1
|
Kang Y, Saito M, Toyoda H. Molecular, Morphological and Electrophysiological Differences between Alpha and Gamma Motoneurons with Special Reference to the Trigeminal Motor Nucleus of Rat. Int J Mol Sci 2024; 25:5266. [PMID: 38791305 PMCID: PMC11121624 DOI: 10.3390/ijms25105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The muscle contraction during voluntary movement is controlled by activities of alpha- and gamma-motoneurons (αMNs and γMNs, respectively). In spite of the recent advances in research on molecular markers that can distinguish between αMNs and γMNs, electrophysiological membrane properties and firing patterns of γMNs have remained unknown, while those of αMNs have been clarified in detail. Because of the larger size of αMNs compared to γMNs, blindly or even visually recorded MNs were mostly αMNs, as demonstrated with molecular markers recently. Subsequently, the research on αMNs has made great progress in classifying their subtypes based on the molecular markers and electrophysiological membrane properties, whereas only a few studies demonstrated the electrophysiological membrane properties of γMNs. In this review article, we provide an overview of the recent advances in research on the classification of αMNs and γMNs based on molecular markers and electrophysiological membrane properties, and discuss their functional implication and significance in motor control.
Collapse
Affiliation(s)
- Youngnam Kang
- Department of Behavioral Physiology, Graduate School of Human Sciences, Osaka University, Osaka 565-0871, Japan
| | - Mitsuru Saito
- Department of Oral Physiology, Graduate School of Medical and Dental Sciences, Kagoshima University, Sakuragaoka 8-35-1, Kagoshima 890-8544, Japan;
| | - Hiroki Toyoda
- Department of Oral Physiology, Graduate School of Dentistry, The University of Osaka, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Pallucchi I, Bertuzzi M, Madrid D, Fontanel P, Higashijima SI, El Manira A. Molecular blueprints for spinal circuit modules controlling locomotor speed in zebrafish. Nat Neurosci 2024; 27:78-89. [PMID: 37919423 PMCID: PMC10774144 DOI: 10.1038/s41593-023-01479-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
The flexibility of motor actions is ingrained in the diversity of neurons and how they are organized into functional circuit modules, yet our knowledge of the molecular underpinning of motor circuit modularity remains limited. Here we use adult zebrafish to link the molecular diversity of motoneurons (MNs) and the rhythm-generating V2a interneurons (INs) with the modular circuit organization that is responsible for changes in locomotor speed. We show that the molecular diversity of MNs and V2a INs reflects their functional segregation into slow, intermediate or fast subtypes. Furthermore, we reveal shared molecular signatures between V2a INs and MNs of the three speed circuit modules. Overall, by characterizing how the molecular diversity of MNs and V2a INs relates to their function, connectivity and behavior, our study provides important insights not only into the molecular mechanisms for neuronal and circuit diversity for locomotor flexibility but also for charting circuits for motor actions in general.
Collapse
Affiliation(s)
- Irene Pallucchi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Maria Bertuzzi
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - David Madrid
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Pierre Fontanel
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Shin-Ichi Higashijima
- Division of Behavioral Neurobiology, National Institute for Basic Biology, Okazaki, Japan
- Neuronal Networks Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), Okazaki, Japan
| | | |
Collapse
|
3
|
Sharples SA, Broadhead MJ, Gray JA, Miles GB. M-type potassium currents differentially affect activation of motoneuron subtypes and tune recruitment gain. J Physiol 2023; 601:5751-5775. [PMID: 37988235 DOI: 10.1113/jp285348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/25/2023] [Indexed: 11/23/2023] Open
Abstract
The size principle is a key mechanism governing the orderly recruitment of motor units and is believed to be dependent on passive properties of the constituent motoneurons. However, motoneurons are endowed with voltage-sensitive ion channels that create non-linearities in their input-output functions. Here we describe a role for the M-type potassium current, conducted by KCNQ channels, in the control of motoneuron recruitment in mice. Motoneurons were studied with whole-cell patch clamp electrophysiology in transverse spinal slices and identified based on delayed (fast) and immediate (slow) onsets of repetitive firing. M-currents were larger in delayed compared to immediate firing motoneurons, which was not reflected by variations in the presence of Kv7.2 or Kv7.3 subunits. Instead, a more depolarized spike threshold in delayed-firing motoneurons afforded a greater proportion of the total M-current to become activated within the subthreshold voltage range, which translated to a greater influence on their recruitment with little influence on their firing rates. Pharmacological activation of M-currents also influenced motoneuron recruitment at the population level, producing a rightward shift in the recruitment curve of monosynaptic reflexes within isolated mouse spinal cords. These results demonstrate a prominent role for M-type potassium currents in regulating the function of motor units, which occurs primarily through the differential control of motoneuron subtype recruitment. More generally, these findings highlight the importance of active properties mediated by voltage-sensitive ion channels in the differential control of motoneuron recruitment, which is a key mechanism for the gradation of muscle force. KEY POINTS: M-currents exert an inhibitory influence on spinal motor output. This inhibitory influence is exerted by controlling the recruitment, but not the firing rate, of high-threshold fast-like motoneurons, with limited influence on low-threshold slow-like motoneurons. Preferential control of fast motoneurons may be linked to a larger M-current that is activated within the subthreshold voltage range compared to slow motoneurons. Larger M-currents in fast compared to slow motoneurons are not accounted for by differences in Kv7.2 or Kv7.3 channel composition. The orderly recruitment of motoneuron subtypes is shaped by differences in the contribution of voltage-gated ion channels, including KCNQ channels. KCNQ channels may provide a target to dynamically modulate the recruitment gain across the motor pool and readily adjust movement vigour.
Collapse
Affiliation(s)
- Simon A Sharples
- School of Psychology and Neuroscience, University of St Andrews, Fife, UK
| | | | - James A Gray
- School of Psychology and Neuroscience, University of St Andrews, Fife, UK
| | - Gareth B Miles
- School of Psychology and Neuroscience, University of St Andrews, Fife, UK
| |
Collapse
|
4
|
Hilscher MM, Mikulovic S, Perry S, Lundberg S, Kullander K. The alpha2 nicotinic acetylcholine receptor, a subunit with unique and selective expression in inhibitory interneurons associated with principal cells. Pharmacol Res 2023; 196:106895. [PMID: 37652281 DOI: 10.1016/j.phrs.2023.106895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Nicotinic acetylcholine receptors (nAChRs) play crucial roles in various human disorders, with the α7, α4, α6, and α3-containing nAChR subtypes extensively studied in relation to conditions such as Alzheimer's disease, Parkinson's disease, nicotine dependence, mood disorders, and stress disorders. In contrast, the α2-nAChR subunit has received less attention due to its more restricted expression and the scarcity of specific agonists and antagonists for studying its function. Nevertheless, recent research has shed light on the unique expression pattern of the Chrna2 gene, which encodes the α2-nAChR subunit, and its involvement in distinct populations of inhibitory interneurons. This review highlights the structure, pharmacology, localization, function, and disease associations of α2-containing nAChRs and points to the unique expression pattern of the Chrna2 gene and its role in different inhibitory interneuron populations. These populations, including the oriens lacunosum moleculare (OLM) cells in the hippocampus, Martinotti cells in the neocortex, and Renshaw cells in the spinal cord, share common features and contribute to recurrent inhibitory microcircuits. Thus, the α2-nAChR subunit's unique expression pattern in specific interneuron populations and its role in recurrent inhibitory microcircuits highlight its importance in various physiological processes. Further research is necessary to uncover the comprehensive functionality of α2-containing nAChRs, delineate their specific contributions to neuronal circuits, and investigate their potential as therapeutic targets for related disorders.
Collapse
Affiliation(s)
- Markus M Hilscher
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Department of Biochemistry and Biophysics, Science for Life Laboratory, Stockholm University, Solna, Sweden
| | - Sanja Mikulovic
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Leibniz Institute for Neurobiology, Cognition & Emotion Laboratory, Magdeburg, Germany; German Center for Mental Health(DZPG), Germany
| | - Sharn Perry
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden; Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, Australia
| | - Stina Lundberg
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden
| | - Klas Kullander
- Department of Immunology, Genetics and Pathology, Uppsala University, IGP/BMC, Box 815, 751 08 Uppsala, Sweden.
| |
Collapse
|
5
|
D'Elia KP, Hameedy H, Goldblatt D, Frazel P, Kriese M, Zhu Y, Hamling KR, Kawakami K, Liddelow SA, Schoppik D, Dasen JS. Determinants of motor neuron functional subtypes important for locomotor speed. Cell Rep 2023; 42:113049. [PMID: 37676768 PMCID: PMC10600875 DOI: 10.1016/j.celrep.2023.113049] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/12/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023] Open
Abstract
Locomotion requires precise control of the strength and speed of muscle contraction and is achieved by recruiting functionally distinct subtypes of motor neurons (MNs). MNs are essential to movement and differentially susceptible in disease, but little is known about how MNs acquire functional subtype-specific features during development. Using single-cell RNA profiling in embryonic and larval zebrafish, we identify novel and conserved molecular signatures for MN functional subtypes and identify genes expressed in both early post-mitotic and mature MNs. Assessing MN development in genetic mutants, we define a molecular program essential for MN functional subtype specification. Two evolutionarily conserved transcription factors, Prdm16 and Mecom, are both functional subtype-specific determinants integral for fast MN development. Loss of prdm16 or mecom causes fast MNs to develop transcriptional profiles and innervation similar to slow MNs. These results reveal the molecular diversity of vertebrate axial MNs and demonstrate that functional subtypes are specified through intrinsic transcriptional codes.
Collapse
Affiliation(s)
- Kristen P D'Elia
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Hanna Hameedy
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dena Goldblatt
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA; Center for Neural Science, New York University, New York, NY, USA
| | - Paul Frazel
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - Mercer Kriese
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Yunlu Zhu
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Kyla R Hamling
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA
| | - Koichi Kawakami
- Laboratory of Molecular and Developmental Biology, National Institute of Genetics, Mishima, Japan
| | - Shane A Liddelow
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA
| | - David Schoppik
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA; Department of Otolaryngology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jeremy S Dasen
- Department of Neuroscience & Physiology and Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Fogarty MJ, Dasgupta D, Khurram OU, Sieck GC. Chemogenetic inhibition of TrkB signalling reduces phrenic motor neuron survival and size. Mol Cell Neurosci 2023; 125:103847. [PMID: 36958643 PMCID: PMC10247511 DOI: 10.1016/j.mcn.2023.103847] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 03/07/2023] [Accepted: 03/16/2023] [Indexed: 03/25/2023] Open
Abstract
Brain derived neurotrophic factor (BDNF) signalling through its high-affinity tropomyosin receptor kinase B (TrkB) is known to have potent effects on motor neuron survival and morphology during development and in neurodegenerative diseases. Here, we employed a novel 1NMPP1 sensitive TrkBF616 rat model to evaluate the effect of 14 days inhibition of TrkB signalling on phrenic motor neurons (PhMNs). Adult female and male TrkBF616 rats were divided into 1NMPP1 or vehicle treated groups. Three days prior to treatment, PhMNs in both groups were initially labeled via intrapleural injection of Alexa-Fluor-647 cholera toxin B (CTB). After 11 days of treatment, retrograde axonal uptake/transport was assessed by secondary labeling of PhMNs by intrapleural injection of Alexa-Fluor-488 CTB. After 14 days of treatment, the spinal cord was excised 100 μm thick spinal sections containing PhMNs were imaged using two-channel confocal microscopy. TrkB inhibition reduced the total number of PhMNs by ∼16 %, reduced the mean PhMN somal surface areas by ∼25 %, impaired CTB uptake 2.5-fold and reduced the estimated PhMN dendritic surface area by ∼38 %. We conclude that inhibition of TrkB signalling alone in adult TrkBF616 rats is sufficient to lead to PhMN loss, morphological degeneration and deficits in retrograde axonal uptake/transport.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Debanjali Dasgupta
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Obaid U Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
| | - Gary C Sieck
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
7
|
Reale LA, Dyer MS, Perry SE, Young KM, Dickson TC, Woodhouse A, Blizzard CA. Pathologically mislocalised TDP-43 in upper motor neurons causes a die-forward spread of ALS-like pathogenic changes throughout the mouse corticomotor system. Prog Neurobiol 2023; 226:102449. [PMID: 37011806 DOI: 10.1016/j.pneurobio.2023.102449] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 02/02/2023] [Accepted: 03/24/2023] [Indexed: 04/03/2023]
Abstract
Alterations in upper motor neuron excitability are one of the earliest phenomena clinically detected in ALS, and in 97% of cases, the RNA/DNA binding protein, TDP-43, is mislocalised in upper and lower motor neurons. While these are two major pathological hallmarks in disease, our understanding of where disease pathology begins, and how it spreads through the corticomotor system, is incomplete. This project used a model where mislocalised TDP-43 was expressed in the motor cortex, to determine if localised cortical pathology could result in widespread corticomotor system degeneration. Mislocalised TDP-43 caused layer V excitatory neurons in the motor cortex to become hyperexcitable after 20 days of expression. Following cortical hyperexcitability, a spread of pathogenic changes through the corticomotor system was observed. By 30 days expression, there was a significant decrease in lower motor neuron number in the lumbar spinal cord. However, cell loss occurred selectively, with a significant loss in lumbar regions 1-3, and not lumbar regions 4-6. This regional vulnerability was associated with alterations in pre-synaptic excitatory and inhibitory proteins. Excitatory inputs (VGluT2) were increased in all lumbar regions, while inhibitory inputs (GAD65/67) were increased in lumbar regions 4-6 only. This data indicates that mislocalised TDP-43 in upper motor neurons can cause lower motor neuron degeneration. Furthermore, cortical pathology increased excitatory inputs to the spinal cord, to which local circuitry compensated with an upregulation of inhibition. These findings reveal how TDP-43 mediated pathology may spread through corticofugal tracts in ALS and identify a potential pathway for therapeutic intervention.
