1
|
Yu H, Yang S, Chen Y, Wu C, Xu J, Yang Y, Wu R, Guo Y, Chen Z, Ding Y, Zeng X, Li G, Ma Y, Zheng Q, Zeng Y, Lai B. Construction of a rodent neural network-skeletal muscle assembloid that simulate the postnatal development of spinal cord motor neuronal network. Sci Rep 2025; 15:3635. [PMID: 39880975 PMCID: PMC11779978 DOI: 10.1038/s41598-025-88292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/28/2025] [Indexed: 01/31/2025] Open
Abstract
Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits. After coculture with SkM cells, SC-NSCs developed into neural networks (NNs) and exhibited a high proportion of glutamatergic and cholinergic neurons, low proportion of neuroglia and gamma-aminobutyric acidergic neurons, and increased expression of synaptic markers. In NN-SkM assembloids, the acetylcholine receptors of SkM cells were upregulated, generating neuromuscular junction-like structures with NNs. The amplitude and frequency of SkM cell contraction in NN-SkM assembloids were increased by optogenetic and glutamate stimulation and blocked by tetrodotoxin and dizocilpine, respectively, confirming the existence of multisynaptic motor NNs. The coculture process involves the secretion of neurotrophin-3 and insulin growth factor-1 by SkM cells, which activate the related ERK-MAPK and PI3K-AKT signaling pathways in NNs. Inhibition of the ERK-MAPK and PI3K-AKT pathways significantly reduces neuronal differentiation and synaptic maturation of neural cells in NN-SkM assembloids, while also decreasing acetylcholine receptor formation on SkM cells. In brief, NN-SkM assembloids simulate the composition of spinal cord motor NNs and respond to motor regulatory signals, providing an in vitro model for studying postnatal development and maturation of spinal cord motor NNs.
Collapse
Affiliation(s)
- Haiyang Yu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shangbin Yang
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Department of Gastrointestinal Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuanfeng Chen
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- Research Department of Medical Science, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chuangran Wu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Jing Xu
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yue Yang
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Rongjie Wu
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yinan Guo
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zhen Chen
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ying Ding
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xiang Zeng
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ge Li
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Research Department of Medical Science, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanhuan Ma
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Qiujian Zheng
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
- Department of Orthopedics, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China.
| | - Yuanshan Zeng
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Coinnovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Biqin Lai
- Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
- Coinnovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
2
|
Yu S, Zhang X, Sun YG. Peripheral and central innervation pattern of mechanosensory neurons in the trigeminal ganglion. Neuroscience 2025; 565:558-566. [PMID: 39643235 DOI: 10.1016/j.neuroscience.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 11/08/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The trigeminal ganglion (TG) comprises primary sensory neurons responsible for orofacial sensations, subsequently projecting to the trigeminal nuclei in the brainstem. However, the circuit basis of nasal mechanosensation is not well characterized. Here we elucidate the anatomical organization of both peripheral and central projections of the TG. We found that the non-peptidergic nociceptor, MAS-related G protein-coupled receptor member D positive (MrgprD+) neurons in the TG densely innervate the nasal mucosa, whereas the low-threshold mechanoreceptors subtypes rarely innervate the nasal mucosa. We also identified the central projection pattern of the mechanosensory neurons in TG. The tyrosine kinase receptor C positive (TrkC+) neurons, tyrosine kinase receptor B positive (TrkB+) and tyrosine hydroxylase positive (TH+) neurons project to multiple subregions of brainstem trigeminal complex and solitary nucleus. In contrast, the MrgprD+ neurons only densely project to outer edge of Sp5C. In addition, we further determined the ascending pathway of the TG neurons. Taken together, our study demonstrates the peripheral and central projection pattern of mechanosensory neurons in the TG, which provides a basis for the future functional studies.
Collapse
Affiliation(s)
- Su Yu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Xinyan Zhang
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yan-Gang Sun
- Institute of Neuroscience, Key Laboratory of Brain Cognition and Brain-inspired Intelligence Technology, Chinese Academy of Sciences Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
3
|
Fenech C, Winters BL, Otsu Y, Aubrey KR. Supraspinal glycinergic neurotransmission in pain: A scoping review of current literature. J Neurochem 2024; 168:3663-3684. [PMID: 39075923 DOI: 10.1111/jnc.16191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 07/31/2024]
Abstract
The neurotransmitter glycine is an agonist at the strychnine-sensitive glycine receptors. In addition, it has recently been discovered to act at two new receptors, the excitatory glycine receptor and metabotropic glycine receptor. Glycine's neurotransmitter roles have been most extensively investigated in the spinal cord, where it is known to play essential roles in pain, itch, and motor function. In contrast, less is known about supraspinal glycinergic functions, and their contributions to pain circuits are largely unrecognized. As glycinergic neurons are absent from cortical regions, a clearer understanding of how supraspinal glycine modulates pain could reveal new pharmacological targets. This review aims to synthesize the published research on glycine's role in the adult brain, highlighting regions where glycine signaling may modulate pain responses. This was achieved through a scoping review methodology identifying several key regions of supraspinal pain circuitry where glycine signaling is involved. Therefore, this review unveils critical research gaps for supraspinal glycine's potential roles in pain and pain-associated responses, encouraging researchers to consider glycinergic neurotransmission more widely when investigating neural mechanisms of pain.
Collapse
Affiliation(s)
- Caitlin Fenech
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Bryony L Winters
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Discipline of Pharmacology, School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yo Otsu
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Karin R Aubrey
- Pain Management Research Institute, Kolling Institute, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Takeda M, Sashide Y, Toyota R, Ito H. The Phytochemical, Quercetin, Attenuates Nociceptive and Pathological Pain: Neurophysiological Mechanisms and Therapeutic Potential. Molecules 2024; 29:3957. [PMID: 39203035 PMCID: PMC11357422 DOI: 10.3390/molecules29163957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Although phytochemicals are plant-derived toxins that are primarily produced as a form of defense against insects or microbes, several lines of study have demonstrated that the phytochemical, quercetin, has several beneficial biological actions for human health, including antioxidant and inflammatory effects without side effects. Quercetin is a flavonoid that is widely found in fruits and vegetables. Since recent studies have demonstrated that quercetin can modulate neuronal excitability in the nervous system, including nociceptive sensory transmission via mechanoreceptors and voltage-gated ion channels, and inhibit the cyclooxygenase-2-cascade, it is possible that quercetin could be a complementary alternative medicine candidate; specifically, a therapeutic agent against nociceptive and pathological pain. The focus of this review is to elucidate the neurophysiological mechanisms underlying the modulatory effects of quercetin on nociceptive neuronal activity under nociceptive and pathological conditions, without inducing side effects. Based on the results of our previous research on trigeminal pain, we have confirmed in vivo that the phytochemical, quercetin, demonstrates (i) a local anesthetic effect on nociceptive pain, (ii) a local anesthetic effect on pain related to acute inflammation, and (iii) an anti-inflammatory effect on chronic pain. In addition, we discuss the contribution of quercetin to the relief of nociceptive and inflammatory pain and its potential clinical application.
Collapse
Affiliation(s)
- Mamoru Takeda
- Laboratory of Food and Physiological Sciences, Department of Life and Food Sciences, School of Life and Environmental Sciences, Azabu University, 1-17-71, Fuchinobe, Chuo-ku, Sagamihara 252-5201, Kanagawa, Japan; (Y.S.); (R.T.); (H.I.)
| | | | | | | |
Collapse
|
5
|
Hu Z, Huang X, Liu J, Wang Z, Xi Y, Yang Y, Lin S, So KF, Huang L, Tao Q, Ren C. A visual circuit related to the parabrachial nucleus for the antipruritic effects of bright light treatment. Cell Rep 2024; 43:114356. [PMID: 38865246 DOI: 10.1016/j.celrep.2024.114356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
In addition to its role in vision, light also serves non-image-forming visual functions. Despite clinical evidence suggesting the antipruritic effects of bright light treatment, the circuit mechanisms underlying the effects of light on itch-related behaviors remain poorly understood. In this study, we demonstrate that bright light treatment reduces itch-related behaviors in mice through a visual circuit related to the lateral parabrachial nucleus (LPBN). Specifically, a subset of retinal ganglion cells (RGCs) innervates GABAergic neurons in the ventral lateral geniculate nucleus and intergeniculate leaflet (vLGN/IGL), which subsequently inhibit CaMKIIα+ neurons in the LPBN. Activation of both the vLGN/IGL-projecting RGCs and the vLGN/IGL-to-LPBN projections is sufficient to reduce itch-related behaviors induced by various pruritogens. Importantly, we demonstrate that the antipruritic effects of bright light treatment rely on the activation of the retina-vLGN/IGL-LPBN pathway. Collectively, our findings elucidate a visual circuit related to the LPBN that underlies the antipruritic effects of bright light treatment.
Collapse
Affiliation(s)
- Zhengfang Hu
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Xiaodan Huang
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Jianyu Liu
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Ziyang Wang
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Yue Xi
- Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yan Yang
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China
| | - Song Lin
- Physiology Department, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Kwok-Fai So
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China; Key Laboratory of Brain and Cognitive Science, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Lu Huang
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China.
| | - Qian Tao
- Department of Rehabilitation Medicine, First Affiliated Hospital of Jinan University, Department of Public Health and Preventive Medicine Psychology, School of Medicine, Jinan University, Guangzhou 510632, China.
| | - Chaoran Ren
- Department of Neurology and Stroke Center, First Affiliated Hospital of Jinan University, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong Key Laboratory of Non-human Primate Research, GHM Institute of CNS Regeneration, Jinan University, Guangzhou 510632, China; Neuroscience and Neurorehabilitation Institute, University of Health and Rehabilitation Sciences, Qingdao, China; Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China; Center for Brain Science and Brain-Inspired Intelligence, Guangdong-Hong Kong-Macao Greater Bay Area, Guangzhou 510515, China.
| |
Collapse
|
6
|
Shao L, Kong F, Tian X, Deng T, Wang Y, Ji Y, Wang X, Yu H, Yuan F, Fu C, Wang S. Whole-brain inputs and outputs of Phox2b and GABAergic neurons in the nucleus tractus solitarii. Front Neurosci 2024; 18:1427384. [PMID: 38948926 PMCID: PMC11211284 DOI: 10.3389/fnins.2024.1427384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 06/04/2024] [Indexed: 07/02/2024] Open
Abstract
The nucleus tractus solitarii (NTS) plays a critical role in the homeostatic regulation of respiration, blood pressure, sodium consumption and metabolic processes. Despite their significance, the circuitry mechanisms facilitating these diverse physiological functions remain incompletely understood. In this study, we present a whole-brain mapping of both the afferent and efferent connections of Phox2b-expressing and GABAergic neurons within the NTS. Our findings reveal that these neuronal populations not only receive monosynaptic inputs primarily from the medulla oblongata, pons, midbrain, supra-midbrain and cortical areas, but also mutually project their axons to these same locales. Moreover, intense monosynaptic inputs are received from the central amygdala, the paraventricular nucleus of the hypothalamus, the parasubthalamic nucleus and the intermediate reticular nucleus, along with brainstem nuclei explicitly engaged in respiratory regulation. In contrast, both neuronal groups extensively innervate brainstem nuclei associated with respiratory functions, although their projections to regions above the midbrain are comparatively limited. These anatomical findings provide a foundational platform for delineating an anatomical framework essential for dissecting the specific functional mechanisms of these circuits.
