France
| | - Zdravko Petanjek
- Department of Anatomy and Clinical Anatomy, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
- Croatian Institute for Brain Research and Center of Excellence for Basic, Clinical and Translational Neuroscience, University of Zagreb School of Medicine, 10000, Zagreb, Croatia
| |
Collapse
|
10
|
Bugeon S, Duffield J, Dipoppa M, Ritoux A, Prankerd I, Nicoloutsopoulos D, Orme D, Shinn M, Peng H, Forrest H, Viduolyte A, Reddy CB, Isogai Y, Carandini M, Harris KD. A transcriptomic axis predicts state modulation of cortical interneurons. Nature 2022; 607:330-338. [PMID: 35794483 PMCID: PMC9279161 DOI: 10.1038/s41586-022-04915-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Transcriptomics has revealed that cortical inhibitory neurons exhibit a great diversity of fine molecular subtypes1-6, but it is not known whether these subtypes have correspondingly diverse patterns of activity in the living brain. Here we show that inhibitory subtypes in primary visual cortex (V1) have diverse correlates with brain state, which are organized by a single factor: position along the main axis of transcriptomic variation. We combined in vivo two-photon calcium imaging of mouse V1 with a transcriptomic method to identify mRNA for 72 selected genes in ex vivo slices. We classified inhibitory neurons imaged in layers 1-3 into a three-level hierarchy of 5 subclasses, 11 types and 35 subtypes using previously defined transcriptomic clusters3. Responses to visual stimuli differed significantly only between subclasses, with cells in the Sncg subclass uniformly suppressed, and cells in the other subclasses predominantly excited. Modulation by brain state differed at all hierarchical levels but could be largely predicted from the first transcriptomic principal component, which also predicted correlations with simultaneously recorded cells. Inhibitory subtypes that fired more in resting, oscillatory brain states had a smaller fraction of their axonal projections in layer 1, narrower spikes, lower input resistance and weaker adaptation as determined in vitro7, and expressed more inhibitory cholinergic receptors. Subtypes that fired more during arousal had the opposite properties. Thus, a simple principle may largely explain how diverse inhibitory V1 subtypes shape state-dependent cortical processing.
Collapse
Affiliation(s)
- Stéphane Bugeon
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| | - Joshua Duffield
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Mario Dipoppa
- UCL Queen Square Institute of Neurology, University College London, London, UK
- Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Anne Ritoux
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Isabelle Prankerd
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | | | - David Orme
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Maxwell Shinn
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Han Peng
- Department of Physics, University of Oxford, Oxford, UK
| | - Hamish Forrest
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Aiste Viduolyte
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Charu Bai Reddy
- UCL Queen Square Institute of Neurology, University College London, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Yoh Isogai
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Matteo Carandini
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Kenneth D Harris
- UCL Queen Square Institute of Neurology, University College London, London, UK.
| |
Collapse
|
11
|
Llorca A, Deogracias R. Origin, Development, and Synaptogenesis of Cortical Interneurons. Front Neurosci 2022; 16:929469. [PMID: 35833090 PMCID: PMC9272671 DOI: 10.3389/fnins.2022.929469] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The mammalian cerebral cortex represents one of the most recent and astonishing inventions of nature, responsible of a large diversity of functions that range from sensory processing to high-order cognitive abilities, such as logical reasoning or language. Decades of dedicated study have contributed to our current understanding of this structure, both at structural and functional levels. A key feature of the neocortex is its outstanding richness in cell diversity, composed by multiple types of long-range projecting neurons and locally connecting interneurons. In this review, we will describe the great diversity of interneurons that constitute local neocortical circuits and summarize the mechanisms underlying their development and their assembly into functional networks.
Collapse
Affiliation(s)
- Alfredo Llorca
- Visual Neuroscience Laboratory, Centre for Discovery Brain Sciences, School of Biomedical Sciences, University of Edinburgh, Edinburg, United Kingdom
- *Correspondence: Alfredo Llorca
| | - Ruben Deogracias
- Neuronal Circuits Formation and Brain Disorders Laboratory, Institute of Neurosciences of Castilla y León (INCyL), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, Salamanca, Spain
- Department of Cell Biology and Pathology, School of Medicine, University of Salamanca, Salamanca, Spain
- Ruben Deogracias
| |
Collapse
|
12
|
Huang C, Zeldenrust F, Celikel T. Cortical Representation of Touch in Silico. Neuroinformatics 2022; 20:1013-1039. [PMID: 35486347 PMCID: PMC9588483 DOI: 10.1007/s12021-022-09576-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2022] [Indexed: 12/31/2022]
Abstract
With its six layers and ~ 12,000 neurons, a cortical column is a complex network whose function is plausibly greater than the sum of its constituents'. Functional characterization of its network components will require going beyond the brute-force modulation of the neural activity of a small group of neurons. Here we introduce an open-source, biologically inspired, computationally efficient network model of the somatosensory cortex's granular and supragranular layers after reconstructing the barrel cortex in soma resolution. Comparisons of the network activity to empirical observations showed that the in silico network replicates the known properties of touch representations and whisker deprivation-induced changes in synaptic strength induced in vivo. Simulations show that the history of the membrane potential acts as a spatial filter that determines the presynaptic population of neurons contributing to a post-synaptic action potential; this spatial filtering might be critical for synaptic integration of top-down and bottom-up information.
Collapse
Affiliation(s)
- Chao Huang
- grid.9647.c0000 0004 7669 9786Department of Biology, University of Leipzig, Leipzig, Germany
| | - Fleur Zeldenrust
- grid.5590.90000000122931605Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands
| | - Tansu Celikel
- grid.5590.90000000122931605Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands ,grid.213917.f0000 0001 2097 4943School of Psychology, Georgia Institute of Technology, Atlanta, GA USA
| |
Collapse
|
13
|
Kwon KM, Lee MJ, Chung HS, Pak JH, Jeon CJ. The Organization of Somatostatin-Immunoreactive Cells in the Visual Cortex of the Gerbil. Biomedicines 2022; 10:biomedicines10010092. [PMID: 35052772 PMCID: PMC8773527 DOI: 10.3390/biomedicines10010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/29/2021] [Accepted: 12/31/2021] [Indexed: 11/16/2022] Open
Abstract
Somatostatin (SST) is widely expressed in the brain and plays various, vital roles involved in neuromodulation. The purpose of this study is to characterize the organization of SST neurons in the Mongolian gerbil visual cortex (VC) using immunocytochemistry, quantitative analysis, and confocal microscopy. As a diurnal animal, the Mongolian gerbil provides us with a different perspective to other commonly used nocturnal rodent models. In this study, SST neurons were located in all layers of the VC except in layer I; they were most common in layer V. Most SST neurons were multipolar round/oval or stellate cells. No pyramidal neurons were found. Moreover, 2-color immunofluorescence revealed that only 33.50%, 24.05%, 16.73%, 0%, and 64.57% of SST neurons contained gamma-aminobutyric acid, calbindin-D28K, calretinin, parvalbumin, and calcium/calmodulin-dependent protein kinase II, respectively. In contrast, neuropeptide Y and nitric oxide synthase were abundantly expressed, with 80.07% and 75.41% in SST neurons, respectively. Our immunocytochemical analyses of SST with D1 and D2 dopamine receptors and choline acetyltransferase, α7 and β2 nicotinic acetylcholine receptors suggest that dopaminergic and cholinergic fibers contact some SST neurons. The results showed some distinguishable features of SST neurons and provided some insight into their afferent circuitry in the gerbil VC. These findings may support future studies investigating the role of SST neurons in visual processing.
Collapse
Affiliation(s)
- Kyung-Min Kwon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative Bio-Research Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea; (K.-M.K.); (M.-J.L.)
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
| | - Myung-Jun Lee
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative Bio-Research Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea; (K.-M.K.); (M.-J.L.)
| | - Han-Saem Chung
- Department of Biology, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Jae-Hong Pak
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
- Department of Biology, School of Life Sciences, College of Natural Sciences, Kyungpook National University, Daegu 41566, Korea;
| | - Chang-Jin Jeon
- Department of Biology, School of Life Sciences, BK21 FOUR KNU Creative Bio-Research Group, College of Natural Sciences, Brain Science and Engineering Institute, Kyungpook National University, Daegu 41566, Korea; (K.-M.K.); (M.-J.L.)