Collapse
|
8
|
Khan MN, Cherukuri P, Negro F, Rajput A, Fabrowski P, Bansal V, Lancelin C, Lee TI, Bian Y, Mayer WP, Akay T, Müller D, Bonn S, Farina D, Marquardt T. ERR2 and ERR3 promote the development of gamma motor neuron functional properties required for proprioceptive movement control. PLoS Biol 2022; 20:e3001923. [PMID: 36542664 PMCID: PMC9815657 DOI: 10.1371/journal.pbio.3001923] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 01/05/2023] [Accepted: 11/16/2022] [Indexed: 12/24/2022] Open
Abstract
The ability of terrestrial vertebrates to effectively move on land is integrally linked to the diversification of motor neurons into types that generate muscle force (alpha motor neurons) and types that modulate muscle proprioception, a task that in mammals is chiefly mediated by gamma motor neurons. The diversification of motor neurons into alpha and gamma types and their respective contributions to movement control have been firmly established in the past 7 decades, while recent studies identified gene expression signatures linked to both motor neuron types. However, the mechanisms that promote the specification of gamma motor neurons and/or their unique properties remained unaddressed. Here, we found that upon selective loss of the orphan nuclear receptors ERR2 and ERR3 (also known as ERRβ, ERRγ or NR3B2, NR3B3, respectively) in motor neurons in mice, morphologically distinguishable gamma motor neurons are generated but do not acquire characteristic functional properties necessary for regulating muscle proprioception, thus disrupting gait and precision movements. Complementary gain-of-function experiments in chick suggest that ERR2 and ERR3 could operate via transcriptional activation of neural activity modulators to promote a gamma motor neuron biophysical signature of low firing thresholds and high firing rates. Our work identifies a mechanism specifying gamma motor neuron functional properties essential for the regulation of proprioceptive movement control.
Collapse
Affiliation(s)
- Mudassar N. Khan
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Berlin, Germany
- * E-mail: (MNK); (TM)
| | - Pitchaiah Cherukuri
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
- SRM University Andhra Pradesh, Mangalagiri-Mandal, Neeru Konda, Amaravati, Andhra Pradesh, India
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli Studi di Brescia, Brescia, Italy
| | - Ashish Rajput
- University Medical Center Hamburg Eppendorf, Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Medical Systems Biology, Hamburg, Germany
- Maximon AG, Zug, Switzerland
| | - Piotr Fabrowski
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - Vikas Bansal
- University Medical Center Hamburg Eppendorf, Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Medical Systems Biology, Hamburg, Germany
- Biomedical Data Science and Machine Learning Group, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Camille Lancelin
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - Tsung-I Lee
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - Yehan Bian
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - William P. Mayer
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Turgay Akay
- Atlantic Mobility Action Project, Brain Repair Centre, Department of Medical Neuroscience, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Daniel Müller
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
| | - Stefan Bonn
- University Medical Center Hamburg Eppendorf, Center for Molecular Neurobiology Hamburg (ZMNH), Institute of Medical Systems Biology, Hamburg, Germany
| | - Dario Farina
- Department of Bioengineering, Imperial College London, Royal School of Mines, London, United Kingdom
| | - Till Marquardt
- Interfaculty Chair for Neurobiological Research, RWTH Aachen University: Medical Faculty (UKA), Clinic for Neurology & Faculty for Mathematics, Computer and Natural Sciences, Institute for Biology 2, Aachen, Germany
- Developmental Neurobiology Laboratory, European Neuroscience Institute (ENI-G), Göttingen, Germany
- * E-mail: (MNK); (TM)
| |
Collapse
|
9
|
Singh J, Patten SA. Modeling neuromuscular diseases in zebrafish. Front Mol Neurosci 2022; 15:1054573. [PMID: 36583079 PMCID: PMC9794147 DOI: 10.3389/fnmol.2022.1054573] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Neuromuscular diseases are a diverse group of conditions that affect the motor system and present some overlapping as well as distinct clinical manifestations. Although individually rare, the combined prevalence of NMDs is similar to Parkinson's. Over the past decade, new genetic mutations have been discovered through whole exome/genome sequencing, but the pathogenesis of most NMDs remains largely unexplored. Little information on the molecular mechanism governing the progression and development of NMDs accounts for the continual failure of therapies in clinical trials. Different aspects of the diseases are typically investigated using different models from cells to animals. Zebrafish emerges as an excellent model for studying genetics and pathogenesis and for developing therapeutic interventions for most NMDs. In this review, we describe the generation of different zebrafish genetic models mimicking NMDs and how they are used for drug discovery and therapy development.
Collapse
Affiliation(s)
- Jaskaran Singh
- INRS – Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Shunmoogum A. Patten
- INRS – Centre Armand Frappier Santé Biotechnologie, Laval, QC, Canada,Departement de Neurosciences, Université de Montréal, Montréal, QC, Canada,Centre d'Excellence en Recherche sur les Maladies Orphelines – Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada,*Correspondence: Shunmoogum A. Patten,
| |
Collapse
|
10
|
Oprişoreanu AM. Perspective on automated in vivo drug screening using the chodl mutant zebrafish line. Neural Regen Res 2022; 17:2437-2438. [PMID: 35535889 PMCID: PMC9120713 DOI: 10.4103/1673-5374.335795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/31/2021] [Accepted: 09/08/2021] [Indexed: 11/04/2022] Open
|
11
|
Chen K, Dai Y. Chronic exercise increases excitability of lamina X neurons through enhancement of persistent inward currents and dendritic development in mice. J Physiol 2022; 600:3775-3793. [PMID: 35848453 DOI: 10.1113/jp283037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/11/2022] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Chronic exercise alters adaptability of spinal motor system in rodents. Multiple mechanisms are responsible for the adaptation, including regulation of neuronal excitability and change in dendritic morphology. Spinal interneurons in lamina X are a cluster of heterogeneous neurons playing multifunctional roles in the spinal cord, especially in regulating locomotor activity. Chronic exercise in juvenile mice increased excitability of these interneurons and facilitated dendritic development. Mechanisms underlying these changes remain unknown. Lamina X neurons expressed persistent inward currents (PICs) composed of calcium (Ca-PIC) and sodium (Na-PIC) components. The exercise-increased excitability of lamina X neurons was mediated by enhancing Ca-PIC and Na-PIC components and facilitating dendritic length. Na-PIC contributed more to lowering of PIC onset and Ca-PIC to increase of PIC amplitude. This study unveiled novel morphological and ionic mechanisms underlying adaptation of lamina X neurons in rodents during chronic exercise. ABSTRACT Chronic exercise has been shown to enhance excitability of spinal interneurons in rodents. However, the mechanisms underlying this enhancement remain unclear. In this study we investigated adaptability of lamina X neurons with three-week treadmill exercise in mice of P21-P24. Whole-cell path-clamp recording was performed on the interneurons from slices of T12-L4. The experimental results included: (1) Treadmill exercise reduced rheobase by 7.4±2.2 pA (control: 11.3±6.1 pA, n = 12; exercise: 3.8±4.6 pA, n = 13; P = 0.002) and hyperpolarized voltage threshold by 7.1±1.5 mV (control: -36.6±4.6 mV, exercise: -43.7±2.7 mV; P = 0.001). (2) Exercise enhanced persistent inward currents (PICs) with increase of amplitude (control: 140.6±56.3 pA, n = 25; exercise: 225.9±62.5 pA, n = 17; P = 0.001) and hyperpolarization of onset (control: -50.3±3.6 mV, exercise: -56.5±5.5 mV; P = 0.001). (3) PICs consisted of dihydropyridine-sensitive calcium (Ca-PIC) and tetrodotoxin-sensitive sodium (Na-PIC) components. Exercise increased amplitude of both components but hyperpolarized onset of Na-PIC only. (4) Exercise reduced derecruitment current of repetitive firing evoked by current bi-ramp and prolonged firing in falling phase of the bi-ramp. The derecruitment reduction was eliminated by bath application of 3 μM riluzole or 25 μM nimodipine, suggesting that both Na-PIC and Ca-PIC contributed to the exercise-prolonged hysteresis of firing. (5) Exercise facilitated dendritic development with significant increase in dendritic length by 285.1±113 μm (control: 457.8±171.8 μm, n = 12; exercise: 742.9±357 μm, n = 14; P = 0.019). We concluded that three-week treadmill exercise increased excitability of lamina X interneurons through enhancement of PICs and increase of dendritic length. This study provided insight into cellular and channel mechanisms underlying adaptation of the spinal motor system in exercise. Abstract figure legend A. B6 mice were randomly divided into control group and exercise group. Control group mice remained sedentary in the cage; exercise group mice completed 60 min treadmill runs each day (6 days/week) for a period of 3 weeks. B. Whole-cell patch clamp recordings were made from lumbar lamina X neurons after three-weeks exercise. C. Exercise facilitated development of dendrites of lamina X neurons. D. Exercise enhanced persistent inward currents. E. Exercise increased excitability of lamina X neurons by hyperpolarizing voltage threshold for action potential generation. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ke Chen
- Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China
| | - Yue Dai
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention of Ministry of Education, School of Physical Education and Health Care, East China Normal University, Shanghai, 200241, China.,Shanghai Key Laboratory of Multidimensional Information Processing, School of Communication and Electronic Engineering, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
12
|
Tokarska A, Silberberg G. GABAergic interneurons expressing the α2 nicotinic receptor subunit are functionally integrated in the striatal microcircuit. Cell Rep 2022; 39:110842. [PMID: 35613598 DOI: 10.1016/j.celrep.2022.110842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/08/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022] Open
Abstract
The interactions between the striatal cholinergic and GABAergic systems are crucial in shaping reward-related behavior and reinforcement learning; however, the synaptic pathways mediating them are largely unknown. Here, we use Chrna2-Cre mice to characterize striatal interneurons (INs) expressing the nicotinic α2 receptor subunit. Using triple patch-clamp recordings combined with optogenetic stimulations, we characterize the electrophysiological, morphological, and synaptic properties of striatal Chrna2-INs. Striatal Chrna2-INs have diverse electrophysiological properties, distinct from their counterparts in other brain regions, including the hippocampus and neocortex. Unlike in other regions, most striatal Chrna2-INs are fast-spiking INs expressing parvalbumin. Striatal Chrna2-INs are intricately integrated in the striatal microcircuit, forming inhibitory synaptic connections with striatal projection neurons and INs, including other Chrna2-INs. They receive excitatory inputs from primary motor cortex mediated by both AMPA and NMDA receptors. A subpopulation of Chrna2-INs responds to nicotinic input, suggesting reciprocal interactions between this GABAergic interneuron population and striatal cholinergic synapses.
