1
|
Kaplan HS, Horvath PM, Rahman MM, Dulac C. The neurobiology of parenting and infant-evoked aggression. Physiol Rev 2025; 105:315-381. [PMID: 39146250 DOI: 10.1152/physrev.00036.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 07/19/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024] Open
Abstract
Parenting behavior comprises a variety of adult-infant and adult-adult interactions across multiple timescales. The state transition from nonparent to parent requires an extensive reorganization of individual priorities and physiology and is facilitated by combinatorial hormone action on specific cell types that are integrated throughout interconnected and brainwide neuronal circuits. In this review, we take a comprehensive approach to integrate historical and current literature on each of these topics across multiple species, with a focus on rodents. New and emerging molecular, circuit-based, and computational technologies have recently been used to address outstanding gaps in our current framework of knowledge on infant-directed behavior. This work is raising fundamental questions about the interplay between instinctive and learned components of parenting and the mutual regulation of affiliative versus agonistic infant-directed behaviors in health and disease. Whenever possible, we point to how these technologies have helped gain novel insights and opened new avenues of research into the neurobiology of parenting. We hope this review will serve as an introduction for those new to the field, a comprehensive resource for those already studying parenting, and a guidepost for designing future studies.
Collapse
Affiliation(s)
- Harris S Kaplan
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Patricia M Horvath
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Mohammed Mostafizur Rahman
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, Massachusetts, United States
| |
Collapse
|
2
|
Martínez-Rivera A, Fetcho RN, Birmingham L, Xu J, Yang R, Foord C, Scala-Chávez D, Mekawy N, Pleil K, Pickel VM, Liston C, Castorena CM, Levitz J, Pan YX, Briand LA, Rajadhyaksha AM, Lee FS. Elevating levels of the endocannabinoid 2-arachidonoylglycerol blunts opioid reward but not analgesia. SCIENCE ADVANCES 2024; 10:eadq4779. [PMID: 39612328 PMCID: PMC11606496 DOI: 10.1126/sciadv.adq4779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Converging findings have established that the endocannabinoid (eCB) system serves as a possible target for the development of new treatments as a complement to opioid-based treatments. Here, we show in male and female mice that enhancing levels of the eCB, 2-arachidonoylglycerol (2-AG), through pharmacological inhibition of its catabolic enzyme, monoacylglycerol lipase (MAGL), either systemically or in the ventral tegmental area (VTA) with JZL184, leads to a substantial attenuation of the rewarding effects of opioids in mice using conditioned place preference and self-administration paradigms, without altering their analgesic properties. These effects are driven by cannabinoid receptor 1 (CB1R) within the VTA, as VTA CB1R conditional knockout counteracts JZL184's effects. Using fiber photometry with fluorescent sensors for calcium and dopamine (DA), we find that enhancing 2-AG levels diminishes opioid reward-related nucleus accumbens (NAc) activity and DA neurotransmission. Together, these findings reveal that 2-AG diminishes the rewarding properties of opioids and provides a potential adjunctive therapeutic strategy for opioid-related analgesic treatments.
Collapse
Affiliation(s)
- Arlene Martínez-Rivera
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Robert N. Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lizzie Birmingham
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Jin Xu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Ruirong Yang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Diego Scala-Chávez
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Narmin Mekawy
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kristen Pleil
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carlos M. Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lisa A. Briand
- Department of Psychology and Neuroscience Program, Temple University, Philadelphia, PA 19122, USA
| | - Anjali M. Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Center for Substance Abuse Research and Department of Neural Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA 19140, USA
| | - Francis S. Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
3
|
Aroni S, Sagheddu C, Pistis M, Muntoni AL. Functional Adaptation in the Brain Habenulo-Mesencephalic Pathway During Cannabinoid Withdrawal. Cells 2024; 13:1809. [PMID: 39513916 PMCID: PMC11545051 DOI: 10.3390/cells13211809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The mesolimbic reward system originating from dopamine neurons in the ventral tegmental area (VTA) of the midbrain shows a profound reduction in function during cannabinoid withdrawal. This condition may underlie aversive states that lead to compulsive drug seeking and relapse. The lateral habenula (LHb) exerts negative control over the VTA via the GABA rostromedial tegmental nucleus (RMTg), representing a potential convergence point for drug-induced opponent processes. We hypothesized that the LHb-RMTg pathway might be causally involved in the hypodopaminergic state during cannabinoid withdrawal. To induce Δ9-tetrahydrocannabinol (THC) dependence, adult male Sprague-Dawley rats were treated with THC (15 mg/kg, i.p.) twice daily for 6.5-7 days. Administration of the cannabinoid antagonist rimonabant (5 mg/kg, i.p.) precipitated a robust behavioral withdrawal syndrome, while abrupt THC suspension caused milder signs of abstinence. Extracellular single unit recordings confirmed a marked decrease in the discharge frequency and burst firing of VTA dopamine neurons during THC withdrawal. The duration of RMTg-evoked inhibition was longer in THC withdrawn rats. Additionally, the spontaneous activity of RMTg neurons and of LHb neurons was strongly depressed during cannabinoid withdrawal. These findings support the hypothesis that functional changes in the habenulo-mesencephalic circuit are implicated in the mechanisms underlying substance use disorders.
Collapse
Affiliation(s)
- Sonia Aroni
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
| | - Claudia Sagheddu
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
| | - Marco Pistis
- Department of Biomedical Sciences, Division of Neuroscience and Clinical Pharmacology, University of Cagliari, Cittadella Universitaria di Monserrato, I-09042 Monserrato, Italy; (S.A.); (C.S.); (M.P.)
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, I-09042 Cagliari, Italy
- Unit of Clinical Pharmacology, University Hospital, I-09123 Cagliari, Italy
| | - Anna Lisa Muntoni
- Neuroscience Institute, Section of Cagliari, National Research Council of Italy, Cittadella Universitaria di Monserrato, I-09042 Cagliari, Italy
| |
Collapse
|
4
|
Zhang C, Kúkeľová D, Sigrist H, Hengerer B, Kratzer RF, Mracek P, Omrani A, von Heimendahl M, Pryce CR. Orphan receptor-GPR52 inverse agonist efficacy in ameliorating chronic stress-related deficits in reward motivation and phasic accumbal dopamine activity in mice. Transl Psychiatry 2024; 14:363. [PMID: 39242529 PMCID: PMC11379876 DOI: 10.1038/s41398-024-03081-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024] Open
Abstract
Reward processing dysfunctions e.g., anhedonia, apathy, are common in stress-related neuropsychiatric disorders including depression and schizophrenia, and there are currently no established therapies. One potential therapeutic approach is restoration of reward anticipation during appetitive behavior, deficits in which co-occur with attenuated nucleus accumbens (NAc) activity, possibly due to NAc inhibition of mesolimbic dopamine (DA) signaling. Targeting NAc regulation of ventral tegmental area (VTA) DA neuron responsiveness to reward cues could involve either the direct or indirect-via ventral pallidium (VP)-pathways. One candidate is the orphan G protein-coupled receptor GPR52, expressed by DA receptor 2 NAc neurons that project to VP. In mouse brain-slice preparations, GPR52 inverse agonist (GPR52-IA) attenuated evoked inhibitory postsynaptic currents at NAc-VP neurons, which could disinhibit VTA DA neurons. A mouse model in which chronic social stress leads to reduced reward learning and effortful motivation was applied to investigate GPR52-IA behavioral effects. Control and chronically stressed mice underwent a discriminative learning test of tone-appetitive behavior-sucrose reinforcement: stress reduced appetitive responding and discriminative learning, and these anticipatory behaviors were dose-dependently reinstated by GPR52-IA. The same mice then underwent an effortful motivation test of operant behavior-tone-sucrose reinforcement: stress reduced effortful motivation and GPR52-IA dose-dependently restored it. In a new cohort, GRABDA-sensor fibre photometry was used to measure NAc DA activity during the motivation test: in stressed mice, reduced motivation co-occurred with attenuated NAc DA activity specifically to the tone that signaled reinforcement of effortful behavior, and GPR52-IA ameliorated both deficits. These findings: (1) Demonstrate preclinical efficacy of GPR52 inverse agonism for stress-related deficits in reward anticipation during appetitive behavior. (2) Suggest that GPR52-dependent disinhibition of the NAc-VP-VTA-NAc circuit, leading to increased phasic NAc DA signaling of earned incentive stimuli, could account for these clinically relevant effects.
Collapse
Affiliation(s)
- Chenfeng Zhang
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic and University of Zurich, Zurich, Switzerland
- Zurich Neuroscience Center, University of Zurich and ETH, Zurich, Switzerland
| | - Diana Kúkeľová
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic and University of Zurich, Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic and University of Zurich, Zurich, Switzerland
| | - Bastian Hengerer
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ramona F Kratzer
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Philipp Mracek
- Department of Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Azar Omrani
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Christopher R Pryce
- Preclinical Laboratory, Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic and University of Zurich, Zurich, Switzerland.
- Zurich Neuroscience Center, University of Zurich and ETH, Zurich, Switzerland.
| |
Collapse
|
5
|
Skandalakis GP, Neudorfer C, Payne CA, Bond E, Tavakkoli AD, Barrios-Martinez J, Trutti AC, Koutsarnakis C, Coenen VA, Komaitis S, Hadjipanayis CG, Stranjalis G, Yeh FC, Banihashemi L, Hong J, Lozano AM, Kogan M, Horn A, Evans LT, Kalyvas A. Establishing connectivity through microdissections of midbrain stimulation-related neural circuits. Brain 2024; 147:3083-3098. [PMID: 38808482 PMCID: PMC11370807 DOI: 10.1093/brain/awae173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/15/2024] [Accepted: 04/21/2024] [Indexed: 05/30/2024] Open
Abstract
Comprehensive understanding of the neural circuits involving the ventral tegmental area is essential for elucidating the anatomofunctional mechanisms governing human behaviour, in addition to the therapeutic and adverse effects of deep brain stimulation for neuropsychiatric diseases. Although the ventral tegmental area has been targeted successfully with deep brain stimulation for different neuropsychiatric diseases, the axonal connectivity of the region is not fully understood. Here, using fibre microdissections in human cadaveric hemispheres, population-based high-definition fibre tractography and previously reported deep brain stimulation hotspots, we find that the ventral tegmental area participates in an intricate network involving the serotonergic pontine nuclei, basal ganglia, limbic system, basal forebrain and prefrontal cortex, which is implicated in the treatment of obsessive-compulsive disorder, major depressive disorder, Alzheimer's disease, cluster headaches and aggressive behaviours.
Collapse
Affiliation(s)
- Georgios P Skandalakis
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Clemens Neudorfer
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Caitlin A Payne
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Evalina Bond
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Armin D Tavakkoli
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | | | - Anne C Trutti
- Integrative Model-Based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam 15926, The Netherlands
| | - Christos Koutsarnakis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Volker A Coenen
- Department of Stereotactic and Functional Neurosurgery, Medical Center of the University of Freiburg, Freiburg 79106, Germany
- Medical Faculty of the University of Freiburg, Freiburg 79110, Germany
- Center for Deep Brain Stimulation, Medical Center of the University of Freiburg, Freiburg 79106, Germany
| | - Spyridon Komaitis
- Queens Medical Center, Nottingham University Hospitals NHS Foundation Trust, Nottingham NG7 2UH, UK
| | | | - George Stranjalis
- Department of Neurosurgery, National and Kapodistrian University of Athens Medical School, Evangelismos General Hospital, Athens 10676, Greece
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Layla Banihashemi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA 15213, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jennifer Hong
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Andres M Lozano
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Michael Kogan
- Department of Neurosurgery, University of New Mexico School of Medicine, Albuquerque, NM 87106, USA
| | - Andreas Horn
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- MGH Neurosurgery & Center for Neurotechnology and Neurorecovery (CNTR) at MGH Neurology Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Movement Disorder and Neuromodulation Unit, Department of Neurology, Department of Neurology, Charité—Universitätsmedizin Berlin, Corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Linton T Evans
- Section of Neurosurgery, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA
| | - Aristotelis Kalyvas
- Division of Neurosurgery, University Health Network, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
6
|
Mueller SG, Garga N, Garcia P, Rossi S, Vu A, Neylan T, Laxer KD. The imprint of dissociative seizures on the brain. Neuroimage Clin 2024; 43:103664. [PMID: 39226702 PMCID: PMC11403518 DOI: 10.1016/j.nicl.2024.103664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/05/2024]
Abstract
BACKGROUND Increased resting state functional connectivity between regions involved in emotion control with regions with other specializations, e.g. motor control (emotional hyperconnectivity) is one of the most consistent imaging findings in persons suffering from dissociative seizures (DS). The overall goal of this study was to better characterize DS-related emotional hyperconnectivity using dynamic resting state analysis combined with brainstem volumetry to investigate 1. If emotional hyperconnectivity is restricted to a single state. 2. How volume losses within the modulatory and emotional motor subnetworks of the neuromodulatory system influence the expression of the emotional hyperconnectivity. METHODS 13 persons with dissociative seizures (PDS) (f/m:10/3, mean age (SD) 44.6 (11.5)) and 15 controls (CON) (f/m:10/5, mean age (SD) 41.7 (13.0)) underwent a mental health test battery and structural and functional imaging at 3 T. Deformation based morphometry was used to assess brain volume loss by extracting the mean Jacobian determinants from 457 brain, forebrain and brainstem structures. The bold signals from 445 brainstem and brain rois were extracted with CONN and a dynamic fMRI analysis combined with graph and hierarchical analysis was used to identify and characterize 9 different brain states. Welch's t tests and Kendall tau tests were used for group comparisons and correlation analyses. RESULTS The duration of Brain state 6 was longer in PDS than in CON (93.1(88.3) vs. 23.4(31.2), p = 0.01) and positively correlated with higher degrees of somatization, depression, PTSD severity and dissociation. Its global connectivity was higher in PDS than CON (90.4(3.2) vs 86.5(4.2) p = 0.01) which was caused by an increased connectivity between regions involved in emotion control and regions involved in sense of agency/body control. The brainstem and brainstem-forebrain modulatory and emotional motor subnetworks of the neuromodulatory system were atrophied in PDS. Atrophy severity within the brainstem-forebrain subnetworks was correlated with state 6 dwell time (modulatory: tau = -0.295, p = 0.03; emotional motor: tau = -0.343, p = 0.015) and atrophy severity within the brainstem subnetwork with somatization severity (modulatory: tau = -0.25, p = 0.036; emotional motor: tau = -0.256, p = 0.033). CONCLUSION DS-related emotional hyperconnectivity was restricted to state 6 episodes. The remaining states were not different between PDS and CON. The modulatory subnetwork synchronizes brain activity across brain regions. Atrophy and dysfunction within that subnetwork could facilitate the abnormal interaction between regions involved in emotion control with those controlling sense of agency/body ownership during state 6 and contribute to the tendency for somatization in PDS. The emotional motor subnetwork controls the activity of spinal motoneurons. Atrophy and dysfunction within this subnetwork could impair that control resulting in motor symptoms during DS. Taken together, these findings indicate that DS have a neurophysiological underpinning.