Collapse
Affiliation(s)
- Liuqi Shao
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fanrao Kong
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaochen Tian
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Tianjiao Deng
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yakun Wang
- Department of Sleep Medicine, Third Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Yake Ji
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xiaoyi Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hongxiao Yu
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fang Yuan
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Congrui Fu
- Nursing School, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Sheng Wang
- Department of Neurobiology, Hebei Medical University, Shijiazhuang, Hebei, China
- Hebei Key Laboratory of Neurophysiology, Shijiazhuang, Hebei, China
| |
Collapse
|
7
|
Safronov BV, Szucs P. Novel aspects of signal processing in lamina I. Neuropharmacology 2024; 247:109858. [PMID: 38286189 DOI: 10.1016/j.neuropharm.2024.109858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/12/2024] [Accepted: 01/25/2024] [Indexed: 01/31/2024]
Abstract
The most superficial layer of the spinal dorsal horn, lamina I, is a key element of the nociceptive processing system. It contains different types of projection neurons (PNs) and local-circuit neurons (LCNs) whose functional roles in the signal processing are poorly understood. This article reviews recent progress in elucidating novel anatomical features and physiological properties of lamina I PNs and LCNs revealed by whole-cell recordings in ex vivo spinal cord. This article is part of the Special Issue on "Ukrainian Neuroscience".
Collapse
Affiliation(s)
- Boris V Safronov
- Neuronal Networks Group, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
| | - Peter Szucs
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary; HUN-REN-DE Neuroscience Research Group, Debrecen, Hungary
| |
Collapse
|
8
|
Chen H, Bleimeister IH, Nguyen EK, Li J, Cui AY, Stratton HJ, Smith KM, Baccei ML, Ross SE. The functional and anatomical characterization of three spinal output pathways of the anterolateral tract. Cell Rep 2024; 43:113829. [PMID: 38421871 PMCID: PMC11025583 DOI: 10.1016/j.celrep.2024.113829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/24/2023] [Accepted: 02/03/2024] [Indexed: 03/02/2024] Open
Abstract
The nature of spinal output pathways that convey nociceptive information to the brain has been the subject of controversy. Here, we provide anatomical, molecular, and functional characterizations of two distinct anterolateral pathways: one, ascending in the lateral spinal cord, triggers nociceptive behaviors, and the other one, ascending in the ventral spinal cord, when inhibited, leads to sensorimotor deficits. Moreover, the lateral pathway consists of at least two subtypes. The first is a contralateral pathway that extends to the periaqueductal gray (PAG) and thalamus; the second is a bilateral pathway that projects to the bilateral parabrachial nucleus (PBN). Finally, we present evidence showing that activation of the contralateral pathway is sufficient for defensive behaviors such as running and freezing, whereas the bilateral pathway is sufficient for attending behaviors such as licking and guarding. This work offers insight into the complex organizational logic of the anterolateral system in the mouse.
Collapse
Affiliation(s)
- Haichao Chen
- Tsinghua Medicine, Tsinghua University, Beijing 100084, China; Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Isabel H Bleimeister
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Eileen K Nguyen
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Jie Li
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Abby Yilin Cui
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Harrison J Stratton
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kelly M Smith
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Mark L Baccei
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH 45267, USA
| | - Sarah E Ross
- Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Anesthesiology, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| |
Collapse
|
9
|
Torruella-Suárez ML, Neugebauer B, Flores-Felix K, Keller A, Carrasquillo Y, Cramer N. Divergent changes in PBN excitability in a mouse model of neuropathic pain. eNeuro 2024; 11:ENEURO.0416-23.2024. [PMID: 38331576 PMCID: PMC10921257 DOI: 10.1523/eneuro.0416-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 02/10/2024] Open
Abstract
The transition from acute to chronic pain involves maladaptive plasticity in central nociceptive pathways. Growing evidence suggests that changes within the parabrachial nucleus (PBN), an important component of the spino-parabrachio-amygdaloid pain pathway, are key contributors to the development and maintenance of chronic pain. In animal models of chronic pain, PBN neurons become sensitive to normally innocuous stimuli and responses to noxious stimuli become amplified and more often produce after-discharges that outlast the stimulus. Using ex vivo slice electrophysiology and two mouse models of neuropathic pain, sciatic cuff and chronic constriction of the infraorbital nerve (CCI-ION), we find that changes in the firing properties of PBN neurons and a shift in inhibitory synaptic transmission may underlie this phenomenon. Compared to PBN neurons from shams, a larger proportion of PBN neurons from mice with a sciatic cuff were spontaneously active at rest, and these same neurons showed increased excitability relative to shams. In contrast, quiescent PBN neurons from cuff mice were less excitable than those from shams. Despite an increase in excitability in a subset of PBN neurons, the presence of after-discharges frequently observed in vivo were largely absent ex vivo in both injury models. However, GABAB-mediated presynaptic inhibition of GABAergic terminals is enhanced in PBN neurons after CCI-ION. These data suggest that the amplified activity of PBN neurons observed in rodent models of chronic pain arise through a combination of changes in firing properties and network excitability.Significance Statement Hyperactivity of neurons in the parabrachial nucleus (PBN) is causally linked to exaggerated pain behaviors in rodent models of chronic pain but the underlying mechanisms remain unknown. Using two mouse models of neuropathic pain, we show the intrinsic properties of PBN neurons are largely unaltered following injury. However, subsets of PBN neurons become more excitable and GABAB receptor mediated suppression of inhibitory terminals is enhanced after injury. Thus, shifts in network excitability may be a contributing factor in injury induced potentiation of PBN activity.
Collapse
Affiliation(s)
- María L Torruella-Suárez
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Benjamin Neugebauer
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Krystal Flores-Felix
- Department of Neurobiology and UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland
| | - Asaf Keller
- Department of Neurobiology and UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yarimar Carrasquillo
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Nathan Cramer
- Department of Neurobiology and UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
10
|
Brewer CL, Kauer JA. Low-Frequency Stimulation of Trpv1-Lineage Peripheral Afferents Potentiates the Excitability of Spino-Periaqueductal Gray Projection Neurons. J Neurosci 2024; 44:e1184232023. [PMID: 38050062 PMCID: PMC10860615 DOI: 10.1523/jneurosci.1184-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
High-threshold dorsal root ganglion (HT DRG) neurons fire at low frequencies during inflammatory injury, and low-frequency stimulation (LFS) of HT DRG neurons selectively potentiates excitatory synapses onto spinal neurons projecting to the periaqueductal gray (spino-PAG). Here, in male and female mice, we have identified an underlying peripheral sensory population driving this plasticity and its effects on the output of spino-PAG neurons. We provide the first evidence that Trpv1-lineage sensory neurons predominantly induce burst firing, a unique mode of neuronal activity, in lamina I spino-PAG projection neurons. We modeled inflammatory injury by optogenetically stimulating Trpv1+ primary afferents at 2 Hz for 2 min (LFS), as peripheral inflammation induces 1-2 Hz firing in high-threshold C fibers. LFS of Trpv1+ afferents enhanced the synaptically evoked and intrinsic excitability of spino-PAG projection neurons, eliciting a stable increase in the number of action potentials (APs) within a Trpv1+ fiber-induced burst, while decreasing the intrinsic AP threshold and increasing the membrane resistance. Further experiments revealed that this plasticity required Trpv1+ afferent input, postsynaptic G protein-coupled signaling, and NMDA receptor activation. Intriguingly, an inflammatory injury and heat exposure in vivo also increased APs per burst, in vitro These results suggest that inflammatory injury-mediated plasticity is driven though Trpv1+ DRG neurons and amplifies the spino-PAG pathway. Spinal inputs to the PAG could play an integral role in its modulation of heat sensation during peripheral inflammation, warranting further exploration of the organization and function of these neural pathways.
Collapse
Affiliation(s)
- Chelsie L Brewer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| | - Julie A Kauer
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, California 94305
| |
Collapse
|
11
|
Sheahan TD, Warwick CA, Cui AY, Baranger DA, Perry VJ, Smith KM, Manalo AP, Nguyen EK, Koerber HR, Ross SE. Identification of a convergent spinal neuron population that encodes itch. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560205. [PMID: 37873278 PMCID: PMC10592866 DOI: 10.1101/2023.09.29.560205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Itch is a protective sensation that drives scratching. Although specific cell types have been proposed to underlie itch, the neural circuit basis for itch remains unclear. Here, we used two-photon Ca2+ imaging of the dorsal horn to visualize the neuronal populations that are activated by itch-inducing agents. We identify a convergent population of spinal neurons that is defined by the expression of GRPR. Moreover, we discover that itch is conveyed to the brain via GRPR-expressing spinal output neurons that target the lateral parabrachial nucleus. Further, we show that nalfurafine, a clinically effective kappa opioid receptor agonist, relieves itch by inhibiting GRPR spinoparabrachial neurons. Finally, we demonstrate that a subset of GRPR spinal neurons show persistent, cell-intrinsic Ca2+ oscillations. These experiments provide the first population-level view of the spinal neurons that respond to pruritic stimuli, pinpoint the output neurons that convey itch to the brain, and identify the cellular target of kappa opioid receptor agonists for the inhibition of itch.
Collapse
Affiliation(s)
- Tayler D. Sheahan
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Co-first authors
| | - Charles A. Warwick
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Co-first authors
| | - Abby Y. Cui
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - David A.A. Baranger
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis Missouri, USA
| | - Vijay J. Perry
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kelly M. Smith
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Current Address: Biohaven Pharmaceuticals, LTD, Pittsburgh, Pennsylvania, USA
| | - Allison P. Manalo
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Eileen K. Nguyen
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Current Address: Department of Anesthesiology and Perioperative Care, University of California, Los Angeles, Los Angeles, California, USA
| | - H. Richard Koerber
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Sarah E. Ross
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Lead contact
| |
Collapse
|
12
|
Li J, Tian C, Yuan S, Yin Z, Wei L, Chen F, Dong X, Liu A, Wang Z, Wu T, Tian C, Niu L, Wang L, Wang P, Xie W, Cao F, Shen H. Neuropathic pain following spinal cord hemisection induced by the reorganization in primary somatosensory cortex and regulated by neuronal activity of lateral parabrachial nucleus. CNS Neurosci Ther 2023; 29:3269-3289. [PMID: 37170721 PMCID: PMC10580357 DOI: 10.1111/cns.14258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/04/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
AIMS Neuropathic pain after spinal cord injury (SCI) remains a common and thorny problem, influencing the life quality severely. This study aimed to elucidate the reorganization of the primary sensory cortex (S1) and the regulatory mechanism of the lateral parabrachial nucleus (lPBN) in the presence of allodynia or hyperalgesia after left spinal cord hemisection injury (LHS). METHODS Through behavioral tests, we first identified mechanical allodynia and thermal hyperalgesia following LHS. We then applied two-photon microscopy to observe calcium activity in S1 during mechanical or thermal stimulation and long-term spontaneous calcium activity after LHS. By slice patch clamp recording, the electrophysiological characteristics of neurons in lPBN were explored. Finally, exploiting chemogenetic activation or inhibition of the neurons in lPBN, allodynia or hyperalgesia was regulated. RESULTS The calcium activity in left S1 was increased during mechanical stimulation of right hind limb and thermal stimulation of tail, whereas in right S1 it was increased only with thermal stimulation of tail. The spontaneous calcium activity in right S1 changed more dramatically than that in left S1 after LHS. The lPBN was also activated after LHS, and exploiting chemogenetic activation or inhibition of the neurons in lPBN could induce or alleviate allodynia and hyperalgesia in central neuropathic pain. CONCLUSION The neuronal activity changes in S1 are closely related to limb pain, which has accurate anatomical correspondence. After LHS, the spontaneously increased functional connectivity of calcium transient in left S1 is likely causing the mechanical allodynia in right hind limb and increased neuronal activity in bilateral S1 may induce thermal hyperalgesia in tail. This state of allodynia and hyperalgesia can be regulated by lPBN.