Collapse
Affiliation(s)
- Anna Tokarska
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Gilad Silberberg
- Department of Neuroscience, Karolinska Institutet, 171 77 Stockholm, Sweden.
| |
Collapse
|
13
|
Recabal-Beyer AJ, Senecal JMM, Senecal JEM, Lynn BD, Nagy JI. On the Organization of Connexin36 Expression in Electrically Coupled Cholinergic V0c Neurons (Partition Cells) in the Spinal Cord and Their C-terminal Innervation of Motoneurons. Neuroscience 2022; 485:91-115. [PMID: 35090881 DOI: 10.1016/j.neuroscience.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/07/2022] [Accepted: 01/19/2022] [Indexed: 12/13/2022]
Abstract
Large cholinergic neurons (V0c neurons; aka, partition cells) in the spinal cord project profusely to motoneurons on which they form C-terminal contacts distinguished by their specialized postsynaptic subsurface cisterns (SSCs). The V0c neurons are known to be rhythmically active during locomotion and release of acetylcholine (ACh) from their terminals is known to modulate the excitability of motoneurons in what appears to be a task-dependent manner. Here, we present evidence that a subpopulation of V0c neurons express the gap junction forming protein connexin36 (Cx36), indicating that they are coupled by electrical synapses. Based on immunofluorescence imaging and the use of Cx36BAC-enhanced green fluorescent protein (eGFP) mice in which C-terminals immunolabelled for their marker vesicular acetylcholine transporter (vAChT) are also labelled for eGFP, we found a heterogeneous distribution of eGFP+ C-terminals on motoneurons at cervical, thoracic and lumber spinal levels. The density of C-terminals on motoneurons varied as did the proportion of those that were eGFP+ vs. eGFP-. We present evidence that fast vs. slow motoneurons have a greater abundance of these terminals and fast motoneurons also have the highest density that were eGFP+. Thus, our results indicate that a subpopulation of V0c neurons projects preferentially to fast motoneurons, suggesting that the capacity for synchronous activity conferred by electrical synapses among networks of coupled V0c neurons enhances their dynamic capabilities for synchronous regulation of motoneuron excitability during high muscle force generation. The eGFP+ vs. eGFP- V0c neurons were more richly innervated by serotonergic terminals, suggesting their greater propensity for regulation by descending serotonergic systems.
Collapse
Affiliation(s)
- A J Recabal-Beyer
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - J M M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - J E M Senecal
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - B D Lynn
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | - J I Nagy
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada.
| |
Collapse
|
14
|
Beato M, Bhumbra G. Synaptic Projections of Motoneurons Within the Spinal Cord. ADVANCES IN NEUROBIOLOGY 2022; 28:151-168. [PMID: 36066825 DOI: 10.1007/978-3-031-07167-6_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motoneurons have long been considered as the final common pathway of the nervous system, transmitting the neural impulses that are transduced into action.While many studies have focussed on the inputs that motoneurons receive from local circuits within the spinal cord and from other parts of the CNS, relatively few have investigated the targets of local axonal projections from motoneurons themselves, with the notable exception of those contacting Renshaw cells or other motoneurons.Recent research has not only characterised the detailed features of the excitatory connections between motoneurons and Renshaw cells but has also established that Renshaw cells are not the only target of motoneurons axons within the spinal cord. Motoneurons also form synaptic contacts with other motoneurons as well as with a subset of ventrally located V3 interneurons. These findings indicate that motoneurons cannot be simply viewed as the last relay station delivering the command drive to muscles, but perform an active role in the generation and modulation of motor patterns.
Collapse
Affiliation(s)
- Marco Beato
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| | - Gary Bhumbra
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|
15
|
Bączyk M, Manuel M, Roselli F, Zytnicki D. Diversity of Mammalian Motoneurons and Motor Units. ADVANCES IN NEUROBIOLOGY 2022; 28:131-150. [PMID: 36066824 DOI: 10.1007/978-3-031-07167-6_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although they share the common function of controlling muscle fiber contraction, spinal motoneurons display a remarkable diversity. Alpha-motoneurons are the "final common pathway", which relay all the information from spinal and supraspinal centers and allow the organism to interact with the outside world by controlling the contraction of muscle fibers in the muscles. On the other hand, gamma-motoneurons are specialized motoneurons that do not generate force and instead specifically innervate muscle fibers inside muscle spindles, which are proprioceptive organs embedded in the muscles. Beta-motoneurons are hybrid motoneurons that innervate both extrafusal and intrafusal muscle fibers. Even among alpha-motoneurons, there exists an exquisite diversity in terms of motoneuron electrical and molecular properties, physiological and structural properties of their neuromuscular junctions, and molecular and contractile properties of the innervated muscle fibers. This diversity, across species, across muscles, and across muscle fibers in a given muscle, underlie the vast repertoire of movements that one individual can perform.
Collapse
Affiliation(s)
- Marcin Bączyk
- Department of Neurobiology, Poznań University of Physical Education, Poznań, Poland
| | - Marin Manuel
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, Paris, France.
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- Institute of Anatomy and Cell Biology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE)-Ulm, Ulm, Germany
- Neurozentrum Ulm, Ulm, Germany
| | - Daniel Zytnicki
- SPPIN - Saints-Pères Paris Institute for the Neurosciences, CNRS, Université de Paris, Paris, France
| |
Collapse
|
16
|
Fralish Z, Lotz EM, Chavez T, Khodabukus A, Bursac N. Neuromuscular Development and Disease: Learning From in vitro and in vivo Models. Front Cell Dev Biol 2021; 9:764732. [PMID: 34778273 PMCID: PMC8579029 DOI: 10.3389/fcell.2021.764732] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/06/2021] [Indexed: 01/02/2023] Open
Abstract
The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.
Collapse
Affiliation(s)
- Zachary Fralish
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Ethan M Lotz
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Taylor Chavez
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Alastair Khodabukus
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Nenad Bursac
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, NC, United States
| |
Collapse
|
17
|
Sharples SA, Miles GB. Maturation of persistent and hyperpolarization-activated inward currents shapes the differential activation of motoneuron subtypes during postnatal development. eLife 2021; 10:e71385. [PMID: 34783651 PMCID: PMC8641952 DOI: 10.7554/elife.71385] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022] Open
Abstract
The size principle underlies the orderly recruitment of motor units; however, motoneuron size is a poor predictor of recruitment amongst functionally defined motoneuron subtypes. Whilst intrinsic properties are key regulators of motoneuron recruitment, the underlying currents involved are not well defined. Whole-cell patch-clamp electrophysiology was deployed to study intrinsic properties, and the underlying currents, that contribute to the differential activation of delayed and immediate firing motoneuron subtypes. Motoneurons were studied during the first three postnatal weeks in mice to identify key properties that contribute to rheobase and may be important to establish orderly recruitment. We find that delayed and immediate firing motoneurons are functionally homogeneous during the first postnatal week and are activated based on size, irrespective of subtype. The rheobase of motoneuron subtypes becomes staggered during the second postnatal week, which coincides with the differential maturation of passive and active properties, particularly persistent inward currents. Rheobase of delayed firing motoneurons increases further in the third postnatal week due to the development of a prominent resting hyperpolarization-activated inward current. Our results suggest that motoneuron recruitment is multifactorial, with recruitment order established during postnatal development through the differential maturation of passive properties and sequential integration of persistent and hyperpolarization-activated inward currents.
Collapse
Affiliation(s)
- Simon A Sharples
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| | - Gareth B Miles
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| |
Collapse
|
18
|
Hongo Y, Matsui T, Nakata T, Furukawa H, Ono T, Kaida K, Suzuki K, Miyahira Y, Kobayashi Y. Morphological characterization of cholinergic partition cells: A transmitter-specific tracing study by Cre/lox-dependent viral gene expression. Ann Anat 2021; 240:151857. [PMID: 34785323 DOI: 10.1016/j.aanat.2021.151857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Partition cells are cholinergic interneurons located in lamina VII of the spinal cord. Some partition cells are the source of the cholinergic boutons, known as C-terminals or C-boutons, that modulate the activity of spinal motor neurons. Therefore, partition cells might play an important role in motor control. Previous studies categorized partition cells into three groups (medial, intermediate, and lateral partition cells) according to their distance from the central canal. However, the morphological characteristics of the three groups remain obscure. METHODS To analyze the morphology of partition cells, we developed an efficient technique for visualization of specific neurons at single-cell level in particular positions using adenovirus vectors and Cre/lox mediated recombination. Cre/lox conditional vectors were injected into the spinal cord of choline acetyltransferase-Cre transgenic mice, and partition cells labeled by green fluorescent protein were reconstructed from histological serial sections at the single-cell level. RESULTS This technique allowed for the visualization of partition cells at high resolution and revealed that partition cells had various patterns of dendrite orientations and fields. Most of the visualized partition cells had more than 60% of their dendrites located in lamina VII of the spinal cord. Partition cells had dendrites extending into various Rexed's laminae (V, VI, VII, VIII, IX, and X), but none of the cells had dendrites extending dorsal to lamina IV. The dendrites of partition cells terminated both ipsilaterally and bilaterally. We also found that C-terminals on motor neurons may be derived from the middle/outer group of partition cells. CONCLUSIONS Our results indicated that partition cells have various morphological features of the dendritic pattern and may receive differential inputs. Our results suggested that C-terminals originate not only from medial but also from intermediate/lateral cholinergic partition cells. The present study suggests that intermediate/lateral partition cells modulate activities of motor neurons through C-terminal synapses.