- Research Institute for Dok-do and Ulleung-do Island, Department of Biology, School of Life Sciences, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Korea;
- Correspondence:
| |
Collapse
|
14
|
Fleitas C, Marfull-Oromí P, Chauhan D, Del Toro D, Peguera B, Zammou B, Rocandio D, Klein R, Espinet C, Egea J. FLRT2 and FLRT3 Cooperate in Maintaining the Tangential Migratory Streams of Cortical Interneurons during Development. J Neurosci 2021; 41:7350-7362. [PMID: 34301831 PMCID: PMC8412983 DOI: 10.1523/jneurosci.0380-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/29/2021] [Accepted: 07/06/2021] [Indexed: 02/08/2023] Open
Abstract
Neuron migration is a hallmark of nervous system development that allows gathering of neurons from different origins for assembling of functional neuronal circuits. Cortical inhibitory interneurons arise in the ventral telencephalon and migrate tangentially forming three transient migratory streams in the cortex before reaching the final laminar destination. Although migration defects lead to the disruption of inhibitory circuits and are linked to aspects of psychiatric disorders such as autism and schizophrenia, the molecular mechanisms controlling cortical interneuron development and final layer positioning are incompletely understood. Here, we show that mouse embryos with a double deletion of FLRT2 and FLRT3 genes encoding cell adhesion molecules exhibit an abnormal distribution of interneurons within the streams during development, which in turn, affect the layering of somatostatin+ interneurons postnatally. Mechanistically, FLRT2 and FLRT3 proteins act in a noncell-autonomous manner, possibly through a repulsive mechanism. In support of such a conclusion, double knockouts deficient in the repulsive receptors for FLRTs, Unc5B and Unc5D, also display interneuron defects during development, similar to the FLRT2/FLRT3 mutants. Moreover, FLRT proteins are chemorepellent ligands for developing interneurons in vitro, an effect that is in part dependent on FLRT-Unc5 interaction. Together, we propose that FLRTs act through Unc5 receptors to control cortical interneuron distribution in a mechanism that involves cell repulsion.SIGNIFICANCE STATEMENT Disruption of inhibitory cortical circuits is responsible for some aspects of psychiatric disorders such as schizophrenia or autism. These defects include interneuron migration during development. A crucial step during this process is the formation of three transient migratory streams within the developing cortex that determine the timing of interneuron final positioning and the formation of functional cortical circuits in the adult. We report that FLRT proteins are required for the proper distribution of interneurons within the cortical migratory streams and for the final laminar allocation in the postnatal cortex. These results expand the multifunctional role of FLRTs during nervous system development in addition to the role of FLRTs in axon guidance and the migration of excitatory cortical neurons.
Collapse
Affiliation(s)
- Catherine Fleitas
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
| | - Pau Marfull-Oromí
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
| | - Disha Chauhan
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
| | - Daniel Del Toro
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Blanca Peguera
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
- Institute of Cell Biology and Neuroscience and Buchmann Institute for Molecular Life Sciences, University of Frankfurt, D-60438 Frankfurt am Main, Germany
| | - Bahira Zammou
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
| | - Daniel Rocandio
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
| | - Rüdiger Klein
- Max Planck Institute of Neurobiology, 82152 Martinsried, Germany
| | - Carme Espinet
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
| | - Joaquim Egea
- Lleida Biomedical Research Institute, University of Lleida, Lleida 25198, Spain
- Serra Hunter Associate Professor, Government of Catalonia, 08007, Spain
| |
Collapse
|
15
|
Revealing the Precise Role of Calretinin Neurons in Epilepsy: We Are on the Way. Neurosci Bull 2021; 38:209-222. [PMID: 34324145 PMCID: PMC8821741 DOI: 10.1007/s12264-021-00753-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/24/2021] [Indexed: 02/03/2023] Open
Abstract
Epilepsy is a common neurological disorder characterized by hyperexcitability in the brain. Its pathogenesis is classically associated with an imbalance of excitatory and inhibitory neurons. Calretinin (CR) is one of the three major types of calcium-binding proteins present in inhibitory GABAergic neurons. The functions of CR and its role in neural excitability are still unknown. Recent data suggest that CR neurons have diverse neurotransmitters, morphologies, distributions, and functions in different brain regions across various species. Notably, CR neurons in the hippocampus, amygdala, neocortex, and thalamus are extremely susceptible to excitotoxicity in the epileptic brain, but the causal relationship is unknown. In this review, we focus on the heterogeneous functions of CR neurons in different brain regions and their relationship with neural excitability and epilepsy. Importantly, we provide perspectives on future investigations of the role of CR neurons in epilepsy.
Collapse
|
16
|
De Gregorio R, Chen X, Petit EI, Dobrenis K, Sze JY. Disruption of Transient SERT Expression in Thalamic Glutamatergic Neurons Alters Trajectory of Postnatal Interneuron Development in the Mouse Cortex. Cereb Cortex 2021; 30:1623-1636. [PMID: 31504267 DOI: 10.1093/cercor/bhz191] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/29/2019] [Accepted: 07/16/2019] [Indexed: 12/13/2022] Open
Abstract
In mice, terminal differentiation of subpopulations of interneurons occurs in late postnatal stages, paralleling the emergence of the adult cortical architecture. Here, we investigated the effects of altered initial cortical architecture on later interneuron development. We identified that a class of somatostatin (SOM)-expressing GABAergic interneurons undergoes terminal differentiation between 2nd and 3rd postnatal week in the mouse somatosensory barrel cortex and upregulates Reelin expression during neurite outgrowth. Our previous work demonstrated that transient expression (E15-P10) of serotonin uptake transporter (SERT) in thalamocortical projection neurons regulates barrel elaboration during cortical map establishment. We show here that in thalamic neuron SERT knockout mice, these SOM-expressing interneurons develop at the right time, reach correct positions and express correct neurochemical markers, but only 70% of the neurons remain in the adult barrel cortex. Moreover, those neurons that remain display altered dendritic patterning. Our data indicate that a precise architecture at the cortical destination is not essential for specifying late-developing interneuron identities, their cortical deposition, and spatial organization, but dictates their number and dendritic structure ultimately integrated into the cortex. Our study illuminates how disruption of temporal-specific SERT function and related key regulators during cortical map establishment can alter interneuron development trajectory that persists to adult central nervous system.
Collapse
Affiliation(s)
- Roberto De Gregorio
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Xiaoning Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Emilie I Petit
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Kostantin Dobrenis
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| | - Ji Ying Sze
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, The Bronx, NY 10461, USA
| |
Collapse
|
17
|
Kullander K, Topolnik L. Cortical disinhibitory circuits: cell types, connectivity and function. Trends Neurosci 2021; 44:643-657. [PMID: 34006387 DOI: 10.1016/j.tins.2021.04.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/16/2022]
Abstract
The concept of a dynamic excitation/inhibition balance tuned by circuit disinhibition, which can shape information flow during complex behavioral tasks, has arisen as an important and conserved information-processing motif. In cortical circuits, different subtypes of GABAergic inhibitory interneurons are connected to each other, offering an anatomical foundation for disinhibitory processes. Moreover, a subpopulation of GABAergic cells that express vasoactive intestinal polypeptide (VIP) preferentially innervates inhibitory interneurons, highlighting their central role in disinhibitory modulation. We discuss inhibitory neuron subtypes involved in disinhibition, with a focus on local circuits and long-range synaptic connections that drive disinhibitory function. We highlight multiple layers of disinhibition across cortical circuits that regulate behavior and serve to maintain an excitation/inhibition balance.
Collapse
Affiliation(s)
- Klas Kullander
- Department of Neuroscience, Uppsala University, Uppsala, Sweden.
| | - Lisa Topolnik
- Department of Biochemistry, Microbiology, and Bioinformatics, Laval University, Québec, QC, Canada; Neuroscience Axis, Centre de Recherche du Centre Hospitalier Universitaire de Québec (CRCHUQ), Laval University, Québec, QC, Canada.
| |
Collapse
|
18
|
Marriott BA, Do AD, Zahacy R, Jackson J. Topographic gradients define the projection patterns of the claustrum core and shell in mice. J Comp Neurol 2021; 529:1607-1627. [PMID: 32975316 PMCID: PMC8048916 DOI: 10.1002/cne.25043] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 01/05/2023]
Abstract
The claustrum is densely connected to the cortex and participates in brain functions such as attention and sleep. Although some studies have reported the widely divergent organization of claustrum projections, others describe parallel claustrocortical connections to different cortical regions. Therefore, the details underlying how claustrum neurons broadcast information to cortical networks remain incompletely understood. Using multicolor retrograde tracing we determined the density, topography, and co-projection pattern of 14 claustrocortical pathways, in mice. We spatially registered these pathways to a common coordinate space and found that the claustrocortical system is topographically organized as a series of overlapping spatial modules, continuously distributed across the dorsoventral claustrum axis. The claustrum core projects predominantly to frontal-midline cortical regions, whereas the dorsal and ventral shell project to the cortical motor system and temporal lobe, respectively. Anatomically connected cortical regions receive common input from a subset of claustrum neurons shared by neighboring modules, whereas spatially separated regions of cortex are innervated by different claustrum modules. Therefore, each output module exhibits a unique position within the claustrum and overlaps substantially with other modules projecting to functionally related cortical regions. Claustrum inhibitory cells containing parvalbumin, somatostatin, and neuropeptide Y also show unique topographical distributions, suggesting different output modules are controlled by distinct inhibitory circuit motifs. The topographic organization of excitatory and inhibitory cell types may enable parallel claustrum outputs to independently coordinate distinct cortical networks.
Collapse
Affiliation(s)
- Brian A. Marriott
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Alison D. Do
- Department of PhysiologyUniversity of AlbertaEdmontonAlbertaCanada
| | - Ryan Zahacy
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
| | - Jesse Jackson
- Neuroscience and Mental Health InstituteUniversity of AlbertaEdmontonAlbertaCanada
- Department of PhysiologyUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
19
|
Yang J, Yang X, Tang K. Interneuron development and dysfunction. FEBS J 2021; 289:2318-2336. [PMID: 33844440 DOI: 10.1111/febs.15872] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/09/2021] [Indexed: 12/17/2022]
Abstract
Understanding excitation and inhibition balance in the brain begins with the tale of two basic types of neurons, glutamatergic projection neurons and GABAergic interneurons. The diversity of cortical interneurons is contributed by multiple origins in the ventral forebrain, various tangential migration routes, and complicated regulations of intrinsic factors, extrinsic signals, and activities. Abnormalities of interneuron development lead to dysfunction of interneurons and inhibitory circuits, which are highly associated with neurodevelopmental disorders including schizophrenia, autism spectrum disorders, and intellectual disability. In this review, we mainly discuss recent findings on the development of cortical interneuron and on neurodevelopmental disorders related to interneuron dysfunction.
