1
|
Fischer M, Kukley M. Hidden in the white matter: Current views on interstitial white matter neurons. Neuroscientist 2024:10738584241282969. [PMID: 39365761 DOI: 10.1177/10738584241282969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2024]
Abstract
The mammalian brain comprises two structurally and functionally distinct compartments: the gray matter (GM) and the white matter (WM). In humans, the WM constitutes approximately half of the brain volume, yet it remains significantly less investigated than the GM. The major cellular elements of the WM are neuronal axons and glial cells. However, the WM also contains cell bodies of the interstitial neurons, estimated to number 10 to 28 million in the adult bat brain, 67 million in Lar gibbon brain, and 450 to 670 million in the adult human brain, representing as much as 1.3%, 2.25%, and 3.5% of all neurons in the cerebral cortex, respectively. Many studies investigated the interstitial WM neurons (IWMNs) using immunohistochemistry, and some information is available regarding their electrophysiological properties. However, the functional role of IWMNs in physiologic and pathologic conditions largely remains unknown. This review aims to provide a concise update regarding the distribution and properties of interstitial WM neurons, highlight possible functions of these cells as debated in the literature, and speculate about other possible functions of the IWMNs and their interactions with glial cells. We hope that our review will inspire new research on IWMNs, which represent an intriguing cell population in the brain.
Collapse
Affiliation(s)
- Maximilian Fischer
- Institut de Neurociències and Departamento Bioquímica i Biología Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Maria Kukley
- Achucarro Basque Centre for Neuroscience, Leioa, Spain
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
2
|
Wiesner D, Feldengut S, Woelfle S, Boeckers TM, Ludolph AC, Roselli F, Del Tredici K. Neuropeptide FF (NPFF)-positive nerve cells of the human cerebral cortex and white matter in controls, selected neurodegenerative diseases, and schizophrenia. Acta Neuropathol Commun 2024; 12:108. [PMID: 38943180 PMCID: PMC11212262 DOI: 10.1186/s40478-024-01792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/02/2024] [Indexed: 07/01/2024] Open
Abstract
We quantified and determined for the first time the distribution pattern of the neuropeptide NPFF in the human cerebral cortex and subjacent white matter. To do so, we studied n = 9 cases without neurological disorders and n = 22 cases with neurodegenerative diseases, including sporadic amyotrophic lateral sclerosis (ALS, n = 8), Alzheimer's disease (AD, n = 8), Pick's disease (PiD, n = 3), and schizophrenia (n = 3). NPFF-immunopositive cells were located chiefly, but not exclusively, in the superficial white matter and constituted there a subpopulation of white matter interstitial cells (WMIC): Pyramidal-like and multipolar somata predominated in the gyral crowns, whereas bipolar and ovoid somata predominated in the cortex surrounding the sulci. Their sparsely ramified axons were unmyelinated and exhibited NPFF-positive bead-like varicosities. We found significantly fewer NPFF-immunopositive cells in the gray matter of the frontal, cingulate, and superior temporal gyri of both sporadic ALS and late-stage AD patients than in controls, and significantly fewer NPFF-positive cells in the subjacent as well as deep white matter of the frontal gyrus of these patients compared to controls. Notably, the number of NPFF-positive cells was also significantly lower in the hippocampal formation in AD compared to controls. In PiD, NPFF-positive cells were present in significantly lower numbers in the gray and white matter of the cingulate and frontal gyrii in comparison to controls. In schizophrenic patients, lower wNPFF cell counts in the neocortex were significant and global (cingulate, frontal, superior temporal gyrus, medial, and inferior gyri). The precise functions of NPFF-positive cells and their relationship to the superficial corticocortical white matter U-fibers are currently unknown. Here, NPFF immunohistochemistry and expression characterize a previously unrecognized population of cells in the human brain, thereby providing a new entry-point for investigating their physiological and pathophysiological roles.
Collapse
Affiliation(s)
- Diana Wiesner
- Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany
- DZNE, Ulm Site, 89081, Ulm, Germany
| | - Simone Feldengut
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany
| | - Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | - Tobias M Boeckers
- DZNE, Ulm Site, 89081, Ulm, Germany
- Institute for Anatomy and Cell Biology, Ulm University, 89081, Ulm, Germany
| | | | - Francesco Roselli
- Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany.
- DZNE, Ulm Site, 89081, Ulm, Germany.
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, Ulm University, 89081, Ulm, Germany
| |
Collapse
|
3
|
Ahmed B, Duque A, Rakic P, Molnár Z. Correlation between the number of interstitial neurons of the white matter and number of neurons within cortical layers: Histological analyses in postnatal macaque. J Comp Neurol 2024; 532:e25626. [PMID: 39031698 PMCID: PMC11262481 DOI: 10.1002/cne.25626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 04/16/2024] [Accepted: 05/09/2024] [Indexed: 07/22/2024]
Abstract
We have examined the number and distribution of NeuN-immunoreactive cortical white matter interstitial cells (WMICs) and compared them to the neurons in layers 1-6 across the overlying cortex in coronal sections from postnatal macaques. The data have been gathered from over 300 selected regions at gyral crowns, at sulci, and at linear regions of the cortex where we also determined cortical layer thicknesses: standard thicknesses and tangential thicknesses. Cortical thicknesses and cell numbers showed variability according to gyral, linear, or sulcal regions. In spite of these variations, our standardized cell numbers in layers 1 to 6b and interstitial cells underlying layer 6b-white matter boundary have shown a consistent correlation between the number of WMICs and the number of layer 5 and 6a cortical neurons on all cortical regions studied: for each WMIC, there are on the order of five cortical neurons in layer 5 and approximately three cortical neurons in layer 6a, irrespective of the origins of the selected cortical area or whether they are from gyral, linear, or sulcal regions. We propose that the number of interstitial neurons in the postnatal macaque cortex is correlated to the density of neurons within layers 5 and 6a and, from a clinical perspective, the change in density or distribution of interstitial neurons in schizophrenia or epilepsy may in fact be linked to the number of layers 5 and 6a neurons.
Collapse
Affiliation(s)
- Bashir Ahmed
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, United Kingdom
| | - Alvaro Duque
- Yale University School of Medicine, Department of Neuroscience, New Haven, CT, USA
| | - Pasko Rakic
- Yale University School of Medicine, Department of Neuroscience, New Haven, CT, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Zouridakis A, Ayala I, Minogue G, Kawles A, Keszycki R, Macomber A, Bigio E, Geula C, Mesulam MM, Gefen T. Shades of gray in human white matter. J Comp Neurol 2023; 531:2109-2120. [PMID: 37376715 PMCID: PMC10751392 DOI: 10.1002/cne.25512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/22/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023]
Abstract
Anatomists have long expressed interest in neurons of the white matter, which is by definition supposed to be free of neurons. Hypotheses regarding their biochemical signature and physiological function are mainly derived from animal models. Here, we investigated 15 whole-brain human postmortem specimens, including cognitively normal cases and those with pathologic Alzheimer's disease (AD). Quantitative and qualitative methods were used to investigate differences in neuronal size and density, and the relationship between neuronal processes and vasculature. Double staining was used to evaluate colocalization of neurochemicals. Two topographically distinct populations of neurons emerged: one appearing to arise from developmental subplate neurons and the other embedded within deep, subcortical white matter. Both populations appeared to be neurochemically heterogeneous, showing positive reactivity to acetylcholinesterase (AChE) [but not choline acetyltransferase (ChAT)], neuronal nuclei (NeuN), nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-d), microtubule-associated protein 2 (MAP-2), somatostatin (SOM), nonphosphorylated neurofilament protein (SMI-32), and calcium-binding proteins calbindin-D28K (CB), calretinin (CRT), and parvalbumin (PV). PV was more richly expressed in superficial as opposed to deep white matter neurons (WMNs); subplate neurons were also significantly larger than their deeper counterparts. NADPH-d, a surrogate for nitric oxide synthase, allowed for the striking morphological visualization of subcortical WMNs. NADPH-d-positive subcortical neurons tended to embrace the outer walls of microvessels, suggesting a functional role in vasodilation. The presence of AChE positivity in these neurons, but not ChAT, suggests that they are cholinoceptive but noncholinergic. WMNs were also significantly smaller in AD compared to control cases. These observations provide a landscape for future systematic investigations.