Collapse
Affiliation(s)
- S G Mueller
- Center for Imaging of Neurodegenerative Diseases, VAMC, San Francisco, CA, USA; Dept of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - N Garga
- VA Epilepsy Center of Excellence, VAMC, San Francisco, CA, USA; Dept. of Neurology, University of California, San Francisco, CA, USA
| | - P Garcia
- Dept. of Neurology, University of California, San Francisco, CA, USA
| | - S Rossi
- Center for Imaging of Neurodegenerative Diseases, VAMC, San Francisco, CA, USA
| | - A Vu
- Center for Imaging of Neurodegenerative Diseases, VAMC, San Francisco, CA, USA; Dept of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - T Neylan
- VA Mental Health, VAMC San Francisco, CA, USA
| | - K D Laxer
- Sutter Pacific Epilepsy Program, California Pacific Medical Center, San Francisco, CA, USA
| |
Collapse
|
7
|
Michel L, Molina P, Mameli M. The behavioral relevance of a modular organization in the lateral habenula. Neuron 2024; 112:2669-2685. [PMID: 38772374 DOI: 10.1016/j.neuron.2024.04.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/23/2024] [Indexed: 05/23/2024]
Abstract
Behavioral strategies for survival rely on the updates the brain continuously makes based on the surrounding environment. External stimuli-neutral, positive, and negative-relay core information to the brain, where a complex anatomical network rapidly organizes actions, including approach or escape, and regulates emotions. Human neuroimaging and physiology in nonhuman primates, rodents, and teleosts suggest a pivotal role of the lateral habenula in translating external information into survival behaviors. Here, we review the literature describing how discrete habenular modules-reflecting the molecular signatures, anatomical connectivity, and functional components-are recruited by environmental stimuli and cooperate to prompt specific behavioral outcomes. We argue that integration of these findings in the context of valence processing for reinforcing or discouraging behaviors is necessary, offering a compelling model to guide future work.
Collapse
Affiliation(s)
- Leo Michel
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Patricia Molina
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland
| | - Manuel Mameli
- The Department of Fundamental Neuroscience, The University of Lausanne, 1005 Lausanne, Switzerland; Inserm, UMR-S 839, 75005 Paris, France.
| |
Collapse
|
8
|
Nguyen TVT, Nakamura T, Ichijo H. Topographic Organization of Glutamatergic and GABAergic Parvalbumin-Positive Neurons in the Lateral Habenula. eNeuro 2024; 11:ENEURO.0069-24.2024. [PMID: 38960707 PMCID: PMC11255393 DOI: 10.1523/eneuro.0069-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/05/2024] Open
Abstract
Parvalbumin-expressing (PV) neurons, classified by their expression of the calcium-binding protein parvalbumin, play crucial roles in the function and plasticity of the lateral habenular nucleus (LHb). This study aimed to deepen our understanding of the LHb by collecting information about the heterogeneity of LHb PV neurons in mice. To achieve this, we investigated the proportions of the transmitter machinery in LHb PV neurons, including GABAergic, glutamatergic, serotonergic, cholinergic, and dopaminergic neurotransmitter markers, using transcriptome analysis, mRNA in situ hybridization chain reaction, and immunohistochemistry. LHb PV neurons comprise three subsets: glutamatergic, GABAergic, and double-positive for glutamatergic and GABAergic machinery. By comparing the percentages of the subsets, we found that the LHb was topographically organized anteroposteriorly; the GABAergic and glutamatergic PV neurons were preferentially distributed in the anterior and posterior LHb, respectively, uncovering the anteroposterior topography of the LHb. In addition, we confirmed the mediolateral topography of lateral GABAergic PV neurons. These findings suggest that PV neurons play distinct roles in different parts of the LHb along the anteroposterior and mediolateral axes, facilitating the topographic function of the LHb. It would be interesting to determine whether their topography is differentially involved in various cognitive and motivational processes associated with the LHb, particularly the involvement of posterior glutamatergic PV neurons.
Collapse
Affiliation(s)
- Thi Van Trang Nguyen
- Department of Anatomy, Faculty of Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Tomoya Nakamura
- Department of Anatomy, Faculty of Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| | - Hiroyuki Ichijo
- Department of Anatomy, Faculty of Medicine, University of Toyama, Sugitani 2630, Toyama 930-0194, Japan
| |
Collapse
|
9
|
McGovern DJ, Phillips A, Ly A, Prévost ED, Ward L, Siletti K, Kim YS, Fenno LE, Ramakrishnan C, Deisseroth K, Ford CP, Root DH. Salience signaling and stimulus scaling of ventral tegmental area glutamate neuron subtypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.12.598688. [PMID: 38915564 PMCID: PMC11195246 DOI: 10.1101/2024.06.12.598688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Ventral tegmental area (VTA) glutamatergic neurons participate in reward, aversion, drug-seeking, and stress. Subsets of VTA VGluT2+ neurons are capable of co-transmitting glutamate and GABA (VGluT2+VGaT+ neurons), transmitting glutamate without GABA (VGluT2+VGaT- neurons), or co-transmitting glutamate and dopamine (VGluT2+TH+ neurons), but whether these molecularly distinct subpopulations show behavior-related differences is not wholly understood. We identified that neuronal activity of each VGluT2+ subpopulation is sensitive to reward value but signaled this in different ways. The phasic maximum activity of VGluT2+VGaT+ neurons increased with sucrose concentration, whereas VGluT2+VGaT- neurons increased maximum and sustained activity with sucrose concentration, and VGluT2+TH+ neurons increased sustained but not maximum activity with sucrose concentration. Additionally, VGluT2+ subpopulations signaled consummatory preferences in different ways. VGluT2+VGaT- neurons and VGluT2+TH+ neurons showed a signaling preference for a behaviorally-preferred fat reward over sucrose, but in temporally-distinct ways. In contrast, VGluT2+VGaT+ neurons uniquely signaled a less behaviorally-preferred sucrose reward compared with fat. Further experiments suggested that VGluT2+VGaT+ consummatory reward-related activity was related to sweetness, partially modulated by hunger state, and not dependent on caloric content or behavioral preference. All VGluT2+ subtypes increased neuronal activity following aversive stimuli but VGluT2+VGaT+ neurons uniquely scaled their magnitude and sustained activity with footshock intensity. Optogenetic activation of VGluT2+VGaT+ neurons during low intensity footshock enhanced fear-related behavior without inducing place preference or aversion. We interpret these data such that VTA glutamatergic subpopulations signal different elements of rewarding and aversive experiences and highlight the unique role of VTA VGluT2+VGaT+ neurons in enhancing the salience of behavioral experiences.
Collapse
Affiliation(s)
- Dillon J. McGovern
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Alysabeth Phillips
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Annie Ly
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Emily D. Prévost
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Lucy Ward
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Kayla Siletti
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| | - Yoon Seok Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Lief E. Fenno
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Current address: Department of Neuroscience, Dell Medical School, The University of Texas at Austin 78712
| | - Charu Ramakrishnan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
| | - Karl Deisseroth
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Christopher P. Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO 80045
| | - David H. Root
- Department of Psychology and Neuroscience, University of Colorado Boulder, 2860 Wilderness Pl, Boulder, CO 80301
| |
Collapse
|
10
|
Groos D, Helmchen F. The lateral habenula: A hub for value-guided behavior. Cell Rep 2024; 43:113968. [PMID: 38522071 DOI: 10.1016/j.celrep.2024.113968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/20/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
The habenula is an evolutionarily highly conserved diencephalic brain region divided into two major parts, medial and lateral. Over the past two decades, studies of the lateral habenula (LHb), in particular, have identified key functions in value-guided behavior in health and disease. In this review, we focus on recent insights into LHb connectivity and its functional relevance for different types of aversive and appetitive value-guided behavior. First, we give an overview of the anatomical organization of the LHb and its main cellular composition. Next, we elaborate on how distinct LHb neuronal subpopulations encode aversive and appetitive stimuli and on their involvement in more complex decision-making processes. Finally, we scrutinize the afferent and efferent connections of the LHb and discuss their functional implications for LHb-dependent behavior. A deepened understanding of distinct LHb circuit components will substantially contribute to our knowledge of value-guided behavior.
Collapse
Affiliation(s)
- Dominik Groos
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland.
| | - Fritjof Helmchen
- Laboratory of Neural Circuit Dynamics, Brain Research Institute, University of Zurich, Zurich, Switzerland; Neuroscience Center Zurich, University of Zurich, Zurich, Switzerland; University Research Priority Program (URPP), Adaptive Brain Circuits in Development and Learning, University of Zurich, Zurich, Switzerland
| |
Collapse
|
11
|
Chang L, Niu F, Li B. Ghrelin/GHSR signaling in the lateral septum ameliorates chronic stress-induced depressive-like behaviors. Prog Neuropsychopharmacol Biol Psychiatry 2024; 131:110953. [PMID: 38278286 DOI: 10.1016/j.pnpbp.2024.110953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 01/28/2024]
Abstract
Ghrelin is a gastrointestinal hormone on feeding and metabolism regulation, and acts through its receptor-growth hormone secretagogue receptor (GHSR), which is widely distributed throughout the central nervous system. Recent studies have suggested that ghrelin plays an important role in the regulation of depression, but the underlying mechanisms remain uncertain. Lateral septum (LS) is a critical brain region in modulating depression. Therefore, we investigated the role of ghrelin/GHSR signaling in the LS on the depressive-like behaviors of mice under conditions of chronic stress by using behavioral tests, neuropharmacology, and molecular biology techniques. We found that infusion of ghrelin into the LS produced antidepressant-like responses in mice. Activation of LS GABAergic neurons was involved in the antidepressant effect of ghrelin. Importantly, GHSR was highly expressed and distributed in the LS neurons. Blockade of GHSR in the LS reversed the ghrelin-induced antidepressant-like effects. Molecular knockdown of GHSR in the LS induced depressive-like symptoms in mice. Furthermore, administration of ghrelin into the LS alleviated depressive-like behaviors induced by chronic social defeat stress (CSDS). Consistent with the neuropharmacological results, overexpression of GHSR in the LS reversed CSDS-induced depressive-like behaviors. Our findings clarify a key role for ghrelin/GHSR signaling in the regulation of chronic stress-induced depressive-like behaviors, which could provide new strategies for the treatment of depression.