Collapse
Affiliation(s)
- Yu Hongo
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama, Japan; Department of Neurology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Toshiyasu Matsui
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama, Japan; Laboratory of Veterinary Anatomy, Faculty of Veterinary Medicine, Okayama University of Science, Imabari, Ehime, Japan
| | - Takahiro Nakata
- Department of Molecular and Cellular Anatomy, Faculty of Health Promotional Sciences, Tokoha University, Shizuoka, Japan; Department of Health Science, Ishikawa Prefectural Nursing University, Ishikawa, Japan.
| | - Hiroyo Furukawa
- Department of Health Science, Ishikawa Prefectural Nursing University, Ishikawa, Japan; Department of Clinical Nutrition, Ageo Central General Hospital, Saitama, Japan
| | - Takeshi Ono
- Department of Global Infectious Diseases and Tropical Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Kenichi Kaida
- Department of Neurology, National Defense Medical College, Tokorozawa, Saitama, Japan; Department of Neurology, Saitama Medical Center, Saitama Medical University, Kawagoe, Saitama, Japan
| | - Kazushi Suzuki
- Department of Neurology, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yasushi Miyahira
- Department of Global Infectious Diseases and Tropical Medicine, National Defense Medical College, Tokorozawa, Saitama, Japan
| | - Yasushi Kobayashi
- Department of Anatomy and Neurobiology, National Defense Medical College, Tokorozawa, Saitama, Japan.
| |
Collapse
|
19
|
Correia JC, Kelahmetoglu Y, Jannig PR, Schweingruber C, Shvaikovskaya D, Zhengye L, Cervenka I, Khan N, Stec M, Oliveira M, Nijssen J, Martínez-Redondo V, Ducommun S, Azzolini M, Lanner JT, Kleiner S, Hedlund E, Ruas JL. Muscle-secreted neurturin couples myofiber oxidative metabolism and slow motor neuron identity. Cell Metab 2021; 33:2215-2230.e8. [PMID: 34592133 DOI: 10.1016/j.cmet.2021.09.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/28/2021] [Accepted: 09/07/2021] [Indexed: 01/04/2023]
Abstract
Endurance exercise promotes skeletal muscle vascularization, oxidative metabolism, fiber-type switching, and neuromuscular junction integrity. Importantly, the metabolic and contractile properties of the muscle fiber must be coupled to the identity of the innervating motor neuron (MN). Here, we show that muscle-derived neurturin (NRTN) acts on muscle fibers and MNs to couple their characteristics. Using a muscle-specific NRTN transgenic mouse (HSA-NRTN) and RNA sequencing of MN somas, we observed that retrograde NRTN signaling promotes a shift toward a slow MN identity. In muscle, NRTN increased capillary density and oxidative capacity and induced a transcriptional reprograming favoring fatty acid metabolism over glycolysis. This combination of effects on muscle and MNs makes HSA-NRTN mice lean with remarkable exercise performance and motor coordination. Interestingly, HSA-NRTN mice largely recapitulate the phenotype of mice with muscle-specific expression of its upstream regulator PGC-1ɑ1. This work identifies NRTN as a myokine that couples muscle oxidative capacity to slow MN identity.
Collapse
Affiliation(s)
- Jorge C Correia
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Yildiz Kelahmetoglu
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Paulo R Jannig
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Christoph Schweingruber
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Dasha Shvaikovskaya
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Liu Zhengye
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Igor Cervenka
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Naveen Khan
- Regeneron Pharmaceuticals, Tarrytown, NY 10 591, USA
| | - Michael Stec
- Regeneron Pharmaceuticals, Tarrytown, NY 10 591, USA
| | - Mariana Oliveira
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Jik Nijssen
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Vicente Martínez-Redondo
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Serge Ducommun
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Michele Azzolini
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Johanna T Lanner
- Molecular Muscle Physiology and Pathophysiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden
| | | | - Eva Hedlund
- Department of Neuroscience, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden; Department of Biochemistry and Biophysics, Stockholm University, 10691 Stockholm, Sweden
| | - Jorge L Ruas
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Biomedicum, Karolinska Institutet, 17165 Stockholm, Sweden.
| |
Collapse
|
20
|
Scott K, O'Rourke R, Winkler CC, Kearns CA, Appel B. Temporal single-cell transcriptomes of zebrafish spinal cord pMN progenitors reveal distinct neuronal and glial progenitor populations. Dev Biol 2021; 479:37-50. [PMID: 34303700 PMCID: PMC8410680 DOI: 10.1016/j.ydbio.2021.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 11/20/2022]
Abstract
Ventral spinal cord progenitor cells, which express the basic helix loop helix transcription factor Olig2, sequentially produce motor neurons and oligodendrocyte precursor cells (OPCs). Following specification some OPCs differentiate as myelinating oligodendrocytes while others persist as OPCs. Though a considerable amount of work has described the molecular profiles that define motor neurons, OPCs, and oligodendrocytes, less is known about the progenitors that produce them. To identify the developmental origins and transcriptional profiles of motor neurons and OPCs, we performed single-cell RNA sequencing on isolated pMN cells from embryonic zebrafish trunk tissue at stages that encompassed motor neurogenesis, OPC specification, and initiation of oligodendrocyte differentiation. Downstream analyses revealed two distinct pMN progenitor populations: one that appears to produce neurons and one that appears to produce OPCs. This latter population, called Pre-OPCs, is marked by expression of GS Homeobox 2 (gsx2), a gene that encodes a homeobox transcription factor. Using fluorescent in situ hybridizations, we identified gsx2-expressing Pre-OPCs in the spinal cord prior to expression of canonical OPC marker genes. Our data therefore reveal heterogeneous gene expression profiles among pMN progenitors, supporting prior fate mapping evidence.
Collapse
Affiliation(s)
- Kayt Scott
- Department of Pediatrics, Section of Developmental Biology, Colorado, 80045, USA; Cell Biology, Stem Cells and Development Training Program, Colorado, 80045, USA
| | - Rebecca O'Rourke
- Department of Pediatrics, Section of Developmental Biology, Colorado, 80045, USA
| | - Caitlin C Winkler
- Department of Pediatrics, Section of Developmental Biology, Colorado, 80045, USA; RNA Bioscience Initiative and Department of Biochemistry and Molecular Genetics, Colorado, 80045, USA
| | - Christina A Kearns
- Department of Pediatrics, Section of Developmental Biology, Colorado, 80045, USA
| | - Bruce Appel
- Department of Pediatrics, Section of Developmental Biology, Colorado, 80045, USA; Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
21
|
Yuan S, Li H, Wu J, Sun X. Classification of Mild Cognitive Impairment With Multimodal Data Using Both Labeled and Unlabeled Samples. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2281-2290. [PMID: 33471765 DOI: 10.1109/tcbb.2021.3053061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mild Cognitive Impairment (MCI) is a preclinical stage of Alzheimer's Disease (AD) and is clinical heterogeneity. The classification of MCI is crucial for the early diagnosis and treatment of AD. In this study, we investigated the potential of using both labeled and unlabeled samples from the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort to classify MCI through the multimodal co-training method. We utilized both structural magnetic resonance imaging (sMRI) data and genotype data of 364 MCI samples including 228 labeled and 136 unlabeled MCI samples from the ADNI-1 cohort. First, the selected quantitative trait (QT) features from sMRI data and SNP features from genotype data were used to build two initial classifiers on 228 labeled MCI samples. Then, the co-training method was implemented to obtain new labeled samples from 136 unlabeled MCI samples. Finally, the random forest algorithm was used to obtain a combined classifier to classify MCI patients in the independent ADNI-2 dataset. The experimental results showed that our proposed framework obtains an accuracy of 85.50 percent and an AUC of 0.825 for MCI classification, respectively, which showed that the combined utilization of sMRI and SNP data through the co-training method could significantly improve the performances of MCI classification.
Collapse
|
22
|
Zuccaro E, Piol D, Basso M, Pennuto M. Motor Neuron Diseases and Neuroprotective Peptides: A Closer Look to Neurons. Front Aging Neurosci 2021; 13:723871. [PMID: 34603008 PMCID: PMC8484953 DOI: 10.3389/fnagi.2021.723871] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/26/2021] [Indexed: 12/02/2022] Open
Abstract
Motor neurons (MNs) are specialized neurons responsible for muscle contraction that specifically degenerate in motor neuron diseases (MNDs), such as amyotrophic lateral sclerosis (ALS), spinal and bulbar muscular atrophy (SBMA), and spinal muscular atrophy (SMA). Distinct classes of MNs degenerate at different rates in disease, with a particular class named fast-fatigable MNs (FF-MNs) degenerating first. The etiology behind the selective vulnerability of FF-MNs is still largely under investigation. Among the different strategies to target MNs, the administration of protective neuropeptides is one of the potential therapeutic interventions. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide with beneficial effects in many neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and more recently SBMA. Another neuropeptide that has a neurotrophic effect on MNs is insulin-like growth factor 1 (IGF-1), also known as somatomedin C. These two peptides are implicated in the activation of neuroprotective pathways exploitable in the amelioration of pathological outcomes related to MNDs.
Collapse
Affiliation(s)
- Emanuela Zuccaro
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
- Padova Neuroscience Center, Padua, Italy
| | - Diana Piol
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Manuela Basso
- Department of Cellular, Computational and Integrative Biology – CIBIO, University of Trento, Trento, Italy
| | - Maria Pennuto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- Veneto Institute of Molecular Medicine, Padua, Italy
- Padova Neuroscience Center, Padua, Italy
| |
Collapse
|
23
|
Allodi I, Montañana-Rosell R, Selvan R, Löw P, Kiehn O. Locomotor deficits in a mouse model of ALS are paralleled by loss of V1-interneuron connections onto fast motor neurons. Nat Commun 2021; 12:3251. [PMID: 34059686 PMCID: PMC8166981 DOI: 10.1038/s41467-021-23224-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 04/21/2021] [Indexed: 02/04/2023] Open
Abstract
ALS is characterized by progressive inability to execute movements. Motor neurons innervating fast-twitch muscle-fibers preferentially degenerate. The reason for this differential vulnerability and its consequences on motor output is not known. Here, we uncover that fast motor neurons receive stronger inhibitory synaptic inputs than slow motor neurons, and disease progression in the SOD1G93A mouse model leads to specific loss of inhibitory synapses onto fast motor neurons. Inhibitory V1 interneurons show similar innervation pattern and loss of synapses. Moreover, from postnatal day 63, there is a loss of V1 interneurons in the SOD1G93A mouse. The V1 interneuron degeneration appears before motor neuron death and is paralleled by the development of a specific locomotor deficit affecting speed and limb coordination. This distinct ALS-induced locomotor deficit is phenocopied in wild-type mice but not in SOD1G93A mice after appearing of the locomotor phenotype when V1 spinal interneurons are silenced. Our study identifies a potential source of non-autonomous motor neuronal vulnerability in ALS and links ALS-induced changes in locomotor phenotype to inhibitory V1-interneurons.
Collapse
Affiliation(s)
- Ilary Allodi
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.
| | - Roser Montañana-Rosell
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
| | - Raghavendra Selvan
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark
- Department of Computer Science, University of Copenhagen, Copenhagen N, Denmark
| | - Peter Löw
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Ole Kiehn
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen N, Denmark.
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
24
|
Oprişoreanu AM, Smith HL, Krix S, Chaytow H, Carragher NO, Gillingwater TH, Becker CG, Becker T. Automated in vivo drug screen in zebrafish identifies synapse-stabilising drugs with relevance to spinal muscular atrophy. Dis Model Mech 2021; 14:259422. [PMID: 33973627 PMCID: PMC8106959 DOI: 10.1242/dmm.047761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Accepted: 03/10/2021] [Indexed: 12/14/2022] Open
Abstract
Synapses are particularly vulnerable in many neurodegenerative diseases and often the first to degenerate, for example in the motor neuron disease spinal muscular atrophy (SMA). Compounds that can counteract synaptic destabilisation are rare. Here, we describe an automated screening paradigm in zebrafish for small-molecule compounds that stabilize the neuromuscular synapse in vivo. We make use of a mutant for the axonal C-type lectin chondrolectin (chodl), one of the main genes dysregulated in SMA. In chodl-/- mutants, neuromuscular synapses that are formed at the first synaptic site by growing axons are not fully mature, causing axons to stall, thereby impeding further axon growth beyond that synaptic site. This makes axon length a convenient read-out for synapse stability. We screened 982 small-molecule compounds in chodl chodl-/- mutants and found four that strongly rescued motor axon length. Aberrant presynaptic neuromuscular synapse morphology was also corrected. The most-effective compound, the adenosine uptake inhibitor drug dipyridamole, also rescued axon growth defects in the UBA1-dependent zebrafish model of SMA. Hence, we describe an automated screening pipeline that can detect compounds with relevance to SMA. This versatile platform can be used for drug and genetic screens, with wider relevance to synapse formation and stabilisation.