Collapse
Affiliation(s)
- Antonia Zouridakis
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ivan Ayala
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Grace Minogue
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Allegra Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rachel Keszycki
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alyssa Macomber
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Eileen Bigio
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M.-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
5
|
Tapia-González S, DeFelipe J. Secretagogin as a marker to distinguish between different neuron types in human frontal and temporal cortex. Front Neuroanat 2023; 17:1210502. [PMID: 38020216 PMCID: PMC10646422 DOI: 10.3389/fnana.2023.1210502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 09/28/2023] [Indexed: 12/01/2023] Open
Abstract
The principal aim of the present work was to chemically characterize the population of neurons labeled for the calcium binding protein secretagogin (SCGN) in the human frontal and temporal cortices (Brodmann's area 10 and 21, respectively). Both cortical regions are involved in many high cognitive functions that are especially well developed (or unique) in humans, but with different functional roles. The pattern of SCGN immunostaining was rather similar in BA10 and BA21, with all the labeled neurons displaying a non-pyramidal morphology (interneurons). Although SCGN cells were present throughout all layers, they were more frequently observed in layers II, III and IV, whereas in layer I they were found only occasionally. We examined the degree of colocalization of SCGN with parvalbumin (PV) and calretinin (CR), as well as with nitric oxide synthase (nNOS; the enzyme responsible for the synthesis of nitric oxide by neurons) by triple immunostaining. We looked for possible similarities or differences in the coexpression patterns of SCGN with PV, CR and nNOS between BA10 and BA21 throughout the different cortical layers (I-VI). The percentage of colocalization was estimated by counting the number of all labeled cells through columns (1,100-1,400 μm wide) across the entire thickness of the cortex (from the pial surface to the white matter) in 50 μm-thick sections. Several hundred neurons were examined in both cortical regions. We found that SCGN cells include multiple neurochemical subtypes, whose abundance varies according to the cortical area and layer. The present results further highlight the regional specialization of cortical neurons and underline the importance of performing additional experiments to characterize the subpopulation of SCGN cells in the human cerebral cortex in greater detail.
Collapse
Affiliation(s)
- Silvia Tapia-González
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Laboratorio de Neurofisiología Celular, Facultad de Medicina, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Javier DeFelipe
- Laboratorio Cajal de Circuitos Corticales, Centro de Tecnología Biomédica, Universidad Politécnica de Madrid, Madrid, Spain
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), ISCIII, Madrid, Spain
| |
Collapse
|
6
|
Huang Y, Wei PH, Xu L, Chen D, Yang Y, Song W, Yi Y, Jia X, Wu G, Fan Q, Cui Z, Zhao G. Intracranial electrophysiological and structural basis of BOLD functional connectivity in human brain white matter. Nat Commun 2023; 14:3414. [PMID: 37296147 PMCID: PMC10256794 DOI: 10.1038/s41467-023-39067-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
While functional MRI (fMRI) studies have mainly focused on gray matter, recent studies have consistently found that blood-oxygenation-level-dependent (BOLD) signals can be reliably detected in white matter, and functional connectivity (FC) has been organized into distributed networks in white matter. Nevertheless, it remains unclear whether this white matter FC reflects underlying electrophysiological synchronization. To address this question, we employ intracranial stereotactic-electroencephalography (SEEG) and resting-state fMRI data from a group of 16 patients with drug-resistant epilepsy. We find that BOLD FC is correlated with SEEG FC in white matter, and this result is consistent across a wide range of frequency bands for each participant. By including diffusion spectrum imaging data, we also find that white matter FC from both SEEG and fMRI are correlated with white matter structural connectivity, suggesting that anatomical fiber tracts underlie the functional synchronization in white matter. These results provide evidence for the electrophysiological and structural basis of white matter BOLD FC, which could be a potential biomarker for psychiatric and neurological disorders.
Collapse
Affiliation(s)
- Yali Huang
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Peng-Hu Wei
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Longzhou Xu
- Chinese Institute for Brain Research, Beijing, 102206, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China
| | - Desheng Chen
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Yanfeng Yang
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Wenkai Song
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Yangyang Yi
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Xiaoli Jia
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Guowei Wu
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Qingchen Fan
- Chinese Institute for Brain Research, Beijing, 102206, China
| | - Zaixu Cui
- Chinese Institute for Brain Research, Beijing, 102206, China.
| | - Guoguang Zhao
- Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases, Beijing, 100053, China.
- Beijing Municipal Geriatric Medical Research Center, Beijing, 100053, China.
| |
Collapse
|
7
|
Yang J, Wang M, Lv Y, Chen J. Cortical Layer Markers Expression and Increased Synaptic Density in Interstitial Neurons of the White Matter from Drug-Resistant Epilepsy Patients. Brain Sci 2023; 13:brainsci13040626. [PMID: 37190591 DOI: 10.3390/brainsci13040626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/29/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
The interstitial neurons in the white matter of the human and non-human primate cortex share a similar developmental origin with subplate neurons and deep-layer cortical neurons. A subset of interstitial neurons expresses the molecular markers of subplate neurons, but whether interstitial neurons express cortical layer markers in the adult human brain remains unexplored. Here we report the expression of cortical layer markers in interstitial neurons in the white matter of the adult human brain, supporting the hypothesis that interstitial neurons could be derived from cortical progenitor cells. Furthermore, we found increased non-phosphorylated neurofilament protein (NPNFP) expression in interstitial neurons in the white matter of drug-resistant epilepsy patients. We also identified the expression of glutamatergic and g-aminobutyric acid (GABAergic) synaptic puncta that were distributed in the perikarya and dendrites of interstitial neurons. The density of glutamatergic and GABAergic synaptic puncta was increased in interstitial neurons in the white matter of drug-resistant epilepsy patients compared with control brain tissues with no history of epilepsy. Together, our results provide important insights of the molecular identity of interstitial neurons in the adult human white matter. Increased synaptic density of interstitial neurons could result in an imbalanced synaptic network in the white matter and participate as part of the epileptic network in drug-resistant epilepsy.
Collapse
Affiliation(s)
- Jiachao Yang
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou 310058, China
| | - Mi Wang
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yang Lv
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jiadong Chen
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brian Medicine, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Schurr R, Mezer AA. The glial framework reveals white matter fiber architecture in human and primate brains. Science 2021; 374:762-767. [PMID: 34618596 DOI: 10.1126/science.abj7960] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Roey Schurr
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Aviv A Mezer
- Edmond and Lily Safra Center for Brain Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Li G, Jiang S, Paraskevopoulou SE, Chai G, Wei Z, Liu S, Wang M, Xu Y, Fan Z, Wu Z, Chen L, Zhang D, Zhu X. Detection of human white matter activation and evaluation of its function in movement decoding using stereo-electroencephalography (SEEG). J Neural Eng 2021; 18. [PMID: 34284361 DOI: 10.1088/1741-2552/ac160e] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 07/20/2021] [Indexed: 11/11/2022]
Abstract
Objective. White matter tissue takes up approximately 50% of the human brain volume and it is widely known as a messenger conducting information between areas of the central nervous system. However, the characteristics of white matter neural activity and whether white matter neural recordings can contribute to movement decoding are often ignored and still remain largely unknown. In this work, we make quantitative analyses to investigate these two important questions using invasive neural recordings.Approach. We recorded stereo-electroencephalography (SEEG) data from 32 human subjects during a visually-cued motor task, where SEEG recordings can tap into gray and white matter electrical activity simultaneously. Using the proximal tissue density method, we identified the location (i.e. gray or white matter) of each SEEG contact. Focusing on alpha oscillatory and high gamma activities, we compared the activation patterns between gray matter and white matter. Then, we evaluated the performance of such white matter activation in movement decoding.Main results. The results show that white matter also presents activation under the task, in a similar way with the gray matter but at a significantly lower amplitude. Additionally, this work also demonstrates that combing white matter neural activities together with that of gray matter significantly promotes the movement decoding accuracy than using gray matter signals only.Significance. Taking advantage of SEEG recordings from a large number of subjects, we reveal the response characteristics of white matter neural signals under the task and demonstrate its enhancing function in movement decoding. This study highlights the importance of taking white matter activities into consideration in further scientific research and translational applications.