Collapse
Affiliation(s)
- Jiaxin Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| | - Xiong Yang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| | - Ke Tang
- Precise Genome Engineering Center, School of Life Sciences, Guangzhou University, China
| |
Collapse
|
20
|
Li M, Cabrera-Garcia D, Salling MC, Au E, Yang G, Harrison NL. Alcohol reduces the activity of somatostatin interneurons in the mouse prefrontal cortex: A neural basis for its disinhibitory effect? Neuropharmacology 2021; 188:108501. [PMID: 33636191 DOI: 10.1016/j.neuropharm.2021.108501] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
The prefrontal cortex (PFC) is involved in executive ("top-down") control of behavior and its function is especially susceptible to the effects of alcohol, leading to behavioral disinhibition that is associated with alterations in decision making, response inhibition, social anxiety and working memory. The circuitry of the PFC involves a complex interplay between pyramidal neurons (PNs) and several subclasses of inhibitory interneurons (INs), including somatostatin (SST)-expressing INs. Using in vivo calcium imaging, we showed that alcohol dose-dependently altered network activity in layers 2/3 of the prelimbic subregion of the mouse PFC. Low doses of alcohol (1 g/kg, intraperitoneal, i.p.) caused moderate activation of SST INs and weak inhibition of PNs. At moderate to high doses, alcohol (2-3 g/kg) strongly inhibited the activity of SST INs in vivo, and this effect may result in disinhibition, as the activity of a subpopulation of PNs was simultaneously enhanced. In contrast, recordings in brain slices using ex vivo electrophysiology revealed no direct effect of alcohol on the excitability of either SST INs or PNs over a range of concentrations (20 and 50 mM) consistent with the blood alcohol levels reached in the in vivo experiments. This dose-dependent effect of alcohol on SST INs in vivo may reveal a neural basis for the disinhibitory effect of alcohol in the PFC mediated by other neurons within or external to the PFC circuitry.
Collapse
Affiliation(s)
- Miao Li
- Columbia University, Department of Anesthesiology, 630 West 168th Street, New York, NY, 10032, USA
| | - David Cabrera-Garcia
- Columbia University, Department of Anesthesiology, 630 West 168th Street, New York, NY, 10032, USA
| | - Michael C Salling
- Louisiana State University, Department of Anatomy, New Orleans, LA, 1901 Perdido Street, New Orleans, LA, 70112, USA
| | - Edmund Au
- Columbia University, Department of Pathology & Cell Biology and Rehabilitative Medicine and Regeneration, Columbia Translational Neuroscience Initiative Scholar, 630 West 168th Street, New York, NY, 10032, USA
| | - Guang Yang
- Columbia University, Department of Anesthesiology, 630 West 168th Street, New York, NY, 10032, USA.
| | - Neil L Harrison
- Columbia University, Department of Anesthesiology, 630 West 168th Street, New York, NY, 10032, USA; Columbia University, Department of Molecular Pharmacology and Therapeutics, 630 West 168th Street, New York, NY, 10032, USA.
| |
Collapse
|
21
|
Boshans LL, Soh H, Wood WM, Nolan TM, Mandoiu II, Yanagawa Y, Tzingounis AV, Nishiyama A. Direct reprogramming of oligodendrocyte precursor cells into GABAergic inhibitory neurons by a single homeodomain transcription factor Dlx2. Sci Rep 2021; 11:3552. [PMID: 33574458 PMCID: PMC7878775 DOI: 10.1038/s41598-021-82931-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/27/2021] [Indexed: 12/26/2022] Open
Abstract
Oligodendrocyte precursor cells (NG2 glia) are uniformly distributed proliferative cells in the mammalian central nervous system and generate myelinating oligodendrocytes throughout life. A subpopulation of OPCs in the neocortex arises from progenitor cells in the embryonic ganglionic eminences that also produce inhibitory neurons. The neuronal fate of some progenitor cells is sealed before birth as they become committed to the oligodendrocyte lineage, marked by sustained expression of the oligodendrocyte transcription factor Olig2, which represses the interneuron transcription factor Dlx2. Here we show that misexpression of Dlx2 alone in postnatal mouse OPCs caused them to switch their fate to GABAergic neurons within 2 days by downregulating Olig2 and upregulating a network of inhibitory neuron transcripts. After two weeks, some OPC-derived neurons generated trains of action potentials and formed clusters of GABAergic synaptic proteins. Our study revealed that the developmental molecular logic can be applied to promote neuronal reprogramming from OPCs.
Collapse
Affiliation(s)
- Linda L Boshans
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Heun Soh
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - William M Wood
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Timothy M Nolan
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Ion I Mandoiu
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral Neuroscience, Gunma University Graduate School of Medicine, Maebashi, Japan
| | | | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA.
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA.
- The Connecticut Institute for Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
22
|
Barron HC, Mars RB, Dupret D, Lerch JP, Sampaio-Baptista C. Cross-species neuroscience: closing the explanatory gap. Philos Trans R Soc Lond B Biol Sci 2021; 376:20190633. [PMID: 33190601 PMCID: PMC7116399 DOI: 10.1098/rstb.2019.0633] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Neuroscience has seen substantial development in non-invasive methods available for investigating the living human brain. However, these tools are limited to coarse macroscopic measures of neural activity that aggregate the diverse responses of thousands of cells. To access neural activity at the cellular and circuit level, researchers instead rely on invasive recordings in animals. Recent advances in invasive methods now permit large-scale recording and circuit-level manipulations with exquisite spatio-temporal precision. Yet, there has been limited progress in relating these microcircuit measures to complex cognition and behaviour observed in humans. Contemporary neuroscience thus faces an explanatory gap between macroscopic descriptions of the human brain and microscopic descriptions in animal models. To close the explanatory gap, we propose adopting a cross-species approach. Despite dramatic differences in the size of mammalian brains, this approach is broadly justified by preserved homology. Here, we outline a three-armed approach for effective cross-species investigation that highlights the need to translate different measures of neural activity into a common space. We discuss how a cross-species approach has the potential to transform basic neuroscience while also benefiting neuropsychiatric drug development where clinical translation has, to date, seen minimal success. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Helen C. Barron
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Rogier B. Mars
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Donders Institute for Brain, Cognition and Behavior, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - David Dupret
- Medical Research Council Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Mansfield Road, Oxford OX1 3TH, UK
| | - Jason P. Lerch
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, CanadaM5G 1L7
| | - Cassandra Sampaio-Baptista
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, FMRIB, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QB, UK
| |
Collapse
|
23
|
Dienel SJ, Ciesielski AJ, Bazmi HH, Profozich EA, Fish KN, Lewis DA. Distinct Laminar and Cellular Patterns of GABA Neuron Transcript Expression in Monkey Prefrontal and Visual Cortices. Cereb Cortex 2020; 31:2345-2363. [PMID: 33338196 DOI: 10.1093/cercor/bhaa341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 10/21/2020] [Accepted: 10/21/2020] [Indexed: 12/25/2022] Open
Abstract
The functional output of a cortical region is shaped by its complement of GABA neuron subtypes. GABA-related transcript expression differs substantially between the primate dorsolateral prefrontal cortex (DLPFC) and primary visual (V1) cortices in gray matter homogenates, but the laminar and cellular bases for these differences are unknown. Quantification of levels of GABA-related transcripts in layers 2 and 4 of monkey DLPFC and V1 revealed three distinct expression patterns: 1) transcripts with higher levels in DLPFC and layer 2 [e.g., somatostatin (SST)]; 2) transcripts with higher levels in V1 and layer 4 [e.g., parvalbumin (PV)], and 3) transcripts with similar levels across layers and regions [e.g., glutamic acid decarboxylase (GAD67)]. At the cellular level, these patterns reflected transcript- and cell type-specific differences: the SST pattern primarily reflected differences in the relative proportions of SST mRNA-positive neurons, the PV pattern primarily reflected differences in PV mRNA expression per neuron, and the GAD67 pattern reflected opposed patterns in the relative proportions of GAD67 mRNA-positive neurons and in GAD67 mRNA expression per neuron. These findings suggest that differences in the complement of GABA neuron subtypes and in gene expression levels per neuron contribute to the specialization of inhibitory neurotransmission across cortical circuits.
Collapse
Affiliation(s)
- Samuel J Dienel
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Andrew J Ciesielski
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Holly H Bazmi
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Elizabeth A Profozich
- Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kenneth N Fish
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - David A Lewis
- Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA.,Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, PA 15213, USA.,Department of Neuroscience, Dietrich School of Arts and Sciences, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
24
|
Kenton JA, Ontiveros T, Bird CW, Valenzuela CF, Brigman JL. Moderate prenatal alcohol exposure alters the number and function of GABAergic interneurons in the murine orbitofrontal cortex. Alcohol 2020; 88:33-41. [PMID: 32540413 DOI: 10.1016/j.alcohol.2020.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/22/2020] [Accepted: 06/04/2020] [Indexed: 12/17/2022]
Abstract
Exposure to alcohol during development produces Fetal Alcohol Spectrum Disorders (FASD), characterized by a wide range of effects that include deficits in multiple cognitive domains. Early identification and treatment of individuals with FASD remain a challenge because neurobehavioral alterations do not become a significant problem until late childhood and early adolescence. Understanding the mechanisms underlying low and moderate prenatal alcohol exposure (PAE) effects on behavior and cognition is essential for improved diagnosis and treatment. Here, we examined the functional and morphological changes in an area known to be involved in executive control, the orbitofrontal cortex (OFC). We found that a moderate PAE model, previously shown to impair behavioral flexibility and to alter OFC activity in vivo, produced moderate functional and morphological changes within the OFC of mice in vitro. Specifically, slice electrophysiological recordings of spontaneous inhibitory post-synaptic currents in OFC pyramidal neurons revealed a significant increase in the amplitude and area in PAE mice relative to controls. Immunohistochemistry uncovered an increase in calretinin-, but not somatostatin- or parvalbumin-expressing cortical interneurons in the OFC of PAE mice. Together, these data suggest that moderate prenatal alcohol exposure alters the disinhibitory function in the OFC, which may contribute to the executive function deficits associated with FASD.