Collapse
Affiliation(s)
- Leilei Chang
- Department of Neurology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Fengnan Niu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bin Li
- Women and Children's Medical Research Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Martínez-Rivera A, Fetcho RN, Birmingham L, Jiu JX, Yang R, Foord C, Scala-Chávez D, Mekawy N, Pleil K, Pickel VM, Liston C, Castorena CM, Levitz J, Pan YX, Briand LA, Rajadhyaksha AM, Lee FS. Elevating levels of the endocannabinoid 2-arachidonoylglycerol blunts opioid reward but not analgesia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.02.585967. [PMID: 38766079 PMCID: PMC11101127 DOI: 10.1101/2024.04.02.585967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Converging findings have established that the endocannabinoid (eCB) system serves as a possible target for the development of new treatments for pain as a complement to opioid-based treatments. Here we show in male and female mice that enhancing levels of the eCB, 2-arachidonoylglycerol (2-AG), through pharmacological inhibition of its catabolic enzyme, monoacylglycerol lipase (MAGL), either systemically or in the ventral tegmental area (VTA) with JZL184, leads to a substantial attenuation of the rewarding effects of opioids in male and female mice using conditioned place preference and self-administration paradigms, without altering their analgesic properties. These effects are driven by CB1 receptors (CB1Rs) within the VTA as VTA CB1R conditional knockout, counteracts JZL184's effects. Conversely, pharmacologically enhancing the levels of the other eCB, anandamide (AEA), by inhibition of fatty acid amide hydrolase (FAAH) has no effect on opioid reward or analgesia. Using fiber photometry with fluorescent sensors for calcium and dopamine (DA), we find that enhancing 2-AG levels diminishes opioid reward-related nucleus accumbens (NAc) activity and DA neurotransmission. Together these findings reveal that 2-AG counteracts the rewarding properties of opioids and provides a potential adjunctive therapeutic strategy for opioid-related analgesic treatments.
Collapse
Affiliation(s)
- Arlene Martínez-Rivera
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Robert N. Fetcho
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Lizzie Birmingham
- Department of Psychology, Temple University; Neuroscience Program, Temple University, 19122, USA
| | - Jin X Jiu
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Ruirong Yang
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Careen Foord
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Diego Scala-Chávez
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Narmin Mekawy
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
| | - Kristen Pleil
- Department of Pharmacology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Virginia M. Pickel
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Conor Liston
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Carlos M. Castorena
- Center for Hypothalamic Research, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Ying-Xian Pan
- Department of Anesthesiology, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Lisa A. Briand
- Department of Psychology, Temple University; Neuroscience Program, Temple University, 19122, USA
| | - Anjali M. Rajadhyaksha
- Center for Substance Abuse Research, Temple University School of Medicine, Philadelphia, PA, USA
- Division of Pediatric Neurology, Department of Pediatrics, Weill Cornell Medicine, New York, NY 10065, USA
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
| | - Francis S. Lee
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10065, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
13
|
Fu Y, Li W, Mai Y, Guan J, Ding R, Hou J, Chen B, Cao G, Sun S, Tang Y, Fu R. Association between RMTg Neuropeptide Genes and Negative Effect during Alcohol Withdrawal in Mice. Int J Mol Sci 2024; 25:2933. [PMID: 38474180 DOI: 10.3390/ijms25052933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/24/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Alcohol use disorders (AUDs) frequently co-occur with negative mood disorders, such as anxiety and depression, exacerbating relapse through dopaminergic dysfunction. Stress-related neuropeptides play a crucial role in AUD pathophysiology by modulating dopamine (DA) function. The rostromedial tegmental nucleus (RMTg), which inhibits midbrain dopamine neurons and signals aversion, has been shown to increase ethanol consumption and negative emotional states during abstinence. Despite some stress-related neuropeptides acting through the RMTg to affect addiction behaviors, their specific roles in alcohol-induced contexts remain underexplored. This study utilized an intermittent voluntary drinking model in mice to induce negative effect behavior 24 h into ethanol (EtOH) abstinence (post-EtOH). It examined changes in pro-stress (Pnoc, Oxt, Npy) and anti-stress (Crf, Pomc, Avp, Orx, Pdyn) neuropeptide-coding genes and analyzed their correlations with aversive behaviors. We observed that adult male C57BL/6J mice displayed evident anxiety, anhedonia, and depression-like symptoms at 24 h post-EtOH. The laser-capture microdissection technique, coupled with or without retrograde tracing, was used to harvest total ventral tegmental area (VTA)-projecting neurons or the intact RMTg area. The findings revealed that post-EtOH consistently reduced Pnoc and Orx levels while elevating Crf levels in these neuronal populations. Notably, RMTg Pnoc and Npy levels counteracted ethanol consumption and depression severity, while Crf levels were indicative of the mice's anxiety levels. Together, these results underscore the potential role of stress-related neuropeptides in the RMTg in regulating the negative emotions related to AUDs, offering novel insights for future research.
Collapse
Affiliation(s)
- Yixin Fu
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Wenfu Li
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Yunlin Mai
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Junhao Guan
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Ruxuan Ding
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Jiawei Hou
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Bingqing Chen
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Guoxin Cao
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Shizhu Sun
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Ying Tang
- Clinical Skills Training Center, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| | - Rao Fu
- Department of Anatomy, School of Medicine, Sun Yat-Sen University, Shenzhen 518106, China
| |
Collapse
|
14
|
Zhu C, Lan X, Wei Z, Yu J, Zhang J. Allosteric modulation of G protein-coupled receptors as a novel therapeutic strategy in neuropathic pain. Acta Pharm Sin B 2024; 14:67-86. [PMID: 38239234 PMCID: PMC10792987 DOI: 10.1016/j.apsb.2023.07.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/09/2023] [Accepted: 07/12/2023] [Indexed: 01/22/2024] Open
Abstract
Neuropathic pain is a debilitating pathological condition that presents significant therapeutic challenges in clinical practice. Unfortunately, current pharmacological treatments for neuropathic pain lack clinical efficacy and often lead to harmful adverse reactions. As G protein-coupled receptors (GPCRs) are widely distributed throughout the body, including the pain transmission pathway and descending inhibition pathway, the development of novel neuropathic pain treatments based on GPCRs allosteric modulation theory is gaining momentum. Extensive research has shown that allosteric modulators targeting GPCRs on the pain pathway can effectively alleviate symptoms of neuropathic pain while reducing or eliminating adverse effects. This review aims to provide a comprehensive summary of the progress made in GPCRs allosteric modulators in the treatment of neuropathic pain, and discuss the potential benefits and adverse factors of this treatment. We will also concentrate on the development of biased agonists of GPCRs, and based on important examples of biased agonist development in recent years, we will describe universal strategies for designing structure-based biased agonists. It is foreseeable that, with the continuous improvement of GPCRs allosteric modulation and biased agonist theory, effective GPCRs allosteric drugs will eventually be available for the treatment of neuropathic pain with acceptable safety.
Collapse
Affiliation(s)
- Chunhao Zhu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- School of Basic Medical Science, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaobing Lan
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Zhiqiang Wei
- Medicinal Chemistry and Bioinformatics Center, Ocean University of China, Qingdao 266100, China
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Jian Zhang
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210023, China
| |
Collapse
|
15
|
Coizet V, Al Tannir R, Pautrat A, Overton PG. Separation of Channels Subserving Approach and Avoidance/Escape at the Level of the Basal Ganglia and Related Brainstem Structures. Curr Neuropharmacol 2024; 22:1473-1490. [PMID: 37594168 PMCID: PMC11097992 DOI: 10.2174/1570159x21666230818154903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 08/19/2023] Open
Abstract
The basal ganglia have the key function of directing our behavior in the context of events from our environment and/or our internal state. This function relies on afferents targeting the main input structures of the basal ganglia, entering bids for action selection at the level of the striatum or signals for behavioral interruption at the level of the subthalamic nucleus, with behavioral reselection facilitated by dopamine signaling. Numerous experiments have studied action selection in relation to inputs from the cerebral cortex. However, less is known about the anatomical and functional link between the basal ganglia and the brainstem. In this review, we describe how brainstem structures also project to the main input structures of the basal ganglia, namely the striatum, the subthalamic nucleus and midbrain dopaminergic neurons, in the context of approach and avoidance (including escape from threat), two fundamental, mutually exclusive behavioral choices in an animal's repertoire in which the brainstem is strongly involved. We focus on three particularly well-described loci involved in approach and avoidance, namely the superior colliculus, the parabrachial nucleus and the periaqueductal grey nucleus. We consider what is known about how these structures are related to the basal ganglia, focusing on their projections toward the striatum, dopaminergic neurons and subthalamic nucleus, and explore the functional consequences of those interactions.
Collapse
Affiliation(s)
- Véronique Coizet
- Grenoble Institute of Neuroscience, University Grenoble Alpes, Bâtiment E.J. Safra - Chemin Fortuné Ferrini - 38700 La Tronche France;
| | - Racha Al Tannir
- Grenoble Institute of Neuroscience, University Grenoble Alpes, Bâtiment E.J. Safra - Chemin Fortuné Ferrini - 38700 La Tronche France;
| | - Arnaud Pautrat
- Grenoble Institute of Neuroscience, University Grenoble Alpes, Bâtiment E.J. Safra - Chemin Fortuné Ferrini - 38700 La Tronche France;
| | - Paul G. Overton
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
Wilczkowski M, Karwowska K, Kielbinski M, Zajda K, Pradel K, Drwięga G, Rajfur Z, Blasiak T, Przewlocki R, Solecki WB. Recruitment of inhibitory neuronal pathways regulating dopaminergic activity for the control of cocaine seeking. Eur J Neurosci 2023; 58:4487-4501. [PMID: 36479859 DOI: 10.1111/ejn.15885] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 12/14/2022]
Abstract
Drug seeking is associated with the ventral tegmental area (VTA) dopaminergic (DA) activity. Previously, we have shown that brief optogenetic inhibition of VTA DA neurons with 1 s pulses delivered every 9 s attenuates cocaine seeking under extinction conditions in rats without producing overt signs of dysphoria or locomotor sedation. Whether recruitment of neuronal pathways inhibiting VTA neuronal activity would suppress drug seeking remains unknown. Here, we asked if optogenetic stimulation of the lateral habenula (LHb) efferents in the rostromedial tegmental nucleus (RMTg) as well as RMTg efferents in VTA would reduce drug seeking. To investigate this, we measured how recruitment of elements of this inhibitory pathway affects cocaine seeking in male rats under extinction conditions. The effectiveness of brief optogenetic manipulations was confirmed electrophysiologically at the level of electrical activity of VTA DA neurons. Real-time conditioned place aversion (RT-CPA) and open field tests were performed to control for potential dysphoric/sedating effects of brief optogenetic stimulation of LHb-RMTg-VTA circuitry. Optogenetic stimulation of either RMTg or LHb inhibited VTA DAergic neuron firing, whereas similar stimulation of RMTg efferents in VTA or LHb efferents in RMTg reduced cocaine seeking under extinction conditions. Moreover, stimulation of LHb-RMTg efferents produced an effect that was maintained 24 h later, during cocaine seeking test without stimulation. This effect was specific, as brief optogenetic stimulation did not affect locomotor activity and was not aversive. Our results indicate that defined inhibitory pathways can be recruited to inhibit cocaine seeking, providing potential new targets for non-pharmacological treatment of drug craving.
Collapse
Affiliation(s)
- Michał Wilczkowski
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
- Department of Brain Biochemistry, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Karolina Karwowska
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Michal Kielbinski
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Zajda
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Gniewosz Drwięga
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Zenon Rajfur
- Department of Biosystems Physics, Institute of Physics, Jagiellonian University, Krakow, Poland
| | - Tomasz Blasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, Krakow, Poland
| | - Ryszard Przewlocki
- Department of Molecular Neuropharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Wojciech B Solecki
- Department of Neurobiology and Neuropsychology, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
17
|
Hernández-Ortiz E, Luis-Islas J, Tecuapetla F, Gutierrez R, Bermúdez-Rattoni F. Top-down circuitry from the anterior insular cortex to VTA dopamine neurons modulates reward-related memory. Cell Rep 2023; 42:113365. [PMID: 37924513 DOI: 10.1016/j.celrep.2023.113365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/06/2023] [Accepted: 10/16/2023] [Indexed: 11/06/2023] Open
Abstract
The insular cortex (IC) has been linked to the processing of interoceptive and exteroceptive signals associated with addictive behavior. However, whether the IC modulates the acquisition of drug-related affective states by direct top-down connectivity with ventral tegmental area (VTA) dopamine neurons is unknown. We found that photostimulation of VTA terminals of the anterior insular cortex (aIC) induces rewarding contextual memory, modulates VTA activity, and triggers dopamine release within the VTA. Employing neuronal recordings and neurochemical and transsynaptic tagging techniques, we disclose the functional top-down organization tagging the aIC pre-synaptic neuronal bodies and identifying VTA recipient neurons. Furthermore, systemic administration of amphetamine altered the VTA excitability of neurons modulated by the aIC projection, where photoactivation enhances, whereas photoinhibition impairs, a contextual rewarding behavior. Our study reveals a key circuit involved in developing and retaining drug reward-related contextual memory, providing insight into the neurobiological basis of addictive behavior and helping develop therapeutic addiction strategies.