Collapse
Affiliation(s)
- Guangye Li
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China.,These authors contributed to this paper equally and should be considered as co-first authors
| | - Shize Jiang
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, People's Republic of China.,These authors contributed to this paper equally and should be considered as co-first authors
| | - Sivylla E Paraskevopoulou
- National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, United States of America.,These authors contributed to this paper equally and should be considered as co-first authors
| | - Guohong Chai
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zixuan Wei
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Meng Wang
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yang Xu
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Zhen Fan
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zehan Wu
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Liang Chen
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Dingguo Zhang
- Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom
| | - Xiangyang Zhu
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
10
|
Swiegers J, Bhagwandin A, Maseko BC, Sherwood CC, Hård T, Bertelsen MF, Spocter MA, Molnár Z, Manger PR. The distribution, number, and certain neurochemical identities of infracortical white matter neurons in the brains of a southern lesser galago, a black-capped squirrel monkey, and a crested macaque. J Comp Neurol 2021; 529:3676-3708. [PMID: 34259349 DOI: 10.1002/cne.25216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/10/2021] [Indexed: 12/20/2022]
Abstract
In the current study, we examined the number, distribution, and aspects of the neurochemical identities of infracortical white matter neurons, also termed white matter interstitial cells (WMICs), in the brains of a southern lesser galago (Galago moholi), a black-capped squirrel monkey (Saimiri boliviensis boliviensis), and a crested macaque (Macaca nigra). Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most dense close to inner cortical border, decreasing in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed estimates of approximately 1.1, 10.8, and 37.7 million WMICs within the infracortical white matter of the galago, squirrel monkey, and crested macaque, respectively. The total numbers of WMICs form a distinct negative allometric relationship with brain mass and white matter volume when examined in a larger sample of primates where similar measures have been obtained. In all three primates studied, the highest densities of WMICs were in the white matter of the frontal lobe, with the occipital lobe having the lowest. Immunostaining revealed significant subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS) and calretinin, with very few WMICs containing parvalbumin, and none containing calbindin. The nNOS and calretinin immunopositive WMICs represent approximately 21% of the total WMIC population; however, variances in the proportions of these neurochemical phenotypes were noted. Our results indicate that both the squirrel monkey and crested macaque might be informative animal models for the study of WMICs in neurodegenerative and psychiatric disorders in humans.
Collapse
Affiliation(s)
- Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Busisiwe C Maseko
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Chet C Sherwood
- Department of Anthropology, Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | | | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Muhammad A Spocter
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Department of Anatomy, Des Moines University, Des Moines, Iowa, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
11
|
Swiegers J, Bhagwandin A, Williams VM, Maseko BC, Sherwood CC, Hård T, Bertelsen MF, Rockland KS, Molnár Z, Manger PR. The distribution, number, and certain neurochemical identities of infracortical white matter neurons in a chimpanzee (Pan troglodytes) brain. J Comp Neurol 2021; 529:3429-3452. [PMID: 34180538 DOI: 10.1002/cne.25202] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/21/2021] [Accepted: 06/24/2021] [Indexed: 01/06/2023]
Abstract
We examined the number, distribution, and immunoreactivity of the infracortical white matter neuronal population, also termed white matter interstitial cells (WMICs), throughout the telencephalic white matter of an adult female chimpanzee. Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most numerous and dense close to the inner border of cortical layer VI, decreasing significantly in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed an estimate of approximately 137.2 million WMICs within the infracortical white matter of the chimpanzee brain studied. Immunostaining revealed subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS, approximately 14.4 million in number), calretinin (CR, approximately 16.7 million), very few WMICs containing parvalbumin (PV), and no calbindin-immunopositive neurons. The nNOS, CR, and PV immunopositive WMICs, possibly all inhibitory neurons, represent approximately 22.6% of the total WMIC population. As the white matter is affected in many cognitive conditions, such as schizophrenia, autism, epilepsy, and also in neurodegenerative diseases, understanding these neurons across species is important for the translation of findings of neural dysfunction in animal models to humans. Furthermore, studies of WMICs in species such as apes provide a crucial phylogenetic context for understanding the evolution of these cell types in the human brain.
Collapse
Affiliation(s)
- Jordan Swiegers
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Victoria M Williams
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Busisiwe C Maseko
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia, USA
| | | | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University, School of Medicine, Boston, Massachusetts, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
12
|
White Matter Interstitial Neurons in the Adult Human Brain: 3% of Cortical Neurons in Quest for Recognition. Cells 2021; 10:cells10010190. [PMID: 33477896 PMCID: PMC7833373 DOI: 10.3390/cells10010190] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 02/03/2023] Open
Abstract
White matter interstitial neurons (WMIN) are a subset of cortical neurons located in the subcortical white matter. Although they were fist described over 150 years ago, they are still largely unexplored and often considered a small, functionally insignificant neuronal population. WMIN are adult remnants of neurons located in the transient fetal subplate zone (SP). Following development, some of the SP neurons undergo apoptosis, and the remaining neurons are incorporated in the adult white matter as WMIN. In the adult human brain, WMIN are quite a large population of neurons comprising at least 3% of all cortical neurons (between 600 and 1100 million neurons). They include many of the morphological neuronal types that can be found in the overlying cerebral cortex. Furthermore, the phenotypic and molecular diversity of WMIN is similar to that of the overlying cortical neurons, expressing many glutamatergic and GABAergic biomarkers. WMIN are often considered a functionally unimportant subset of neurons. However, upon closer inspection of the scientific literature, it has been shown that WMIN are integrated in the cortical circuitry and that they exhibit diverse electrophysiological properties, send and receive axons from the cortex, and have active synaptic contacts. Based on these data, we are able to enumerate some of the potential WMIN roles, such as the control of the cerebral blood flow, sleep regulation, and the control of information flow through the cerebral cortex. Also, there is a number of studies indicating the involvement of WMIN in the pathophysiology of many brain disorders such as epilepsy, schizophrenia, Alzheimer’s disease, etc. All of these data indicate that WMIN are a large population with an important function in the adult brain. Further investigation of WMIN could provide us with novel data crucial for an improved elucidation of the pathophysiology of many brain disorders. In this review, we provide an overview of the current WMIN literature, with an emphasis on studies conducted on the human brain.
Collapse
|
13
|
Tsai SH, Tsao CY, Lee LJ. Altered White Matter and Layer VIb Neurons in Heterozygous Disc1 Mutant, a Mouse Model of Schizophrenia. Front Neuroanat 2020; 14:605029. [PMID: 33384588 PMCID: PMC7769951 DOI: 10.3389/fnana.2020.605029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/24/2020] [Indexed: 11/13/2022] Open
Abstract
Increased white matter neuron density has been associated with neuropsychiatric disorders including schizophrenia. However, the pathogenic features of these neurons are still largely unknown. Subplate neurons, the earliest generated neurons in the developing cortex have also been associated with schizophrenia and autism. The link between these neurons and mental disorders is also not well established. Since cortical layer VIb neurons are believed to be the remnant of subplate neurons in the adult rodent brain, in this study, we aimed to examine the cytoarchitecture of neurons in cortical layer VIb and the underlying white matter in heterozygous Disc1 mutant (Het) mice, a mouse model of schizophrenia. In the white matter, the number of NeuN-positive neurons was quite low in the external capsule; however, the density of these cells was found increased (54%) in Het mice compared with wildtype (WT) littermates. The density of PV-positive neurons was unchanged in the mutants. In the cortical layer VIb, the density of CTGF-positive neurons increased (21.5%) in Het mice, whereas the number of Cplx3-positive cells reduced (16.1%) in these mutants, compared with WT mice. Layer VIb neurons can be classified by their morphological characters. The morphology of Type I pyramidal neurons was comparable between genotypes while the dendritic length and complexity of Type II multipolar neurons were significantly reduced in Het mice. White matter neurons and layer VIb neurons receive synaptic inputs and modulate the process of sensory information and sleep/arousal pattern. Aberrances of these neurons in Disc1 mutants implies altered brain functions in these mice.