Collapse
Affiliation(s)
- Jing Li
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Chao Tian
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Shiyang Yuan
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Zhenyu Yin
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Liangpeng Wei
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Feng Chen
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Xi Dong
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Aili Liu
- Department of Cellular Biology, School of Basic ScienceTianjin Medical UniversityTianjinChina
| | - Zhenhuan Wang
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Tongrui Wu
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Chunxiao Tian
- School of Biomedical EngineeringTianjin Medical UniversityTianjinChina
| | - Lin Niu
- Department of Cellular Biology, School of Basic ScienceTianjin Medical UniversityTianjinChina
| | - Lei Wang
- Department of PhysiologyZhuhai Campus of Zunyi Medical UniversityZhuhaiChina
| | - Pu Wang
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Wanyu Xie
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Fujiang Cao
- Department of OrthopedicsTianjin Medical University General HospitalTianjinChina
| | - Hui Shen
- Department of Cellular Biology, School of Basic ScienceTianjin Medical UniversityTianjinChina
- Innovation Research Institute of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinanChina
| |
Collapse
|
13
|
Torruella-Suárez ML, Neugebauer B, Flores-Felix K, Keller A, Carrasquillo Y, Cramer N. Divergent changes in PBN excitability in a mouse model of neuropathic pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.11.561891. [PMID: 37905065 PMCID: PMC10614750 DOI: 10.1101/2023.10.11.561891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The transition from acute to chronic pain involves maladaptive plasticity in central nociceptive pathways. Growing evidence suggests that changes within the parabrachial nucleus (PBN), an important component of the spino-parabrachio-amygdaloid pain pathway, are key contributors to the development and maintenance of chronic pain. In animal models of chronic pain, PBN neurons become sensitive to normally innocuous stimuli and responses to noxious stimuli become amplified and more often produce after-discharges that outlast the stimulus. Using ex vivo slice electrophysiology and two mouse models of neuropathic pain, sciatic cuff and chronic constriction of the infraorbital nerve (CCI-ION), we find that changes in the firing properties of PBN neurons and a shift in inhibitory synaptic transmission may underlie this phenomenon. Compared to PBN neurons from shams, a larger proportion of PBN neurons from mice with a sciatic cuff were spontaneously active at rest, and these same neurons showed increased excitability relative to shams. In contrast, quiescent PBN neurons from cuff mice were less excitable than those from shams. Despite an increase in excitability in a subset of PBN neurons, the presence of after-discharges frequently observed in vivo were largely absent ex vivo in both injury models. However, GABAB-mediated presynaptic inhibition of GABAergic terminals is enhanced in PBN neurons after CCIION. These data suggest that the amplified activity of PBN neurons observed in rodent models of chronic pain arise through a combination of changes in firing properties and network excitability.
Collapse
Affiliation(s)
- María L Torruella-Suárez
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Benjamin Neugebauer
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
| | - Krystal Flores-Felix
- Department of Neurobiology and UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland
| | - Asaf Keller
- Department of Neurobiology and UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland
| | - Yarimar Carrasquillo
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, Maryland
- National Institute on Drug Abuse, National Institutes of Health, Bethesda, Maryland
| | - Nathan Cramer
- Department of Neurobiology and UM-MIND, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
14
|
Leva TM, Whitmire CJ. Thermosensory thalamus: parallel processing across model organisms. Front Neurosci 2023; 17:1210949. [PMID: 37901427 PMCID: PMC10611468 DOI: 10.3389/fnins.2023.1210949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 09/15/2023] [Indexed: 10/31/2023] Open
Abstract
The thalamus acts as an interface between the periphery and the cortex, with nearly every sensory modality processing information in the thalamocortical circuit. Despite well-established thalamic nuclei for visual, auditory, and tactile modalities, the key thalamic nuclei responsible for innocuous thermosensation remains under debate. Thermosensory information is first transduced by thermoreceptors located in the skin and then processed in the spinal cord. Temperature information is then transmitted to the brain through multiple spinal projection pathways including the spinothalamic tract and the spinoparabrachial tract. While there are fundamental studies of thermal transduction via thermosensitive channels in primary sensory afferents, thermal representation in the spinal projection neurons, and encoding of temperature in the primary cortical targets, comparatively little is known about the intermediate stage of processing in the thalamus. Multiple thalamic nuclei have been implicated in thermal encoding, each with a corresponding cortical target, but without a consensus on the role of each pathway. Here, we review a combination of anatomy, physiology, and behavioral studies across multiple animal models to characterize the thalamic representation of temperature in two proposed thermosensory information streams.
Collapse
Affiliation(s)
- Tobias M. Leva
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Clarissa J. Whitmire
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Neuroscience Research Center, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
15
|
Ren X, Liu S, Virlogeux A, Kang SJ, Brusch J, Liu Y, Dymecki SM, Han S, Goulding M, Acton D. Identification of an essential spinoparabrachial pathway for mechanical itch. Neuron 2023; 111:1812-1829.e6. [PMID: 37023756 PMCID: PMC10446756 DOI: 10.1016/j.neuron.2023.03.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 01/31/2023] [Accepted: 03/08/2023] [Indexed: 04/08/2023]
Abstract
The sensation of itch is a protective response that is elicited by either mechanical or chemical stimuli. The neural pathways for itch transmission in the skin and spinal cord have been characterized previously, but the ascending pathways that transmit sensory information to the brain to evoke itch perception have not been identified. Here, we show that spinoparabrachial neurons co-expressing Calcrl and Lbx1 are essential for generating scratching responses to mechanical itch stimuli. Moreover, we find that mechanical and chemical itch are transmitted by separate ascending pathways to the parabrachial nucleus, where they engage separate populations of FoxP2PBN neurons to drive scratching behavior. In addition to revealing the architecture of the itch transmission circuitry required for protective scratching in healthy animals, we identify the cellular mechanisms underlying pathological itch by showing the ascending pathways for mechanical and chemical itch function cooperatively with the FoxP2PBN neurons to drive chronic itch and hyperknesis/alloknesis.
Collapse
Affiliation(s)
- Xiangyu Ren
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr, San Diego, CA 92093, USA
| | - Shijia Liu
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA; Biology Graduate Program, Division of Biological Sciences, University of California San Diego, 9500 Gilman Dr, San Diego, CA 92093, USA
| | - Amandine Virlogeux
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Jeremy Brusch
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| | - Yuanyuan Liu
- NIDCR, National Institute of Health, 35A Convent Drive, Bethesda, MD 20892, USA
| | - Susan M Dymecki
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Martyn Goulding
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - David Acton
- Molecular Neurobiology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Rd, La Jolla, CA 92037, USA
| |
Collapse
|
16
|
Sunzini F, Schrepf A, Clauw DJ, Basu N. The Biology of Pain: Through the Rheumatology Lens. Arthritis Rheumatol 2023; 75:650-660. [PMID: 36599071 DOI: 10.1002/art.42429] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/07/2022] [Accepted: 12/20/2022] [Indexed: 01/06/2023]
Abstract
Chronic pain is a major socioeconomic burden globally. The most frequent origin of chronic pain is musculoskeletal. In inflammatory musculoskeletal diseases such as rheumatoid arthritis (RA), chronic pain is a primary determinant of deleterious quality of life. The pivotal role of peripheral inflammation in the initiation and perpetuation of nociceptive pain is well-established among patients with musculoskeletal diseases. However, the persistence of pain, even after the apparent resolution of peripheral inflammation, alludes to the coexistence of different pain states. Recent advances in neurobiology have highlighted the importance of nociplastic pain mechanisms. In this review we aimed to explore the biology of pain with a particular focus on nociplastic pain in RA.
Collapse
Affiliation(s)
- Flavia Sunzini
- Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Andrew Schrepf
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor
| | - Daniel J Clauw
- Department of Anesthesiology, Chronic Pain and Fatigue Research Center, University of Michigan Medical School, Ann Arbor
| | - Neil Basu
- Institute of Infection, Immunity and Inflammation, University of Glasgow, UK
| |
Collapse
|
17
|
Li J, Serafin EK, Baccei ML. Intrinsic and synaptic properties of adult mouse spinoperiaqueductal gray neurons and the influence of neonatal tissue damage. Pain 2023; 164:905-917. [PMID: 36149785 PMCID: PMC10033328 DOI: 10.1097/j.pain.0000000000002787] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 09/09/2022] [Indexed: 11/26/2022]
Abstract
ABSTRACT The periaqueductal gray (PAG) represents a key target of projection neurons residing in the spinal dorsal horn. In comparison to lamina I spinoparabrachial neurons, little is known about the intrinsic and synaptic properties governing the firing of spino-PAG neurons, or whether such activity is modulated by neonatal injury. In this study, this issue was addressed using ex vivo whole-cell patch clamp recordings from lamina I spino-PAG neurons in adult male and female FVB mice after hindpaw incision at postnatal day (P)3. Spino-PAG neurons were classified as high output, medium output, or low output based on their action potential discharge after dorsal root stimulation. The high-output subgroup exhibited prevalent spontaneous burst firing and displayed initial burst or tonic patterns of intrinsic firing, whereas low-output neurons showed little spontaneous activity. Interestingly, the level of dorsal root-evoked firing significantly correlated with the resting potential and membrane resistance but not with the strength of primary afferent-mediated glutamatergic drive. Neonatal incision failed to alter the pattern of monosynaptic sensory input, with most spino-PAG neurons receiving direct connections from low-threshold C-fibers. Furthermore, primary afferent-evoked glutamatergic input and action potential discharge in adult spino-PAG neurons were unaltered by neonatal surgical injury. Finally, Hebbian long-term potentiation at sensory synapses, which significantly increased afferent-evoked firing, was similar between P3-incised and naive littermates. Collectively, these data suggest that the functional response of lamina I spino-PAG neurons to sensory input is largely governed by their intrinsic membrane properties and appears resistant to the persistent influence of neonatal tissue damage.
Collapse
Affiliation(s)
- Jie Li
- Department of Anesthesiology, Pain Research Center, University of Cincinnati Medical Center, Cincinnati, OH, United States
| | | | | |
Collapse
|
18
|
Yin JB, Lu YC, Li F, Zhang T, Ding T, Hu HQ, Chen YB, Guo HW, Kou ZZ, Zhang MM, Yuan J, Chen T, Li H, Cao BZ, Dong YL, Li YQ. Morphological investigations of endomorphin-2 and spinoparabrachial projection neurons in the spinal dorsal horn of the rat. Front Neuroanat 2022; 16:1072704. [PMID: 36506871 PMCID: PMC9726772 DOI: 10.3389/fnana.2022.1072704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
It has been proved that endomorphin-2 (EM2) produced obvious analgesic effects in the spinal dorsal horn (SDH), which existed in our human bodies with remarkable affinity and selectivity for the μ-opioid receptor (MOR). Our previous study has demonstrated that EM2 made synapses with the spinoparabrachial projection neurons (PNs) in the SDH and inhibited their activities by reducing presynaptic glutamate release. However, the morphological features of EM2 and the spinoparabrachial PNs in the SDH have not been completely investigated. Here, we examined the morphological features of EM2 and the spinoparabrachial PNs by using triple fluorescence and electron microscopic immunohistochemistry. EM2-immunoreactive (-ir) afferents directly contacted with the spinoparabrachial PNs in lamina I of the SDH. Immunoelectron microscopy (IEM) were used to confirm that these contacts were synaptic connections. It was also observed that EM2-ir axon terminals contacting with spinoparabrachial PNs in lamina I contained MOR, substance P (SP) and vesicular glutamate transporter 2 (VGLUT2). In lamina II, MOR-ir neurons were observed to receive direct contacts from EM2-ir varicosities. The synaptic connections among EM2, MOR, SP, VGLUT2, and the spinoparabrachial PNs were also confirmed by IEM. In sum, our results supply morphological evidences for the analgesic effects of EM2 on the spinoparabrachial PNs in the SDH.