Collapse
Affiliation(s)
- Eduardo Hernández-Ortiz
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, México City 04510, México
| | - Jorge Luis-Islas
- Laboratory of Neurobiology of Appetitive, Department of Pharmacology, Center of Aging Research (CIE), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Fatuel Tecuapetla
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, México City 04510, México
| | - Ranier Gutierrez
- Laboratory of Neurobiology of Appetitive, Department of Pharmacology, Center of Aging Research (CIE), Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV), Mexico City, Mexico
| | - Federico Bermúdez-Rattoni
- Instituto de Fisiología Celular, División de Neurociencias, Universidad Nacional Autónoma de México, México City 04510, México.
| |
Collapse
|
18
|
Vento PJ, Watson JR, Pullmann D, Black SL, Tomberlin JS, Jhou TC. Pumping the brakes: rostromedial tegmental inhibition of compulsive cocaine seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.04.560908. [PMID: 38405989 PMCID: PMC10889025 DOI: 10.1101/2023.10.04.560908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Addiction is marked by aberrant decision-making and an inability to suppress inappropriate and often dangerous behaviors. We previously demonstrated that inactivation of the rostromedial tegmental nucleus (RMTg) in rats causes persistent food seeking despite impending aversive footshock, an effect strikingly similar to the punishment resistance observed in people with a history of protracted drug use [1]. Here, we extend these studies to demonstrate chemogenetic silencing of RMTg axonal projections to the ventral tegmental area (VTA) (RMTg→VTA pathway) causes rats to endure significantly more footshock to receive cocaine infusions. To further test whether activation of this circuit is sufficient to suppress reward seeking in the absence of an overtly aversive stimulus, we used temporally specific optogenetic stimulation of the RMTg→VTA pathway as a "punisher" in place of footshock following lever pressing for either food or cocaine reward. While optical stimulation of the RMTg→VTA pathway robustly suppressed lever pressing for food, we found that stimulation of this circuit had only modest effects on suppressing responding for cocaine infusions. Even though optical RMTg→VTA stimulation was not particularly effective at reducing ongoing cocaine use, this experience nevertheless had long-lasting consequences, as reinstatement of drug seeking in response to cocaine-associated cues was profoundly suppressed when tested nearly two weeks later. These results suggest the RMTg may serve as a useful target for producing enduring reductions in drug craving, particularly during periods of abstinence from drug use.
Collapse
Affiliation(s)
- Peter J Vento
- Department of Psychology, University of South Carolina, Columbia, SC
| | - Jacob R Watson
- Department of Psychology, University of South Carolina, Columbia, SC
| | - Dominika Pullmann
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | | | - Jensen S Tomberlin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| | - Thomas C Jhou
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
19
|
Esposito-Zapero C, Fernández-Rodríguez S, Sánchez-Catalán MJ, Zornoza T, Cano-Cebrián MJ, Granero L. The rostromedial tegmental nucleus RMTg is not a critical site for ethanol-induced motor activation in rats. Psychopharmacology (Berl) 2023; 240:2071-2080. [PMID: 37474756 PMCID: PMC10506920 DOI: 10.1007/s00213-023-06425-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
RATIONALE Opioid drugs indirectly activate dopamine (DA) neurons in the ventral tegmental area (VTA) through a disinhibition mechanism mediated by mu opioid receptors (MORs) present both on the GABA projection neurons located in the medial tegmental nucleus/tail of the VTA (RMTg/tVTA) and on the VTA GABA interneurons. It is well demonstrated that ethanol, like opioid drugs, provokes VTA DA neuron disinhibition by interacting (through its secondary metabolite, salsolinol) with MORs present in VTA GABA interneurons, but it is not known whether ethanol could disinhibit VTA DA neurons through the MORs present in the RMTg/tVTA. OBJECTIVES The objective of the present study was to determine whether ethanol, directly microinjected into the tVTA/RMTg, is also able to induce VTA DA neurons disinhibition. METHODS Disinhibition of VTA DA neurons was indirectly assessed through the analysis of the motor activity of rats. Cannulae were placed into the tVTA/RMTg to perform microinjections of DAMGO (0.13 nmol), ethanol (150 or 300 nmol) or acetaldehyde (250 nmol) in animals pre-treated with either aCSF or the irreversible antagonist of MORs, beta-funaltrexamine (beta-FNA; 2.5 nmol). After injections, spontaneous activity was monitored for 30 min. RESULTS Neither ethanol nor acetaldehyde directly administered into the RMTg/tVTA were able to increase the locomotor activity of rats at doses that, in previous studies performed in the posterior VTA, were effective in increasing motor activities. However, microinjections of 0.13 nmol of DAMGO into the tVTA/RMTg significantly increased the locomotor activity of rats. These activating effects were reduced by local pre-treatment of rats with beta-FNA (2.5 nmol). CONCLUSIONS The tVTA/RMTg does not appear to be a key brain region for the disinhibiting action of ethanol on VTA DA neurons. The absence of dopamine in the tVTA/RMTg extracellular medium, the lack of local ethanol metabolism or both could explain the present results.
Collapse
Affiliation(s)
- Claudia Esposito-Zapero
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - Sandra Fernández-Rodríguez
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - María José Sánchez-Catalán
- Lab of Functional Neuroanatomy (NeuroFun-UJI-UV), Unitat Predepartamental de Medicina, Faculty of Health Sciences, Universitat Jaume I, Castellón de la Plana, Spain
| | - Teodoro Zornoza
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain
| | - María José Cano-Cebrián
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain.
| | - Luis Granero
- Departament de Farmàcia i Tecnologia Farmacèutica i Parasitologia, Facultat de Farmàcia, Universitat de València, Burjassot, Spain.
| |
Collapse
|
20
|
Wang J, Li Z, Tu Y, Gao F. The Dopaminergic System in the Ventral Tegmental Area Contributes to Morphine Analgesia and Tolerance. Neuroscience 2023; 527:74-83. [PMID: 37286162 DOI: 10.1016/j.neuroscience.2023.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/17/2023] [Accepted: 05/27/2023] [Indexed: 06/09/2023]
Abstract
Morphine has a strong analgesic effect and is suitable for various types of pain, so it is widely used. But long-term usage of morphine can lead to drug tolerance, which limits its clinical application. The complex mechanisms underlying the development of morphine analgesia into tolerance involve multiple nuclei in the brain. Recent studies reveal the signaling at the cellular and molecular levels as well as neural circuits contributing to morphine analgesia and tolerance in the ventral tegmental area (VTA), which is traditionally considered a critical center of opioid reward and addiction. Existing studies show that dopamine receptors and μ-opioid receptors participate in morphine tolerance through the altered activities of dopaminergic and/or non-dopaminergic neurons in the VTA. Several neural circuits related to the VTA are also involved in the regulation of morphine analgesia and the development of drug tolerance. Reviewing specific cellular and molecular targets and related neural circuits may provide novel precautionary strategies for morphine tolerance.
Collapse
Affiliation(s)
- Jihong Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Tu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
21
|
Glover EJ, Margaret Starr E, Gascon A, Clayton-Stiglbauer K, Amegashie CL, Selchick AH, Vaughan DT, Wayman WN, Woodward JJ, Chandler LJ. Involvement of cortical input to the rostromedial tegmental nucleus in aversion to foot shock. Neuropsychopharmacology 2023; 48:1455-1464. [PMID: 37221326 PMCID: PMC10425416 DOI: 10.1038/s41386-023-01612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 04/15/2023] [Accepted: 05/15/2023] [Indexed: 05/25/2023]
Abstract
The rostromedial tegmental nucleus (RMTg) encodes negative reward prediction error (RPE) and plays an important role in guiding behavioral responding to aversive stimuli. Previous research has focused on regulation of RMTg activity by the lateral habenula despite studies revealing RMTg afferents from other regions including the frontal cortex. The current study provides a detailed anatomical and functional analysis of cortical input to the RMTg of male rats. Retrograde tracing uncovered dense cortical input to the RMTg spanning the medial prefrontal cortex, the orbitofrontal cortex and anterior insular cortex. Afferents were most dense in the dorsomedial subregion of the PFC (dmPFC), an area that is also implicated in both RPE signaling and aversive responding. RMTg-projecting dmPFC neurons originate in layer V, are glutamatergic, and collateralize to select brain regions. In-situ mRNA hybridization revealed that neurons in this circuit are predominantly D1 receptor-expressing with a high degree of D2 receptor colocalization. Consistent with cFos induction in this neural circuit during exposure to foot shock and shock-predictive cues, optogenetic stimulation of dmPFC terminals in the RMTg drove avoidance. Lastly, acute slice electrophysiology and morphological studies revealed that exposure to repeated foot shock resulted in significant physiological and structural changes consistent with a loss of top-down modulation of RMTg-mediated signaling. Altogether, these data reveal the presence of a prominent cortico-subcortical projection involved in adaptive behavioral responding to aversive stimuli such as foot shock and provide a foundation for future work aimed at exploring alterations in circuit function in diseases characterized by deficits in cognitive control over reward and aversion.
Collapse
Affiliation(s)
- Elizabeth J Glover
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
| | - E Margaret Starr
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Andres Gascon
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Kacey Clayton-Stiglbauer
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Christen L Amegashie
- Center for Alcohol Research in Epigenetics, Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Alyson H Selchick
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Dylan T Vaughan
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Wesley N Wayman
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - John J Woodward
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - L Judson Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
22
|
Salin A, Dugast E, Lardeux V, Solinas M, Belujon P. The amygdala-ventral pallidum pathway contributes to a hypodopaminergic state in the ventral tegmental area during protracted abstinence from chronic cocaine. Br J Pharmacol 2023; 180:1819-1831. [PMID: 36645812 DOI: 10.1111/bph.16034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/01/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND AND PURPOSE Incubation of craving, the progressive increase in drug seeking over the first weeks of abstinence, is associated with temporal changes during abstinence in the activity of several structures involved in drug-seeking behaviour. Decreases of dopamine (DA) release and DA neuronal activity (hypodopaminergic state) have been reported in the ventral tegmental area (VTA) during cocaine abstinence, but the mechanisms underlying these neuroadaptations are not well understood. We investigated the potential involvement of a VTA inhibiting circuit (basolateral amygdala [BLA]-ventral pallidum [VP] pathway) in the hypodopaminergic state associated with abstinence from chronic cocaine. EXPERIMENTAL APPROACH In a model of cocaine self-administration, we performed in vivo electrophysiological recordings of DA VTA neurons and BLA neurons from anaesthetised rats during early and protracted abstinence and evaluated the involvement of the BLA-VP pathway using a pharmacological approach. KEY RESULTS We found significant decreases in VTA DA population activity and significant increases in BLA activity after protracted but not after short-term abstinence from chronic cocaine. The decrease in VTA DA activity was restored by pharmacological inhibition of the activity of either the BLA or the VP, suggesting that these regions exert a negative influence on DA activity. CONCLUSION AND IMPLICATIONS Our study sheds new lights on neuroadaptations occurring during incubation of craving leading to relapse. In particular, we describe the involvement of the BLA-VP pathway in cocaine-induced decreases of DA activity in the VTA. This study adds important information about the specific brain network dysfunctions underlying hypodopaminergic activity during abstinence.
Collapse
Affiliation(s)
- Adélie Salin
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
- Université de Rennes, Institut Numecan INRAE, INSERM, Rennes, France
| | - Emilie Dugast
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
- CHU de Poitiers, Poitiers, France
| | - Virginie Lardeux
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Marcello Solinas
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| | - Pauline Belujon
- Université de Poitiers, INSERM, U-1084, Laboratoire des Neurosciences Expérimentales et Cliniques, Poitiers, France
| |
Collapse
|
23
|
Gakare SG, Ugale RR. Pharmacological evaluation of lateral habenula and rostromedial tegmental nucleus in the expression of ethanol-induced place preference. Behav Pharmacol 2023; 34:225-235. [PMID: 37171461 DOI: 10.1097/fbp.0000000000000728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Although ethanol administration produces a range of physiological effects, the rewarding aspect associated with its consumption is a major contributory factor to its abuse liability. Recently, lateral habenula (LHb) has been shown to be engaged by both rewarding and aversive stimuli. Its major glutamatergic output, the fasciculus retroflexus, projects to the rostromedial tegmental nucleus (RMTg) and controls the activity of the ventral tegmental area (VTA) dopaminergic system to promote reward circuitry. While several attempts have been made to understand the relationship between LHb and addiction, there is still a lack of knowledge in relation to ethanol addiction. In the present study, by pharmacologically exacerbating or inhibiting the LHb or RMTg neuronal activity during a post-conditioning test, we investigated the role of LHb-RMTg fasciculus retroflexus in ethanol-induced reward behavior using the conditioned place preference (CPP) test. We found that activation of LHb glutamatergic system by intra-LHb administration of l-trans-2,4-pyrrolidine dicarboxylate (PDC) (glutamate transporter inhibitor) significantly decreased CPP score; on the contrary, lamotrigine (inhibits glutamate release) significantly increased CPP score and showed a rewarding effect in CPP. Instead, intra-RMTg administration of muscimol (GABAA receptor agonist) significantly increased CPP score, whereas bicuculline (GABAA antagonist) treatment decreased CPP score. In immunohistochemistry, we found that PDC administration significantly decreased, whereas lamotrigine treatment significantly increased tyrosine hydroxylase immunoreactivity (TH-ir) in VTA and nucleus accumbens (NAc). Furthermore, while intra-RMTg administration of muscimol increased, the bicuculline treatment significantly decreased the TH-ir in VTA and NAc. Together, our behavioral and immunohistochemical results signify the role of LHb and RMTg in the expression of ethanol-conditioned reward behavior.