Collapse
Affiliation(s)
- Ana-Maria Oprişoreanu
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB
| | - Hannah L Smith
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB
| | - Sophia Krix
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB
| | - Helena Chaytow
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Neil O Carragher
- Cancer Research UK Edinburgh Centre, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, EH4 2XR Edinburgh, UK
| | - Thomas H Gillingwater
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Catherina G Becker
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB.,Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, EH16 4SB Edinburgh, UK
| | - Thomas Becker
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB
| |
Collapse
|
25
|
Blum JA, Klemm S, Shadrach JL, Guttenplan KA, Nakayama L, Kathiria A, Hoang PT, Gautier O, Kaltschmidt JA, Greenleaf WJ, Gitler AD. Single-cell transcriptomic analysis of the adult mouse spinal cord reveals molecular diversity of autonomic and skeletal motor neurons. Nat Neurosci 2021; 24:572-583. [PMID: 33589834 PMCID: PMC8016743 DOI: 10.1038/s41593-020-00795-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/23/2020] [Indexed: 01/30/2023]
Abstract
The spinal cord is a fascinating structure that is responsible for coordinating movement in vertebrates. Spinal motor neurons control muscle activity by transmitting signals from the spinal cord to diverse peripheral targets. In this study, we profiled 43,890 single-nucleus transcriptomes from the adult mouse spinal cord using fluorescence-activated nuclei sorting to enrich for motor neuron nuclei. We identified 16 sympathetic motor neuron clusters, which are distinguishable by spatial localization and expression of neuromodulatory signaling genes. We found surprising skeletal motor neuron heterogeneity in the adult spinal cord, including transcriptional differences that correlate with electrophysiologically and spatially distinct motor pools. We also provide evidence for a novel transcriptional subpopulation of skeletal motor neuron (γ*). Collectively, these data provide a single-cell transcriptional atlas ( http://spinalcordatlas.org ) for investigating the organizing molecular logic of adult motor neuron diversity, as well as the cellular and molecular basis of motor neuron function in health and disease.
Collapse
Affiliation(s)
- Jacob A Blum
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Sandy Klemm
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer L Shadrach
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin A Guttenplan
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa Nakayama
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Arwa Kathiria
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Phuong T Hoang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurology and Neurological Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Olivia Gautier
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Neurosciences Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A Kaltschmidt
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Aaron D Gitler
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
26
|
Crabé R, Aimond F, Gosset P, Scamps F, Raoul C. How Degeneration of Cells Surrounding Motoneurons Contributes to Amyotrophic Lateral Sclerosis. Cells 2020; 9:cells9122550. [PMID: 33260927 PMCID: PMC7760029 DOI: 10.3390/cells9122550] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurological disorder characterized by the progressive degeneration of upper and lower motoneurons. Despite motoneuron death being recognized as the cardinal event of the disease, the loss of glial cells and interneurons in the brain and spinal cord accompanies and even precedes motoneuron elimination. In this review, we provide striking evidence that the degeneration of astrocytes and oligodendrocytes, in addition to inhibitory and modulatory interneurons, disrupt the functionally coherent environment of motoneurons. We discuss the extent to which the degeneration of glial cells and interneurons also contributes to the decline of the motor system. This pathogenic cellular network therefore represents a novel strategic field of therapeutic investigation.
Collapse
Affiliation(s)
- Roxane Crabé
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Franck Aimond
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Philippe Gosset
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Frédérique Scamps
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
| | - Cédric Raoul
- The Neuroscience Institute of Montpellier, INSERM, UMR1051, University of Montpellier, 34091 Montpellier, France; (R.C.); (F.A.); (P.G.); (F.S.)
- Laboratory of Neurobiology, Kazan Federal University, 420008 Kazan, Russia
- Correspondence:
| |
Collapse
|
27
|
Oprişoreanu AM, Smith HL, Arya S, Webster R, Zhong Z, Eaton-Hart C, Wehner D, Cardozo MJ, Becker T, Talbot K, Becker CG. Interaction of Axonal Chondrolectin with Collagen XIXa1 Is Necessary for Precise Neuromuscular Junction Formation. Cell Rep 2020; 29:1082-1098.e10. [PMID: 31665626 DOI: 10.1016/j.celrep.2019.09.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/13/2019] [Accepted: 09/12/2019] [Indexed: 01/05/2023] Open
Abstract
Chondrolectin (Chodl) is needed for motor axon extension in zebrafish and is dysregulated in mouse models of spinal muscular atrophy (SMA). However, the mechanistic basis of Chodl function is not known. Here, we use Chodl-deficient zebrafish and mouse mutants to show that the absence of Chodl leads to anatomical and functional defects of the neuromuscular synapse. In zebrafish, the growth of an identified motor axon beyond an "en passant" synapse and later axon branching from synaptic points are impaired, leading to functional deficits. Mechanistically, motor-neuron-autonomous Chodl function depends on its intracellular domain and on binding muscle-derived collagen XIXa1 by its extracellular C-type lectin domain. Our data support evolutionarily conserved roles of Chodl in synaptogenesis and provide evidence for a "synapse-first" scenario of motor axon growth in zebrafish.
Collapse
Affiliation(s)
- Ana-Maria Oprişoreanu
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Hannah L Smith
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Sukrat Arya
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Richard Webster
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Zhen Zhong
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Charlotte Eaton-Hart
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK
| | - Daniel Wehner
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Marcos J Cardozo
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK
| | - Thomas Becker
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
| | - Kevin Talbot
- Nuffield Department of Clinical Neurosciences, West Wing, John Radcliffe Hospital, University of Oxford, Oxford OX3 9DU, UK.
| | - Catherina G Becker
- Centre for Discovery Brain Sciences, University of Edinburgh, The Chancellor's Building, 49 Little France Crescent, Edinburgh EH16 4SB, UK; Euan MacDonald Centre for Motor Neurone Disease Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
28
|
Dynamic regulation of the cholinergic system in the spinal central nervous system. Sci Rep 2020; 10:15338. [PMID: 32948826 PMCID: PMC7501295 DOI: 10.1038/s41598-020-72524-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/18/2020] [Indexed: 11/22/2022] Open
Abstract
While the role of cholinergic neurotransmission from motoneurons is well established during neuromuscular development, whether it regulates central nervous system development in the spinal cord is unclear. Zebrafish presents a powerful model to investigate how the cholinergic system is set up and evolves during neural circuit formation. In this study, we carried out a detailed spatiotemporal analysis of the cholinergic system in embryonic and larval zebrafish. In 1-day-old embryos, we show that spinal motoneurons express presynaptic cholinergic genes including choline acetyltransferase (chata), vesicular acetylcholine transporters (vachta, vachtb), high-affinity choline transporter (hacta) and acetylcholinesterase (ache), while nicotinic acetylcholine receptor (nAChR) subunits are mainly expressed in interneurons. However, in 3-day-old embryos, we found an unexpected decrease in presynaptic cholinergic transcript expression in a rostral to caudal gradient in the spinal cord, which continued during development. On the contrary, nAChR subunits remained highly expressed throughout the spinal cord. We found that protein and enzymatic activities of presynaptic cholinergic genes were also reduced in the rostral spinal cord. Our work demonstrating that cholinergic genes are initially expressed in the embryonic spinal cord, which is dynamically downregulated during development suggests that cholinergic signaling may play a pivotal role during the formation of intra-spinal locomotor circuit.
Collapse
|
29
|
Zhan J, Li X, Luo D, Hou Y, Hou Y, Chen S, Xiao Z, Luan J, Lin D. Polydatin promotes the neuronal differentiation of bone marrow mesenchymal stem cells in vitro and in vivo: Involvement of Nrf2 signalling pathway. J Cell Mol Med 2020; 24:5317-5329. [PMID: 32299154 PMCID: PMC7205798 DOI: 10.1111/jcmm.15187] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/26/2020] [Accepted: 02/23/2020] [Indexed: 12/11/2022] Open
Abstract
Bone marrow mesenchymal stem cell (BMSC) transplantation represents a promising repair strategy following spinal cord injury (SCI), although the therapeutic effects are minimal due to their limited neural differentiation potential. Polydatin (PD), a key component of the Chinese herb Polygonum cuspidatum, exerts significant neuroprotective effects in various central nervous system disorders and protects BMSCs against oxidative injury. However, the effect of PD on the neuronal differentiation of BMSCs, and the underlying mechanisms remain inadequately understood. In this study, we induced neuronal differentiation of BMSCs in the presence of PD, and analysed the Nrf2 signalling and neuronal differentiation markers using routine molecular assays. We also established an in vivo model of SCI and assessed the locomotor function of the mice through hindlimb movements and electrophysiological measurements. Finally, tissue regeneration was evaluated by H&E staining, Nissl staining and transmission electron microscopy. PD (30 μmol/L) markedly facilitated BMSC differentiation into neuron‐like cells by activating the Nrf2 pathway and increased the expression of neuronal markers in the transplanted BMSCs at the injured spinal cord sites. Furthermore, compared with either monotherapy, the combination of PD and BMSC transplantation promoted axonal rehabilitation, attenuated glial scar formation and promoted axonal generation across the glial scar, thereby enhancing recovery of hindlimb locomotor function. Taken together, PD augments the neuronal differentiation of BMSCs via Nrf2 activation and improves functional recovery, indicating a promising new therapeutic approach against SCI.
Collapse
Affiliation(s)
- Jiheng Zhan
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xing Li
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spine Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dan Luo
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spine Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yu Hou
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spine Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yonghui Hou
- Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Spine Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shudong Chen
- Department of Spine Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhifeng Xiao
- Department of Spine Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiyao Luan
- Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, China.,Lingnan Medical Research Center, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dingkun Lin
- Department of Spine Surgery, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
30
|
Nascimento F, Broadhead MJ, Tetringa E, Tsape E, Zagoraiou L, Miles GB. Synaptic mechanisms underlying modulation of locomotor-related motoneuron output by premotor cholinergic interneurons. eLife 2020; 9:e54170. [PMID: 32081133 PMCID: PMC7062467 DOI: 10.7554/elife.54170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/20/2020] [Indexed: 01/15/2023] Open
Abstract
Spinal motor networks are formed by diverse populations of interneurons that set the strength and rhythmicity of behaviors such as locomotion. A small cluster of cholinergic interneurons, expressing the transcription factor Pitx2, modulates the intensity of muscle activation via 'C-bouton' inputs to motoneurons. However, the synaptic mechanisms underlying this neuromodulation remain unclear. Here, we confirm in mice that Pitx2+ interneurons are active during fictive locomotion and that their chemogenetic inhibition reduces the amplitude of motor output. Furthermore, after genetic ablation of cholinergic Pitx2+ interneurons, M2 receptor-dependent regulation of the intensity of locomotor output is lost. Conversely, chemogenetic stimulation of Pitx2+ interneurons leads to activation of M2 receptors on motoneurons, regulation of Kv2.1 channels and greater motoneuron output due to an increase in the inter-spike afterhyperpolarization and a reduction in spike half-width. Our findings elucidate synaptic mechanisms by which cholinergic spinal interneurons modulate the final common pathway for motor output.
Collapse
Affiliation(s)
- Filipe Nascimento
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| | | | - Efstathia Tetringa
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Eirini Tsape
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Laskaro Zagoraiou
- Center of Basic Research, Biomedical Research Foundation of the Academy of AthensAthensGreece
| | - Gareth Brian Miles
- School of Psychology and Neuroscience, University of St AndrewsSt AndrewsUnited Kingdom
| |
Collapse
|
31
|
Ragagnin AMG, Shadfar S, Vidal M, Jamali MS, Atkin JD. Motor Neuron Susceptibility in ALS/FTD. Front Neurosci 2019; 13:532. [PMID: 31316328 PMCID: PMC6610326 DOI: 10.3389/fnins.2019.00532] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the death of both upper and lower motor neurons (MNs) in the brain, brainstem and spinal cord. The neurodegenerative mechanisms leading to MN loss in ALS are not fully understood. Importantly, the reasons why MNs are specifically targeted in this disorder are unclear, when the proteins associated genetically or pathologically with ALS are expressed ubiquitously. Furthermore, MNs themselves are not affected equally; specific MNs subpopulations are more susceptible than others in both animal models and human patients. Corticospinal MNs and lower somatic MNs, which innervate voluntary muscles, degenerate more readily than specific subgroups of lower MNs, which remain resistant to degeneration, reflecting the clinical manifestations of ALS. In this review, we discuss the possible factors intrinsic to MNs that render them uniquely susceptible to neurodegeneration in ALS. We also speculate why some MN subpopulations are more vulnerable than others, focusing on both their molecular and physiological properties. Finally, we review the anatomical network and neuronal microenvironment as determinants of MN subtype vulnerability and hence the progression of ALS.