Collapse
Affiliation(s)
- Jun-Bin Yin
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China,Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China,State Key Laboratory of Military Medical Psychology, The Fourth Military Medical University, Xi’an, China
| | - Ya-Cheng Lu
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Fei Li
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Ting Zhang
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Tan Ding
- Institute of Orthopedics, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Huai-Qiang Hu
- Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China,State Key Laboratory of Military Medical Psychology, The Fourth Military Medical University, Xi’an, China
| | - Ying-Biao Chen
- Department of Human Anatomy, Fujian Health College, Fuzhou, China
| | - Hong-Wei Guo
- Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China
| | - Zhen-Zhen Kou
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Ming-Ming Zhang
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Jun Yuan
- Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China
| | - Tao Chen
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Hui Li
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China
| | - Bing-Zhen Cao
- Department of Neurology, The 960th Hospital of Joint Logistics Support, PLA, Jinan, China
| | - Yu-Lin Dong
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China,Yu-Lin Dong,
| | - Yun-Qing Li
- Department of Human Anatomy, K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi’an, China,*Correspondence: Yun-Qing Li,
| |
Collapse
|
19
|
Teuchmann HL, Hogri R, Heinke B, Sandkühler J. Anti-Nociceptive and Anti-Aversive Drugs Differentially Modulate Distinct Inputs to the Rat Lateral Parabrachial Nucleus. THE JOURNAL OF PAIN 2022; 23:1410-1426. [PMID: 35339662 DOI: 10.1016/j.jpain.2022.03.234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 02/16/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
The lateral parabrachial nucleus (LPBN) plays an important role in the processing and establishment of pain aversion. It receives direct input from the superficial dorsal horn and forms reciprocal connections with the periaqueductal grey matter (PAG), which is critical for adaptive behaviour and the modulation of pain processing. Here, using in situ hybridization and optogenetics combined with in vitro electrophysiology, we characterized the spinal- and PAG-LPBN circuits of rats. We found spinoparabrachial projections to be strictly glutamatergic, while PAG neurons send glutamatergic and GABAergic projections to the LPBN. We next investigated the effects of drugs with anti-aversive and/or anti-nociceptive properties on these synapses: The µ-opioid receptor agonist DAMGO (10 µM) reduced spinal and PAG synaptic inputs onto LPBN neurons, and the excitability of LPBN neurons receiving these inputs. The benzodiazepine receptor agonist diazepam (5 µM) strongly enhanced GABAergic action at inhibitory PAG-LPBN synapses. The cannabinoid receptor agonist WIN 55,212-2 (5 µM) led to a reduction in inhibitory and excitatory PAG-LPBN synaptic transmission, without affecting excitatory spinoparabrachial synaptic transmission. Our study reveals that opioid, cannabinoid and benzodiazepine receptor agonists differentially affect distinct LPBN synapses. These findings may support the efforts to develop pinpointed therapies for pain patients. PERSPECTIVE: The LPBN is an important brain region for the control of pain aversion versus recuperation, and as such constitutes a promising target for developing new strategies for pain management. We show that clinically-relevant drugs have complex and pathway-specific effects on LPBN processing of putative nociceptive and aversive inputs.
Collapse
Affiliation(s)
- Hannah Luise Teuchmann
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Roni Hogri
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Bernhard Heinke
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Jürgen Sandkühler
- Department of Neurophysiology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Spinal ascending pathways for somatosensory information processing. Trends Neurosci 2022; 45:594-607. [PMID: 35701247 DOI: 10.1016/j.tins.2022.05.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 12/27/2022]
Abstract
The somatosensory system processes diverse types of information including mechanical, thermal, and chemical signals. It has an essential role in sensory perception and body movement and, thus, is crucial for organism survival. The neural network for processing somatosensory information comprises multiple key nodes. Spinal projection neurons represent the key node for transmitting somatosensory information from the periphery to the brain. Although the anatomy of spinal ascending pathways has been characterized, the mechanisms underlying somatosensory information processing by spinal ascending pathways are incompletely understood. Recent studies have begun to reveal the diversity of spinal ascending pathways and their functional roles in somatosensory information processing. Here, we review the anatomic, molecular, and functional characteristics of spinal ascending pathways.
Collapse
|
21
|
Zhang Y, Ke J, Zhou Y, Liu X, Huang T, Wang F. Sex-specific characteristics of cells expressing the cannabinoid 1 receptor in the dorsal horn of the lumbar spinal cord. J Comp Neurol 2022; 530:2451-2473. [PMID: 35580011 DOI: 10.1002/cne.25342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 04/28/2022] [Accepted: 05/02/2022] [Indexed: 12/20/2022]
Abstract
It is becoming increasingly clear that robust sex differences exist in the processing of acute and chronic pain in both rodents and humans. However, the underlying mechanism has not been well characterized. The dorsal horn of the lumbar spinal cord is the fundamental building block of ascending and descending pain pathways. It has been shown that numerous neurotransmitter and neuromodulator systems in the spinal cord, including the endocannabinoid system and its main receptor, the cannabinoid 1 receptor (CB1 R), play vital roles in processing nociceptive information. Our previous findings have shown that CB1 R mRNA is widely expressed in the brain in sex-dependent patterns. However, the sex-, lamina-, and cell-type-specific characteristics of CB1 R expression in the spinal cord have not been fully described. In this study, the CB1 R-iCre-EGFP mouse strain was generated to label and identify CB1 R-positive (CB1 RGFP ) cells. We reported no sex difference in CB1 R expression in the lumbar dorsal horn of the spinal cord, but a dynamic distribution within superficial laminae II and III in female mice between estrus and nonestrus phases. Furthermore, the cell-type-specific CB1 R expression pattern in the dorsal horn was similar in both sexes. Over 50% of CB1 RGFP cells were GABAergic neurons, and approximately 25% were glycinergic and 20-30% were glutamatergic neurons. The CB1 R-expressing cells also represented a subset of spinal projection neurons. Overall, our work indicates a highly consistent distribution pattern of CB1 RGFP cells in the dorsal horn of lumbar spinal cord in males and females.
Collapse
Affiliation(s)
- Yulin Zhang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jin Ke
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zhou
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xue Liu
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Tianwen Huang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Feng Wang
- Shenzhen Key Lab of Translational Research for Brain Diseases, Shenzhen Key Lab of Drug Addiction, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
22
|
Walker SC, Cavieres A, Peñaloza-Sancho V, El-Deredy W, McGlone FP, Dagnino-Subiabre A. C-low threshold mechanoafferent targeted dynamic touch modulates stress resilience in rats exposed to chronic mild stress. Eur J Neurosci 2022; 55:2925-2938. [PMID: 32852872 DOI: 10.1111/ejn.14951] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 01/28/2023]
Abstract
Affiliative tactile interactions buffer social mammals against neurobiological and behavioral effects of stress. The aim of this study was to investigate the cutaneous mechanisms underlying such beneficial consequences of touch by determining whether daily stroking, specifically targeted to activate a velocity/force tuned class of low-threshold c-fiber mechanoreceptor (CLTM), confers resilience against established markers of chronic unpredictable mild stress (CMS). Adult male Sprague Dawley rats were exposed to 2 weeks of CMS. Throughout the CMS protocol, some rats were stroked daily, either at CLTM optimal velocity (5 cm/s) or outside the CLTM optimal range (30 cm/s). A third CMS exposed group did not receive any tactile stimulation. The effect of CMS on serum corticosterone levels, anxiety- and depressive-like behaviors in these three groups was assessed in comparison to a control group of non-CMS exposed rats. While stroking did not mitigate the effects of CMS on body weight gain, CLTM optimal velocity stroking did significantly reduce CMS-induced elevations in corticosterone following an acute forced-swim. Rats receiving CLTM optimal stroking also showed significantly fewer anxiety-like behaviors (elevated plus-maze) than the other CMS exposed rats. In terms of depressive-like behavior, whereas the same velocity-specific resilience was observed in a forced-swim test and social interaction test both groups of stroked rats spent significantly less time interacting than control rats, though they also spent significantly less time in the corner than non-stroked CMS rats. Together, these findings support the theory CLTMs play a functional role in regulating the physiological condition of the body.
Collapse
Affiliation(s)
- Susannah C Walker
- Research Centre for Brain & Behaviour, Liverpool John Moores University, Liverpool, UK
| | - Antonia Cavieres
- Laboratory of Stress Neurobiology, Faculty of Sciences, Center for Integrative Neurobiology and Pathophysiology, Institute of Physiology, Universidad de Valparaíso, Valparaíso, Chile
| | - Valentín Peñaloza-Sancho
- Laboratory of Stress Neurobiology, Faculty of Sciences, Center for Integrative Neurobiology and Pathophysiology, Institute of Physiology, Universidad de Valparaíso, Valparaíso, Chile
| | - Wael El-Deredy
- Center for Research and Development in Health Engineering, Universidad de Valparaíso, Valparaíso, Chile
| | - Francis P McGlone
- Research Centre for Brain & Behaviour, Liverpool John Moores University, Liverpool, UK.,Institute of Psychology, Health & Society, University of Liverpool, Liverpool, UK
| | - Alexies Dagnino-Subiabre
- Laboratory of Stress Neurobiology, Faculty of Sciences, Center for Integrative Neurobiology and Pathophysiology, Institute of Physiology, Universidad de Valparaíso, Valparaíso, Chile
| |
Collapse
|
23
|
Characterisation of lamina I anterolateral system neurons that express Cre in a Phox2a-Cre mouse line. Sci Rep 2021; 11:17912. [PMID: 34504158 PMCID: PMC8429737 DOI: 10.1038/s41598-021-97105-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 08/10/2021] [Indexed: 11/13/2022] Open
Abstract
A recently developed Phox2a::Cre mouse line has been shown to capture anterolateral system (ALS) projection neurons. Here, we used this line to test whether Phox2a-positive cells represent a distinct subpopulation among lamina I ALS neurons. We show that virtually all lamina I Phox2a cells can be retrogradely labelled from injections targeted on the lateral parabrachial area (LPb), and that most of those in the cervical cord also belong to the spinothalamic tract. Phox2a cells accounted for ~ 50–60% of the lamina I cells retrogradely labelled from LPb or thalamus. Phox2a was preferentially associated with smaller ALS neurons, and with those showing relatively weak neurokinin 1 receptor expression. The Phox2a cells were also less likely to project to the ipsilateral LPb. Although most Phox2a cells phosphorylated extracellular signal-regulated kinases following noxious heat stimulation, ~ 20% did not, and these were significantly smaller than the activated cells. This suggests that those ALS neurons that respond selectively to skin cooling, which have small cell bodies, may be included among the Phox2a population. Previous studies have defined neurochemical populations among the ALS cells, based on expression of Tac1 or Gpr83. However, we found that the proportions of Phox2a cells that expressed these genes were similar to the proportions reported for all lamina I ALS neurons, suggesting that Phox2a is not differentially expressed among cells belonging to these populations. Finally, we used a mouse line that resulted in membrane labelling of the Phox2a cells and showed that they all possess dendritic spines, although at a relatively low density. However, the distribution of the postsynaptic protein Homer revealed that dendritic spines accounted for a minority of the excitatory synapses on these cells. Our results confirm that Phox2a-positive cells in lamina I are ALS neurons, but show that the Phox2a::Cre line preferentially captures specific types of ALS cells.