Collapse
Affiliation(s)
- Johnny A Kenton
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Tiahna Ontiveros
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - Clark W Bird
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States
| | - C Fernando Valenzuela
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; New Mexico Alcohol Research Center, University of New Mexico HSC, Albuquerque, NM 87131, United States
| | - Jonathan L Brigman
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, United States; New Mexico Alcohol Research Center, University of New Mexico HSC, Albuquerque, NM 87131, United States.
| |
Collapse
|
25
|
Li X, Chen S, Yang H, Li X, So KF, Wang L. GABAergic Neurons in the Dorsal Raphe Nucleus that Express 5-HT3A Receptors Participate in Responses to Stress Hormones. Neuroscience 2020; 441:217-225. [PMID: 32512137 DOI: 10.1016/j.neuroscience.2020.05.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/18/2022]
Abstract
The dorsal raphe nucleus (DRN) participates in stress responses and in mood regulation via its ascending release of serotonin (5-HT) onto neural circuits within the forebrain. Although the 5-HT DRN region is easily defined via 5-HT-expressing DRN neurons, the neuroarchitecture and microcircuitry that confer its multifunctionality have remained incompletely understood and have required further investigation. In this present study, neurochemical interactions within different subregions of the rat DRN were precisely analyzed. We found that 97.5% of GABAergic neurons in the DRN expressed ionotropic 5-HT3A receptors (5-HT3ARs), whereas there were only rare parvalbumin (PV)-positive or somatostatin (SOM)-positive GABAergic neurons. Furthermore, corticosterone administration into male rats as a rodent model of depression induced significantly higher c-Fos expression in 5-HT3AR-positive GABAergic neurons compared to that in 5-HT neurons within the DRN. Taken together, our findings suggest that 5-HT3AR-positive GABAergic neurons in the DRN participate in responses to stress hormones in a rat model of depression.
Collapse
Affiliation(s)
- Xiaotao Li
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Shanping Chen
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Haiyang Yang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang Li
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Kwok-Fai So
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Guangdong-Hong Kong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, GD, China
| | - Liping Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, CAS Center for Excellence in Brain Science and Intelligence Technology, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
26
|
Analysis of pallial/cortical interneurons in key vertebrate models of Testudines, Anurans and Polypteriform fishes. Brain Struct Funct 2020; 225:2239-2269. [PMID: 32743670 DOI: 10.1007/s00429-020-02123-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 07/24/2020] [Indexed: 01/09/2023]
Abstract
The organization of the pallial derivatives across vertebrates follows a comparable elementary arrangement, although not all of them possess a layered cortical structure as sophisticated as the cerebral cortex of mammals. However, its expansion along evolution has only been possible by the development and coevolution of the cellular networks formed by excitatory neurons and inhibitory interneurons. Thus, the comparative analysis of interneuron types in vertebrate models of key evolutionary significance will provide important information, due to the extraordinary anatomical sophistication of their interneuron systems with simpler behavioral implications. Particularly in mammals, the main consensus for classifying interneuron types is based on non-overlapping markers, which do not form a single population, but consist of several distinct classes of inhibitory cells showing co-expression of other markers. In our study, we analyzed immunohistochemically the expression of the main markers like somatostatin (SOM), parvalbumin (PV), calretinin (CR), calbindin (CB), neuropeptide Y (NPY) and/or nitric oxide synthase (NOS) at the pallial regions of three different models of Osteichthyes. First, we selected two tetrapods, one amniote from the genus Pseudemys belonging to the order Testudine, at the base of the amniote diversification and with a three-layered simple cortex, and the Anuran Xenopus laevis, an anamniote tetrapod with a non-layered evaginated pallium, and finally the order Polypteriform, a small fish group at the base of the actinopterygian diversification with an everted telencephalon. SOM was the most conserved interneuron type in terms of its distribution and co-expression with other markers such as CR, in contrast to PV, which showed a different pattern between the models analyzed. In addition, the SOM expression supports a homological relationship between the medial pallial derivatives in all the models. CR and CB expressions in the tetrapods were observed, particularly, CR expressing cells were detected in the medial and the dorsal pallial derivatives, in contrast to CB, which appeared only in discrete scattered populations. However, the pallium of Polypteriforms fishes was almost devoid of CR cells, in contrast to the important number of CB cells observed in all the pallial regions. The NPY immunoreactivity was detected in all the pallial domains of all the models, as well as cells coexpressing CR. Finally, the pallial nitrergic expression was also conserved, which allows to postulate the homological relationships between the ventropallial and the amygdaloid derivatives. In summary, even in basal pallial models the neurochemically characterized interneurons indicate that their first appearance took place before the common ancestor of amniotes. Thus, our results suggest a shared pattern of interneuron types in the pallium of all Osteichthyes.
Collapse
|
27
|
Graham DL, Durai HH, Trammell TS, Noble BL, Mortlock DP, Galli A, Stanwood GD. A novel mouse model of glucagon-like peptide-1 receptor expression: A look at the brain. J Comp Neurol 2020; 528:2445-2470. [PMID: 32170734 DOI: 10.1002/cne.24905] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 03/07/2020] [Accepted: 03/10/2020] [Indexed: 12/18/2022]
Abstract
Glucagon-like peptide-1 (GLP-1) is an incretin hormone with a number of functions to maintain energy homeostasis and contribute to motivated behavior, both peripherally and within the central nervous system (CNS). These functions, which include insulin secretion, gastric emptying, satiety, and the hedonic aspects of food and drug intake, are primarily mediated through stimulation of the GLP-1 receptor. While this receptor plays an important role in a variety of physiological outcomes, data regarding its CNS expression has been primarily limited to regional receptor binding and single-label transcript expression studies. We thus developed a bacterial artificial chromosome transgenic mouse, in which expression of a red fluorescent protein (mApple) is driven by the GLP-1R promoter. Using this reporter mouse, we characterized the regional and cellular expression patterns of GLP-1R expressing cells in the CNS, using double-label immunohistochemistry and in situ hybridization. GLP-1R-expressing cells were enriched in several key brain regions and circuits, including the lateral septum, hypothalamus, amygdala, bed nucleus of the stria terminalis, hippocampus, ventral midbrain, periaqueductal gray, and cerebral cortex. In most regions, GLP-1R primarily colocalized with GABAergic neurons, except within some regions such as the hippocampus, where it was co-expressed in glutamatergic neurons. GLP-1R-mApple cells were highly co-expressed with 5-HT3 receptor-containing neurons within the cortex and striatum, as well as with dopamine receptor- and calbindin-expressing cells within the lateral septum, the brain region in which GLP-1R is most highly expressed. In this manuscript, we provide detailed images of GLP-1R-mApple expression and distribution within the brain and characterization of these neurons.
Collapse
Affiliation(s)
- Devon L Graham
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Heather H Durai
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Taylor S Trammell
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Brenda L Noble
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Douglas P Mortlock
- Vanderbilt Genetics Institute and Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Aurelio Galli
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregg D Stanwood
- Department of Biomedical Sciences and Center for Brain Repair, Florida State University College of Medicine, Tallahassee, Florida, USA
| |
Collapse
|
28
|
László ZI, Bercsényi K, Mayer M, Lefkovics K, Szabó G, Katona I, Lele Z. N-cadherin (Cdh2) Maintains Migration and Postmitotic Survival of Cortical Interneuron Precursors in a Cell-Type-Specific Manner. Cereb Cortex 2020; 30:1318-1329. [PMID: 31402374 PMCID: PMC7219024 DOI: 10.1093/cercor/bhz168] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 12/14/2022] Open
Abstract
The multiplex role of cadherin-based adhesion complexes during development of pallial excitatory neurons has been thoroughly characterized. In contrast, much less is known about their function during interneuron development. Here, we report that conditional removal of N-cadherin (Cdh2) from postmitotic neuroblasts of the subpallium results in a decreased number of Gad65-GFP-positive interneurons in the adult cortex. We also found that interneuron precursor migration into the pallium was already delayed at E14. Using immunohistochemistry and TUNEL assay in the embryonic subpallium, we excluded decreased mitosis and elevated cell death as possible sources of this defect. Moreover, by analyzing the interneuron composition of the adult somatosensory cortex, we uncovered an unexpected interneuron-type-specific defect caused by Cdh2-loss. This was not due to a fate-switch between interneuron populations or altered target selection during migration. Instead, potentially due to the migration delay, part of the precursors failed to enter the cortical plate and consequently got eliminated at early postnatal stages. In summary, our results indicate that Cdh2-mediated interactions are necessary for migration and survival during the postmitotic phase of interneuron development. Furthermore, we also propose that unlike in pallial glutamatergic cells, Cdh2 is not universal, rather a cell type-specific factor during this process.