Collapse
Affiliation(s)
- Audrey M G Ragagnin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Sina Shadfar
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Marta Vidal
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Md Shafi Jamali
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Julie D Atkin
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| |
Collapse
|
32
|
Characterization of Dmrt3-Derived Neurons Suggest a Role within Locomotor Circuits. J Neurosci 2018; 39:1771-1782. [PMID: 30578339 DOI: 10.1523/jneurosci.0326-18.2018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 11/27/2018] [Accepted: 12/10/2018] [Indexed: 11/21/2022] Open
Abstract
Neuronal networks within the spinal cord, collectively known as the central pattern generator (CPG), coordinate rhythmic movements underlying locomotion. The transcription factor doublesex and mab-3-related transcription factor 3 (DMRT3) is involved in the differentiation of the dorsal interneuron 6 class of spinal cord interneurons. In horses, a non-sense mutation in the Dmrt3 gene has major effects on gaiting ability, whereas mice lacking the Dmrt3 gene display impaired locomotor activity. Although the Dmrt3 gene is necessary for normal spinal network formation and function in mice, a direct role for Dmrt3-derived neurons in locomotor-related activities has not been demonstrated. Here we present the characteristics of the Dmrt3-derived spinal cord interneurons. Using transgenic mice of both sexes, we characterized interneurons labeled by their expression of Cre driven by the endogenous Dmrt3 promoter. We used molecular, retrograde tracing and electrophysiological techniques to examine the anatomical, morphological, and electrical properties of the Dmrt3-Cre neurons. We demonstrate that inhibitory Dmrt3-Cre neurons receive extensive synaptic inputs, innervate surrounding CPG neurons, intrinsically regulate CPG neuron's electrical activity, and are rhythmically active during fictive locomotion, bursting at frequencies independent to the ventral root output. The present study provides novel insights on the character of spinal Dmrt3-derived neurons, data demonstrating that these neurons participate in locomotor coordination.SIGNIFICANCE STATEMENT In this work, we provide evidence for a role of the Dmrt3 interneurons in spinal cord locomotor circuits as well as molecular and functional insights on the cellular and microcircuit level of the Dmrt3-expressing neurons in the spinal cord. Dmrt3 neurons provide the first example of an interneuron population displaying different oscillation frequencies. This study presents novel findings on an under-reported population of spinal cord neurons, which will aid in deciphering the locomotor network and will facilitate the design and development of therapeutics for spinal cord injury and motor disorders.
Collapse
|
33
|
Manuel M, Zytnicki D. Molecular and electrophysiological properties of mouse motoneuron and motor unit subtypes. CURRENT OPINION IN PHYSIOLOGY 2018; 8:23-29. [PMID: 32551406 DOI: 10.1016/j.cophys.2018.11.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The field of motoneuron and motor unit physiology in mammals has deeply evolved the last decade thanks to the parallel development of mouse genetics and transcriptomic analysis and of in vivo mouse preparations that allow intracellular electrophysiological recordings of motoneurons. We review the efforts made to investigate the electrophysiological properties of the different functional subtypes of mouse motoneurons, to decipher the mosaic of molecular markers specifically expressed in each subtype, and to elucidate which of those factors drive the identity of motoneurons.
Collapse
Affiliation(s)
- Marin Manuel
- Center for Neurophysics, Physiology and Pathology, Paris Descartes University, CNRS UMR 8119, Paris, France
| | - Daniel Zytnicki
- Center for Neurophysics, Physiology and Pathology, Paris Descartes University, CNRS UMR 8119, Paris, France
| |
Collapse
|
34
|
Mei-Ling Liu J, Fair SR, Kaya B, Zuniga JN, Mostafa HR, Alves MJ, Stephens JA, Jones M, Aslan MT, Czeisler C, Otero JJ. Development of a Novel FIJI-Based Method to Investigate Neuronal Circuitry in Neonatal Mice. Dev Neurobiol 2018; 78:1146-1167. [PMID: 30136762 DOI: 10.1002/dneu.22636] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 07/04/2018] [Accepted: 07/30/2018] [Indexed: 12/21/2022]
Abstract
The emergence of systems neuroscience tools requires parallel generation of objective analytical workflows for experimental neuropathology. We developed an objective analytical workflow that we used to determine how specific autonomic neural lineages change during postnatal development. While a wealth of knowledge exists regarding postnatal alterations in respiratory neural function, how these neural circuits change and develop in the weeks following birth remains less clear. In this study, we developed our workflow by combining genetic mouse modeling and quantitative immunofluorescent confocal microscopy and used this to examine the postnatal development of neural circuits derived from the transcription factors NKX2.2 and OLIG3 into three medullary respiratory nuclei. Our automated FIJI-based image analysis workflow rapidly and objectively quantified synaptic puncta in user-defined anatomic regions. Using our objective workflow, we found that the density and estimated total number of Nkx2.2-derived afferents into the pre-Bötzinger Complex significantly decreased with postnatal age during the first three weeks of postnatal life. These data indicate that Nkx2.2-derived structures differentially influence pre-Bötzinger Complex respiratory oscillations at different stages of postnatal development.
Collapse
Affiliation(s)
- Jillian Mei-Ling Liu
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Summer Rose Fair
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Behiye Kaya
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Jessica Nabile Zuniga
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Hasnaa Rashad Mostafa
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Michele Joana Alves
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Julie A Stephens
- Department of Biomedical Informatics, Center for Biostatistics, The Ohio State University College of Medicine, Columbus, Ohio
| | - Mikayla Jones
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - M Tahir Aslan
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - Catherine Czeisler
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| | - José Javier Otero
- Department of Pathology, Division of Neuropathology, The Ohio State University College of Medicine, Columbus, Ohio
| |
Collapse
|
35
|
Yuan Y, Xie S, Darnell JC, Darnell AJ, Saito Y, Phatnani H, Murphy EA, Zhang C, Maniatis T, Darnell RB. Cell type-specific CLIP reveals that NOVA regulates cytoskeleton interactions in motoneurons. Genome Biol 2018; 19:117. [PMID: 30111345 PMCID: PMC6092797 DOI: 10.1186/s13059-018-1493-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 07/24/2018] [Indexed: 12/30/2022] Open
Abstract
Background Alternative RNA processing plays an essential role in shaping cell identity and connectivity in the central nervous system. This is believed to involve differential regulation of RNA processing in various cell types. However, in vivo study of cell type-specific post-transcriptional regulation has been a challenge. Here, we describe a sensitive and stringent method combining genetics and CLIP (crosslinking and immunoprecipitation) to globally identify regulatory interactions between NOVA and RNA in the mouse spinal cord motoneurons. Results We developed a means of undertaking motoneuron-specific CLIP to explore motoneuron-specific protein–RNA interactions relative to studies of the whole spinal cord in mouse. This allowed us to pinpoint differential RNA regulation specific to motoneurons, revealing a major role for NOVA in regulating cytoskeleton interactions in motoneurons. In particular, NOVA specifically promotes the palmitoylated isoform of the cytoskeleton protein Septin 8 in motoneurons, which enhances dendritic arborization. Conclusions Our study demonstrates that cell type-specific RNA regulation is important for fine tuning motoneuron physiology and highlights the value of defining RNA processing regulation at single cell type resolution. Electronic supplementary material The online version of this article (10.1186/s13059-018-1493-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yuan Yuan
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Shirley Xie
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Jennifer C Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Andrew J Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Yuhki Saito
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Hemali Phatnani
- New York Genome Center, 101 Avenue of the Americas, New York, NY, 10013, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Elisabeth A Murphy
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA
| | - Chaolin Zhang
- Department of Systems Biology, Columbia University, New York, NY, 10032, USA.,Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.,Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Tom Maniatis
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, 10032, USA.,Center for Motor Neuron Biology and Disease, Columbia University, New York, NY, 10032, USA
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA. .,Howard Hughes Medical Institute, The Rockefeller University, 1230 York Ave., New York, NY, 10065, USA.
| |
Collapse
|
36
|
|
37
|
Abstract
A subgroup of the neurons that control muscles becomes less excitable shortly before the symptoms of ALS develop.
Collapse
Affiliation(s)
- Simon A Sharples
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada
- Department of NeuroscienceUniversity of CalgaryCalgaryCanada
| | - Patrick J Whelan
- Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary MedicineUniversity of CalgaryCalgaryCanada
| |
Collapse
|
38
|
Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, Graybuck LT, Peeler DJ, Mukherjee S, Chen W, Pun SH, Sellers DL, Tasic B, Seelig G. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science 2018; 360:176-182. [PMID: 29545511 PMCID: PMC7643870 DOI: 10.1126/science.aam8999] [Citation(s) in RCA: 809] [Impact Index Per Article: 134.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 09/30/2017] [Accepted: 02/26/2018] [Indexed: 12/11/2022]
Abstract
To facilitate scalable profiling of single cells, we developed split-pool ligation-based transcriptome sequencing (SPLiT-seq), a single-cell RNA-seq (scRNA-seq) method that labels the cellular origin of RNA through combinatorial barcoding. SPLiT-seq is compatible with fixed cells or nuclei, allows efficient sample multiplexing, and requires no customized equipment. We used SPLiT-seq to analyze 156,049 single-nucleus transcriptomes from postnatal day 2 and 11 mouse brains and spinal cords. More than 100 cell types were identified, with gene expression patterns corresponding to cellular function, regional specificity, and stage of differentiation. Pseudotime analysis revealed transcriptional programs driving four developmental lineages, providing a snapshot of early postnatal development in the murine central nervous system. SPLiT-seq provides a path toward comprehensive single-cell transcriptomic analysis of other similarly complex multicellular systems.
Collapse
Affiliation(s)
| | - Charles M Roco
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Richard A Muscat
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Anna Kuchina
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Paul Sample
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Zizhen Yao
- Allen Institute for Brain Science, Seattle, WA, USA
| | | | - David J Peeler
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Sumit Mukherjee
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA
| | - Wei Chen
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
| | - Suzie H Pun
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Drew L Sellers
- Department of Bioengineering, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, Seattle, WA, USA
| | | | - Georg Seelig
- Department of Electrical Engineering, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| |
Collapse
|
39
|
Martínez-Silva MDL, Imhoff-Manuel RD, Sharma A, Heckman CJ, Shneider NA, Roselli F, Zytnicki D, Manuel M. Hypoexcitability precedes denervation in the large fast-contracting motor units in two unrelated mouse models of ALS. eLife 2018; 7:30955. [PMID: 29580378 PMCID: PMC5922970 DOI: 10.7554/elife.30955] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
Hyperexcitability has been suggested to contribute to motoneuron degeneration in amyotrophic lateral sclerosis (ALS). If this is so, and given that the physiological type of a motor unit determines the relative susceptibility of its motoneuron in ALS, then one would expect the most vulnerable motoneurons to display the strongest hyperexcitability prior to their degeneration, whereas the less vulnerable should display a moderate hyperexcitability, if any. We tested this hypothesis in vivo in two unrelated ALS mouse models by correlating the electrical properties of motoneurons with their physiological types, identified based on their motor unit contractile properties. We found that, far from being hyperexcitable, the most vulnerable motoneurons become unable to fire repetitively despite the fact that their neuromuscular junctions were still functional. Disease markers confirm that this loss of function is an early sign of degeneration. Our results indicate that intrinsic hyperexcitability is unlikely to be the cause of motoneuron degeneration. Amyotrophic lateral sclerosis (ALS), also known as Lou Gehrig's disease, is a fatal disorder of the nervous system. Early symptoms include muscle weakness, unsteadiness and slurred speech. These symptoms arise because the neurons that control muscles – the motoneurons – lose their ability to make the muscles contract. Eventually, the muscles become paralyzed, with more and more muscles affected over time. Most patients die within a few years of diagnosis when the disease destroys the muscles that control breathing. Muscles are made up of muscle fibers. Each motoneuron controls a bundle of muscle fibers, and the motoneuron and its muscle fibers together make up a motor unit. A single muscle contains hundreds of motor units. These consist of several different types, which differ in how many muscle fibers they contain, how fast those muscle fibers can contract, and how fatigable the muscle fibers are. In ALS, motoneurons become detached from their muscle fibers, causing motor units to break down. But what triggers this process? One long-standing idea is that motoneurons begin to respond excessively to commands from the brain and spinal cord. In other words, they become hyperexcitable, which ultimately leads to their death. But some more recent studies of ALS suggest the opposite, namely that motoneurons become less active, or hypoexcitable. To distinguish between these possibilities, Martinez-Silva et al. took advantage of the fact that different types of motor unit break down at different rates in ALS. Large motor units containing fast-contracting muscle fibers break down before smaller motor units. By measuring the activity of motor units in two mouse models of ALS, Martinez-Silva et al. showed that large motoneurons are hypoexcitable. In other words, the motoneurons that are most vulnerable to ALS respond too little to commands from the nervous system, rather than too much. Studies of specific proteins inside the cells confirmed that hypoexcitable motoneurons are further along in the disease process than other motoneurons. Hypoexcitability is thus a key player in the ALS disease process. Developing drugs to target this hypoexcitability may be a promising strategy for the future of this condition.