Collapse
|
24
|
Chisholm KI, Lo Re L, Polgár E, Gutierrez-Mecinas M, Todd AJ, McMahon SB. Encoding of cutaneous stimuli by lamina I projection neurons. Pain 2021; 162:2405-2417. [PMID: 33769365 PMCID: PMC8374708 DOI: 10.1097/j.pain.0000000000002226] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/11/2020] [Accepted: 01/04/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT Lamina I of the dorsal horn, together with its main output pathway, lamina I projection neurons, has long been implicated in the processing of nociceptive stimuli, as well as the development of chronic pain conditions. However, the study of lamina I projection neurons is hampered by technical challenges, including the low throughput and selection biases of traditional electrophysiological techniques. Here we report on a technique that uses anatomical labelling strategies and in vivo imaging to simultaneously study a network of lamina I projection neurons in response to electrical and natural stimuli. Although we were able to confirm the nociceptive involvement of this group of cells, we also describe an unexpected preference for innocuous cooling stimuli. We were able to characterize the thermal responsiveness of these cells in detail and found cooling responses decline when exposed to stable cold temperatures maintained for more than a few seconds, as well as to encode the intensity of the end temperature, while heating responses showed an unexpected reliance on adaptation temperatures.
Collapse
Affiliation(s)
- Kim I. Chisholm
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Laure Lo Re
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| | - Erika Polgár
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maria Gutierrez-Mecinas
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Andrew J. Todd
- Spinal Cord Group, Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stephen B. McMahon
- Neurorestoration Group, Wolfson Centre for Age-Related Diseases, King's College London, London, United Kingdom
| |
Collapse
|
25
|
Veshchitskii AA, Musienko PE, Merkulyeva NS. Distribution of Calretinin-Immunopositive Neurons in the Cat Lumbar Spinal Cord. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Wercberger R, Braz JM, Weinrich JA, Basbaum AI. Pain and itch processing by subpopulations of molecularly diverse spinal and trigeminal projection neurons. Proc Natl Acad Sci U S A 2021; 118:e2105732118. [PMID: 34234018 PMCID: PMC8285968 DOI: 10.1073/pnas.2105732118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A remarkable molecular and functional heterogeneity of the primary sensory neurons and dorsal horn interneurons transmits pain- and or itch-relevant information, but the molecular signature of the projection neurons that convey the messages to the brain is unclear. Here, using retro-TRAP (translating ribosome affinity purification) and RNA sequencing, we reveal extensive molecular diversity of spino- and trigeminoparabrachial projection neurons. Among the many genes identified, we highlight distinct subsets of Cck+ -, Nptx2+ -, Nmb+ -, and Crh+ -expressing projection neurons. By combining in situ hybridization of retrogradely labeled neurons with Fos-based assays, we also demonstrate significant functional heterogeneity, including both convergence and segregation of pain- and itch-provoking inputs into molecularly diverse subsets of NK1R- and non-NK1R-expressing projection neurons.
Collapse
Affiliation(s)
- Racheli Wercberger
- Department of Anatomy, University of California, San Francisco, CA 94158
| | - Joao M Braz
- Department of Anatomy, University of California, San Francisco, CA 94158
| | - Jarret A Weinrich
- Department of Anatomy, University of California, San Francisco, CA 94158
| | - Allan I Basbaum
- Department of Anatomy, University of California, San Francisco, CA 94158
| |
Collapse
|
27
|
Browne TJ, Smith KM, Gradwell MA, Iredale JA, Dayas CV, Callister RJ, Hughes DI, Graham BA. Spinoparabrachial projection neurons form distinct classes in the mouse dorsal horn. Pain 2021; 162:1977-1994. [PMID: 33779126 PMCID: PMC8208100 DOI: 10.1097/j.pain.0000000000002194] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 11/29/2022]
Abstract
ABSTRACT Projection neurons in the spinal dorsal horn relay sensory information to higher brain centres. The activation of these populations is shaped by afferent input from the periphery, descending input from the brain, and input from local interneuron circuits. Much of our recent understanding of dorsal horn circuitry comes from studies in transgenic mice; however, information on projection neurons is still based largely on studies in monkey, cat, and rat. We used viral labelling to identify and record from mouse parabrachial nucleus (PBN) projecting neurons located in the dorsal horn of spinal cord slices. Overall, mouse lamina I spinoparabrachial projection neurons (SPBNs) exhibit many electrophysiological and morphological features that overlap with rat. Unbiased cluster analysis distinguished 4 distinct subpopulations of lamina I SPBNs, based on their electrophysiological properties that may underlie different sensory signalling features in each group. We also provide novel information on SPBNs in the deeper lamina (III-V), which have not been previously studied by patch clamp analysis. These neurons exhibited higher action potential discharge frequencies and received weaker excitatory synaptic input than lamina I SPBNs, suggesting this deeper population produces different sensory codes destined for the PBN. Mouse SPBNs from both regions (laminae I and III-V) were often seen to give off local axon collaterals, and we provide neuroanatomical evidence they contribute to excitatory input to dorsal horn circuits. These data provide novel information to implicate excitatory input from parabrachial projection neuron in dorsal horn circuit activity during processing of nociceptive information, as well as defining deep dorsal horn projection neurons that provide an alternative route by which sensory information can reach the PBN.
Collapse
Affiliation(s)
- Tyler J. Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Kelly M. Smith
- Department of Neurobiology and the Pittsburgh Center for Pain Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mark A. Gradwell
- Department of Cell Biology and Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
- W.M. Keck Center for Collaborative Neuroscience, Rutgers, The State University of New Jersey, Piscataway, NJ, United States
| | - Jacqueline A. Iredale
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Christopher V. Dayas
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - Robert J. Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| | - David I. Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Brett A. Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health, University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute (HMRI), New Lambton Heights, New South Wales, Australia
| |
Collapse
|
28
|
Ito M, Nagase M, Tohyama S, Mikami K, Kato F, Watabe AM. The parabrachial-to-amygdala pathway provides aversive information to induce avoidance behavior in mice. Mol Brain 2021; 14:94. [PMID: 34167570 PMCID: PMC8223383 DOI: 10.1186/s13041-021-00807-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 06/10/2021] [Indexed: 11/10/2022] Open
Abstract
The neuronal circuitry for pain signals has been intensively studied for decades. The external lateral parabrachial nucleus (PB) was shown to play a crucial role in nociceptive information processing. Previous work, including ours, has demonstrated that stimulating the neuronal pathway from the PB to the central region of the amygdala (CeA) can substitute for an actual pain signal to drive an associative form of threat/fear memory formation. However, it is still unknown whether activation of the PB-CeA pathway can directly drive avoidance behavior, escape behavior, or only acts as strategic freezing behavior for later memory retrieval. To directly address this issue, we have developed a real-time Y-maze conditioning behavioral paradigm to examine avoidance behavior induced by optogenetic stimulation of the PB-CeA pathway. In this current study, we have demonstrated that the PB-CeA pathway carries aversive information that can directly trigger avoidance behavior and thereby serve as an alarm signal to induce adaptive behaviors for later decision-making.
Collapse
Affiliation(s)
- Mariko Ito
- Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
- Department of Anesthesiology, The Jikei University School of Medicine, Tokyo, Japan
| | - Masashi Nagase
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Suguru Tohyama
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Kaori Mikami
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan
| | - Fusao Kato
- Department of Neuroscience, The Jikei University School of Medicine, Tokyo, Japan
| | - Ayako M Watabe
- Institute of Clinical Medicine and Research, Research Center for Medical Sciences, The Jikei University School of Medicine, 163-1 Kashiwa-shita, Kashiwa, Chiba, 277-8567, Japan.
| |
Collapse
|
29
|
Li JN, Ren JH, Zhao LJ, Wu XM, Li H, Dong YL, Li YQ. Projecting neurons in spinal dorsal horn send collateral projections to dorsal midline/intralaminar thalamic complex and parabrachial nucleus. Brain Res Bull 2021; 169:184-195. [PMID: 33508400 DOI: 10.1016/j.brainresbull.2021.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 10/22/2022]
Abstract
Itch is an annoying sensation that always triggers scratching behavior, yet little is known about its transmission pathway in the central nervous system. Parabrachial nucleus (PBN), an essential transmission nucleus in the brainstem, has been proved to be the first relay station in itch sensation. Meanwhile, dorsal midline/intralaminar thalamic complex (dMITC) is proved to be activated with nociceptive stimuli. However, whether the PBN-projecting neurons in spinal dorsal horn (SDH) send collateral projections to dMITC, and whether these projections involve in itch remain unknown. In the present study, a double retrograde tracing method was applied when the tetramethylrhodamine-dextran (TMR) was injected into the dMITC and Fluoro-gold (FG) was injected into the PBN, respectively. Immunofluorescent staining for NeuN, substance P receptor (SPR), substance P (SP), or FOS induced by itch or pain stimulations with TMR and FG were conducted to provide morphological evidence. The results revealed that TMR/FG double-labeled neurons could be predominately observed in superficial laminae and lateral spinal nucleus (LSN) of SDH; Meanwhile, most of the collateral projection neurons expressed SPR and some of them expressed FOS in acute itch model induced by histamine. The present results implicated that some of the SPR-expressing neurons in SDH send collateral projections to the dMITC and PBN in itch transmission, which might be involved in itch related complex affective/emotional processing to the higher brain centers.
Collapse
Affiliation(s)
- Jia-Ni Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jia-Hao Ren
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Liu-Jie Zhao
- Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China
| | - Xue-Mei Wu
- Department of Human Anatomy, West China School of Preclinical and Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Hui Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yu-Lin Dong
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China.
| | - Yun-Qing Li
- Department of Anatomy, Histology and Embryology & K. K. Leung Brain Research Centre, The Fourth Military Medical University, Xi'an, 710032, China; Department of Anatomy, Basic Medical College, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Brain Science Research and Transformation in Tropical Environment of Hainan Province, Haikou, China.
| |
Collapse
|
30
|
Browne TJ, Hughes DI, Dayas CV, Callister RJ, Graham BA. Projection Neuron Axon Collaterals in the Dorsal Horn: Placing a New Player in Spinal Cord Pain Processing. Front Physiol 2020; 11:560802. [PMID: 33408637 PMCID: PMC7779806 DOI: 10.3389/fphys.2020.560802] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/26/2020] [Indexed: 11/13/2022] Open
Abstract
The pain experience depends on the relay of nociceptive signals from the spinal cord dorsal horn to higher brain centers. This function is ultimately achieved by the output of a small population of highly specialized neurons called projection neurons (PNs). Like output neurons in other central nervous system (CNS) regions, PNs are invested with a substantial axon collateral system that ramifies extensively within local circuits. These axon collaterals are widely distributed within and between spinal cord segments. Anatomical data on PN axon collaterals have existed since the time of Cajal, however, their function in spinal pain signaling remains unclear and is absent from current models of spinal pain processing. Despite these omissions, some insight on the potential role of PN axon collaterals can be drawn from axon collateral systems of principal or output neurons in other CNS regions, such as the hippocampus, amygdala, olfactory cortex, and ventral horn of the spinal cord. The connectivity and actions of axon collaterals in these systems have been well-defined and used to confirm crucial roles in memory, fear, olfaction, and movement control, respectively. We review this information here and propose a framework for characterizing PN axon collateral function in the dorsal horn. We highlight that experimental approaches traditionally used to delineate axon collateral function in other CNS regions are not easily applied to PNs because of their scarcity relative to spinal interneurons (INs), and the lack of cellular organization in the dorsal horn. Finally, we emphasize how the rapid development of techniques such as viral expression of optogenetic or chemogenetic probes can overcome these challenges and allow characterization of PN axon collateral function. Obtaining detailed information of this type is a necessary first step for incorporation of PN collateral system function into models of spinal sensory processing.