Collapse
Affiliation(s)
- Zsófia I László
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Szentágothai János Doctoral School of Neuroscience, Semmelweis University, Budapest, Hungary
| | - Kinga Bercsényi
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, and Medical Research Council Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Mátyás Mayer
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kornél Lefkovics
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Gábor Szabó
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Katona
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| | - Zsolt Lele
- Momentum Laboratory of Molecular Neurobiology, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
- Laboratory of Molecular Biology and Genetics, Institute of Experimental Medicine, Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
29
|
Seiglie MP, Huang L, Cottone P, Sabino V. Role of the PACAP system of the extended amygdala in the acoustic startle response in rats. Neuropharmacology 2019; 160:107761. [PMID: 31493466 PMCID: PMC6842120 DOI: 10.1016/j.neuropharm.2019.107761] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/19/2022]
Abstract
Anxiety-related disorders are the most prevalent mental disorders in the world and they are characterized by abnormal responses to stressors. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide highly expressed in the extended amygdala, a brain macrostructure involved in the response to threat that includes the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST). The aim of this series of experiments was to systematically elucidate the role of the PACAP system of the CeA and BNST under both control, unstressed conditions and after the presentation of a stressor in rats. For this purpose, we used the acoustic startle response (ASR), an unconscious response to sudden acoustic stimuli sensitive to changes in stress which can be used as an operationalization of the hypervigilance present in anxiety- and trauma-related disorders. We found that infusion of PACAP, but not the related peptide vasoactive intestinal peptide (VIP), into either the CeA or the BNST causes a dose-dependent increase in ASR. In addition, while infusion of the antagonist PACAP(6-38) into either the CeA or the BNST does not affect ASR in non-stressed conditions, it prevents the sensitization of ASR induced by an acute footshock stress. Finally, we found that footshock stress induces a significant increase in PACAP, but not VIP, levels in both of these brain areas. Altogether, these data show that the PACAP system of the extended amygdala contributes to stress-induced hyperarousal and suggest it as a potential novel target for the treatment of stress-related disorders.
Collapse
Affiliation(s)
- Mariel P Seiglie
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Lillian Huang
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Valentina Sabino
- Laboratory of Addictive Disorders, Departments of Pharmacology and Psychiatry, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
30
|
Γ-Aminobutyric acid in adult brain: an update. Behav Brain Res 2019; 376:112224. [DOI: 10.1016/j.bbr.2019.112224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 01/21/2023]
|
31
|
Keaveney MK, Tseng HA, Ta TL, Gritton HJ, Man HY, Han X. A MicroRNA-Based Gene-Targeting Tool for Virally Labeling Interneurons in the Rodent Cortex. Cell Rep 2019; 24:294-303. [PMID: 29996091 DOI: 10.1016/j.celrep.2018.06.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/03/2018] [Accepted: 06/11/2018] [Indexed: 12/31/2022] Open
Abstract
More specific and broadly applicable viral gene-targeting tools for labeling neuron subtypes are needed to advance neuroscience research, especially in rodent transgenic disease models and genetically intractable species. Here, we develop a viral vector that restricts transgene expression to GABAergic interneurons in the rodent neocortex by exploiting endogenous microRNA regulation. Our interneuron-targeting, microRNA-guided neuron tag, "GABA mAGNET," achieves >95% interneuron selective labeling in the mouse cortex, including in a murine model of autism and also some preferential labeling of interneurons in the rat brain. We demonstrate an application of our GABA mAGNET by performing simultaneous, in vivo optogenetic control of two distinct neuron subtypes. This interneuron labeling tool highlights the potential of microRNA-based viral gene targeting to specific neuron subtypes.
Collapse
Affiliation(s)
- Marianna K Keaveney
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Hua-An Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Tina L Ta
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Howard J Gritton
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Heng-Ye Man
- Department of Biology, Boston University, Boston, MA 02215, USA
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
32
|
Sun Y, Jin S, Lin X, Chen L, Qiao X, Jiang L, Zhou P, Johnston KG, Golshani P, Nie Q, Holmes TC, Nitz DA, Xu X. CA1-projecting subiculum neurons facilitate object-place learning. Nat Neurosci 2019; 22:1857-1870. [PMID: 31548723 PMCID: PMC6819262 DOI: 10.1038/s41593-019-0496-y] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Accepted: 08/09/2019] [Indexed: 11/09/2022]
Abstract
Recent anatomical evidence suggests a functionally significant back-projection pathway from the subiculum to the CA1. Here we show that the afferent circuitry of CA1-projecting subicular neurons is biased by inputs from CA1 inhibitory neurons and the visual cortex, but lacks input from the entorhinal cortex. Efferents of the CA1-projecting subiculum neurons also target the perirhinal cortex, an area strongly implicated in object-place learning. We identify a critical role for CA1-projecting subicular neurons in object-location learning and memory, and show that this projection modulates place-specific activity of CA1 neurons and their responses to displaced objects. Together, these experiments reveal a novel pathway by which cortical inputs, particularly those from the visual cortex, reach the hippocampal output region CA1. Our findings also implicate this circuitry in the formation of complex spatial representations and learning of object-place associations.
Collapse
Affiliation(s)
- Yanjun Sun
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Suoqin Jin
- Department of Mathematics and Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Xiaoxiao Lin
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Lujia Chen
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Xin Qiao
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Li Jiang
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Pengcheng Zhou
- Department of Statistics and Center for Theoretical Neuroscience, Columbia University, New York, NY, USA
| | - Kevin G Johnston
- Department of Mathematics and Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Peyman Golshani
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- West Los Angeles VA Medical Center, Los Angeles, CA, USA
| | - Qing Nie
- Department of Mathematics and Department of Developmental & Cell Biology, University of California, Irvine, Irvine, CA, USA
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Douglas A Nitz
- Department of Cognitive Science, University of California, San Diego, La Jolla, CA, USA.
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA, USA.
- Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, USA.
- Department of Microbiology and Molecular Genetics, University of California, Irvine, Irvine, CA, USA.
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
33
|
Zhou X, Mansori I, Fischer T, Witte M, Staiger JF. Characterizing the morphology of somatostatin-expressing interneurons and their synaptic innervation pattern in the barrel cortex of the GFP-expressing inhibitory neurons mouse. J Comp Neurol 2019; 528:244-260. [PMID: 31407339 DOI: 10.1002/cne.24756] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 07/25/2019] [Accepted: 07/25/2019] [Indexed: 12/30/2022]
Abstract
Somatostatin-expressing (SST+) cells form the second largest subpopulation of neocortical GABAergic neurons that contain diverse subtypes, which participate in layer-specific cortical circuits. Martinotti cells, as the most abundant subtype of SST+ interneurons, are mainly located in layers II/III and V/VI, and are characterized by dense axonal arborizations in layer I. GFP-expressing inhibitory neurons (GIN), representing a fraction of mainly upper layer SST+ interneurons in various cortical areas, were recently claimed to include both Martinotti cells and non-Martinotti cells. This makes it necessary to examine in detail the morphology and synaptic innervation pattern of the GIN cells, in order to better predict their functional implications. In our study, we characterized the neurochemical specificity, somatodendritic morphology, synaptic ultrastructure as well as synaptic innervation pattern of GIN cells in the barrel cortex in a layer-specific manner. We showed that GIN cells account for 44% of the SST+ interneurons in layer II/III and around 35% in layers IV and Va. There are 29% of GIN cells coexpressing calretinin with 54% in layer II/III, 8% in layer IV, and 13% in layer V. They have diverse somatodendritic configurations and form relatively small synapses across all examined layers. They almost exclusively innervate dendrites of excitatory cells, preferentially targeting distal apical dendrites and apical dendritic tufts of pyramidal neurons in layer I, and rarely target other inhibitory neurons. In summary, our study reveals unique features in terms of the morphology and output of GIN cells, which can help to better understand their diversity and structure-function relationships.
Collapse
Affiliation(s)
- Xiaojuan Zhou
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Ima Mansori
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Tatjana Fischer
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Mirko Witte
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - Jochen F Staiger
- Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| |
Collapse
|
34
|
Chen D, Wang C, Li M, She X, Yuan Y, Chen H, Zhang W, Zhao C. Loss of Foxg1 Impairs the Development of Cortical SST-Interneurons Leading to Abnormal Emotional and Social Behaviors. Cereb Cortex 2019; 29:3666-3682. [DOI: 10.1093/cercor/bhz114] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/10/2019] [Accepted: 05/05/2019] [Indexed: 12/19/2022] Open
Abstract
Abstract
FOXG1 syndrome is a severe encephalopathy that exhibit intellectual disability, emotional disorder, and limited social communication. To elucidate the contribution of somatostatin-expressing interneurons (SST-INs) to the cellular basis underlying FOXG1 syndrome, here, by crossing SST-cre with a Foxg1fl/fl line, we selectively ablated Foxg1. Loss of Foxg1 resulted in an obvious reduction in the number of SST-INs, accompanied by an altered ratio of subtypes. Foxg1-deficient SST-INs exhibited decreased membrane excitability and a changed ratio of electrophysiological firing patterns, which subsequently led to an excitatory/inhibitory imbalance. Moreover, cognitive defects, limited social interactions, and depression-like behaviors were detected in Foxg1 cKO mice. Treatment with low-dose of clonazepam effectively alleviated the defects. These results identify a link of SST-IN development to the aberrant emotion, cognition, and social capacities in patients. Our findings identify a novel role of Foxg1 in SST-IN development and put new insights into the cellular basis of FOXG1 syndrome.