Collapse
Affiliation(s)
- Shin-Hwa Tsai
- School of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chih-Yu Tsao
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
| | - Li-Jen Lee
- School of Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Anatomy and Cell Biology, National Taiwan University, Taipei, Taiwan
- Institute of Brain and Mind Sciences, National Taiwan University, Taipei, Taiwan
- Neurobiology and Cognitive Science Center, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
14
|
Bhagwandin A, Debipersadh U, Kaswera-Kyamakya C, Gilissen E, Rockland KS, Molnár Z, Manger PR. Distribution, number, and certain neurochemical identities of infracortical white matter neurons in the brains of three megachiropteran bat species. J Comp Neurol 2020; 528:3023-3038. [PMID: 32103488 DOI: 10.1002/cne.24894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/06/2020] [Accepted: 02/24/2020] [Indexed: 12/13/2022]
Abstract
A large population of infracortical white matter neurons, or white matter interstitial cells (WMICs), are found within the subcortical white matter of the mammalian telencephalon. We examined WMICs in three species of megachiropterans, Megaloglossus woermanni, Casinycteris argynnis, and Rousettus aegyptiacus, using immunohistochemical and stereological techniques. Immunostaining for neuronal nuclear marker (NeuN) revealed substantial numbers of WMICs in each species-M. woermanni 124,496 WMICs, C. argynnis 138,458 WMICs, and the larger brained R. aegyptiacus having an estimated WMIC population of 360,503. To examine the range of inhibitory neurochemical types we used antibodies against parvalbumin, calbindin, calretinin, and neural nitric oxide synthase (nNOS). The calbindin and nNOS immunostained neurons were the most commonly observed, while those immunoreactive for calretinin and parvalbumin were sparse. The proportion of WMICs exhibiting inhibitory neurochemical profiles was ~26%, similar to that observed in previously studied primates. While for the most part the WMIC population in the megachiropterans studied was similar to that observed in other mammals, the one feature that differed was the high proportion of WMICs immunoreactive to calbindin, whereas in primates (macaque monkey, lar gibbon and human) the highest proportion of inhibitory WMICs contain calretinin. Interestingly, there appears to be an allometric scaling of WMIC numbers with brain mass. Further quantitative comparative work across more mammalian species will reveal the developmental and evolutionary trends associated with this infrequently studied neuronal population.
Collapse
Affiliation(s)
- Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
- Division of Clinical Anatomy and Biological Anthropology, Department of Human Biology, University of Cape Town, Cape Town, South Africa
| | - Ulsana Debipersadh
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| | | | - Emmanuel Gilissen
- Department of African Zoology, Royal Museum for Central Africa, Tervuren, Belgium
- Laboratory of Histology and Neuropathology, Université Libre de Bruxelles, Brussels, Belgium
- Department of Anthropology, University of Arkansas, Fayetteville, Arkansas, USA
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University, School of Medicine, Boston, Massachusetts, USA
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, South Africa
| |
Collapse
|
15
|
Melone M, Ciriachi C, Pietrobon D, Conti F. Heterogeneity of Astrocytic and Neuronal GLT-1 at Cortical Excitatory Synapses, as Revealed by its Colocalization With Na+/K+-ATPase α Isoforms. Cereb Cortex 2020; 29:3331-3350. [PMID: 30260367 DOI: 10.1093/cercor/bhy203] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 12/29/2022] Open
Abstract
GLT-1, the major glutamate transporter, is expressed at perisynaptic astrocytic processes (PAP) and axon terminals (AxT). GLT-1 is coupled to Na+/K+-ATPase (NKA) α1-3 isoforms, whose subcellular distribution and spatial organization in relationship to GLT-1 are largely unknown. Using several microscopy techniques, we showed that at excitatory synapses α1 and α3 are exclusively neuronal (mainly in dendrites and in some AxT), while α2 is predominantly astrocytic. GLT-1 displayed a differential colocalization with α1-3. GLT-1/α2 and GLT-1/α3 colocalization was higher in GLT-1 positive puncta partially (for GLT-1/α2) or almost totally (for GLT-1/α3) overlapping with VGLUT1 positive terminals than in nonoverlapping ones. GLT-1 colocalized with α2 at PAP, and with α1 and α3 at AxT. GLT-1 and α2 gold particles were ∼1.5-2 times closer than GLT-1/α1 and GLT-1/α3 particles. GLT-1/α2 complexes (edge to edge interdistance of gold particles ≤50 nm) concentrated at the perisynaptic region of PAP membranes, whereas neuronal GLT-1/α1 and GLT-1/α3 complexes were fewer and more uniformly distributed in AxT. These data unveil different composition of GLT-1 and α subunits complexes in the glial and neuronal domains of excitatory synapses. The spatial organization of GLT-1/α1-3 complexes suggests that GLT-1/NKA interaction is more efficient in astrocytes than in neurons, further supporting the dominant role of astrocytic GLT-1 in glutamate homeostasis.
Collapse
Affiliation(s)
- Marcello Melone
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy
| | - Chiara Ciriachi
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Daniela Pietrobon
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neuroscience, Padova, Italy
| | - Fiorenzo Conti
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy.,Center for Neurobiology of Aging, IRCCS INRCA, Ancona, Italy.,Foundation for Molecular Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
16
|
Kostović I. The enigmatic fetal subplate compartment forms an early tangential cortical nexus and provides the framework for construction of cortical connectivity. Prog Neurobiol 2020; 194:101883. [PMID: 32659318 DOI: 10.1016/j.pneurobio.2020.101883] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/05/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
The most prominent transient compartment of the primate fetal cortex is the deep, cell-sparse, synapse-containing subplate compartment (SPC). The developmental role of the SPC and its extraordinary size in humans remain enigmatic. This paper evaluates evidence on the development and connectivity of the SPC and discusses its role in the pathogenesis of neurodevelopmental disorders. A synthesis of data shows that the subplate becomes a prominent compartment by its expansion from the deep cortical plate (CP), appearing well-delineated on MR scans and forming a tangential nexus across the hemisphere, consisting of an extracellular matrix, randomly distributed postmigratory neurons, multiple branches of thalamic and long corticocortical axons. The SPC generates early spontaneous non-synaptic and synaptic activity and mediates cortical response upon thalamic stimulation. The subplate nexus provides large-scale interareal connectivity possibly underlying fMR resting-state activity, before corticocortical pathways are established. In late fetal phase, when synapses appear within the CP, transient the SPC coexists with permanent circuitry. The histogenetic role of the SPC is to provide interactive milieu and capacity for guidance, sorting, "waiting" and target selection of thalamocortical and corticocortical pathways. The new evolutionary role of the SPC and its remnant white matter neurons is linked to the increasing number of associative pathways in the human neocortex. These roles attributed to the SPC are regulated using a spatiotemporal gene expression during critical periods, when pathogenic factors may disturb vulnerable circuitry of the SPC, causing neurodevelopmental cognitive circuitry disorders.