Collapse
Affiliation(s)
- Sukanya G Gakare
- Department of Pharmaceutical Sciences, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur, India
| | | |
Collapse
|
24
|
Chao YS, Parrilla-Carrero J, Eid M, Culver OP, Jackson TB, Lipat R, Taniguchi M, Jhou TC. Innate cocaine-seeking vulnerability arising from loss of serotonin-mediated aversive effects of cocaine in rats. Cell Rep 2023; 42:112404. [PMID: 37083325 DOI: 10.1016/j.celrep.2023.112404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 01/11/2023] [Accepted: 04/02/2023] [Indexed: 04/22/2023] Open
Abstract
Cocaine blocks dopamine reuptake, thereby producing rewarding effects that are widely studied. However, cocaine also blocks serotonin uptake, which we show drives, in rats, individually variable aversive effects that depend on serotonin 2C receptors (5-HT2CRs) in the rostromedial tegmental nucleus (RMTg), a major GABAergic afferent to midbrain dopamine neurons. 5-HT2CRs produce depolarizing effects in RMTg neurons that are particularly strong in some rats, leading to aversive effects that reduce acquisition of and relapse to cocaine seeking. In contrast, 5-HT2CR signaling is largely lost after cocaine exposure in other rats, leading to reduced aversive effects and increased cocaine seeking. These results suggest a serotonergic biological marker of cocaine-seeking vulnerability that can be targeted to modulate drug seeking.
Collapse
Affiliation(s)
- Ying S Chao
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | - Maya Eid
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Oliver P Culver
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Tyler B Jackson
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Rachel Lipat
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Makoto Taniguchi
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Thomas C Jhou
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
25
|
Cardona-Acosta AM, Bolaños-Guzmán CA. Role of the mesolimbic dopamine pathway in the antidepressant effects of ketamine. Neuropharmacology 2023; 225:109374. [PMID: 36516891 PMCID: PMC9839658 DOI: 10.1016/j.neuropharm.2022.109374] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/27/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022]
Abstract
Depression is a complex and highly heterogeneous disorder which diagnosis is based on an exceedingly variable set of clinical symptoms. Current treatments focus almost exclusively on the manipulation of monoamine neurotransmitter systems, but despite considerable efforts, these remain inadequate for a significant proportion of those afflicted by the disorder. The emergence of racemic (R, S)-ketamine as a fast-acting antidepressant has provided an exciting new path for the study of major depressive disorder (MDD) and the search for better therapeutics for its treatment. Previous work suggested that ketamine's mechanism of action is primarily mediated via blockaded of N-methyl-d-aspartate (NMDA) receptors, however, this is an area of active research and clinical and preclinical evidence now indicate that ketamine acts on multiple systems. The last couple of decades have cemented the mesolimbic dopamine reward pathway's involvement in the pathogenesis of MDD and related mood disorders. Exposure to negative stress dysregulates dopamine neuronal activity disrupting reward and motivational processes resulting in anhedonia (lack of pleasure), a hallmark symptom of depression. Although the mechanism(s) underlying ketamine's antidepressant activity continue to be elucidated, current evidence indicate that its therapeutic effects are mediated, at least in part, via long-lasting synaptic changes and subsequent molecular adaptations in brain regions within the mesolimbic dopamine system. Notwithstanding, ketamine is a drug of abuse, and this liability may pose limitations for long term use as an antidepressant. This review outlines the current knowledge of ketamine's actions within the mesolimbic dopamine system and its abuse potential. This article is part of the Special Issue on 'Ketamine and its Metabolites'.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
26
|
Li X, Wu J, Li X, Zhang J. The effect of intraperitoneal and intra-RMTg infusions of CTAP on rats' social interaction. Behav Brain Res 2023; 446:114333. [PMID: 36764486 DOI: 10.1016/j.bbr.2023.114333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/02/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023]
Abstract
Social interaction is necessary for the development of individuals and society. Social interaction behaviors are rewarding. Similar to exogenous opioids, social interaction behaviors are able to induce rewarding effects that are regulated by the endogenous opioid system as well. As one type of opioid receptor, μ-opioid receptors (MORs), are densely expressed in the rostromedial tegmental nucleus (RMTg), which results in the RMTg being extremely sensitive to rewarding effects induced by exogenous and endogenous opioids. Here, we investigated how RMTg MORs played a role in rewarding effects induced by social interaction behaviors of male Wistar rats, using a conditioned place preference (CPP) model. Results showed that the CPP induced by social interaction behaviors was inhibited when the function of MORs was blocked via injecting CTAP (a selective MOR antagonist) intraperitoneally, and intra-RMTg injections of lower doses of CTAP affected the CPP in the same way. In addition, injecting CTAP intraperitoneally significantly inhibited the expression of pouncing behavior, while intra-RMTg injections of CTAP significantly inhibited the expression of all three types of social behaviors. These results suggest that RMTg MORs may be a crucial target and remain to be further explored in order to better understand the mechanism of the rewarding effects of social interaction behaviors.
Collapse
Affiliation(s)
- Xuhong Li
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China; Department of Education, Lyuliang University, Lyuliang, China
| | - Jing Wu
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China; Department of Education, Henan Normal University, Xinxiang, China
| | - Xinwang Li
- Beijing Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China.
| | - Jianjun Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Shanxi Key Laboratory of Chinese Medicine Encephalopathy, Shanxi University of Chinese Medicine, Jinzhong, China.
| |
Collapse
|
27
|
Investigating Deep Brain Stimulation of the Habenula: A Review of Clinical Studies. Neuromodulation 2023; 26:292-301. [PMID: 35840520 DOI: 10.1016/j.neurom.2022.05.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 05/19/2022] [Indexed: 02/07/2023]
Abstract
OBJECTIVES The aim of this study was to examine the current scientific literature on deep brain stimulation (DBS) targeting the habenula for the treatment of neuropsychiatric disorders including schizophrenia, major depressive disorder, and obsessive-compulsive disorder (OCD). MATERIALS AND METHODS Two authors performed independent data base searches using the PubMed, Cochrane, PsycINFO, and Web of Science search engines. The data bases were searched for the query ("deep brain stimulation" and "habenula"). The inclusion criteria involved screening for human clinical trials written in English and published from 2007 to 2020. From the eligible studies, data were collected on the mean age, sex, number of patients included, and disorder treated. Patient outcomes of each study were summarized. RESULTS The search yielded six studies, which included 11 patients in the final analysis. Treated conditions included refractory depression, bipolar disorder, OCD, schizophrenia, and major depressive disorder. Patients with bipolar disorder unmedicated for at least two months had smaller habenula volumes than healthy controls. High-frequency stimulation of the lateral habenula attenuated the rise of serotonin in the dorsal raphe nucleus for treating depression. Bilateral habenula DBS and patient OCD symptoms were reduced and maintained at one-year follow up. Low- and high-frequency stimulation DBS can simulate input paths to the lateral habenula to treat addiction, including cocaine addiction. More data are needed to draw conclusions as to the impact of DBS for schizophrenia and obesity. CONCLUSIONS The habenula is a novel target that could aid in reducing neuropsychiatric symptoms and should be considered in circuit-specific investigation of neuromodulation for psychiatric disorders. More information needs to be gathered and assessed before this treatment is fully approved for treatment of neuropsychiatric conditions.
Collapse
|
28
|
Olszewski NA, Tetteh-Quarshie S, Henderson BJ. Understanding the Impact of Flavors on Vaping and Nicotine Addiction-Related Behaviors. Curr Behav Neurosci Rep 2022. [DOI: 10.1007/s40473-022-00253-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Chen W. Neural circuits provide insights into reward and aversion. Front Neural Circuits 2022; 16:1002485. [PMID: 36389177 PMCID: PMC9650032 DOI: 10.3389/fncir.2022.1002485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023] Open
Abstract
Maladaptive changes in the neural circuits associated with reward and aversion result in some common symptoms, such as drug addiction, anxiety, and depression. Historically, the study of these circuits has been hampered by technical limitations. In recent years, however, much progress has been made in understanding the neural mechanisms of reward and aversion owing to the development of technologies such as cell type-specific electrophysiology, neuronal tracing, and behavioral manipulation based on optogenetics. The aim of this paper is to summarize the latest findings on the mechanisms of the neural circuits associated with reward and aversion in a review of previous studies with a focus on the ventral tegmental area (VTA), nucleus accumbens (NAc), and basal forebrain (BF). These findings may inform efforts to prevent and treat mental illnesses associated with dysfunctions of the brain's reward and aversion system.
Collapse
|
30
|
Chen S, Sun X, Zhang Y, Mu Y, Su D. Habenula bibliometrics: Thematic development and research fronts of a resurgent field. Front Integr Neurosci 2022; 16:949162. [PMID: 35990593 PMCID: PMC9382245 DOI: 10.3389/fnint.2022.949162] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/12/2022] [Indexed: 11/19/2022] Open
Abstract
The habenula (Hb) is a small structure of the posterior diencephalon that is highly conserved across vertebrates but nonetheless has attracted relatively little research attention until the past two decades. The resurgent interest is motivated by neurobehavioral studies demonstrating critical functions in a broad spectrum of motivational and cognitive processes, including functions relevant to psychiatric diseases. The Hb is widely conceived as an "anti-reward" center that acts by regulating brain monoaminergic systems. However, there is still no general conceptual framework for habenula research, and no study has focused on uncovering potentially significant but overlooked topics that may advance our understanding of physiological functions or suggest potential clinical applications of Hb-targeted interventions. Using science mapping tools, we quantitatively and qualitatively analyzed the relevant publications retrieved from the Web of Science Core Collection (WoSCC) database from 2002 to 2021. Herein we present an overview of habenula-related publications, reveal primary research trends, and prioritize some key research fronts by complementary bibliometric analysis. High-priority research fronts include Ventral Pallidum, Nucleus Accumbens, Nicotine and MHb, GLT-1, Zebrafish, and GCaMP, Ketamine, Deep Brain Stimulation, and GPR139. The high intrinsic heterogeneity of the Hb, extensive connectivity with both hindbrain and forebrain structures, and emerging associations with all three dimensions of mental disorders (internalizing, externalizing, and psychosis) suggest that the Hb may be the neuronal substrate for a common psychopathology factor shared by all mental illnesses termed the p factor. A future challenge is to explore the therapeutic potential of habenular modulation at circuit, cellular, and molecular levels.
Collapse
Affiliation(s)
- Sifan Chen
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoyu Sun
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yizhe Zhang
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Mu
- State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Institute of Neuroscience, Chinese Academy of Sciences, Shanghai, China
| | - Diansan Su
- Department of Anesthesiology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Wilson KM, Arquilla AM, Rosales-Torres KM, Hussein M, Chan MG, Razak KA, Saltzman W. Neural responses to pup calls and pup odors in California mouse fathers and virgin males. Behav Brain Res 2022; 434:114024. [PMID: 35882277 DOI: 10.1016/j.bbr.2022.114024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 11/28/2022]
Abstract
The onset of mammalian maternal care is associated with plasticity in neural processing of infant-related sensory stimuli; however, little is known about sensory plasticity associated with fatherhood. We quantified behavioral and neural responses of virgin males and new fathers to olfactory and auditory stimuli from young, unfamiliar pups in the biparental California mouse (Peromyscus californicus). Each male was exposed for 10minutes to one of four combinations of a chemosensory stimulus (pup-scented or unscented cotton [control]) and an auditory stimulus (pup vocalizations or white noise [control]). Behavior did not differ between fathers and virgins during exposure to sensory stimuli or during the following hour; however, males in both groups were more active both during and after exposure to pup-related stimuli compared to control stimuli. Fathers had lower expression of Fos in the main olfactory bulbs (MOB) but higher expression in the medial preoptic area (MPOA) and bed nucleus of the stria terminalis medial division, ventral part (STMV) compared to virgins. Lastly, males had higher Fos expression in MPOA when exposed to pup odor compared to control stimuli, and when exposed to pup odor and pup calls compared to pup calls only or control stimuli. These findings suggest that the onset of fatherhood alters activity of MOB, MPOA and STMV and that pup odors and vocalizations have additive or synergistic effects on males' behavior and MPOA activation.