Collapse
Affiliation(s)
- Dongsheng Chen
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Chunlian Wang
- Key Lab of Cognition and Personality, MOE, School of Psychology, Southwest University, Chongqing, China
| | - Meiyi Li
- Key Lab of Cognition and Personality, MOE, School of Psychology, Southwest University, Chongqing, China
| | - Xinyu She
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, ZhongDa Hospital, Medical School of Southeast University, Nanjing, Jiangsu Province, China
| | - Huanxin Chen
- Key Lab of Cognition and Personality, MOE, School of Psychology, Southwest University, Chongqing, China
| | - Weining Zhang
- School of Medicine, Jiangsu University, ZhenJiang, Jiangsu Province, China
| | - Chunjie Zhao
- Key Laboratory of Developmental Genes and Human Diseases, MOE, School of Medicine, Southeast University, Nanjing, Jiangsu Province, China
| |
Collapse
|
35
|
Riedemann T. Diversity and Function of Somatostatin-Expressing Interneurons in the Cerebral Cortex. Int J Mol Sci 2019; 20:E2952. [PMID: 31212931 PMCID: PMC6627222 DOI: 10.3390/ijms20122952] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 06/08/2019] [Accepted: 06/14/2019] [Indexed: 02/01/2023] Open
Abstract
Inhibitory interneurons make up around 10-20% of the total neuron population in the cerebral cortex. A hallmark of inhibitory interneurons is their remarkable diversity in terms of morphology, synaptic connectivity, electrophysiological and neurochemical properties. It is generally understood that there are three distinct and non-overlapping interneuron classes in the mouse neocortex, namely, parvalbumin-expressing, 5-HT3A receptor-expressing and somatostatin-expressing interneuron classes. Each class is, in turn, composed of a multitude of subclasses, resulting in a growing number of interneuron classes and subclasses. In this review, I will focus on the diversity of somatostatin-expressing interneurons (SOM+ INs) in the cerebral cortex and elucidate their function in cortical circuits. I will then discuss pathological consequences of a malfunctioning of SOM+ INs in neurological disorders such as major depressive disorder, and present future avenues in SOM research and brain pathologies.
Collapse
Affiliation(s)
- Therese Riedemann
- Ludwig-Maximilians-University, Biomedical Center, Physiological Genomics, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
36
|
Xu R, Brawner AT, Li S, Liu JJ, Kim H, Xue H, Pang ZP, Kim WY, Hart RP, Liu Y, Jiang P. OLIG2 Drives Abnormal Neurodevelopmental Phenotypes in Human iPSC-Based Organoid and Chimeric Mouse Models of Down Syndrome. Cell Stem Cell 2019; 24:908-926.e8. [PMID: 31130512 DOI: 10.1016/j.stem.2019.04.014] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 10/05/2018] [Accepted: 04/17/2019] [Indexed: 02/06/2023]
Abstract
Down syndrome (DS) is a common neurodevelopmental disorder, and cognitive defects in DS patients may arise from imbalances in excitatory and inhibitory neurotransmission. Understanding the mechanisms underlying such imbalances may provide opportunities for therapeutic intervention. Here, we show that human induced pluripotent stem cells (hiPSCs) derived from DS patients overproduce OLIG2+ ventral forebrain neural progenitors. As a result, DS hiPSC-derived cerebral organoids excessively produce specific subclasses of GABAergic interneurons and cause impaired recognition memory in neuronal chimeric mice. Increased OLIG2 expression in DS cells directly upregulates interneuron lineage-determining transcription factors. shRNA-mediated knockdown of OLIG2 largely reverses abnormal gene expression in early-stage DS neural progenitors, reduces interneuron production in DS organoids and chimeric mouse brains, and improves behavioral deficits in DS chimeric mice. Thus, altered OLIG2 expression may underlie neurodevelopmental abnormalities and cognitive defects in DS patients.
Collapse
Affiliation(s)
- Ranjie Xu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Andrew T Brawner
- Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Shenglan Li
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Jing-Jing Liu
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Hyosung Kim
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Haipeng Xue
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Zhiping P Pang
- Department of Neuroscience and Cell Biology and Child Health Institute of New Jersey, Rutgers Robert Wood Johnson Medical School, New Brunswick, NJ 08901, USA
| | - Woo-Yang Kim
- Department of Biological Sciences, Kent State University, Kent, OH 44242, USA
| | - Ronald P Hart
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Ying Liu
- Department of Neurosurgery and Center for Stem Cell and Regenerative Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Peng Jiang
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Developmental Neuroscience, Munroe-Meyer Institute and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
37
|
Development of Local Circuit Connections to Hilar Mossy Cells in the Mouse Dentate Gyrus. eNeuro 2019; 6:eN-NWR-0370-18. [PMID: 30937358 PMCID: PMC6439204 DOI: 10.1523/eneuro.0370-18.2019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/15/2019] [Accepted: 02/22/2019] [Indexed: 12/14/2022] Open
Abstract
Hilar mossy cells in the dentate gyrus (DG) shape the firing and function of the hippocampal circuit. However, the neural circuitry providing afferent input to mossy cells is incompletely understood, and little is known about the development of these inputs. Thus, we used whole-cell recording and laser scanning photostimulation (LSPS) to characterize the developmental trajectory of local excitatory and inhibitory synaptic inputs to mossy cells in the mouse hippocampus. Hilar mossy cells were targeted by visualizing non-red fluorescent cells in the dentate hilus of GAD2-Cre; Ai9 mice that expressed tdTomato in GAD+ neurons, and were confirmed by post hoc morphological characterization. Our results show that at postnatal day (P)6–P7, mossy cells received more excitatory input from neurons in the proximal CA3 versus those in the DG. In contrast, at P13–P14 and P21–P28, the largest source of excitatory input originated in DG cells, while the strength of CA3 and hilar inputs declined. A developmental trend was also evident for inhibitory inputs. Overall inhibitory input at P6–P7 was weak, while inhibitory inputs from the DG cell layer and the hilus predominated at P13–P14 and P21–P28. The strength of local DG excitation and inhibition to mossy cells peaked at P13–P14 and decreased slightly in older P21–P28 mice. Together, these data provide new detailed information on the development of local synaptic connectivity of mossy cells, and suggests mechanisms through which developmental changes in local circuit inputs to hilar mossy cells shape their physiology and vulnerability to injury during postnatal periods.
Collapse
|
38
|
Riedemann S, Sutor B, Bergami M, Riedemann T. Gad1-promotor-driven GFP expression in non-GABAergic neurons of the nucleus endopiriformis in a transgenic mouse line. J Comp Neurol 2019; 527:2215-2232. [PMID: 30847931 DOI: 10.1002/cne.24673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/04/2019] [Accepted: 03/04/2019] [Indexed: 01/22/2023]
Abstract
Transgenic animals have become a widely used model to identify and study specific cell types in whole organs. Promotor-driven reporter gene labeling of the cells under investigation has promoted experimental efficacy to a large degree. However, rigorous assessment of transgene expression specificity in these animal models is highly recommended to validate cellular identity and to isolate potentially mislabeled cell populations. Here, we report on one such mislabeled neuron population in a widely used transgenic mouse line in which GABAergic somatostatin-expressing interneurons (SOMpos INs) are labeled by eGFP (so-called GIN mouse, FVB-Tg(GadGFP)45704Swn/J). These neurons represent a subpopulation of all SOMpos INs. However, we report here on GFP labeling of non-GABAergic neurons in the nucleus endopiriformis of this mouse line.
Collapse
Affiliation(s)
- Sophie Riedemann
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Bernd Sutor
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany
| | - Matteo Bergami
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and University Hospital of Cologne, Cologne, Germany.,Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Therese Riedemann
- Department of Physiological Genomics, Biomedical Center, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
39
|
Naka A, Veit J, Shababo B, Chance RK, Risso D, Stafford D, Snyder B, Egladyous A, Chu D, Sridharan S, Mossing DP, Paninski L, Ngai J, Adesnik H. Complementary networks of cortical somatostatin interneurons enforce layer specific control. eLife 2019; 8:43696. [PMID: 30883329 PMCID: PMC6422636 DOI: 10.7554/elife.43696] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Accepted: 02/08/2019] [Indexed: 12/03/2022] Open
Abstract
The neocortex is functionally organized into layers. Layer four receives the densest bottom up sensory inputs, while layers 2/3 and 5 receive top down inputs that may convey predictive information. A subset of cortical somatostatin (SST) neurons, the Martinotti cells, gate top down input by inhibiting the apical dendrites of pyramidal cells in layers 2/3 and 5, but it is unknown whether an analogous inhibitory mechanism controls activity in layer 4. Using high precision circuit mapping, in vivo optogenetic perturbations, and single cell transcriptional profiling, we reveal complementary circuits in the mouse barrel cortex involving genetically distinct SST subtypes that specifically and reciprocally interconnect with excitatory cells in different layers: Martinotti cells connect with layers 2/3 and 5, whereas non-Martinotti cells connect with layer 4. By enforcing layer-specific inhibition, these parallel SST subnetworks could independently regulate the balance between bottom up and top down input.