Collapse
Affiliation(s)
- Ivica Kostović
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Scientific Centre of Excellence for Basic, Clinical and Translational Neuroscience, Salata 12, 10000 Zagreb, Croatia.
| |
Collapse
|
17
|
Kubo KI. Increased densities of white matter neurons as a cross-disease feature of neuropsychiatric disorders. Psychiatry Clin Neurosci 2020; 74:166-175. [PMID: 31788900 DOI: 10.1111/pcn.12962] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/22/2019] [Accepted: 11/26/2019] [Indexed: 12/12/2022]
Abstract
While neurons of the human cerebral cortex are mainly distributed in the gray matter, the white matter (WM) also contains some excitatory and inhibitory neurons, so-called WM neurons. Studies on the cytoarchitectural alterations in the brains of patients with neuropsychiatric disorders have repeatedly reported increased densities of the WM neurons in a proportion of patients with schizophrenia and autism spectrum disorder. Although some studies have demonstrated increased densities of superficial WM neurons, others have demonstrated increased densities of deep WM neurons and increased WM neuron densities can be considered as one of the cross-disease features of neuropsychiatric disorders. Nevertheless, what actually causes the increase in the densities of the WM neurons still remains under debate, and several hypothetical mechanisms have been proposed. The WM neurons in normal brains are considered as remnants of the subplate neurons, which represent a transient cytoarchitectural zone present during development of the mammalian neocortex; it has been suggested that increased densities of the WM neurons could result from inappropriate apoptosis of the subplate neurons in the brains of patients with neuropsychiatric disorders. On the other hand, recent experimental studies have demonstrated that genetic and environmental factors that enhance the risk of development of neuropsychiatric disorders could cause altered distribution of neurons in the WM. To understand the pathophysiology underlying the increased densities of the WM neurons, it is important to investigate the cellular characteristics of the WM neurons in the brains of both normal subjects and patients with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ken-Ichiro Kubo
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan.,Department of Anatomy, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
18
|
Grajauskas LA, Frizzell T, Song X, D'Arcy RCN. White Matter fMRI Activation Cannot Be Treated as a Nuisance Regressor: Overcoming a Historical Blind Spot. Front Neurosci 2019; 13:1024. [PMID: 31636527 PMCID: PMC6787144 DOI: 10.3389/fnins.2019.01024] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 09/09/2019] [Indexed: 12/19/2022] Open
Abstract
Despite past controversies, increasing evidence has led to acceptance that white matter activity is detectable using functional magnetic resonance imaging (fMRI). In spite of this, advanced analytic methods continue to be published that reinforce a historic bias against white matter activation by using it as a nuisance regressor. It is important that contemporary analyses overcome this blind spot in whole brain functional imaging, both to ensure that newly developed noise regression techniques are accurate, and to ensure that white matter, a vital and understudied part of the brain, is not ignored in functional neuroimaging studies.
Collapse
Affiliation(s)
- Lukas A Grajauskas
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,ImageTech Lab, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada
| | - Tory Frizzell
- ImageTech Lab, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada.,Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Xiaowei Song
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,ImageTech Lab, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada
| | - Ryan C N D'Arcy
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC, Canada.,ImageTech Lab, Surrey Memorial Hospital, Fraser Health, Surrey, BC, Canada.,Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
19
|
Borra E, Luppino G, Gerbella M, Rozzi S, Rockland KS. Projections to the putamen from neurons located in the white matter and the claustrum in the macaque. J Comp Neurol 2019; 528:453-467. [PMID: 31483857 DOI: 10.1002/cne.24768] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 08/24/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022]
Abstract
Continuing investigations of corticostriatal connections in rodents emphasize an intricate architecture where striatal projections originate from different combinations of cortical layers, include an inhibitory component, and form terminal arborizations which are cell-type dependent, extensive, or compact. Here, we report that in macaque monkeys, deep and superficial cortical white matter neurons (WMNs), peri-claustral WMNs, and the claustrum proper project to the putamen. WMNs retrogradely labeled by injections in the putamen (four injections in three macaques) were widely distributed, up to 10 mm antero-posterior from the injection site, mainly dorsal to the putamen in the external capsule, and below the premotor cortex. Striatally projecting labeled WMNs (WMNsST) were heterogeneous in size and shape, including a small GABAergic component. We compared the number of WMNsST with labeled claustral and cortical neurons and also estimated their proportion in relation to total WMNs. Since some WMNsST were located adjoining the claustrum, we wanted to compare results for density and distribution of striatally projecting claustral neurons (ClaST). ClaST neurons were morphologically heterogeneous and mainly located in the dorsal and anterior claustrum, in regions known to project to frontal, motor, and cingulate cortical areas. The ratio of ClaST to WMNsST was about 4:1 averaged across the four injections. These results provide new specifics on the connectional networks of WMNs in nonhuman primates, and delineate additional loops in the corticostriatal architecture, consisting of interconnections across cortex, claustralstriatal and striatally projecting WMNs.
Collapse
Affiliation(s)
- Elena Borra
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Parma, Italy
| | - Giuseppe Luppino
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Parma, Italy
| | - Marzio Gerbella
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Parma, Italy
| | - Stefano Rozzi
- Department of Medicine and Surgery, Neuroscience Unit, University of Parma, Parma, Italy
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA
| |
Collapse
|
20
|
Duchatel RJ, Shannon Weickert C, Tooney PA. White matter neuron biology and neuropathology in schizophrenia. NPJ SCHIZOPHRENIA 2019; 5:10. [PMID: 31285426 PMCID: PMC6614474 DOI: 10.1038/s41537-019-0078-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022]
Abstract
Schizophrenia is considered a neurodevelopmental disorder as it often manifests before full brain maturation and is also a cerebral cortical disorder where deficits in GABAergic interneurons are prominent. Whilst most neurons are located in cortical and subcortical grey matter regions, a smaller population of neurons reside in white matter tracts of the primate and to a lesser extent, the rodent brain, subjacent to the cortex. These interstitial white matter neurons (IWMNs) have been identified with general markers for neurons [e.g., neuronal nuclear antigen (NeuN)] and with specific markers for neuronal subtypes such as GABAergic neurons. Studies of IWMNs in schizophrenia have primarily focused on their density underneath cortical areas known to be affected in schizophrenia such as the dorsolateral prefrontal cortex. Most of these studies of postmortem brains have identified increased NeuN+ and GABAergic IWMN density in people with schizophrenia compared to healthy controls. Whether IWMNs are involved in the pathogenesis of schizophrenia or if they are increased because of the cortical pathology in schizophrenia is unknown. We also do not understand how increased IWMN might contribute to brain dysfunction in the disorder. Here we review the literature on IWMN pathology in schizophrenia. We provide insight into the postulated functional significance of these neurons including how they may contribute to the pathophysiology of schizophrenia.
Collapse
Affiliation(s)
- Ryan J Duchatel
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
- Priority Centre for Brain and Mental Health Research and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Cynthia Shannon Weickert
- Schizophrenia Research Laboratory, Neuroscience Research Australia, Randwick, NSW, 2031, Australia
- School of Psychiatry, Faculty of Medicine, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Neuroscience & Physiology, Upstate Medical University, Syracuse, New York, 13210, USA
| | - Paul A Tooney
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.
- Priority Centre for Brain and Mental Health Research and Hunter Medical Research Institute, University of Newcastle, Callaghan, NSW, 2308, Australia.
| |
Collapse
|
21
|
Sedmak G, Judaš M. The total number of white matter interstitial neurons in the human brain. J Anat 2019; 235:626-636. [PMID: 31173356 DOI: 10.1111/joa.13018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2019] [Indexed: 02/06/2023] Open
Abstract
In the adult human brain, the interstitial neurons (WMIN) of the subcortical white matter are the surviving remnants of the fetal subplate zone. It has been suggested that they perform certain important functions and may be involved in the pathogenesis of several neurological and psychiatric disorders. However, many important features of this class of human cortical neurons remain insufficiently explored. In this study, we analyzed the total number, and regional and topological distribution of WMIN in the adult human subcortical white matter, using a combined immunocytochemical (NeuN) and stereological approaches. We found that the average number of WMIN in 1 mm3 of the subcortical white matter is 1.230 ± 549, which translates to the average total number of 593 811 183.6 ± 264 849 443.35 of WMIN in the entire subcortical telencephalic white matter. While there were no significant differences in their regional distribution, the lowest number of WMIN has been consistently observed in the limbic cortex, and the highest number in the frontal cortex. With respect to their topological distribution, the WMIN were consistently more numerous within gyral crowns, less numerous along gyral walls and least numerous at the bottom of cortical sulci (where they occupy a narrow and compact zone below the cortical-white matter border). The topological location of WMIN is also significantly correlated with their morphology: pyramidal and multipolar forms are the most numerous within gyral crowns, whereas bipolar forms predominate at the bottom of cortical sulci. Our results indicate that WMIN represent substantial neuronal population in the adult human cerebral cortex (e.g. more numerous than thalamic or basal ganglia neurons) and thus deserve more detailed morphological and functional investigations in the future.