Collapse
Affiliation(s)
- Kerianne M Wilson
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA.
| | - April M Arquilla
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Kelsey M Rosales-Torres
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Manal Hussein
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - May G Chan
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA
| | - Khaleel A Razak
- Neuroscience Graduate Program, University of California Riverside, Riverside, CA USA; Department of Psychology, University of California Riverside, Riverside, CA, USA
| | - Wendy Saltzman
- Department of Evolution, Ecology, and Organismal Biology, University of California Riverside, Riverside, CA USA; Neuroscience Graduate Program, University of California Riverside, Riverside, CA USA
| |
Collapse
|
32
|
Beier K. Modified viral-genetic mapping reveals local and global connectivity relationships of ventral tegmental area dopamine cells. eLife 2022; 11:e76886. [PMID: 35604019 PMCID: PMC9173742 DOI: 10.7554/elife.76886] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine cells in the ventral tegmental area (VTADA) are critical for a variety of motivated behaviors. These cells receive synaptic inputs from over 100 anatomically defined brain regions, which enables control from a distributed set of inputs across the brain. Extensive efforts have been made to map inputs to VTA cells based on neurochemical phenotype and output site. However, all of these studies have the same fundamental limitation that inputs local to the VTA cannot be properly assessed due to non-Cre-dependent uptake of EnvA-pseudotyped virus. Therefore, the quantitative contribution of local inputs to the VTA, including GABAergic, DAergic, and serotonergic, is not known. Here, I used a modified viral-genetic strategy that enables examination of both local and long-range inputs to VTADA cells in mice. I found that nearly half of the total inputs to VTADA cells are located locally, revealing a substantial portion of inputs that have been missed by previous analyses. The majority of inhibition to VTADA cells arises from the substantia nigra pars reticulata, with large contributions from the VTA and the substantia nigra pars compacta. In addition to receiving inputs from VTAGABA neurons, DA neurons are connected with other DA neurons within the VTA as well as the nearby retrorubal field. Lastly, I show that VTADA neurons receive inputs from distributed serotonergic neurons throughout the midbrain and hindbrain, with the majority arising from the dorsal raphe. My study highlights the importance of using the appropriate combination of viral-genetic reagents to unmask the complexity of connectivity relationships to defined cells in the brain.
Collapse
Affiliation(s)
- Kevin Beier
- Department of Physiology and Biophysics, Neurobiology and Behavior, Biomedical Engineering, Pharmaceutical Sciences, Center for the Neurobiology of Learning and Memory, University of California, IrvineIrvineUnited States
| |
Collapse
|
33
|
Godfrey N, Qiao M, Borgland SL. Activation of LH GABAergic inputs counteracts fasting-induced changes in tVTA/RMTG neurons. J Physiol 2022; 600:2203-2224. [PMID: 35338656 DOI: 10.1113/jp282653] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/04/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS While dopamine neuronal activity changes with motivational state, it is unknown if fasting influences tVTA/RMTg GABAergic neurons, a major inhibitory input to VTA dopamine neurons. In unfasted mice, there were sex differences in inhibitory synaptic transmission onto tVTA/RMTg GABAergic neurons. Activation of LH GABAergic neurons decreases firing of tVTA/RMTg GABAergic neurons through a monosynaptic input. An acute fast decreased the excitability of tVTA/RMTg GABAergic neurons. An acute fast decreases inhibitory synaptic transmission of the LH GABA input to tVTA/RMTg GABAergic neurons in both male and female mice. ABSTRACT Dopamine neurons in the ventral tegmental area (VTA) are strongly innervated by GABAergic neurons in the 'tail of the VTA' (tVTA), also known as the rostralmedial tegmental nucleus (RMTg). Disinhibition of dopamine neurons through firing of the GABAergic neurons projecting from the lateral hypothalamus (LH) leads to reward seeking and consumption through dopamine release in the nucleus accumbens. VTA dopamine neurons respond to changes in motivational state, yet less is known of whether tVTA/RMTg GABAergic neurons or the LH GABAergic neurons that project to them are also affected by changes in motivational state, such as fasting. An acute 16 h overnight fast decreased the excitability of tVTA/RMTg GABAergic neurons of male and female mice. In addition, fasting decreased synaptic strength at LH GABA to tVTA/RMTg GABAergic synapses, indicated by reduced amplitude of optically evoked currents, decreased readily releasable pool (RRP) size and replenishment. Optical stimulation of LH GABA terminals suppressed evoked action potentials of tVTA/RMTg GABAergic neurons in unfasted mice, but this effect decreased following fasting. Furthermore, during fasting, LH GABA inputs to tVTA/RMTg neurons maintained functional connectivity during depolarization, as depolarization block was reduced following fasting. Taken together, inhibitory synaptic transmission from LH GABA inputs onto tVTA/RMTg GABAergic neurons decreases following fasting, however ability to functionally inhibit tVTA/RMTg GABAergic neurons is preserved, allowing for possible disinhibition of dopamine neurons and subsequent foraging. Abstract figure legend The inhibitory synaptic input is represented by the downward arrows. Following fasting, there was a decrease in inhibitory synaptic strength in both males and females. The action potentials represent the excitability, which also decreases in both males and females following fasting. Because both the LH GABA input and excitability of tVTA/RMTg GABA neurons have reduced activity following fasting, we predict that disinhibition of dopamine neurons with stimulation of LH inputs is preserved. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nathan Godfrey
- University of Calgary, Department of Physiology and Pharmacology, Calgary, Alberta, T2N 4N1
| | - Min Qiao
- University of Calgary, Department of Physiology and Pharmacology, Calgary, Alberta, T2N 4N1
| | - Stephanie L Borgland
- University of Calgary, Department of Physiology and Pharmacology, Calgary, Alberta, T2N 4N1
| |
Collapse
|
34
|
Sánchez-Catalán MJ, Barrot M. Fos response of the tail of the ventral tegmental area to food restriction entails a prediction error processing. Behav Brain Res 2022; 425:113826. [PMID: 35247487 DOI: 10.1016/j.bbr.2022.113826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/25/2022]
Abstract
The tail of the ventral tegmental area (tVTA) or rostromedial tegmental nucleus (RMTg) receives lateral habenula inputs and projects heavily to midbrain dopamine neurons. Midbrain dopamine and lateral habenula neurons participate in learning processes predicting the outcomes of actions, placing the tVTA in a critical location into prediction error pathways. tVTA GABA neurons show electrophysiological inhibition or activation after reward and aversive stimuli, respectively, and their predictive cues. tVTA molecular recruitment, however, is not elicited by all aversive stimuli. Indeed, precipitated opioid withdrawal, repeated footshocks or food restriction raise tVTA Fos expression, whereas various other unpleasant, stressful or painful stimuli does not elicit that molecular response. However, the basis of that difference remains unknown. In the present study, we tried to disentangle whether the tVTA c-Fos induction observed after food restriction was due to the aversive state of food restriction or to procedure-related reward prediction error. To this end, male Sprague-Dawley rats were food-restricted for 7-8 days. During this period, animals were handled and weighed every day before feeding. On the test day, rats underwent several behavioral procedures to explore the impact of food restriction and food-predictive cue exposure on tVTA c-Fos expression. We showed that food restriction per se was not able to recruit c-Fos in the tVTA. On the contrary, the food-predicting cues induced c-Fos locally in the absence of feeding, whereas the food-predicting cues followed by feeding evoked lower c-Fos expression. Overall, our results support the proposed involvement of the tVTA in reward prediction error.
Collapse
Affiliation(s)
- María-José Sánchez-Catalán
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France; Unitat Predepartamental de Medicina, Universitat Jaume I, Castelló de la Plana, Spain.
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, F-67000 Strasbourg, France
| |
Collapse
|
35
|
Mantas I, Saarinen M, Xu ZQD, Svenningsson P. Update on GPCR-based targets for the development of novel antidepressants. Mol Psychiatry 2022; 27:534-558. [PMID: 33589739 PMCID: PMC8960420 DOI: 10.1038/s41380-021-01040-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/31/2023]
Abstract
Traditional antidepressants largely interfere with monoaminergic transport or degradation systems, taking several weeks to have their therapeutic actions. Moreover, a large proportion of depressed patients are resistant to these therapies. Several atypical antidepressants have been developed which interact with G protein coupled receptors (GPCRs) instead, as direct targeting of receptors may achieve more efficacious and faster antidepressant actions. The focus of this review is to provide an update on how distinct GPCRs mediate antidepressant actions and discuss recent insights into how GPCRs regulate the pathophysiology of Major Depressive Disorder (MDD). We also discuss the therapeutic potential of novel GPCR targets, which are appealing due to their ligand selectivity, expression pattern, or pharmacological profiles. Finally, we highlight recent advances in understanding GPCR pharmacology and structure, and how they may provide new avenues for drug development.
Collapse
Affiliation(s)
- Ioannis Mantas
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Marcus Saarinen
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden.
| |
Collapse
|
36
|
Dornellas APS, Burnham NW, Luhn KL, Petruzzi MV, Thiele TE, Navarro M. Activation of locus coeruleus to rostromedial tegmental nucleus (RMTg) noradrenergic pathway blunts binge-like ethanol drinking and induces aversive responses in mice. Neuropharmacology 2021; 199:108797. [PMID: 34547331 PMCID: PMC8583311 DOI: 10.1016/j.neuropharm.2021.108797] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 01/12/2023]
Abstract
There is strong evidence that ethanol entails aversive effects that can act as a deterrent to overconsumption. We have found that in doses that support the development of a conditioned taste aversion ethanol increases the activity of tyrosine hydroxylase (TH) positive neurons in the locus coeruleus (LC), a primary source of norepinephrine (NE). Using cre-inducible AAV8-ChR2 viruses in TH-ires-cre mice we found that the LC provides NE projections that innervate the rostromedial tegmental nucleus (RMTg), a brain region that has been implicated in the aversive properties of drugs. Because the neurocircuitry underlying the aversive effects of ethanol is poorly understood, we characterized the role of the LC to RMTg circuit in modulating aversive unconditioned responses and binge-like ethanol intake. Here, both male and female TH-ires-cre mice were cannulated in the RMTg and injected in the LC with rAVV viruses that encode for a Gq-expressing designer receptor exclusively activated by designer drugs (DREADDs) virus, or its control virus, to directly control the activity of NE neurons. A Latin Square paradigm was used to analyze both 20% ethanol and 3% sucrose consumption using the "drinking-in-the-dark" (DID) paradigm. Chemogenetic activation of the LC to RMTg pathway significantly blunted the binge-ethanol drinking, with no effect on the sucrose consumption, increased the emission of mid-frequency vocalizations and induced malaise-like behaviors in mice. The present findings indicate an important involvement of the LC to RMTg pathway in reducing ethanol consumption, and characterize unconditioned aversive reactions induced by activation of this noradrenergic pathway.
Collapse
Affiliation(s)
- Ana Paula S Dornellas
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, NC, 27599-7178, USA
| | - Nathan W Burnham
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA
| | - Kendall L Luhn
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA
| | - Maxwell V Petruzzi
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA
| | - Todd E Thiele
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, NC, 27599-7178, USA
| | - Montserrat Navarro
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, NC, 27599-3270, USA; Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, NC, 27599-7178, USA.
| |
Collapse
|
37
|
Jhou TC. The rostromedial tegmental (RMTg) "brake" on dopamine and behavior: A decade of progress but also much unfinished work. Neuropharmacology 2021; 198:108763. [PMID: 34433088 PMCID: PMC8593889 DOI: 10.1016/j.neuropharm.2021.108763] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023]
Abstract
Between 2005 and 2009, several research groups identified a strikingly dense inhibitory input to midbrain dopamine neurons arising from a previously uncharted region posterior to the ventral tegmental area (VTA). This region is now denoted as either the rostromedial tegmental nucleus (RMTg) or the "tail of the VTA" (tVTA), and is recognized to express distinct genetic markers, encode negative "prediction errors" (inverse to dopamine neurons), and play critical roles in behavioral inhibition and punishment learning. RMTg neurons are also influenced by many categories of abused drugs, and may drive some aversive responses to such drugs, particularly cocaine and alcohol. However, despite much progress, many important questions remain about RMTg molecular/genetic properties, diversity of projection targets, and applications to addiction, depression, and other neuropsychiatric disorders. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
|
38
|
Understanding the Significance of the Hypothalamic Nature of the Subthalamic Nucleus. eNeuro 2021; 8:ENEURO.0116-21.2021. [PMID: 34518367 PMCID: PMC8493884 DOI: 10.1523/eneuro.0116-21.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/05/2021] [Accepted: 08/20/2021] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN) is an essential component of the basal ganglia and has long been considered to be a part of the ventral thalamus. However, recent neurodevelopmental data indicated that this nucleus is of hypothalamic origin which is now commonly acknowledged. In this work, we aimed to verify whether the inclusion of the STN in the hypothalamus could influence the way we understand and conduct research on the organization of the whole ventral and posterior diencephalon. Developmental and neurochemical data indicate that the STN is part of a larger glutamatergic posterior hypothalamic region that includes the premammillary and mammillary nuclei. The main anatomic characteristic common to this region involves the convergent cortical and pallidal projections that it receives, which is based on the model of the hyperdirect and indirect pathways to the STN. This whole posterior hypothalamic region is then integrated into distinct functional networks that interact with the ventral mesencephalon to adjust behavior depending on external and internal contexts.