Collapse
Affiliation(s)
| | - Rebecca D Imhoff-Manuel
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France
| | - Aarti Sharma
- Center for Motor Neuron Biology and Disease, Department of Neurology, Columbia University, New York, United States
| | - C J Heckman
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, United States.,Department of Physical Medicine and Rehabilitation, Northwestern University, Feinberg School of Medicine, Chicago, United States.,Department of Physical Therapy and Human Movement Science, Northwestern University, Feinberg School of Medicine, Chicago, United States
| | - Neil A Shneider
- Center for Motor Neuron Biology and Disease, Department of Neurology, Columbia University, New York, United States
| | | | - Daniel Zytnicki
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France
| | - Marin Manuel
- Centre de Neurophysique, Physiologie et Pathologie, CNRS, Université Paris Descartes, Paris, France.,Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, United States
| |
Collapse
|
40
|
Henriques A, Croixmarie V, Bouscary A, Mosbach A, Keime C, Boursier-Neyret C, Walter B, Spedding M, Loeffler JP. Sphingolipid Metabolism Is Dysregulated at Transcriptomic and Metabolic Levels in the Spinal Cord of an Animal Model of Amyotrophic Lateral Sclerosis. Front Mol Neurosci 2018; 10:433. [PMID: 29354030 PMCID: PMC5758557 DOI: 10.3389/fnmol.2017.00433] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022] Open
Abstract
Lipid metabolism is drastically dysregulated in amyotrophic lateral sclerosis and impacts prognosis of patients. Animal models recapitulate alterations in the energy metabolism, including hypermetabolism and severe loss of adipose tissue. To gain insight into the molecular mechanisms underlying disease progression in amyotrophic lateral sclerosis, we have performed RNA-sequencing and lipidomic profiling in spinal cord of symptomatic SOD1G86R mice. Spinal transcriptome of SOD1G86R mice was characterized by differential expression of genes related to immune system, extracellular exosome, and lysosome. Hypothesis-driven identification of metabolites showed that lipids, including sphingomyelin(d18:0/26:1), ceramide(d18:1/22:0), and phosphatidylcholine(o-22:1/20:4) showed profound altered levels. A correlation between disease severity and gene expression or metabolite levels was found for sphingosine, ceramide(d18:1/26:0), Sgpp2, Sphk1, and Ugt8a. Joint-analysis revealed a significant enrichment of glycosphingolipid metabolism in SOD1G86R mice, due to the down-regulation of ceramide, glucosylceramide, and lactosylceramide and the overexpression of genes involved in their recycling in the lysosome. A drug-gene interaction database was interrogated to identify potential drugs able to modulate the dysregulated genes from the signaling pathway. Our results suggest that complex lipids are pivotally changed during the first phase of motor symptoms in an animal model of amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Alexandre Henriques
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France.,Spedding Research Solutions SAS, Le Vesinet, France
| | | | - Alexandra Bouscary
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| | - Althéa Mosbach
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| | - Céline Keime
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM, U964, CNRS, UMR7104, Université de Strasbourg, Illkirch, France
| | | | | | | | - Jean-Philippe Loeffler
- Université de Strasbourg, UMR_S 1118, Fédération de Médecine Translationnelle, Strasbourg, France.,INSERM, U1118, Mécanismes Centraux et Périphériques de la Neurodégénérescence, Strasbourg, France
| |
Collapse
|
41
|
Colón A, Guo X, Akanda N, Cai Y, Hickman JJ. Functional analysis of human intrafusal fiber innervation by human γ-motoneurons. Sci Rep 2017; 7:17202. [PMID: 29222416 PMCID: PMC5722897 DOI: 10.1038/s41598-017-17382-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 11/21/2017] [Indexed: 11/09/2022] Open
Abstract
Investigation of neuromuscular deficits and diseases such as SMA, as well as for next generation prosthetics, utilizing in vitro phenotypic models would benefit from the development of a functional neuromuscular reflex arc. The neuromuscular reflex arc is the system that integrates the proprioceptive information for muscle length and activity (sensory afferent), to modify motoneuron output to achieve graded muscle contraction (actuation efferent). The sensory portion of the arc is composed of proprioceptive sensory neurons and the muscle spindle, which is embedded in the muscle tissue and composed of intrafusal fibers. The gamma motoneurons (γ-MNs) that innervate these fibers regulate the intrafusal fiber's stretch so that they retain proper tension and sensitivity during muscle contraction or relaxation. This mechanism is in place to maintain the sensitivity of proprioception during dynamic muscle activity and to prevent muscular damage. In this study, a co-culture system was developed for innervation of intrafusal fibers by human γ-MNs and demonstrated by morphological and immunocytochemical analysis, then validated by functional electrophysiological evaluation. This human-based fusimotor model and its incorporation into the reflex arc allows for a more accurate recapitulation of neuromuscular function for applications in disease investigations, drug discovery, prosthetic design and neuropathic pain investigations.
Collapse
Affiliation(s)
- A Colón
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - X Guo
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - N Akanda
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - Y Cai
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA
| | - J J Hickman
- Hybrid Systems Lab, NanoScience Technology Center, University of Central Florida, 12424 Research Parkway, Suite 400, Orlando, FL, 32826, USA.
| |
Collapse
|
42
|
Mancarci BO, Toker L, Tripathy SJ, Li B, Rocco B, Sibille E, Pavlidis P. Cross-Laboratory Analysis of Brain Cell Type Transcriptomes with Applications to Interpretation of Bulk Tissue Data. eNeuro 2017; 4:ENEURO.0212-17.2017. [PMID: 29204516 PMCID: PMC5707795 DOI: 10.1523/eneuro.0212-17.2017] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 10/25/2017] [Accepted: 10/31/2017] [Indexed: 12/13/2022] Open
Abstract
Establishing the molecular diversity of cell types is crucial for the study of the nervous system. We compiled a cross-laboratory database of mouse brain cell type-specific transcriptomes from 36 major cell types from across the mammalian brain using rigorously curated published data from pooled cell type microarray and single-cell RNA-sequencing (RNA-seq) studies. We used these data to identify cell type-specific marker genes, discovering a substantial number of novel markers, many of which we validated using computational and experimental approaches. We further demonstrate that summarized expression of marker gene sets (MGSs) in bulk tissue data can be used to estimate the relative cell type abundance across samples. To facilitate use of this expanding resource, we provide a user-friendly web interface at www.neuroexpresso.org.
Collapse
Affiliation(s)
- B. Ogan Mancarci
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver V6T 1Z4, Canada
- Department of Psychiatry, University of British Columbia, Vancouver V6T 2A1, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Lilah Toker
- Department of Psychiatry, University of British Columbia, Vancouver V6T 2A1, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Shreejoy J. Tripathy
- Department of Psychiatry, University of British Columbia, Vancouver V6T 2A1, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Brenna Li
- Department of Psychiatry, University of British Columbia, Vancouver V6T 2A1, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Brad Rocco
- Campbell Family Mental Health Research Institute of CAMH
- Department of Psychiatry and the Department of Pharmacology and Toxicology, University of Toronto, Vancouver M5S 1A8, Canada
| | - Etienne Sibille
- Campbell Family Mental Health Research Institute of CAMH
- Department of Psychiatry and the Department of Pharmacology and Toxicology, University of Toronto, Vancouver M5S 1A8, Canada
| | - Paul Pavlidis
- Department of Psychiatry, University of British Columbia, Vancouver V6T 2A1, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
43
|
Gezelius H, Moreno-Juan V, Mezzera C, Thakurela S, Rodríguez-Malmierca LM, Pistolic J, Benes V, Tiwari VK, López-Bendito G. Genetic Labeling of Nuclei-Specific Thalamocortical Neurons Reveals Putative Sensory-Modality Specific Genes. Cereb Cortex 2017; 27:5054-5069. [PMID: 27655933 PMCID: PMC7610997 DOI: 10.1093/cercor/bhw290] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/22/2016] [Indexed: 11/14/2022] Open
Abstract
The thalamus is a central brain structure with topographically ordered long-range axonal projections that convey sensory information to the cortex via distinct nuclei. Although there is an increasing knowledge about genes important for thalamocortical (TC) development, the identification of genetic landmarks of the distinct thalamic nuclei during the embryonic development has not been addressed systematically. Indeed, a more comprehensive understanding of how the axons from the individual nuclei find their way and connect to their corresponding cortical area is called for. Here, we used a genetic dual labeling strategy in mice to purify distinct principal sensory thalamic neurons. Subsequent genome-wide transcriptome profiling revealed genes specifically expressed in each nucleus during embryonic development. Analysis of regulatory regions of the identified genes revealed key transcription factors and networks that likely underlie the specification of individual sensory-modality TC connections. Finally, the importance of correct axon targeting for the specific sensory-modality population transcriptome was evidenced in a Sema6A mutant, in which visual TC axons are derailed at embryonic life. In sum, our data determined the developmental transcriptional profile of the TC neurons that will eventually support sensory processing.