Collapse
Affiliation(s)
- Goran Sedmak
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Center for Excellence in Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| | - Miloš Judaš
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, Zagreb, Croatia.,Center for Excellence in Basic, Clinical and Translational Neuroscience, Zagreb, Croatia
| |
Collapse
|
22
|
Cebada-Sánchez S, Marcos Rabal P, Insausti AM, Insausti R. Postnatal Development of NPY and Somatostatin-28 Peptidergic Populations in the Human Angular Bundle. Front Neuroanat 2019; 12:116. [PMID: 30687024 PMCID: PMC6338036 DOI: 10.3389/fnana.2018.00116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/05/2018] [Indexed: 01/05/2023] Open
Abstract
The angular bundle is a white matter fiber fascicle, which runs longitudinally along the parahippocampal gyrus. It is best known for carrying fibers from the entorhinal cortex (EC) to the hippocampus through the perforant and alvear pathways, as well as for carrying hippocampal output to the neocortex, and distributing fibers to polysensory cortex. The angular bundle is already present prenatally at the beginning of the fetal period. Connections between the EC and the hippocampus are established by the 20th gestational week (gw). In the postnatal period, it shows increasing myelination. The angular bundle, as well as other white matter portions of gyral surfaces in the brain, presents interstitial neurons, a remnant of subplate neurons. Those interstitial neurons show neurochemical phenotypes both prenatally and postnatally, among which, neuropeptide Y (NPY) and Somatostatin-28 (SOM-28) peptidergic populations are noticeable, and accompany the fiber connections in the maturation of the hippocampal formation. We sought to investigate the topography of the postnatal distribution and relative density of neurons immunoreactive for NPY or SOM in the angular bundle along the rostrocaudal axis of the hippocampus. The study was carried out in 15 cases, ranging from 35 gws, up to 14 year old. All cases showed positive neurons showing a polygonal or spindle shaped morphology for both peptides, scattered throughout the angular bundle. The highest number of positive neurons appeared around birth and the ensuing weeks. Up to one and a half years, the density of both peptidergic populations decreased slightly. However, cases older than 2 years of age showed a substantial decrease in density of immunolabeled neurons, density that did not showed a minor decrease in density of positive neurons in cases older than 2 years. In addition, a topography from caudal to rostral levels of the angular bundle was detected at all ages. The functional significance of interstitial cells is unknown, but the existence of SOM and NPY peptidergic neurons, presumably inhibitory, in the white matter of the angular bundle, could contribute to the basic wiring of the hippocampal formation, through which autobiographical and spatial memories can begin to be stored in the infant brain.
Collapse
Affiliation(s)
| | - Pilar Marcos Rabal
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| | - Ana María Insausti
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
23
|
Swiegers J, Bhagwandin A, Sherwood CC, Bertelsen MF, Maseko BC, Hemingway J, Rockland KS, Molnár Z, Manger PR. The distribution, number, and certain neurochemical identities of infracortical white matter neurons in a lar gibbon (Hylobates lar) brain. J Comp Neurol 2018; 527:1633-1653. [PMID: 30378128 DOI: 10.1002/cne.24545] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/04/2018] [Accepted: 09/21/2018] [Indexed: 01/08/2023]
Abstract
We examined the number, distribution, and immunoreactivity of the infracortical white matter neuronal population, also termed white matter interstitial cells (WMICs), in the brain of a lesser ape, the lar gibbon. Staining for neuronal nuclear marker (NeuN) revealed WMICs throughout the infracortical white matter, these cells being most numerous and dense close to cortical layer VI, decreasing significantly in density with depth in the white matter. Stereological analysis of NeuN-immunopositive cells revealed a global estimate of ~67.5 million WMICs within the infracortical white matter of the gibbon brain, indicating that the WMICs are a numerically significant population, ~2.5% of the total cortical gray matter neurons that would be estimated for a primate brain the mass of that of the lar gibbon. Immunostaining revealed subpopulations of WMICs containing neuronal nitric oxide synthase (nNOS, ~7 million in number, with both small and large soma volumes), calretinin (~8.6 million in number, all of similar soma volume), very few WMICs containing parvalbumin, and no calbindin-immunopositive neurons. These nNOS, calretinin, and parvalbumin immunopositive WMICs, presumably all inhibitory neurons, represent ~23.1% of the total WMIC population. As the white matter is affected in many cognitive conditions, such as schizophrenia, autism and also in neurodegenerative diseases, understanding these neurons across species is important for the translation of findings of neural dysfunction in animal models to humans. Furthermore, studies of WMICs in species such as apes provide a crucial phylogenetic context for understanding the evolution of these cell types in the human brain.
Collapse
Affiliation(s)
- Jordan Swiegers
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Adhil Bhagwandin
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Chet C Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Busisiwe C Maseko
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Jason Hemingway
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, School of Medicine, Boston University, Boston, Massachusetts
| | - Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, England
| | - Paul R Manger
- Faculty of Health Sciences, School of Anatomical Sciences, University of the Witwatersrand, Johannesburg, Republic of South Africa
| |
Collapse
|
24
|
DeVos SL, Corjuc BT, Oakley DH, Nobuhara CK, Bannon RN, Chase A, Commins C, Gonzalez JA, Dooley PM, Frosch MP, Hyman BT. Synaptic Tau Seeding Precedes Tau Pathology in Human Alzheimer's Disease Brain. Front Neurosci 2018; 12:267. [PMID: 29740275 PMCID: PMC5928393 DOI: 10.3389/fnins.2018.00267] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/06/2018] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD) is defined by the presence of intraneuronal neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau aggregates as well as extracellular amyloid-beta plaques. The presence and spread of tau pathology through the brain is classified by Braak stages and thought to correlate with the progression of AD. Several in vitro and in vivo studies have examined the ability of tau pathology to move from one neuron to the next, suggesting a "prion-like" spread of tau aggregates may be an underlying cause of Braak tau staging in AD. Using the HEK293 TauRD-P301S-CFP/YFP expressing biosensor cells as a highly sensitive and specific tool to identify the presence of seed competent aggregated tau in brain lysate-i.e., tau aggregates that are capable of recruiting and misfolding monomeric tau-, we detected substantial tau seeding levels in the entorhinal cortex from human cases with only very rare NFTs, suggesting that soluble tau aggregates can exist prior to the development of overt tau pathology. We next looked at tau seeding levels in human brains of varying Braak stages along six regions of the Braak Tau Pathway. Tau seeding levels were detected not only in the brain regions impacted by pathology, but also in the subsequent non-pathology containing region along the Braak pathway. These data imply that pathogenic tau aggregates precede overt tau pathology in a manner that is consistent with transneuronal spread of tau aggregates. We then detected tau seeding in frontal white matter tracts and the optic nerve, two brain regions comprised of axons that contain little to no neuronal cell bodies, implying that tau aggregates can indeed traverse along axons. Finally, we isolated cytosolic and synaptosome fractions along the Braak Tau Pathway from brains of varying Braak stages. Phosphorylated and seed competent tau was significantly enriched in the synaptic fraction of brain regions that did not have extensive cellular tau pathology, further suggesting that aggregated tau seeds move through the human brain along synaptically connected neurons. Together, these data provide further evidence that the spread of tau aggregates through the human brain along synaptically connected networks results in the pathogenesis of human Alzheimer's disease.