Collapse
Affiliation(s)
- Alexander Naka
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Julia Veit
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Ben Shababo
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States
| | - Rebecca K Chance
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Davide Risso
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,Department of Statistical Sciences, University of Padova, Padova, Italy.,Division of Biostatistics and Epidemiology, Department of Healthcare Policy and Research, Weill Cornell Medicine, New York, United States
| | - David Stafford
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Benjamin Snyder
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Andrew Egladyous
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Desiree Chu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Savitha Sridharan
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| | - Daniel P Mossing
- Department of Biophysics, University of California, Berkeley, Berkeley, United States
| | - Liam Paninski
- Neurobiology and Behavior Program, Columbia University, New York, United States.,Center for Theoretical Neuroscience, Columbia University, New York, United States.,Departments of Statistics and Neuroscience, Columbia University, New York, United States.,Grossman Center for the Statistics of Mind, Columbia University, New York, United States
| | - John Ngai
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States.,QB3 Functional Genomics Laboratory, University of California, Berkeley, Berkeley, United States
| | - Hillel Adesnik
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, United States
| |
Collapse
|
40
|
Wang C, Yu B, Li M, Zhao C, Roper SN, Chen H. Two Groups of eGFP-Expressing Neurons with Distinct Characteristics in the Neocortex of GIN Mice. Neuroscience 2019; 404:268-281. [PMID: 30703506 DOI: 10.1016/j.neuroscience.2019.01.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/15/2019] [Accepted: 01/16/2019] [Indexed: 12/20/2022]
Abstract
GIN (GFP-expressing inhibitory interneuron) transgenic mice are believed to express the enhanced GFP (eGFP) in a subset of somatostatin (SST)-expressing interneurons in the neocortex and have been widely used in the study on SST interneurons. Previous studies showed that eGFP+ neurons in the neocortex are distributed in the layer II-IV and upper layer V (cortical eGFP neurons) and contain SST. In this study, we reported a new group of eGFP+ neurons in GIN mice at early postnatal ages, which was located in the deep layer of the lateral neocortex as clusters (cluster eGFP neurons). Cluster eGFP neurons were noticeable at birth but disappeared within two months, in contrast to cortical eGFP neurons that started to appear around postnatal day 3 to 5 and existed through life. Cluster eGFP neurons were not immunoreactive for SST antibodies, contrary to cortical eGFP neurons. They were also not immunolabeled by parvalbumin, a marker for another major type of interneurons, and Ca2+/calmodulin-dependent kinases II, a commonly used marker for excitatory neurons. Firing rate, afterhyperpolarization, and excitatory synaptic activity significantly enhanced in cortical eGFP neurons during postnatal development, but these properties remained mostly unchanged in cluster eGFP neurons. Short-term plasticity of the excitatory synapse showed robust facilitation in cortical eGFP neurons but depression in cluster eGFP neurons. These results implied that eGFP might also be expressed in other types of cortical neurons in addition to SST-containing interneurons in GIN mice at early postnatal ages.
Collapse
Affiliation(s)
- Chunlian Wang
- Key Lab of Cognition and Personality of the Ministry of Education, Collaborative Innovation Center for Brain Science, School of Psychology, Southwest University, Chongqing, China
| | - Baocong Yu
- Key Lab of Developmental Genes and Human Diseases of the Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, China
| | - Meiyi Li
- Key Lab of Cognition and Personality of the Ministry of Education, Collaborative Innovation Center for Brain Science, School of Psychology, Southwest University, Chongqing, China
| | - Chunjie Zhao
- Key Lab of Developmental Genes and Human Diseases of the Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, China
| | - Steven N Roper
- Department of Neurosurgery, University of Florida, Gainesville, USA
| | - Huanxin Chen
- Key Lab of Cognition and Personality of the Ministry of Education, Collaborative Innovation Center for Brain Science, School of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
41
|
Lim L, Mi D, Llorca A, Marín O. Development and Functional Diversification of Cortical Interneurons. Neuron 2018; 100:294-313. [PMID: 30359598 PMCID: PMC6290988 DOI: 10.1016/j.neuron.2018.10.009] [Citation(s) in RCA: 402] [Impact Index Per Article: 67.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022]
Abstract
In the cerebral cortex, GABAergic interneurons have evolved as a highly heterogeneous collection of cell types that are characterized by their unique spatial and temporal capabilities to influence neuronal circuits. Current estimates suggest that up to 50 different types of GABAergic neurons may populate the cerebral cortex, all derived from progenitor cells in the subpallium, the ventral aspect of the embryonic telencephalon. In this review, we provide an overview of the mechanisms underlying the generation of the distinct types of interneurons and their integration in cortical circuits. Interneuron diversity seems to emerge through the implementation of cell-intrinsic genetic programs in progenitor cells, which unfold over a protracted period of time until interneurons acquire mature characteristics. The developmental trajectory of interneurons is also modulated by activity-dependent, non-cell-autonomous mechanisms that influence their ability to integrate in nascent circuits and sculpt their final distribution in the adult cerebral cortex.
Collapse
Affiliation(s)
- Lynette Lim
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Da Mi
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Alfredo Llorca
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, UK; MRC Centre for Neurodevelopmental Disorders, King's College London, London SE1 1UL, UK.
| |
Collapse
|
42
|
Preferential inputs from cholecystokinin-positive neurons to the somatic compartment of parvalbumin-expressing neurons in the mouse primary somatosensory cortex. Brain Res 2018; 1695:18-30. [DOI: 10.1016/j.brainres.2018.05.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 05/10/2018] [Accepted: 05/19/2018] [Indexed: 12/22/2022]
|
43
|
Camillo D, Ahmadlou M, Saiepour MH, Yasaminshirazi M, Levelt CN, Heimel JA. Visual Processing by Calretinin Expressing Inhibitory Neurons in Mouse Primary Visual Cortex. Sci Rep 2018; 8:12355. [PMID: 30120412 PMCID: PMC6098074 DOI: 10.1038/s41598-018-30958-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 08/08/2018] [Indexed: 12/13/2022] Open
Abstract
Inhibition in the cerebral cortex is delivered by a variety of GABAergic interneurons. These cells have been categorized by their morphology, physiology, gene expression and connectivity. Many of these classes appear to be conserved across species, suggesting that the classes play specific functional roles in cortical processing. What these functions are, is still largely unknown. The largest group of interneurons in the upper layers of mouse primary visual cortex (V1) is formed by cells expressing the calcium-binding protein calretinin (CR). This heterogeneous class contains subsets of vasoactive intestinal polypeptide (VIP) interneurons and somatostatin (SOM) interneurons. Here we show, using in vivo two-photon calcium imaging in mice, that CR neurons can be sensitive to stimulus orientation, but that they are less selective on average than the overall neuronal population. Responses of CR neurons are suppressed by a surrounding stimulus, but less so than the overall population. In rats and primates, CR interneurons have been suggested to provide disinhibition, but we found that in mice their in vivo activation by optogenetics causes a net inhibition of cortical activity. Our results show that the average functional properties of CR interneurons are distinct from the averages of the parvalbumin, SOM and VIP interneuron populations.
Collapse
Affiliation(s)
- Daniela Camillo
- Cortical Structure & Function Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Mehran Ahmadlou
- Cortical Structure & Function Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - M Hadi Saiepour
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Maryam Yasaminshirazi
- Cortical Structure & Function Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - Christiaan N Levelt
- Molecular Visual Plasticity Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands
| | - J Alexander Heimel
- Cortical Structure & Function Group, Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA, Amsterdam, The Netherlands.
| |
Collapse
|
44
|
Interneuron Simplification and Loss of Structural Plasticity As Markers of Aging-Related Functional Decline. J Neurosci 2018; 38:8421-8432. [PMID: 30108129 DOI: 10.1523/jneurosci.0808-18.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 11/21/2022] Open
Abstract
Changes in excitatory neuron and synapse structure have been recognized as a potential physical source of age-related cognitive decline. Despite the importance of inhibition to brain plasticity, little is known regarding aging-associated changes to inhibitory neurons. Here we test for age-related cellular and circuit changes to inhibitory neurons of mouse visual cortex. We find no substantial difference in inhibitory neuron number, inhibitory neuronal subtypes, or synapse numbers within the cerebral cortex of aged mice compared with younger adults. However, when comparing cortical interneuron morphological parameters, we find differences in complexity, suggesting that arbors are simplified in aged mice. In vivo two-photon microscopy has previously shown that in contrast to pyramidal neurons, inhibitory interneurons retain a capacity for dendritic remodeling in the adult. We find that this capacity diminishes with age and is accompanied by a shift in dynamics from balanced branch additions and retractions to progressive prevalence of retractions, culminating in a dendritic arbor that is both simpler and more stable. Recording of visually evoked potentials shows that aging-related interneuron dendritic arbor simplification and reduced dynamics go hand in hand with loss of induced stimulus-selective response potentiation (SRP), a paradigm for adult visual cortical plasticity. Chronic treatment with the antidepressant fluoxetine reversed deficits in interneuron structural dynamics and restored SRP in aged animals. Our results support a structural basis for age-related impairments in sensory perception, and suggest that declines in inhibitory neuron structural plasticity during aging contribute to reduced functional plasticity.SIGNIFICANCE STATEMENT Structural alterations in neuronal morphology and synaptic connections have been proposed as a potential physical basis for age-related decline in cognitive function. Little is known regarding aging-associated changes to inhibitory neurons, despite the importance of inhibitory circuitry to adult cortical plasticity and the reorganization of cortical maps. Here we show that brain aging goes hand in hand with progressive structural simplification and reduced plasticity of inhibitory neurons, and a parallel decline in sensory map plasticity. Fluoxetine treatment can attenuate the concurrent age-related declines in interneuron structural and functional plasticity, suggesting it could provide an important therapeutic approach for mitigating sensory and cognitive deficits associated with aging.