Collapse
Affiliation(s)
- Henrik Gezelius
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| | - Verónica Moreno-Juan
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| | - Cecilia Mezzera
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
- Present address: Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, 1400-038 Lisbon, Portugal
| | - Sudhir Thakurela
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Luis Miguel Rodríguez-Malmierca
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| | | | - Vladimir Benes
- EMBL, GeneCore, Meyerhofstr. 1, D-69117 Heidelberg, Germany
| | - Vijay K. Tiwari
- Institute of Molecular Biology (IMB), Ackermannweg 4, D-55128 Mainz, Germany
| | - Guillermina López-Bendito
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Sant Joan d’Alacant, 03550, Spain
| |
Collapse
|
44
|
Developmental Disruption of Recurrent Inhibitory Feedback Results in Compensatory Adaptation in the Renshaw Cell-Motor Neuron Circuit. J Neurosci 2017; 37:5634-5647. [PMID: 28483975 DOI: 10.1523/jneurosci.0949-16.2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/06/2017] [Accepted: 04/25/2017] [Indexed: 01/12/2023] Open
Abstract
When activating muscles, motor neurons in the spinal cord also activate Renshaw cells, which provide recurrent inhibitory feedback to the motor neurons. The tight coupling with motor neurons suggests that Renshaw cells have an integral role in movement, a role that is yet to be elucidated. Here we used the selective expression of the nicotinic cholinergic receptor α2 (Chrna2) in mice to genetically target the vesicular inhibitory amino acid transporter (VIAAT) in Renshaw cells. Loss of VIAAT from Chrna2Cre -expressing Renshaw cells did not impact any aspect of drug-induced fictive locomotion in the neonatal mouse or change gait, motor coordination, or grip strength in adult mice of both sexes. However, motor neurons from neonatal mice lacking VIAAT in Renshaw cells received spontaneous inhibitory synaptic input with a reduced frequency, showed lower input resistance, and had an increased number of proprioceptive glutamatergic and calbindin-labeled putative Renshaw cell synapses on their soma and proximal dendrites. Concomitantly, Renshaw cells developed with increased excitability and a normal number of cholinergic motor neuron synapses, indicating a compensatory mechanism within the recurrent inhibitory feedback circuit. Our data suggest an integral role for Renshaw cell signaling in shaping the excitability and synaptic input to motor neurons.SIGNIFICANCE STATEMENT We here provide a deeper understanding of spinal cord circuit formation and the repercussions for the possible role for Renshaw cells in speed and force control. Our results suggest that while Renshaw cells are not directly required as an integral part of the locomotor coordination machinery, the development of their electrophysiological character is dependent on vesicular inhibitory amino acid transporter-mediated signaling. Further, Renshaw cell signaling is closely associated with the molding of motor neuron character proposing the existence of a concerted maturation process, which seems to endow this particular spinal cord circuit with the plasticity to compensate for loss of the Renshaw cell in adult circuit function.
Collapse
|
45
|
Tu WY, Simpson JE, Highley JR, Heath PR. Spinal muscular atrophy: Factors that modulate motor neurone vulnerability. Neurobiol Dis 2017; 102:11-20. [PMID: 28161391 DOI: 10.1016/j.nbd.2017.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 01/10/2017] [Accepted: 01/31/2017] [Indexed: 01/07/2023] Open
Abstract
Spinal muscular atrophy (SMA), a leading genetic cause of infant death, is a neurodegenerative disease characterised by the selective loss of particular groups of motor neurones in the anterior horn of the spinal cord with concomitant muscle weakness. To date, no effective treatment is available, however, there are ongoing clinical trials are in place which promise much for the future. However, there remains an ongoing problem in trying to link a single gene loss to motor neurone degeneration. Fortunately, given successful disease models that have been established and intensive studies on SMN functions in the past ten years, we are fast approaching the stage of identifying the underlying mechanisms of SMA pathogenesis Here we discuss potential disease modifying factors on motor neurone vulnerability, in the belief that these factors give insight into the pathological mechanisms of SMA and therefore possible therapeutic targets.
Collapse
Affiliation(s)
- Wen-Yo Tu
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - J Robin Highley
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
| |
Collapse
|
46
|
Spinal Hb9::Cre-derived excitatory interneurons contribute to rhythm generation in the mouse. Sci Rep 2017; 7:41369. [PMID: 28128321 PMCID: PMC5269678 DOI: 10.1038/srep41369] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 12/20/2016] [Indexed: 11/14/2022] Open
Abstract
Rhythm generating neurons are thought to be ipsilaterally-projecting excitatory neurons in the thoracolumbar mammalian spinal cord. Recently, a subset of Shox2 interneurons (Shox2 non-V2a INs) was found to fulfill these criteria and make up a fraction of the rhythm-generating population. Here we use Hb9::Cre mice to genetically manipulate Hb9::Cre-derived excitatory interneurons (INs) in order to determine the role of these INs in rhythm generation. We demonstrate that this line captures a consistent population of spinal INs which is mixed with respect to neurotransmitter phenotype and progenitor domain, but does not overlap with the Shox2 non-V2a population. We also show that Hb9::Cre-derived INs include the comparatively small medial population of INs which continues to express Hb9 postnatally. When excitatory neurotransmission is selectively blocked by deleting Vglut2 from Hb9::Cre-derived INs, there is no difference in left-right and/or flexor-extensor phasing between these cords and controls, suggesting that excitatory Hb9::Cre-derived INs do not affect pattern generation. In contrast, the frequencies of locomotor activity are significantly lower in cords from Hb9::Cre-Vglut2Δ/Δ mice than in cords from controls. Collectively, our findings indicate that excitatory Hb9::Cre-derived INs constitute a distinct population of neurons that participates in the rhythm generating kernel for spinal locomotion.
Collapse
|
47
|
Jarvie BC, Palmiter RD. HSD2 neurons in the hindbrain drive sodium appetite. Nat Neurosci 2016; 20:167-169. [PMID: 27918529 DOI: 10.1038/nn.4451] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 11/02/2016] [Indexed: 12/11/2022]
Abstract
Sodium-depleted animals develop an appetite for aversive concentrations of sodium. Here we show that chemogenetic activation of aldosterone-sensitive neurons that express 11β-hydroxysteroid dehydrogenase type 2 (HSD2) in the nucleus of the solitary tract is sufficient to drive consumption of sodium-containing solutions in mice, independently of thirst or hunger. These HSD2-positive neurons are necessary for full expression of sodium appetite and have distinct downstream targets that are activated during sodium depletion.
Collapse
Affiliation(s)
- Brooke C Jarvie
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Richard D Palmiter
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.,Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| |
Collapse
|
48
|
Misawa H, Inomata D, Kikuchi M, Maruyama S, Moriwaki Y, Okuda T, Nukina N, Yamanaka T. Reappraisal of VAChT-Cre: Preference in slow motor neurons innervating type I or IIa muscle fibers. Genesis 2016; 54:568-572. [PMID: 27596971 DOI: 10.1002/dvg.22979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/26/2022]
Abstract
VAChT-Cre.Fast and VAChT-Cre.Slow mice selectively express Cre recombinase in approximately one half of postnatal somatic motor neurons. The mouse lines have been used in various studies with selective genetic modifications in adult motor neurons. In the present study, we crossed VAChT-Cre lines with a reporter line, CAG-Syp/tdTomato, in which synaptophysin-tdTomato fusion proteins are efficiently sorted to axon terminals, making it possible to label both cell bodies and axon terminals of motor neurons. In the mice, Syp/tdTomato fluorescence preferentially co-localized with osteopontin, a recently discovered motor neuron marker for slow-twitch fatigue-resistant (S) and fast-twitch fatigue-resistant (FR) types. The fluorescence did not preferentially co-localize with matrix metalloproteinase-9, a marker for fast-twitch fatigable (FF) motor neurons. In the neuromuscular junctions, Syp/tdTomato fluorescence was detected mainly in motor nerve terminals that innervate type I or IIa muscle fibers. These results suggest that the VAChT-Cre lines are Cre-drivers that have selectivity in S and FR motor neurons. In order to avoid confusion, we have changed the mouse line names from VAChT-Cre.Fast and VAChT-Cre.Slow to VAChT-Cre.Early and VAChT-Cre.Late, respectively. The mouse lines will be useful tools to study slow-type motor neurons, in relation to physiology and pathology.
Collapse
Affiliation(s)
- Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Daijiro Inomata
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Miseri Kikuchi
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Sae Maruyama
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Yasuhiro Moriwaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Takashi Okuda
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo, Japan
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, Kyoto, Japan
| |
Collapse
|
49
|
Hagimoto K, Takami S, Murakami F, Tanabe Y. Distinct migratory behaviors of striosome and matrix cells underlying the mosaic formation in the developing striatum. J Comp Neurol 2016; 525:794-817. [PMID: 27532901 DOI: 10.1002/cne.24096] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 08/07/2016] [Accepted: 08/08/2016] [Indexed: 01/19/2023]
Abstract
The striatum, the largest nucleus of the basal ganglia controlling motor and cognitive functions, can be characterized by a labyrinthine mosaic organization of striosome/matrix compartments. It is unclear how striosome/matrix mosaic formation is spatially and temporally controlled at the cellular level during striatal development. Here, by combining in vivo electroporation and brain slice cultures, we set up a prospective experimental system in which we differentially labeled striosome and matrix cells from the time of birth and followed their distributions and migratory behaviors. Our results showed that, at an initial stage of striosome/matrix mosaic formation, striosome cells were mostly stationary, whereas matrix cells actively migrated in multiple directions regardless of the presence of striosome cells. The mostly stationary striosome cells were still able to associate to form patchy clusters via attractive interactions. Our results suggest that the restricted migratory capability of striosome cells may allow them to cluster together only when they happen to be located in close proximity to each other and are not separated by actively migrating matrix cells. The way in which the mutidirectionally migrating matrix cells intermingle with the mostly stationary striosome cells may therefore determine the topographic features of striosomes. At later stages, the actively migrating matrix cells began to repulse the patchy clusters of striosomes, presumably enhancing the striosome cluster formation and the segregation and eventual formation of dichotomous homogeneous striosome/matrix compartments. Overall, our study reveals temporally distinct migratory behaviors of striosome/matrix cells, which may underlie the sequential steps of mosaic formation in the developing striatum. J. Comp. Neurol. 525:794-817, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kazuya Hagimoto
- Department of Developmental Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Saki Takami
- Department of Developmental Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Fujio Murakami
- Department of Developmental Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Yasuto Tanabe
- Department of Developmental Neuroscience, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
50
|
Morisaki Y, Niikura M, Watanabe M, Onishi K, Tanabe S, Moriwaki Y, Okuda T, Ohara S, Murayama S, Takao M, Uchida S, Yamanaka K, Misawa H. Selective Expression of Osteopontin in ALS-resistant Motor Neurons is a Critical Determinant of Late Phase Neurodegeneration Mediated by Matrix Metalloproteinase-9. Sci Rep 2016; 6:27354. [PMID: 27264390 PMCID: PMC4893611 DOI: 10.1038/srep27354] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
Differential vulnerability among motor neuron (MN) subtypes is a fundamental feature of amyotrophic lateral sclerosis (ALS): fast-fatigable (FF) MNs are more vulnerable than fast fatigue-resistant (FR) or slow (S) MNs. The reason for this selective vulnerability remains enigmatic. We report here that the extracellular matrix (ECM) protein osteopontin (OPN) is selectively expressed by FR and S MNs and ALS-resistant motor pools, whereas matrix metalloproteinase-9 (MMP-9) is selectively expressed by FF MNs. OPN is secreted and accumulated as extracellular granules in ECM in three ALS mouse models and a human ALS patient. In SOD1(G93A) mice, OPN/MMP-9 double positivity marks remodeled FR and S MNs destined to compensate for lost FF MNs before ultimately dying. Genetic ablation of OPN in SOD1(G93A) mice delayed disease onset but then accelerated disease progression. OPN induced MMP-9 up-regulation via αvβ3 integrin in ChAT-expressing Neuro2a cells, and also induced CD44-mediated astrocyte migration and microglial phagocytosis in a non-cell-autonomous manner. Our results demonstrate that OPN expressed by FR/S MNs is involved in the second-wave neurodegeneration by up-regulating MMP-9 through αvβ3 integrin in the mouse model of ALS. The differences in OPN/MMP-9 expression profiles in MN subsets partially explain the selective MN vulnerability in ALS.
Collapse
Affiliation(s)
- Yuta Morisaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Mamiko Niikura
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Mizuho Watanabe
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Kosuke Onishi
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Shogo Tanabe
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Yasuhiro Moriwaki
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Takashi Okuda
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| | - Shinji Ohara
- Department of Neurology, Matsumoto Medical Center, Chushin-Matsumoto Hospital, Matsumoto 399-0021, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Masaki Takao
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Sae Uchida
- Department of Autonomic Neuroscience, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
| | - Koji Yamanaka
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya 464-8601, Japan
| | - Hidemi Misawa
- Division of Pharmacology, Faculty of Pharmacy, Keio University, Tokyo 105-8512, Japan
| |
Collapse
|