Collapse
Affiliation(s)
- Sarah L. DeVos
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Bianca T. Corjuc
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Derek H. Oakley
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
- C.S. Kubik Laboratory for Neuropathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Chloe K. Nobuhara
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Riley N. Bannon
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Alison Chase
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Caitlin Commins
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Jose A. Gonzalez
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Patrick M. Dooley
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| | - Matthew P. Frosch
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
- C.S. Kubik Laboratory for Neuropathology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Bradley T. Hyman
- Department of Neurology, Harvard Medical School, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, United States
| |
Collapse
|
25
|
Colombo JA. Cellular complexity in subcortical white matter: a distributed control circuit? Brain Struct Funct 2018; 223:981-985. [DOI: 10.1007/s00429-018-1609-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/10/2018] [Indexed: 11/30/2022]
|
26
|
von Bartheld CS. Myths and truths about the cellular composition of the human brain: A review of influential concepts. J Chem Neuroanat 2017; 93:2-15. [PMID: 28873338 DOI: 10.1016/j.jchemneu.2017.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/16/2017] [Accepted: 08/17/2017] [Indexed: 11/17/2022]
Abstract
Over the last 50 years, quantitative methodology has made important contributions to our understanding of the cellular composition of the human brain. Not all of the concepts that emerged from quantitative studies have turned out to be true. Here, I examine the history and current status of some of the most influential notions. This includes claims of how many cells compose the human brain, and how different cell types contribute and in what ratios. Additional concepts entail whether we lose significant numbers of neurons with normal aging, whether chronic alcohol abuse contributes to cortical neuron loss, whether there are significant differences in the quantitative composition of cerebral cortex between male and female brains, whether superior intelligence in humans correlates with larger numbers of brain cells, and whether there are secular (generational) changes in neuron number. Do changes in cell number or changes in ratios of cell types accompany certain diseases, and should all counting methods, even the theoretically unbiased ones, be validated and calibrated? I here examine the origin and the current status of major influential concepts, and I review the evidence and arguments that have led to either confirmation or refutation of such concepts. I discuss the circumstances, assumptions and mindsets that perpetuated erroneous views, and the types of technological advances that have, in some cases, challenged longstanding ideas. I will acknowledge the roles of key proponents of influential concepts in the sometimes convoluted path towards recognition of the true cellular composition of the human brain.
Collapse
Affiliation(s)
- Christopher S von Bartheld
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Mailstop 352, Reno, NV 89557, USA.
| |
Collapse
|
27
|
Mortazavi F, Romano SE, Rosene DL, Rockland KS. A Survey of White Matter Neurons at the Gyral Crowns and Sulcal Depths in the Rhesus Monkey. Front Neuroanat 2017; 11:69. [PMID: 28860975 PMCID: PMC5559435 DOI: 10.3389/fnana.2017.00069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 07/31/2017] [Indexed: 12/14/2022] Open
Abstract
Gyrencephalic brains exhibit deformations of the six neocortical laminae at gyral crowns and sulcal depths, where the deeper layers are, respectively, expanded and compressed. The present study addresses: (1) the degree to which the underlying white matter neurons (WMNs) observe the same changes at gyral crowns and sulcal depths; and (2) whether these changes are consistent or variable across different cortical regions. WMNs were visualized by immunohistochemistry using the pan-neuronal label NeuN, and their density was quantified in eight rhesus monkey brains for four regions; namely, frontal (FR), superior frontal gyrus (SFG), parietal (Par) and temporal (TE). In all four regions, there were about 50% fewer WMNs in the sulcal depth, but there was also distinct variability from region to region. For the gyral crown, we observed an average density per 0.21 mm2 of 82 WMNs for the FR, 51 WMNs for SFG, 80 WMNs for Par and 93 WMNs for TE regions. By contrast, for the sulcal depth, the average number of WMNs per 0.21 mm2 was 41 for FR, 31 for cingulate sulcus (underlying the SFG), 54 for Par and 63 for TE cortical regions. Since at least some WMNs participate in cortical circuitry, these results raise the possibility of their differential influence on cortical circuitry in the overlying gyral and sulcal locations. The results also point to a possible role of WMNs in the differential vulnerability of gyral vs. sulcal regions in disease processes, and reinforce the increasing awareness of the WMNs as part of a complex, heterogeneous and structured microenvironment.
Collapse
Affiliation(s)
- Farzad Mortazavi
- Department of Anatomy and Neurobiology, Boston University School of MedicineBoston, MA, United States
| | - Samantha E. Romano
- Department of Anatomy and Neurobiology, Boston University School of MedicineBoston, MA, United States
| | - Douglas L. Rosene
- Department of Anatomy and Neurobiology, Boston University School of MedicineBoston, MA, United States
| | - Kathleen S. Rockland
- Department of Anatomy and Neurobiology, Boston University School of MedicineBoston, MA, United States
| |
Collapse
|
28
|
Palomero-Gallagher N, Zilles K. Cortical layers: Cyto-, myelo-, receptor- and synaptic architecture in human cortical areas. Neuroimage 2017; 197:716-741. [PMID: 28811255 DOI: 10.1016/j.neuroimage.2017.08.035] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/08/2017] [Accepted: 08/11/2017] [Indexed: 12/16/2022] Open
Abstract
Cortical layers have classically been identified by their distinctive and prevailing cell types and sizes, as well as the packing densities of cell bodies or myelinated fibers. The densities of multiple receptors for classical neurotransmitters also vary across the depth of the cortical ribbon, and thus determine the neurochemical properties of cyto- and myeloarchitectonic layers. However, a systematic comparison of the correlations between these histologically definable layers and the laminar distribution of transmitter receptors is currently lacking. We here analyze the densities of 17 different receptors of various transmitter systems in the layers of eight cytoarchitectonically identified, functionally (motor, sensory, multimodal) and hierarchically (primary and secondary sensory, association) distinct areas of the human cerebral cortex. Maxima of receptor densities are found in different layers when comparing different cortical regions, i.e. laminar receptor densities demonstrate differences in receptorarchitecture between isocortical areas, notably between motor and primary sensory cortices, specifically the primary visual and somatosensory cortices, as well as between allocortical and isocortical areas. Moreover, considerable differences are found between cytoarchitectonical and receptor architectonical laminar patterns. Whereas the borders of cyto- and myeloarchitectonic layers are well comparable, the laminar profiles of receptor densities rarely coincide with the histologically defined borders of layers. Instead, highest densities of most receptors are found where the synaptic density is maximal, i.e. in the supragranular layers, particularly in layers II-III. The entorhinal cortex as an example of the allocortex shows a peculiar laminar organization, which largely deviates from that of all the other cortical areas analyzed here.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany.