Collapse
|
45
|
Lim L, Pakan JMP, Selten MM, Marques-Smith A, Llorca A, Bae SE, Rochefort NL, Marín O. Optimization of interneuron function by direct coupling of cell migration and axonal targeting. Nat Neurosci 2018; 21:920-931. [PMID: 29915195 PMCID: PMC6061935 DOI: 10.1038/s41593-018-0162-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/13/2018] [Indexed: 12/31/2022]
Abstract
Neural circuit assembly relies on the precise synchronization of developmental processes, such as cell migration and axon targeting, but the cell-autonomous mechanisms coordinating these events remain largely unknown. Here we found that different classes of interneurons use distinct routes of migration to reach the embryonic cerebral cortex. Somatostatin-expressing interneurons that migrate through the marginal zone develop into Martinotti cells, one of the most distinctive classes of cortical interneurons. For these cells, migration through the marginal zone is linked to the development of their characteristic layer 1 axonal arborization. Altering the normal migratory route of Martinotti cells by conditional deletion of Mafb-a gene that is preferentially expressed by these cells-cell-autonomously disrupts axonal development and impairs the function of these cells in vivo. Our results suggest that migration and axon targeting programs are coupled to optimize the assembly of inhibitory circuits in the cerebral cortex.
Collapse
Affiliation(s)
- Lynette Lim
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain
| | - Janelle M P Pakan
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Center for Behavioral Brain Sciences, Institute of Cognitive Neurology and Dementia Research, German Center for Neurodegenerative Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Martijn M Selten
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - André Marques-Smith
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Alfredo Llorca
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Sung Eun Bae
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Nathalie L Rochefort
- Centre for Integrative Physiology, School of Biomedical Sciences, University of Edinburgh, Edinburgh, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Edinburgh, UK
| | - Oscar Marín
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK.
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas & Universidad Miguel Hernández, Sant Joan d'Alacant, Spain.
| |
Collapse
|
46
|
Heterotopic Transplantations Reveal Environmental Influences on Interneuron Diversity and Maturation. Cell Rep 2018; 21:721-731. [PMID: 29045839 DOI: 10.1016/j.celrep.2017.09.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/01/2017] [Accepted: 09/22/2017] [Indexed: 01/25/2023] Open
Abstract
During embryogenesis, neural progenitors in the ganglionic eminences give rise to diverse GABAergic interneuron subtypes that populate all forebrain regions. The extent to which these cells are genetically predefined or determined by postmigratory environmental cues remains unknown. To address this question, we performed homo- and heterotopic transplantation of early postnatal MGE-derived cortical and hippocampal interneurons. Grafted cells migrated, and displayed neurochemical, electrophysiological, morphological, and neurochemical profiles similar to endogenous interneurons. Our results indicate that the host environment regulates the proportion of interneuron classes in the brain region. However, some specific interneuron subtypes retain characteristics representative of their donor brain regions.
Collapse
|
47
|
Harris KD, Hochgerner H, Skene NG, Magno L, Katona L, Bengtsson Gonzales C, Somogyi P, Kessaris N, Linnarsson S, Hjerling-Leffler J. Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics. PLoS Biol 2018; 16:e2006387. [PMID: 29912866 PMCID: PMC6029811 DOI: 10.1371/journal.pbio.2006387] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/03/2018] [Accepted: 05/22/2018] [Indexed: 01/19/2023] Open
Abstract
Understanding any brain circuit will require a categorization of its constituent neurons. In hippocampal area CA1, at least 23 classes of GABAergic neuron have been proposed to date. However, this list may be incomplete; additionally, it is unclear whether discrete classes are sufficient to describe the diversity of cortical inhibitory neurons or whether continuous modes of variability are also required. We studied the transcriptomes of 3,663 CA1 inhibitory cells, revealing 10 major GABAergic groups that divided into 49 fine-scale clusters. All previously described and several novel cell classes were identified, with three previously described classes unexpectedly found to be identical. A division into discrete classes, however, was not sufficient to describe the diversity of these cells, as continuous variation also occurred between and within classes. Latent factor analysis revealed that a single continuous variable could predict the expression levels of several genes, which correlated similarly with it across multiple cell types. Analysis of the genes correlating with this variable suggested it reflects a range from metabolically highly active faster-spiking cells that proximally target pyramidal cells to slower-spiking cells targeting distal dendrites or interneurons. These results elucidate the complexity of inhibitory neurons in one of the simplest cortical structures and show that characterizing these cells requires continuous modes of variation as well as discrete cell classes.
Collapse
Affiliation(s)
- Kenneth D. Harris
- University College London Institute of Neurology, London, United Kingdom
- University College London Department of Neuroscience, Physiology and Pharmacology, London, United Kingdom
| | - Hannah Hochgerner
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nathan G. Skene
- University College London Institute of Neurology, London, United Kingdom
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Lorenza Magno
- University College London Wolfson Institute for Biomedical Research, London, United Kingdom
| | - Linda Katona
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Carolina Bengtsson Gonzales
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Nicoletta Kessaris
- University College London Wolfson Institute for Biomedical Research, London, United Kingdom
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
48
|
Pelkey KA, Chittajallu R, Craig MT, Tricoire L, Wester JC, McBain CJ. Hippocampal GABAergic Inhibitory Interneurons. Physiol Rev 2017; 97:1619-1747. [PMID: 28954853 DOI: 10.1152/physrev.00007.2017] [Citation(s) in RCA: 495] [Impact Index Per Article: 70.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/16/2017] [Accepted: 05/26/2017] [Indexed: 12/11/2022] Open
Abstract
In the hippocampus GABAergic local circuit inhibitory interneurons represent only ~10-15% of the total neuronal population; however, their remarkable anatomical and physiological diversity allows them to regulate virtually all aspects of cellular and circuit function. Here we provide an overview of the current state of the field of interneuron research, focusing largely on the hippocampus. We discuss recent advances related to the various cell types, including their development and maturation, expression of subtype-specific voltage- and ligand-gated channels, and their roles in network oscillations. We also discuss recent technological advances and approaches that have permitted high-resolution, subtype-specific examination of their roles in numerous neural circuit disorders and the emerging therapeutic strategies to ameliorate such pathophysiological conditions. The ultimate goal of this review is not only to provide a touchstone for the current state of the field, but to help pave the way for future research by highlighting where gaps in our knowledge exist and how a complete appreciation of their roles will aid in future therapeutic strategies.
Collapse
Affiliation(s)
- Kenneth A Pelkey
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ramesh Chittajallu
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Michael T Craig
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Ludovic Tricoire
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Jason C Wester
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| | - Chris J McBain
- Porter Neuroscience Center, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland; Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratories, University of Exeter, Exeter, United Kingdom; and Sorbonne Universités, UPMC University of Paris, INSERM, CNRS, Neurosciences Paris Seine-Institut de Biologie Paris Seine, Paris, France
| |
Collapse
|
49
|
Abstract
Cortical networks are composed of glutamatergic excitatory projection neurons and local GABAergic inhibitory interneurons that gate signal flow and sculpt network dynamics. Although they represent a minority of the total neocortical neuronal population, GABAergic interneurons are highly heterogeneous, forming functional classes based on their morphological, electrophysiological, and molecular features, as well as connectivity and in vivo patterns of activity. Here we review our current understanding of neocortical interneuron diversity and the properties that distinguish cell types. We then discuss how the involvement of multiple cell types, each with a specific set of cellular properties, plays a crucial role in diversifying and increasing the computational power of a relatively small number of simple circuit motifs forming cortical networks. We illustrate how recent advances in the field have shed light onto the mechanisms by which GABAergic inhibition contributes to network operations.
Collapse
|
50
|
Pantazopoulos H, Wiseman JT, Markota M, Ehrenfeld L, Berretta S. Decreased Numbers of Somatostatin-Expressing Neurons in the Amygdala of Subjects With Bipolar Disorder or Schizophrenia: Relationship to Circadian Rhythms. Biol Psychiatry 2017; 81:536-547. [PMID: 27259817 PMCID: PMC5065936 DOI: 10.1016/j.biopsych.2016.04.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 04/05/2016] [Accepted: 04/07/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND Growing evidence points to a key role for somatostatin (SST) in schizophrenia (SZ) and bipolar disorder (BD). In the amygdala, neurons expressing SST play an important role in the regulation of anxiety, which is often comorbid in these disorders. We tested the hypothesis that SST-immunoreactive (IR) neurons are decreased in the amygdala of subjects with SZ and BD. Evidence for circadian SST expression in the amygdala and disrupted circadian rhythms and rhythmic peaks of anxiety in BD suggest a disruption of rhythmic expression of SST in this disorder. METHODS Amygdala sections from 12 SZ, 15 BD, and 15 control subjects were processed for immunocytochemistry for SST and neuropeptide Y, a neuropeptide partially coexpressed in SST-IR neurons. Total numbers (Nt) of IR neurons were measured. Time of death was used to test associations with circadian rhythms. RESULTS SST-IR neurons were decreased in the lateral amygdala nucleus in BD (Nt, p = .003) and SZ (Nt, p = .02). In normal control subjects, Nt of SST-IR neurons varied according to time of death. This pattern was altered in BD subjects, characterized by decreases of SST-IR neurons selectively in subjects with time of death corresponding to the day (6:00 am to 5:59 pm). Numbers of neuropeptide Y-IR neurons were not affected. CONCLUSIONS Decreased SST-IR neurons in the amygdala of patients with SZ and BD, interpreted here as decreased SST expression, may disrupt responses to fear and anxiety regulation in these individuals. In BD, our findings raise the possibility that morning peaks of anxiety depend on a disruption of circadian regulation of SST expression in the amygdala.
Collapse
Affiliation(s)
- Harry Pantazopoulos
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Jason T Wiseman
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont
| | - Matej Markota
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Lucy Ehrenfeld
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont
| | - Sabina Berretta
- Translational Neuroscience Laboratory, Mclean Hospital, Belmont; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Program in Neuroscience, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|