Collapse
Affiliation(s)
- Tyler J Browne
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - David I Hughes
- Institute of Neuroscience Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christopher V Dayas
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Robert J Callister
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| | - Brett A Graham
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute (HMRI), New Lambton Heights, NSW, Australia
| |
Collapse
|
31
|
Sun L, Liu R, Guo F, Wen MQ, Ma XL, Li KY, Sun H, Xu CL, Li YY, Wu MY, Zhu ZG, Li XJ, Yu YQ, Chen Z, Li XY, Duan S. Parabrachial nucleus circuit governs neuropathic pain-like behavior. Nat Commun 2020; 11:5974. [PMID: 33239627 PMCID: PMC7688648 DOI: 10.1038/s41467-020-19767-w] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 10/28/2020] [Indexed: 12/14/2022] Open
Abstract
The lateral parabrachial nucleus (LPBN) is known to relay noxious information to the amygdala for processing affective responses. However, it is unclear whether the LPBN actively processes neuropathic pain characterized by persistent hyperalgesia with aversive emotional responses. Here we report that neuropathic pain-like hypersensitivity induced by common peroneal nerve (CPN) ligation increases nociceptive stimulation-induced responses in glutamatergic LPBN neurons. Optogenetic activation of GABAergic LPBN neurons does not affect basal nociception, but alleviates neuropathic pain-like behavior. Optogenetic activation of glutamatergic or inhibition of GABAergic LPBN neurons induces neuropathic pain-like behavior in naïve mice. Inhibition of glutamatergic LPBN neurons alleviates both basal nociception and neuropathic pain-like hypersensitivity. Repetitive pharmacogenetic activation of glutamatergic or GABAergic LPBN neurons respectively mimics or prevents the development of CPN ligation-induced neuropathic pain-like hypersensitivity. These findings indicate that a delicate balance between excitatory and inhibitory LPBN neuronal activity governs the development and maintenance of neuropathic pain. The parabrachial nucleus (PBN) projects to the amygdala, and contributes to affective aspects of neuropathic pain. Here the authors demonstrate that the lateral parabrachial nucleus (LPBN) contributes to hypersensitivity in a mouse model of neuropathic pain.
Collapse
Affiliation(s)
- Li Sun
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China.
| | - Rui Liu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Fang Guo
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Man-Qing Wen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Xiao-Lin Ma
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Kai-Yuan Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Hao Sun
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, 310020, Hangzhou, China.,Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, 310027, Hangzhou, China
| | - Ceng-Lin Xu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Yuan-Yuan Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Meng-Yin Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Zhejiang University, 310058, Hangzhou, China
| | - Zheng-Gang Zhu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Xin-Jian Li
- Department of Neurology of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, 310020, Hangzhou, China
| | - Yan-Qin Yu
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Zhong Chen
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China
| | - Xiang-Yao Li
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China.,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China
| | - Shumin Duan
- Department of Neurobiology and Department of Neurology of Second Affiliated Hospital, Zhejiang University School of Medicine, 310058, Hangzhou, China. .,Research Units for Emotion and Emotion Disorders, NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
32
|
Sheahan TD, Warwick CA, Fanien LG, Ross SE. The Neurokinin-1 Receptor is Expressed with Gastrin-Releasing Peptide Receptor in Spinal Interneurons and Modulates Itch. J Neurosci 2020; 40:8816-8830. [PMID: 33051347 PMCID: PMC7659450 DOI: 10.1523/jneurosci.1832-20.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/25/2020] [Accepted: 09/21/2020] [Indexed: 12/22/2022] Open
Abstract
The neurokinin-1 receptor (NK1R; encoded by Tacr1) is expressed in spinal dorsal horn neurons and has been suggested to mediate itch in rodents. However, previous studies relied heavily on neurotoxic ablation of NK1R spinal neurons, which limited further dissection of their function in spinal itch circuitry. To address this limitation, we leveraged a newly developed Tacr1CreER mouse line to characterize the role of NK1R spinal neurons in itch. We show that pharmacological activation of spinal NK1R and chemogenetic activation of Tacr1CreER spinal neurons increases itch behavior in male and female mice, whereas pharmacological inhibition of spinal NK1R suppresses itch behavior. We use fluorescence in situ hybridization (FISH) to characterize the endogenous expression of Tacr1 throughout the superficial and deeper dorsal horn (DDH), as well as the lateral spinal nucleus (LSN), of mouse and human spinal cord. Retrograde labeling studies in mice from the parabrachial nucleus (PBN) show that less than 20% of superficial Tacr1CreER dorsal horn neurons are spinal projection neurons, and thus the majority of Tacr1CreER are local interneurons. We then use a combination of in situ hybridization and ex vivo two-photon Ca2+ imaging of the mouse spinal cord to establish that NK1R and the gastrin-releasing peptide receptor (GRPR) are coexpressed within a subpopulation of excitatory superficial dorsal horn (SDH) neurons. These findings are the first to suggest a role for NK1R interneurons in itch and extend our understanding of the complexities of spinal itch circuitry.SIGNIFICANCE STATEMENT The spinal cord is a critical hub for processing somatosensory input, yet which spinal neurons process itch input and how itch signals are encoded within the spinal cord is not fully understood. We demonstrate neurokinin-1 receptor (NK1R) spinal neurons mediate itch behavior in mice and that the majority of NK1R spinal neurons are local interneurons. These NK1R neurons comprise a subset of gastrin-releasing peptide receptor (GRPR) interneurons and are thus positioned at the center of spinal itch transmission. We show NK1R mRNA expression in human spinal cord, underscoring the translational relevance of our findings in mice. This work is the first to suggest a role for NK1R interneurons in itch and extends our understanding of the complexities of spinal itch circuitry.
Collapse
Affiliation(s)
- Tayler D Sheahan
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh 15213, Pennsylvania
| | - Charles A Warwick
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh 15213, Pennsylvania
| | - Louis G Fanien
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh 15213, Pennsylvania
| | - Sarah E Ross
- Pittsburgh Center for Pain Research and Department of Neurobiology, University of Pittsburgh, Pittsburgh 15213, Pennsylvania
| |
Collapse
|
33
|
Deng J, Zhou H, Lin JK, Shen ZX, Chen WZ, Wang LH, Li Q, Mu D, Wei YC, Xu XH, Sun YG. The Parabrachial Nucleus Directly Channels Spinal Nociceptive Signals to the Intralaminar Thalamic Nuclei, but Not the Amygdala. Neuron 2020; 107:909-923.e6. [PMID: 32649865 DOI: 10.1016/j.neuron.2020.06.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/26/2020] [Accepted: 06/15/2020] [Indexed: 12/18/2022]
Abstract
The parabrachial nucleus (PBN) is one of the major targets of spinal projection neurons and plays important roles in pain. However, the architecture of the spinoparabrachial pathway underlying its functional role in nociceptive information processing remains elusive. Here, we report that the PBN directly relays nociceptive signals from the spinal cord to the intralaminar thalamic nuclei (ILN). We demonstrate that the spinal cord connects with the PBN in a bilateral manner and that the ipsilateral spinoparabrachial pathway is critical for nocifensive behavior. We identify Tacr1-expressing neurons as the major neuronal subtype in the PBN that receives direct spinal input and show that these neurons are critical for processing nociceptive information. Furthermore, PBN neurons receiving spinal input form functional monosynaptic excitatory connections with neurons in the ILN, but not the amygdala. Together, our results delineate the neural circuit underlying nocifensive behavior, providing crucial insight into the circuit mechanism underlying nociceptive information processing.
Collapse
Affiliation(s)
- Juan Deng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China.
| | - Hua Zhou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Jun-Kai Lin
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China
| | - Zi-Xuan Shen
- Department of Biotechnology, East China University of Science and Technology, 130 Mei-long Road, Shanghai 200237, China
| | - Wen-Zhen Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China
| | - Lin-Han Wang
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; University of Chinese Academy of Sciences, 19A Yu-quan Road, Beijing 100049, China
| | - Qing Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Di Mu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yi-Chao Wei
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Xiao-Hong Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China; Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai 201210, China.
| |
Collapse
|
34
|
Abstract
Itch, in particular chronic forms, has been widely recognized as an important clinical problem, but much less is known about the mechanisms of itch in comparison with other sensory modalities such as pain. Recently, considerable progress has been made in dissecting the circuit mechanisms of itch at both the spinal and supraspinal levels. Major components of the spinal neural circuit underlying both chemical and mechanical itch have now been identified, along with the circuits relaying ascending transmission and the descending modulation of itch. In this review, we summarize the progress in elucidating the neural circuit mechanism of itch at spinal and supraspinal levels.
Collapse
Affiliation(s)
- Xiao-Jun Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 19A Yu-quan Road, 100049, Beijing, China
| | - Yan-Gang Sun
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science & Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, 200031, Shanghai, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, 201210, Shanghai, China.
| |
Collapse
|
35
|
Divergent Neural Pathways Emanating from the Lateral Parabrachial Nucleus Mediate Distinct Components of the Pain Response. Neuron 2020; 106:927-939.e5. [DOI: 10.1016/j.neuron.2020.03.014] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 11/20/2019] [Accepted: 03/16/2020] [Indexed: 12/18/2022]
|
36
|
Abstract
Trigeminal spinal subnucleus caudalis (Vc) neurons that project to the ventral posteromedial thalamic nucleus (VPM) and parabrachial nucleus (PBN) are critical for orofacial pain processing. We hypothesized that persistent trigeminal nerve injury differentially alters the proportion of Vc neurons that project to VPM and PBN in a modality-specific manner. Neuroanatomical approaches were used to quantify the number of Vc neurons projecting to VPM or PBN after chronic constriction injury of the infraorbital nerve (ION-CCI) and subsequent upper-lip stimulation. Male rats received injections of retrograde tracer fluorogold into the contralateral VPM or PBN on day 7 after ION-CCI, and at 3 days after that, either capsaicin injection or noxious mechanical stimulation was applied to the upper lip ipsilateral to nerve injury. Infraorbital nerve chronic constriction injury rats displayed greater forelimb wiping to capsaicin injection and mechanical allodynia of the lip than sham rats. Total cell counts for phosphorylated extracellular signal-regulated kinase-immunoreactive (pERK-IR) neurons after capsaicin or mechanical lip stimuli were higher in ION-CCI than sham rats as was the percentage of pERK-IR PBN projection neurons. However, the percentage of pERK-IR VPM projection neurons was also greater in ION-CCI than sham rats after capsaicin but not mechanical lip stimuli. The present findings suggest that persistent trigeminal nerve injury increases the number of Vc neurons activated by capsaicin or mechanical lip stimuli. By contrast, trigeminal nerve injury modifies the proportion of Vc nociceptive neurons projecting to VPM and PBN in a stimulus modality-specific manner and may reflect differential involvement of ascending pain pathways receiving C fiber and mechanosensitive afferents.