Collapse
|
39
|
Gordon-Fennell A, Stuber GD. Illuminating subcortical GABAergic and glutamatergic circuits for reward and aversion. Neuropharmacology 2021; 198:108725. [PMID: 34375625 DOI: 10.1016/j.neuropharm.2021.108725] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Reinforcement, reward, and aversion are fundamental processes for guiding appropriate behaviors. Longstanding theories have pointed to dopaminergic neurons of the ventral tegmental area (VTA) and the limbic systems' descending pathways as crucial systems for modulating these behaviors. The application of optogenetic techniques in neurotransmitter- and projection-specific circuits has supported and enhanced many preexisting theories but has also revealed many unexpected results. Here, we review the past decade of optogenetic experiments to study the neural circuitry of reinforcement and reward/aversion with a focus on the mesolimbic dopamine system and brain areas along the medial forebrain bundle (MFB). The cumulation of these studies to date has revealed generalizable findings across molecularly defined cell types in areas of the basal forebrain and anterior hypothalamus. Optogenetic stimulation of GABAergic neurons in these brain regions drives reward and can support positive reinforcement and optogenetic stimulation of glutamatergic neurons in these regions drives aversion. We also review studies of the activity dynamics of neurotransmitter defined populations in these areas which have revealed varied response patterns associated with motivated behaviors.
Collapse
Affiliation(s)
- Adam Gordon-Fennell
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA
| | - Garret D Stuber
- Center for the Neurobiology of Addiction, Pain, and Emotion, Department of Anesthesiology and Pain Medicine, Department of Pharmacology, University of Washington, 98195, Seattle, WA, USA.
| |
Collapse
|
40
|
Yang Y, Liu J, Wang Y, Wu X, Li L, Bian G, Li W, Yuan H, Zhang Q. Blockade of pre-synaptic and post-synaptic GABA B receptors in the lateral habenula produces different effects on anxiety-like behaviors in 6-hydroxydopamine hemiparkinsonian rats. Neuropharmacology 2021; 196:108705. [PMID: 34246684 DOI: 10.1016/j.neuropharm.2021.108705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/28/2021] [Accepted: 07/07/2021] [Indexed: 01/20/2023]
Abstract
Although the output of the lateral habenula (LHb) controls the activity of midbrain dopaminergic and serotonergic systems, which are implicated in the pathophysiology of anxiety, it is not known how blockade of GABAB receptors in the region affects anxiety-like behaviors, particularly in Parkinson's disease-related anxiety. In this study, unilateral 6-hydroxydopamine lesions of the substantia nigra pars compacta in rats induced anxiety-like behaviors, led to hyperactivity of LHb neurons and decreased the level of extracellular dopamine (DA) in the basolateral amygdala (BLA) compared to sham-lesioned rats. Intra-LHb injection of pre-synaptic GABAB receptor antagonist CGP36216 produced anxiolytic-like effects, while the injection of post-synaptic GABAB receptor antagonist CGP35348 induced anxiety-like responses in both groups. Further, intra-LHb injection of CGP36216 decreased the firing rate of the neurons, and increased the GABA/glutamate ratio in the LHb and release of DA and serotonin (5-HT) in the BLA; conversely, CGP35348 increased the firing rate of the neurons and decreased the GABA/glutamate ratio and release of DA and 5-HT in sham-lesioned and the lesioned rats. However, the doses of the antagonists producing these behavioral effects in the lesioned rats were lower than those in sham-lesioned rats, and the duration of action of the antagonists on the firing rate of the neurons and release of the neurotransmitters was prolonged in the lesioned rats. Collectively, these findings suggest that pre-synaptic and post-synaptic GABAB receptors in the LHb are involved in the regulation of anxiety-like behaviors, and degeneration of the nigrostriatal pathway up-regulates function and/or expression of these receptors.
Collapse
Affiliation(s)
- Yaxin Yang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Jian Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Yixuan Wang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiang Wu
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Libo Li
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Guanyun Bian
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Wenjuan Li
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Haifeng Yuan
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China
| | - Qiaojun Zhang
- Department of Rehabilitation Medicine, the Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
41
|
Prelimbic cortical projections to rostromedial tegmental nucleus play a suppressive role in cue-induced reinstatement of cocaine seeking. Neuropsychopharmacology 2021; 46:1399-1406. [PMID: 33230269 PMCID: PMC8209220 DOI: 10.1038/s41386-020-00909-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 11/02/2020] [Indexed: 12/21/2022]
Abstract
The prelimbic (PL) region of prefrontal cortex has been implicated in both driving and suppressing cocaine seeking in animal models of addiction. We hypothesized that these opposing roles for PL may be supported by distinct efferent projections. While PL projections to nucleus accumbens core have been shown to be involved in driving reinstatement of cocaine seeking, PL projections to the rostromedial tegmental nucleus (RMTg) may instead suppress reinstatement of cocaine seeking, due to the role of RMTg in behavioral inhibition. Here, we used a functional disconnection approach to temporarily disrupt the PL-RMTg pathway during cue- or cocaine-induced reinstatement. Male Sprague Dawley rats self-administered cocaine during daily 2-h sessions for ≥10 days and then underwent extinction training. Reinstatement of extinguished cocaine seeking was elicited by cocaine-associated cues or cocaine prime. Prior to reinstatement, rats received microinjections of the GABA agonists baclofen/muscimol (1/0.1 mM) into unilateral PL and the AMPA receptor antagonist NBQX (1 mM) into contralateral or ipsilateral RMTg. Functional disconnection of PL-RMTg via contralateral inactivation markedly increased cue-induced reinstatement, but did not increase cocaine-induced reinstatement or drive reinstatement of extinguished cocaine seeking in the absence of cues or cocaine. Enhanced cue-induced reinstatement was also observed with ipsilateral inactivation of PL and RMTg, but not with unilateral inactivation of PL or RMTg alone, indicating that both ipsilateral and contralateral projections from PL to RMTg have an inhibitory influence on behavior. These data further support a suppressive role for PL in cocaine seeking by implicating PL efferent projections to RMTg in inhibiting cue-induced reinstatement.
Collapse
|
42
|
García-García F, Priego-Fernández S, López-Muciño LA, Acosta-Hernández ME, Peña-Escudero C. Increased alcohol consumption in sleep-restricted rats is mediated by delta FosB induction. Alcohol 2021; 93:63-70. [PMID: 33662520 DOI: 10.1016/j.alcohol.2021.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 02/10/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
The reduction of sleep hours is a public health problem in contemporary society. It is estimated that humans sleep between 1.5 and 2 h less, per night, than 100 years ago. The reduction of sleep hours is a risk factor for developing cardiovascular, metabolic, and psychiatric problems. Previous studies have shown that low sleep quality is a factor that favors relapse in addicted patients. In rodents, sleep deprivation increases the preference for methylphenidate and the self-administration of cocaine. However, it is unknown whether chronic sleep restriction induces voluntary alcohol consumption in rats and whether alcohol intake is associated with delta FosB expression in the brain reward circuit. Potentially, chronic sleep restriction could make the brain vulnerable and consequently promote addictive behavior. Therefore, the present study's objective was to evaluate alcohol consumption in a chronic sleep restriction model and determine the expression of delta FosB in brains of adult rats. For this purpose, male Wistar rats (300-350 g body weight) were divided into four experimental groups (n = 6 each group): control (without manipulation), sleep restriction (SR) for 7 days, SR and ethanol exposure (Ethanol + SR), and a group with just ethanol exposure (Ethanol). At the end of the management, rats were sacrificed, and the brains were dissected and processed for immunohistochemical detection of delta FosB. The results showed that SR stimulates alcohol consumption compared to unrestricted-sleep rats and induces a significant increase in the number of delta FosB-positive cells in brain nuclei within the motivation/brain reward circuit. These results suggest that chronic reduction of sleep hours is a risk factor for developing a preference for alcohol consumption.
Collapse
Affiliation(s)
- Fabio García-García
- Biomedicine Department, Health Sciences Institute, Veracruzana University, Xalapa, VER, Mexico.
| | - Sergio Priego-Fernández
- Health Sciences Program, Health Sciences Institute, Veracruzana University, Xalapa, VER, Mexico
| | - Luis Angel López-Muciño
- Health Sciences Program, Health Sciences Institute, Veracruzana University, Xalapa, VER, Mexico
| | | | - Carolina Peña-Escudero
- Health Sciences Program, Health Sciences Institute, Veracruzana University, Xalapa, VER, Mexico
| |
Collapse
|
43
|
Parrilla-Carrero J, Eid M, Li H, Chao YS, Jhou TC. Synaptic Adaptations at the Rostromedial Tegmental Nucleus Underlie Individual Differences in Cocaine Avoidance Behavior. J Neurosci 2021; 41:4620-4630. [PMID: 33753546 PMCID: PMC8260244 DOI: 10.1523/jneurosci.1847-20.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 02/07/2021] [Accepted: 03/02/2021] [Indexed: 11/21/2022] Open
Abstract
Although cocaine is powerfully rewarding, not all individuals are equally prone to abusing this drug. We postulate that these differences arise in part because some individuals exhibit stronger aversive responses to cocaine that protect them from cocaine seeking. Indeed, using conditioned place preference (CPP) and a runway operant cocaine self-administration task, we demonstrate that avoidance responses to cocaine vary greatly between individual high cocaine-avoider and low cocaine-avoider rats. These behavioral differences correlated with cocaine-induced activation of the rostromedial tegmental nucleus (RMTg), measured using both in vivo firing and c-fos, whereas slice electrophysiological recordings from ventral tegmental area (VTA)-projecting RMTg neurons showed that relative to low avoiders, high avoiders exhibited greater intrinsic excitability, greater transmission via calcium-permeable AMPA receptors (CP-AMPARs), and higher presynaptic glutamate release. In behaving animals, blocking CP-AMPARs in the RMTg with NASPM reduced cocaine avoidance. Hence, cocaine addiction vulnerability may be linked to multiple coordinated synaptic differences in VTA-projecting RMTg neurons.SIGNIFICANCE STATEMENT Although cocaine is highly addictive, not all individuals exposed to cocaine progress to chronic use for reasons that remain unclear. We find that cocaine's aversive effects, although less widely studied than its rewarding effects, show more individual variability, are predictive of subsequent propensity to seek cocaine, and are driven by variations in RMTg in response to cocaine that arise from distinct alterations in intrinsic excitability and glutamate transmission onto VTA-projecting RMTg neurons.
Collapse
Affiliation(s)
- Jeffrey Parrilla-Carrero
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Maya Eid
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Hao Li
- Salk Institute for Biological Studies, La Jolla, California 92037
| | - Ying S Chao
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Thomas C Jhou
- Department of Neurosciences, Medical University of South Carolina, Charleston, South Carolina 29425
| |
Collapse
|
44
|
Pradel K, Drwiȩga G, Błasiak T. Superior Colliculus Controls the Activity of the Rostromedial Tegmental Nuclei in an Asymmetrical Manner. J Neurosci 2021; 41:4006-4022. [PMID: 33741724 PMCID: PMC8176749 DOI: 10.1523/jneurosci.1556-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/12/2021] [Accepted: 02/20/2021] [Indexed: 12/04/2022] Open
Abstract
Dopaminergic (DA) neurons of the midbrain are involved in controlling orienting and approach of animals toward relevant external stimuli. The firing of DA neurons is regulated by many brain structures; however, the sensory input is provided predominantly by the ipsilateral superior colliculus (SC). It is suggested that SC also innervates the contralateral rostromedial tegmental nucleus (RMTg)-the main inhibitory input to DA neurons. Therefore, this study aimed to describe the physiology and anatomy of the SC-RMTg pathway. To investigate the anatomic connections within the circuit of interest, anterograde, retrograde, and transsynaptic tract-tracing studies were performed on male Sprague Dawley rats. We have observed that RMTg is monosynaptically innervated predominantly by the lateral parts of the intermediate layer of the contralateral SC. To study the physiology of this neuronal pathway, we conducted in vivo electrophysiological experiments combined with optogenetics; the activity of RMTg neurons was recorded using silicon probes, while either contralateral or ipsilateral SC was optogenetically stimulated. Obtained results revealed that activation of the contralateral SC excites the majority of RMTg neurons, while stimulation of the ipsilateral SC evokes similar proportions of excitatory or inhibitory responses. Consequently, single-unit recordings showed that the activation of RMTg neurons innervated by the contralateral SC, or stimulation of contralateral SC-originating axon terminals within the RMTg, inhibits midbrain DA neurons. Together, the anatomy and physiology of the discovered brain circuit suggest its involvement in the orienting and motivation-driven locomotion of animals based on the direction of external sensory stimuli.SIGNIFICANCE STATEMENT Dopaminergic neurons are the target of predominantly ipsilateral, excitatory innervation originating from the superior colliculus. However, we demonstrate in our study that SC inhibits the activity of dopaminergic neurons on the contralateral side of the brain via the rostromedial tegmental nucleus. In this way, sensory information received by the animal from one hemifield could induce opposite effects on both sides of the dopaminergic system. It was shown that the side to which an animal directs its behavior is a manifestation of asymmetry in dopamine release between left and right striatum. Animals tend to move oppositely to the hemisphere with higher striatal dopamine concentration. This explains how the above-described circuit might guide the behavior of animals according to the direction of incoming sensory stimuli.