Collapse
|
37
|
Peirs C, Dallel R, Todd AJ. Recent advances in our understanding of the organization of dorsal horn neuron populations and their contribution to cutaneous mechanical allodynia. J Neural Transm (Vienna) 2020; 127:505-525. [PMID: 32239353 PMCID: PMC7148279 DOI: 10.1007/s00702-020-02159-1] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/10/2020] [Indexed: 02/07/2023]
Abstract
The dorsal horns of the spinal cord and the trigeminal nuclei in the brainstem contain neuron populations that are critical to process sensory information. Neurons in these areas are highly heterogeneous in their morphology, molecular phenotype and intrinsic properties, making it difficult to identify functionally distinct cell populations, and to determine how these are engaged in pathophysiological conditions. There is a growing consensus concerning the classification of neuron populations, based on transcriptomic and transductomic analyses of the dorsal horn. These approaches have led to the discovery of several molecularly defined cell types that have been implicated in cutaneous mechanical allodynia, a highly prevalent and difficult-to-treat symptom of chronic pain, in which touch becomes painful. The main objective of this review is to provide a contemporary view of dorsal horn neuronal populations, and describe recent advances in our understanding of on how they participate in cutaneous mechanical allodynia.
Collapse
Affiliation(s)
- Cedric Peirs
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France.
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Radhouane Dallel
- Université Clermont Auvergne, CHU Clermont-Ferrand, Inserm, Neuro-Dol, Clermont-Ferrand, F-63000, France
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Andrew J Todd
- Institute of Neuroscience and Psychology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
38
|
Distinct mechanisms of signal processing by lamina I spino-parabrachial neurons. Sci Rep 2019; 9:19231. [PMID: 31848358 PMCID: PMC6917718 DOI: 10.1038/s41598-019-55462-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Lamina I spino-parabrachial neurons (SPNs) receive peripheral nociceptive input, process it and transmit to the supraspinal centres. Although responses of SPNs to cutaneous receptive field stimulations have been intensively studied, the mechanisms of signal processing in these neurons are poorly understood. Therefore, we used an ex-vivo spinal cord preparation to examine synaptic and cellular mechanisms determining specific input-output characteristics of the neurons. The vast majority of the SPNs received a few direct nociceptive C-fiber inputs and generated one spike in response to saturating afferent stimulation, thus functioning as simple transducers of painful stimulus. However, 69% of afferent stimulation-induced action potentials in the entire SPN population originated from a small fraction (19%) of high-output neurons. These neurons received a larger number of direct Aδ- and C-fiber inputs, generated intrinsic bursts and efficiently integrated a local network activity via NMDA-receptor-dependent mechanisms. The high-output SPNs amplified and integrated the nociceptive input gradually encoding its intensity into the number of generated spikes. Thus, different mechanisms of signal processing allow lamina I SPNs to play distinct roles in nociception.
Collapse
|
39
|
Wercberger R, Basbaum AI. Spinal cord projection neurons: a superficial, and also deep, analysis. CURRENT OPINION IN PHYSIOLOGY 2019; 11:109-115. [PMID: 32864531 DOI: 10.1016/j.cophys.2019.10.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Today there are extensive maps of the molecular heterogeneity of primary afferents and dorsal horn interneurons, yet there is a dearth of molecular and functional information regarding the projection neurons that transmit pain and itch information to the brain. Additionally, most contemporary research into the spinal cord and medullary projection neurons focuses on neurons in the superficial dorsal horn; the contribution of deep dorsal horn and even ventral horn projection neurons to pain and itch processing is often overlooked. In the present review we integrate conclusions from classical as well as contemporary studies and provide a more balanced view of the diversity of projection neurons. A major question addressed is the extent to which labeled-lines are maintained in these different populations or whether the brain generates distinct pain and itch percepts by decoding complex convergent inputs that engage projection neurons.
Collapse
Affiliation(s)
- Racheli Wercberger
- Department of Anatomy and Neuroscience Graduate Program, University California San Francisco, San Francisco, CA 94158
| | - Allan I Basbaum
- Department of Anatomy and Neuroscience Graduate Program, University California San Francisco, San Francisco, CA 94158
| |
Collapse
|
40
|
Brandão ML, Lovick TA. Role of the dorsal periaqueductal gray in posttraumatic stress disorder: mediation by dopamine and neurokinin. Transl Psychiatry 2019; 9:232. [PMID: 31530797 PMCID: PMC6748916 DOI: 10.1038/s41398-019-0565-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/09/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022] Open
Abstract
In susceptible individuals, exposure to intensely traumatic life events can lead to the development of posttraumatic stress disorder (PTSD), including long-term dysregulation of the contextual processing of aversive stimuli, the overgeneralization of learned fear, and impairments in the ability to learn or respond to safety signals. The neuropathophysiological changes that underlie PTSD remain incompletely understood. Attention has focused on forebrain structures associated with fear processing. Here we consider evidence from human and animal studies that long-lasting changes in functional connectivity between the midbrain periaqueductal gray (dPAG) and amygdala may be one of the precipitating events that contribute to PTSD. Long-lasting neuroplastic changes in the dPAG can persist after a single aversive stimulation and are pharmacologically labile. The early stage (at least up to 24 h post-stimulation) involves neurokinin-1 receptor-mediated events in the PAG and amygdala and is also regulated by dopamine, both of which are mainly involved in transferring ascending aversive information from the dPAG to higher brain structures, mainly the amygdala. Changes in the functional connectivity within the dPAG-amygdala circuit have been reported in PTSD patients. We suggest that further investigations of plasticity and pharmacology of the PAG-amygdala network provide a promising target for understanding pathophysiological circuitry that underlies PTSD in humans and that dopaminergic and neurokininergic drugs may have a potential for the treatment of psychiatric disorders that are associated with a dysfunctional dPAG.
Collapse
Affiliation(s)
- M. L. Brandão
- grid.456657.3Instituto de Neurociências e Comportamento, Avenida do Café, 2450, 14050-220 Ribeirão Preto, SP Brazil ,0000 0004 1937 0722grid.11899.38NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900 Brazil
| | - T. A. Lovick
- 0000 0004 1937 0722grid.11899.38NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto Medical School of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900 Brazil ,0000 0004 1936 7603grid.5337.2School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, B15 2TT UK
| |
Collapse
|
41
|
Pain-Associated Neural Plasticity in the Parabrachial to Central Amygdala Circuit : Pain Changes the Brain, and the Brain Changes the Pain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1099:157-166. [PMID: 30306523 DOI: 10.1007/978-981-13-1756-9_14] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
In addition to the canonical spino-thalamo-cortical pathway, lines of recently accumulated anatomical and physiological evidence suggest that projections originating in nociception-specific neurons in lamina I of the dorsal horn or the spinal nucleus of the trigeminal nerve to the lateral parabrachial nucleus (LPB) and then to the central amygdala (CeA) play essential roles in the nociception-emotion link and its tightening in chronic pain. With recent advances in the artificial manipulation of central neuronal activity, such as those with optogenetics, it is now possible to address many unanswered questions regarding the molecular and cellular mechanisms underlying the plastic changes in this pathway and their role in the pain chronification process.
Collapse
|
42
|
Dong X, Dong X. Peripheral and Central Mechanisms of Itch. Neuron 2019; 98:482-494. [PMID: 29723501 DOI: 10.1016/j.neuron.2018.03.023] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 12/15/2022]
Abstract
Itch is a unique sensory experience that is encoded by genetically distinguishable neurons both in the peripheral nervous system (PNS) and central nervous system (CNS) to elicit a characteristic behavioral response (scratching). Itch interacts with the other sensory modalities at multiple locations, from its initiation in a particular dermatome to its transmission to the brain where it is finally perceived. In this review, we summarize the current understanding of the molecular and neural mechanisms of itch by starting in the periphery, where itch is initiated, and discussing the circuits involved in itch processing in the CNS.
Collapse
Affiliation(s)
- Xintong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | - Xinzhong Dong
- The Solomon H. Snyder Department of Neuroscience and the Center for Sensory Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
43
|
Ständer S, Spellman MC, Kwon P, Yosipovitch G. The NK1 receptor antagonist serlopitant for treatment of chronic pruritus. Expert Opin Investig Drugs 2019; 28:659-666. [PMID: 31272246 DOI: 10.1080/13543784.2019.1638910] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Introduction: Pruritus is a common symptom associated with several potential underlying causes, including both dermatologic and systemic diseases; it can also occur without an identifiable cause. Current treatment options are limited and most patients experience impaired quality of life. Serlopitant is a neurokinin 1 (NK1) receptor antagonist under development for the treatment of pruritus associated with various dermatologic conditions and chronic pruritus of unknown origin. Areas covered: This review describes the epidemiology and unmet needs of patients with chronic pruritus, focusing specifically on patients with prurigo nodularis, psoriatic itch, and chronic pruritus of unknown origin; the rationale for targeting the NK1 receptor for treatment of chronic pruritus; and the clinical development of serlopitant, including efficacy and safety data from completed phase II studies. Expert opinion: There is an unmet need for novel, safe, and effective therapies to treat chronic pruritus. Serlopitant has shown promising efficacy, safety, and tolerability across different patient populations, including adolescents and elderly patients. In contrast to less convenient administration options, serlopitant is a once-daily oral tablet, which is expected to facilitate compliance.
Collapse
Affiliation(s)
- Sonja Ständer
- a Dermatology and Neurodermatology, Center for Chronic Pruritus, Department of Dermatology, University Hospital Münster , Münster , Germany
| | - Mary C Spellman
- b Department of Clinical Development, Menlo Therapeutics Inc , Redwood City , CA , USA
| | - Paul Kwon
- b Department of Clinical Development, Menlo Therapeutics Inc , Redwood City , CA , USA
| | - Gil Yosipovitch
- c Miami Itch Center, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami , Miami , FL , USA
| |
Collapse
|
44
|
Ständer S, Yosipovitch G. Substance P and neurokinin 1 receptor are new targets for the treatment of chronic pruritus. Br J Dermatol 2019; 181:932-938. [PMID: 31016733 DOI: 10.1111/bjd.18025] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Chronic pruritus is a distressing symptom associated with various dermatological conditions and systemic diseases. Current treatment options are often inadequate, resulting in impaired quality of life for many patients. An understanding of the underlying mechanisms of itch across pruritic conditions is important for development of effective, targeted treatments for chronic pruritus. OBJECTIVES To provide an overview of the pathogenesis of chronic pruritus, focusing on the role of substance P (SP) and neurokinin 1 receptor (NK1 R) in itch signalling, and to describe data supporting NK1 R antagonism as a potential strategy for the treatment of chronic pruritus. METHODS A PubMed search was conducted to determine what data were available that investigated the role of SP and NK1 R in itch signalling. RESULTS SP is a neuropeptide that is a mediator of itch signalling. One of the target receptors for SP is NK1 R, which is expressed in the central nervous system and on multiple cell types involved in the initiation and transmission of itch. Studies demonstrating that SP and NK1 R are overexpressed across multiple chronic itch-inducing conditions and that NK1 R antagonism disrupts itch signalling and reduces itch provide a rationale for targeting this pathway as a potential treatment of chronic pruritus across multiple diseases. CONCLUSIONS A large and growing body of evidence, including recent phase II clinical studies of NK1 R antagonists, demonstrate that SP and NK1 R play an important role in itch signalling. Additional studies are ongoing to further evaluate the use of NK1 R antagonists for the treatment of chronic pruritus. What's already known about this topic? Chronic pruritus has a significant impact on quality of life. Current treatment options for chronic pruritus are inadequate. Substance P (SP) and neurokinin 1 receptor (NK1 R) have been shown to play a role in itch signalling, and may be a rational target for addressing chronic pruritus. NK1 R antagonists are being evaluated as potential treatment for chronic pruritus. What does this study add? This review provides a compilation of the most up-to-date data elucidating the role of SP and NK1 R in itch signalling, which supports targeting this pathway as a potential treatment of chronic pruritus. NK1 R antagonism disrupts itch signalling and reduces itch. A summary of the latest data on NK1 R antagonists in the treatment of pruritus is provided.
Collapse
Affiliation(s)
- S Ständer
- Center for Chronic Pruritus, Department of Dermatology, University Hospital Münster, Münster, Germany
| | - G Yosipovitch
- Miami Itch Center, Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, FL, U.S.A
| |
Collapse
|
45
|
Sprenger C, Stenmans P, Tinnermann A, Büchel C. Evidence for a spinal involvement in temporal pain contrast enhancement. Neuroimage 2018; 183:788-799. [PMID: 30189340 DOI: 10.1016/j.neuroimage.2018.09.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 08/19/2018] [Accepted: 09/02/2018] [Indexed: 12/25/2022] Open
Abstract
Spatiotemporal filtering and amplification of sensory information at multiple levels during the generation of perceptual representations is a fundamental processing principle of the nervous system. While for the visual and auditory system temporal filtering of sensory signals has been noticed for a long time, respective contrast mechanisms within the nociceptive system became only recently subject of investigations, mainly in the context of offset analgesia (OA) subsequent to noxious stimulus decreases. In the present study we corroborate in a first experiment the assumption that offset analgesia involves a central component by showing that an OA-like effect accounting for 74% of a corresponding OA reference can be evoked by decomposing the stimulus offset into two separate box-car stimuli applied within the same dermatome but to separate populations of primary afferent neurons. In order to draw conclusions about the levels of the CNS at which temporal filtering of nociceptive information takes place during OA we investigate in a second experiment neuronal activity in the spinal cord during a painful thermal stimulus offset employing high-resolution fMRI in healthy volunteers. Pain-related BOLD responses in the spinal cord were significantly reduced during OA and their time course followed widely behavioral hypoalgesia, but not the thermal stimulation profile. In summary, the results suggest that temporal pain contrast enhancement during OA comprises a central mechanism and this mechanism becomes already effective at the level of the spinal cord.
Collapse
Affiliation(s)
- Christian Sprenger
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| | - Philip Stenmans
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Alexandra Tinnermann
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Christian Büchel
- Department of Systems Neuroscience, University-Medical-Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| |
Collapse
|
46
|
Neuronal atlas of the dorsal horn defines its architecture and links sensory input to transcriptional cell types. Nat Neurosci 2018; 21:869-880. [DOI: 10.1038/s41593-018-0141-1] [Citation(s) in RCA: 292] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 03/26/2018] [Indexed: 12/31/2022]
|
47
|
Nishida K, Ito S. Developmental origin of long-range neurons in the superficial dorsal spinal cord. Eur J Neurosci 2017; 46:2608-2619. [DOI: 10.1111/ejn.13736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/08/2023]
Affiliation(s)
- Kazuhiko Nishida
- Department of Medical Chemistry; Kansai Medical University; Shinmachi 2-5-1 Hirakata Osaka 573-1010 Japan
| | - Seiji Ito
- Department of Medical Chemistry; Kansai Medical University; Shinmachi 2-5-1 Hirakata Osaka 573-1010 Japan
| |
Collapse
|
48
|
Khasabov SG, Malecha P, Noack J, Tabakov J, Giesler GJ, Simone DA. Hyperalgesia and sensitization of dorsal horn neurons following activation of NK-1 receptors in the rostral ventromedial medulla. J Neurophysiol 2017; 118:2727-2744. [PMID: 28794197 PMCID: PMC5675905 DOI: 10.1152/jn.00478.2017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 08/04/2017] [Accepted: 08/06/2017] [Indexed: 11/22/2022] Open
Abstract
Neurons in the rostral ventromedial medulla (RVM) project to the spinal cord and are involved in descending modulation of pain. Several studies have shown that activation of neurokinin-1 (NK-1) receptors in the RVM produces hyperalgesia, although the underlying mechanisms are not clear. In parallel studies, we compared behavioral measures of hyperalgesia to electrophysiological responses of nociceptive dorsal horn neurons produced by activation of NK-1 receptors in the RVM. Injection of the selective NK-1 receptor agonist Sar9,Met(O2)11-substance P (SSP) into the RVM produced dose-dependent mechanical and heat hyperalgesia that was blocked by coadministration of the selective NK-1 receptor antagonist L-733,060. In electrophysiological studies, responses evoked by mechanical and heat stimuli were obtained from identified high-threshold (HT) and wide dynamic range (WDR) neurons. Injection of SSP into the RVM enhanced responses of WDR neurons, including identified neurons that project to the parabrachial area, to mechanical and heat stimuli. Since intraplantar injection of capsaicin produces robust hyperalgesia and sensitization of nociceptive spinal neurons, we examined whether this sensitization was dependent on NK-1 receptors in the RVM. Pretreatment with L-733,060 into the RVM blocked the sensitization of dorsal horn neurons produced by capsaicin. c-Fos labeling was used to determine the spatial distribution of dorsal horn neurons that were sensitized by NK-1 receptor activation in the RVM. Consistent with our electrophysiological results, administration of SSP into the RVM increased pinch-evoked c-Fos expression in the dorsal horn. It is suggested that targeting this descending pathway may be effective in reducing persistent pain.NEW & NOTEWORTHY It is known that activation of neurokinin-1 (NK-1) receptors in the rostral ventromedial medulla (RVM), a main output area for descending modulation of pain, produces hyperalgesia. Here we show that activation of NK-1 receptors produces hyperalgesia by sensitizing nociceptive dorsal horn neurons. Targeting this pathway at its origin or in the spinal cord may be an effective approach for pain management.
Collapse
Affiliation(s)
- Sergey G Khasabov
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, Minnesota; and
| | - Patrick Malecha
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, Minnesota; and
| | - Joseph Noack
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, Minnesota; and
| | - Janneta Tabakov
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, Minnesota; and
| | - Glenn J Giesler
- Department of Neuroscience, University of Minnesota, School of Medicine, Minneapolis, Minnesota
| | - Donald A Simone
- Department of Diagnostic and Biological Sciences, University of Minnesota, School of Dentistry, Minneapolis, Minnesota; and
| |
Collapse
|
49
|
Shinohara K, Watabe AM, Nagase M, Okutsu Y, Takahashi Y, Kurihara H, Kato F. Essential role of endogenous calcitonin gene-related peptide in pain-associated plasticity in the central amygdala. Eur J Neurosci 2017; 46:2149-2160. [PMID: 28833700 PMCID: PMC5698701 DOI: 10.1111/ejn.13662] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/04/2017] [Accepted: 08/14/2017] [Indexed: 12/16/2022]
Abstract
The role of the neuropeptide calcitonin gene‐related peptide (CGRP) is well established in nociceptive behaviors. CGRP is highly expressed in the projection pathway from the parabrachial nucleus to the laterocapsular region of the central amygdala (CeC), which plays a critical role in relaying nociceptive information. The CeC is a key structure in pain behavior because it integrates and modulates nociceptive information along with other sensory signals. Previous studies have demonstrated that blockade of the amygdalar CGRP‐signaling cascade attenuates nociceptive behaviors in pain models, while CGRP application facilitates amygdalar synaptic transmission and induces pain behaviors. Despite these lines of evidence, it remains unclear whether endogenous CGRP is involved in the development of nociceptive behaviors accompanied with amygdalar plasticity in a peripheral inflammation model in vivo. To directly address this, we utilized a previously generated CGRP knockout (KO) mouse to longitudinally study formalin‐induced plasticity and nociceptive behavior. We found that synaptic potentiation in the right PB‐CeC pathway that was observed in wild‐type mice was drastically attenuated in the CGRP KO mice 6 h post‐inflammation, when acute nociceptive behavior was no longer observed. Furthermore, the bilateral tactile allodynia 6 h post‐inflammation was significantly decreased in the CGRP KO mice. In contrast, the acute nociceptive behavior immediately after the formalin injection was reduced only at 20–25 min post‐injection in the CGRP KO mice. These results suggest that endogenous CGRP contributes to peripheral inflammation‐induced synaptic plasticity in the amygdala, and this plasticity may underlie the exaggerated nociception–emotion linkage in pain chronification.
Collapse
Affiliation(s)
- Kei Shinohara
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Department of Orthopaedic Surgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Ayako M Watabe
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Masashi Nagase
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yuya Okutsu
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Department of Orthopaedic Surgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yukari Takahashi
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Hiroki Kurihara
- Department of Molecular Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan.,Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|
50
|
Shinohara K, Watabe AM, Nagase M, Okutsu Y, Takahashi Y, Kurihara H, Kato F. Essential role of endogenous calcitonin gene-related peptide in pain-associated plasticity in the central amygdala. Eur J Neurosci 2017. [PMID: 28833700 DOI: 10.1111/ejn.2017.46.issue-610.1111/ejn.13662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
The role of the neuropeptide calcitonin gene-related peptide (CGRP) is well established in nociceptive behaviors. CGRP is highly expressed in the projection pathway from the parabrachial nucleus to the laterocapsular region of the central amygdala (CeC), which plays a critical role in relaying nociceptive information. The CeC is a key structure in pain behavior because it integrates and modulates nociceptive information along with other sensory signals. Previous studies have demonstrated that blockade of the amygdalar CGRP-signaling cascade attenuates nociceptive behaviors in pain models, while CGRP application facilitates amygdalar synaptic transmission and induces pain behaviors. Despite these lines of evidence, it remains unclear whether endogenous CGRP is involved in the development of nociceptive behaviors accompanied with amygdalar plasticity in a peripheral inflammation model in vivo. To directly address this, we utilized a previously generated CGRP knockout (KO) mouse to longitudinally study formalin-induced plasticity and nociceptive behavior. We found that synaptic potentiation in the right PB-CeC pathway that was observed in wild-type mice was drastically attenuated in the CGRP KO mice 6 h post-inflammation, when acute nociceptive behavior was no longer observed. Furthermore, the bilateral tactile allodynia 6 h post-inflammation was significantly decreased in the CGRP KO mice. In contrast, the acute nociceptive behavior immediately after the formalin injection was reduced only at 20-25 min post-injection in the CGRP KO mice. These results suggest that endogenous CGRP contributes to peripheral inflammation-induced synaptic plasticity in the amygdala, and this plasticity may underlie the exaggerated nociception-emotion linkage in pain chronification.
Collapse
Affiliation(s)
- Kei Shinohara
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Department of Orthopaedic Surgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Ayako M Watabe
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Masashi Nagase
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yuya Okutsu
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Department of Orthopaedic Surgery, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Yukari Takahashi
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| | - Hiroki Kurihara
- Department of Molecular Cell Biology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Fusao Kato
- Department of Neuroscience, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
- Center for Neuroscience of Pain, Jikei University School of Medicine, Minato-ku, Tokyo, Japan
| |
Collapse
|