Collapse
Affiliation(s)
- Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Gniewosz Drwiȩga
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| | - Tomasz Błasiak
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387, Krakow, Poland
| |
Collapse
|
45
|
Bombardi C, Delicata F, Tagliavia C, Grandis A, Pierucci M, Marino Gammazza A, Casarrubea M, De Deurwaerdère P, Di Giovanni G. Lateral Habenula 5-HT 2C Receptor Function Is Altered by Acute and Chronic Nicotine Exposures. Int J Mol Sci 2021; 22:ijms22094775. [PMID: 33946328 PMCID: PMC8124296 DOI: 10.3390/ijms22094775] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/11/2022] Open
Abstract
Serotonin (5-HT) is important in some nicotine actions in the CNS. Among all the 5-HT receptors (5-HTRs), the 5-HT2CR has emerged as a promising drug target for smoking cessation. The 5-HT2CRs within the lateral habenula (LHb) may be crucial for nicotine addiction. Here we showed that after acute nicotine tartrate (2 mg/kg, i.p.) exposure, the 5-HT2CR agonist Ro 60-0175 (5–640 µg/kg, i.v.) increased the electrical activity of 42% of the LHb recorded neurons in vivo in rats. Conversely, after chronic nicotine treatment (6 mg/kg/day, i.p., for 14 days), Ro 60-0175 was incapable of affecting the LHb neuronal discharge. Moreover, acute nicotine exposure increased the 5-HT2CR-immunoreactive (IR) area while decreasing the number of 5-HT2CR-IR neurons in the LHb. On the other hand, chronic nicotine increased both the 5-HT2CR-IR area and 5-HT2CR-IR LHb neurons in the LHb. Western blot analysis confirmed these findings and further revealed an increase of 5-HT2CR expression in the medial prefrontal cortex after chronic nicotine exposure not detected by the immunohistochemistry. Altogether, these data show that acute and chronic nicotine exposure differentially affect the central 5-HT2CR function mainly in the LHb and this may be relevant in nicotine addiction and its treatment.
Collapse
Affiliation(s)
- Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (C.B.); (C.T.); (A.G.)
| | - Francis Delicata
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta; (F.D.); (M.P.)
| | - Claudio Tagliavia
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (C.B.); (C.T.); (A.G.)
| | - Annamaria Grandis
- Department of Veterinary Medical Sciences, University of Bologna, Via Tolara di Sopra, 50, 40064 Ozzano dell’Emilia, Italy; (C.B.); (C.T.); (A.G.)
| | - Massimo Pierucci
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta; (F.D.); (M.P.)
| | - Antonella Marino Gammazza
- Section of Human Anatomy, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy;
| | - Maurizio Casarrubea
- Laboratory of Behavioral Physiology, Human Physiology Section “Giuseppe Pagano”, Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy;
| | - Philippe De Deurwaerdère
- Unité Mixte de Recherche 5287, Centre National de la Recherche Scientifique, 146 rue Léo Saignat, B.P.281, CEDEX, F-33000 Bordeaux, France;
| | - Giuseppe Di Giovanni
- Laboratory of Neurophysiology, Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, MSD2080 Msida, Malta; (F.D.); (M.P.)
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
- Correspondence: or ; Tel.: +356-23402776
| |
Collapse
|
46
|
Abstract
Drug addiction is a chronic relapsing disorder, and a significant amount of research has been devoted to understand the factors that contribute to the development, loss of control, and persistence of compulsive addictive behaviors. In this review, we provide an overview of various theories of addiction to drugs of abuse and the neurobiology involved in elements of the addiction cycle. Specific focus is devoted to the role of the mesolimbic pathway in acute drug reinforcement and occasional drug use, the role of the mesocortical pathway and associated areas (e.g., the dorsal striatum) in escalation/dependence, and the contribution of these pathways and associated circuits to conditioned responses, drug craving, and loss of behavioral control that may underlie drug relapse. By enhancing the understanding of the neurobiological factors that mediate drug addiction, continued preclinical and clinical research will aid in the development of novel therapeutic interventions that can serve as effective long-term treatment strategies for drug-dependent individuals.
Collapse
Affiliation(s)
- Matthew W Feltenstein
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | - Ronald E See
- Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina 29425, USA
- Department of Psychology, Westmont College, Santa Barbara, California 93108, USA
| | - Rita A Fuchs
- Integrative Physiology and Neuroscience, Washington State University College of Veterinary Medicine, Pullman, Washington 99164-7620, USA
| |
Collapse
|
47
|
Cruz AM, Kim TH, Smith RJ. Monosynaptic Retrograde Tracing From Prelimbic Neuron Subpopulations Projecting to Either Nucleus Accumbens Core or Rostromedial Tegmental Nucleus. Front Neural Circuits 2021; 15:639733. [PMID: 33732114 PMCID: PMC7959753 DOI: 10.3389/fncir.2021.639733] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/01/2021] [Indexed: 11/13/2022] Open
Abstract
The prelimbic (PL) region of the medial prefrontal cortex (mPFC) has been implicated in both driving and suppressing motivated behaviors, including cocaine-seeking in rats. These seemingly opposing functions may be mediated by different efferent targets of PL projections, such as the nucleus accumbens (NAc) core and rostromedial tegmental nucleus (RMTg), which have contrasting roles in reward-seeking behaviors. We sought to characterize the anatomical connectivity differences between PL neurons projecting to NAc core and RMTg. We used conventional retrograde tracers to reveal distinct subpopulations of PL neurons projecting to NAc core vs. RMTg in rats, with very little overlap. To examine potential differences in input specificity for these two PL subpopulations, we then used Cre-dependent rabies virus (EnvA-RV-EGFP) as a monosynaptic retrograde tracer and targeted specific PL neurons via injections of retrograde CAV2-Cre in either NAc core or RMTg. We observed a similar catalog of cortical, thalamic, and limbic afferents for both NAc- and RMTg-projecting populations, with the primary source of afferent information arising from neighboring prefrontal neurons in ipsilateral PL and infralimbic cortex (IL). However, when the two subpopulations were directly compared, we found that RMTg-projecting PL neurons received a greater proportion of input from ipsilateral PL and IL, whereas NAc-projecting PL neurons received a greater proportion of input from most other cortical areas, mediodorsal thalamic nucleus, and several other subcortical areas. NAc-projecting PL neurons also received a greater proportion of contralateral cortical input. Our findings reveal that PL subpopulations differ not only in their efferent target but also in the input specificity from afferent structures. These differences in connectivity are likely to be critical to functional differences of PL subpopulations.
Collapse
Affiliation(s)
- Adelis M Cruz
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Tabitha H Kim
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Rachel J Smith
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States.,Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
48
|
Castillo-Rolón D, Ramírez-Sánchez E, Arenas-López G, Garduño J, Hernández-González O, Mihailescu S, Hernández-López S. Nicotine Increases Spontaneous Glutamate Release in the Rostromedial Tegmental Nucleus. Front Neurosci 2021; 14:604583. [PMID: 33519359 PMCID: PMC7838497 DOI: 10.3389/fnins.2020.604583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/23/2020] [Indexed: 01/26/2023] Open
Abstract
The rostromedial tegmental nucleus (RMTg) is a bilateral structure localized in the brainstem and comprise of mainly GABAergic neurons. One of the main functions of the RMTg is to regulate the activity of dopamine neurons of the mesoaccumbens pathway. Therefore, the RMTg has been proposed as a modulator of the reward system and adaptive behaviors associated to reward learning. The RMTg receives an important glutamatergic input from the lateral habenula. Also, it receives cholinergic inputs from the laterodorsal and pedunculopontine tegmental nuclei. Previously, it was reported that nicotine increases glutamate release, evoked by electric stimulation, in the RMTg nucleus. However, the mechanisms by which nicotine induces this effect were not explored. In the present work, we performed electrophysiological experiments in brainstem slices to study the effect of nicotine on spontaneous excitatory postsynaptic currents recorded from immunocytochemically identified RMTg neurons. Also, we used calcium imaging techniques to explore the effects of nicotine on multiple RMTg neurons simultaneously. We found that nicotine promotes the persistent release of glutamate through the activation of α7 nicotinic acetylcholine receptors present on glutamatergic afferents and by a mechanism involving calcium release from intracellular stores. Through these mechanisms, nicotine increases the excitability and synchronizes the activity of RMTg neurons. Our results suggest that the RMTg nucleus mediates the noxious effects of the nicotine, and it could be a potential therapeutic target against tobacco addiction.
Collapse
Affiliation(s)
- Diego Castillo-Rolón
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Enrique Ramírez-Sánchez
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Gabina Arenas-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Julieta Garduño
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Omar Hernández-González
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Stefan Mihailescu
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Salvador Hernández-López
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
49
|
Entopeduncular Nucleus Projections to the Lateral Habenula Contribute to Cocaine Avoidance. J Neurosci 2021; 41:298-306. [PMID: 33214316 DOI: 10.1523/jneurosci.0708-20.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 12/31/2022] Open
Abstract
The aversive properties associated with drugs of abuse influence both the development of addiction and relapse. Cocaine produces strong aversive effects after rewarding effects wear off, accompanied by increased firing in the lateral habenula (LHb) that contributes to downstream activation of the rostromedial tegmental nucleus (RMTg). However, the sources of this LHb activation are unknown, as the LHb receives many excitatory inputs whose contributions to cocaine aversion remain uncharacterized. Using cFos activation and in vivo electrophysiology in male rats, we demonstrated that the rostral entopeduncular nucleus (rEPN) was the most responsive region to cocaine among LHb afferents examined and that single cocaine infusions induced biphasic responses in rEPN neurons, with inhibition during cocaine's initial rewarding phase transitioning to excitation during cocaine's delayed aversive phase. Furthermore, rEPN lesions reduced cocaine-induced cFos activation by 2-fold in the LHb and by a smaller proportion in the RMTg, while inactivation of the rEPN or the rEPN-LHb pathway attenuated cocaine avoidance behaviors measured by an operant runway task and by conditioned place aversion (CPA). These data show an essential but not exclusive role of rEPN and its projections to the LHb in processing the aversive effects of cocaine, which could serve as a novel target for addiction vulnerability.SIGNIFICANCE STATEMENT Cocaine produces well-known rewarding effects but also strong aversive effects that influence addiction propensity, but whose mechanisms are poorly understood. We had previously reported that the lateral habenula (LHb) is activated by cocaine and contributes to cocaine's aversive effects, and the current findings show that the rostral entopeduncular nucleus (rEPN) is a major contributor to this LHb activation and to conditioned avoidance of cocaine. These findings show a critical, though not exclusive, rEPN role in cocaine's aversive effects, and shed light on the development of addiction.
Collapse
|
50
|
Galaj E, Xi ZX. Progress in opioid reward research: From a canonical two-neuron hypothesis to two neural circuits. Pharmacol Biochem Behav 2021; 200:173072. [PMID: 33227308 PMCID: PMC7796909 DOI: 10.1016/j.pbb.2020.173072] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/21/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
Opioid abuse and related overdose deaths continue to rise in the United States, contributing to the national opioid crisis in the USA. The neural mechanisms underlying opioid abuse and addiction are still not fully understood. This review discusses recent progress in basic research dissecting receptor mechanisms and circuitries underlying opioid reward and addiction. We first review the canonical GABA-dopamine neuron hypothesis that was upheld for half a century, followed by major findings challenging this hypothesis. We then focus on recent progress in research evaluating the role of the mesolimbic and nigrostriatal dopamine circuitries in opioid reward and relapse. Based on recent findings that activation of dopamine neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNc) is equally rewarding and that GABA neurons in the rostromedial tegmental nucleus (RMTg) and the substantia nigra pars reticula (SNr) are rich in mu opioid receptors and directly synapse onto midbrain DA neurons, we proposed that the RTMg→VTA → ventrostriatal and SNr → SNc → dorsostriatal pathways may act as the two major neural substrates underlying opioid reward and abuse. Lastly, we discuss possible integrations of these two pathways during initial opioid use, development of opioid abuse and maintenance of compulsive opioid seeking.
Collapse
Affiliation(s)
- Ewa Galaj
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States of America
| | - Zheng-Xiong Xi
- Addiction Biology Unit, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse, Intramural Research Program, Baltimore, MD, United States of America.
| |
Collapse
|