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany; Department of Psychiatry, Psychotherapy, and Psychosomatics, Medical Faculty, RWTH Aachen, Aachen, Germany; JARA - Translational Brain Medicine, Aachen, Germany.
| |
Collapse
|
29
|
Rockland KS. What do we know about laminar connectivity? Neuroimage 2017; 197:772-784. [PMID: 28729159 DOI: 10.1016/j.neuroimage.2017.07.032] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/13/2017] [Accepted: 07/15/2017] [Indexed: 12/17/2022] Open
Abstract
In this brief review, I attempt an overview of the main components of anatomical laminar-level connectivity. These are: extrinsic outputs, excitatory and inhibitory intrinsic connectivity, and intrinsic inputs. Supporting data are biased from the visual system of nonhuman primates (NHPs), but I have drawn as much as possible from a broader span in order to treat the important issue of area-specific variability. In a second part, I briefly discuss laminar connectivity in the context of network organization (feedforward/feedback cortical connections, and the major types of corticothalamic connections). I also point out anatomical issues in need of clarification, including more systematic, whole brain coverage of tracer injections; more data on anterogradely labeled terminations; more complete, area-specific quantitative data about projection neurons, and quantitative data on terminal density and convergence. Postsynaptic targets are largely unknown, but their identification is essential for understanding the finer analysis and principles of laminar patterns. Laminar resolution MRI offers a promising new tool for exploring laminar connectivity: it is potentially fast and macro-scale, and allows for repeated investigation under different stimulus conditions. Conversely, anatomical resolution, although detailed beyond the current level of MRI visualization, offers a rich trove for experimental design and interpretation of fMRI activation patterns.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Department of Anatomy&Neurobiology, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA.
| |
Collapse
|
30
|
Millar LJ, Shi L, Hoerder-Suabedissen A, Molnár Z. Neonatal Hypoxia Ischaemia: Mechanisms, Models, and Therapeutic Challenges. Front Cell Neurosci 2017; 11:78. [PMID: 28533743 PMCID: PMC5420571 DOI: 10.3389/fncel.2017.00078] [Citation(s) in RCA: 225] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 03/07/2017] [Indexed: 12/11/2022] Open
Abstract
Neonatal hypoxia-ischaemia (HI) is the most common cause of death and disability in human neonates, and is often associated with persistent motor, sensory, and cognitive impairment. Improved intensive care technology has increased survival without preventing neurological disorder, increasing morbidity throughout the adult population. Early preventative or neuroprotective interventions have the potential to rescue brain development in neonates, yet only one therapeutic intervention is currently licensed for use in developed countries. Recent investigations of the transient cortical layer known as subplate, especially regarding subplate's secretory role, opens up a novel set of potential molecular modulators of neonatal HI injury. This review examines the biological mechanisms of human neonatal HI, discusses evidence for the relevance of subplate-secreted molecules to this condition, and evaluates available animal models. Neuroserpin, a neuronally released neuroprotective factor, is discussed as a case study for developing new potential pharmacological interventions for use post-ischaemic injury.
Collapse
Affiliation(s)
- Lancelot J. Millar
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| | - Lei Shi
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan UniversityGuangzhou, China
| | | | - Zoltán Molnár
- Molnár Group, Department of Physiology, Anatomy and Genetics, University of OxfordOxford, UK
| |
Collapse
|
31
|
von Bartheld CS, Bahney J, Herculano-Houzel S. The search for true numbers of neurons and glial cells in the human brain: A review of 150 years of cell counting. J Comp Neurol 2016; 524:3865-3895. [PMID: 27187682 PMCID: PMC5063692 DOI: 10.1002/cne.24040] [Citation(s) in RCA: 610] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 05/13/2016] [Accepted: 05/16/2016] [Indexed: 12/13/2022]
Abstract
For half a century, the human brain was believed to contain about 100 billion neurons and one trillion glial cells, with a glia:neuron ratio of 10:1. A new counting method, the isotropic fractionator, has challenged the notion that glia outnumber neurons and revived a question that was widely thought to have been resolved. The recently validated isotropic fractionator demonstrates a glia:neuron ratio of less than 1:1 and a total number of less than 100 billion glial cells in the human brain. A survey of original evidence shows that histological data always supported a 1:1 ratio of glia to neurons in the entire human brain, and a range of 40-130 billion glial cells. We review how the claim of one trillion glial cells originated, was perpetuated, and eventually refuted. We compile how numbers of neurons and glial cells in the adult human brain were reported and we examine the reasons for an erroneous consensus about the relative abundance of glial cells in human brains that persisted for half a century. Our review includes a brief history of cell counting in human brains, types of counting methods that were and are employed, ranges of previous estimates, and the current status of knowledge about the number of cells. We also discuss implications and consequences of the new insights into true numbers of glial cells in the human brain, and the promise and potential impact of the newly validated isotropic fractionator for reliable quantification of glia and neurons in neurological and psychiatric diseases. J. Comp. Neurol. 524:3865-3895, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Jami Bahney
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada, USA
| | - Suzana Herculano-Houzel
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, and Instituto Nacional de Neurociência Translacional, CNPq/MCT, Brasil
| |
Collapse
|
32
|
Richter Z, Janszky J, Sétáló G, Horváth R, Horváth Z, Dóczi T, Seress L, Ábrahám H. Characterization of neurons in the cortical white matter in human temporal lobe epilepsy. Neuroscience 2016; 333:140-50. [DOI: 10.1016/j.neuroscience.2016.07.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/18/2016] [Accepted: 07/07/2016] [Indexed: 12/20/2022]
|
33
|
Mortazavi F, Wang X, Rosene DL, Rockland KS. White Matter Neurons in Young Adult and Aged Rhesus Monkey. Front Neuroanat 2016; 10:15. [PMID: 26941613 PMCID: PMC4761867 DOI: 10.3389/fnana.2016.00015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 02/05/2016] [Indexed: 01/21/2023] Open
Abstract
In humans and non-human primates (NHP), white matter neurons (WMNs) persist beyond early development. Their functional importance is largely unknown, but they have both corticothalamic and corticocortical connectivity and at least one subpopulation has been implicated in vascular regulation and sleep. Several other studies have reported that the density of WMNs in humans is altered in neuropathological or psychiatric conditions. The present investigation evaluates and compares the density of superficial and deep WMNs in frontal (FR), temporal (TE), and parietal (Par) association regions of four young adult and four aged male rhesus monkeys. A major aim was to determine whether there was age-related neuronal loss, as might be expected given the substantial age-related changes known to occur in the surrounding white matter environment. Neurons were visualized by immunocytochemistry for Neu-N in coronal tissue sections (30 μm thickness), and neuronal density was assessed by systematic random sampling. Per 0.16 mm2 sampling box, this yielded about 40 neurons in the superficial WM and 10 in the deep WM. Consistent with multiple studies of cell density in the cortical gray matter of normal brains, neither the superficial nor deep WM populations showed statistically significant age-related neuronal loss, although we observed a moderate decrease with age for the deep WMNs in the frontal region. Morphometric analyses, in contrast, showed significant age effects in soma size and circularity. In specific, superficial WMNs were larger in FR and Par WM regions of the young monkeys; but in the TE, these were larger in the older monkeys. An age effect was also observed for soma circularity: superficial WMNs were more circular in FR and Par of the older monkeys. This second, morphometric result raises the question of whether other age-related morphological, connectivity, or molecular changes occur in the WMNs. These could have multiple impacts, given the wide range of putative WMN functions and their involvement in both corticothalamic and corticocortical circuitry.
Collapse
Affiliation(s)
- Farzad Mortazavi
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| | - Xiyue Wang
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| | - Douglas L Rosene
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| | - Kathleen S Rockland
- Department of Anatomy and Neurobiology, Boston University School of Medicine Boston, MA, USA
| |
Collapse
|
34
|
Hoerder-Suabedissen A, Molnár Z. Development, evolution and pathology of neocortical subplate neurons. Nat Rev Neurosci 2015; 16:133-46. [DOI: 10.1038/nrn3915] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Gawryluk JR, Mazerolle EL, D'Arcy RCN. Does functional MRI detect activation in white matter? A review of emerging evidence, issues, and future directions. Front Neurosci 2014; 8:239. [PMID: 25152709 PMCID: PMC4125856 DOI: 10.3389/fnins.2014.00239] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 07/21/2014] [Indexed: 12/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is a non-invasive technique that allows for visualization of activated brain regions. Until recently, fMRI studies have focused on gray matter. There are two main reasons white matter fMRI remains controversial: (1) the blood oxygen level dependent (BOLD) fMRI signal depends on cerebral blood flow and volume, which are lower in white matter than gray matter and (2) fMRI signal has been associated with post-synaptic potentials (mainly localized in gray matter) as opposed to action potentials (the primary type of neural activity in white matter). Despite these observations, there is no direct evidence against measuring fMRI activation in white matter and reports of fMRI activation in white matter continue to increase. The questions underlying white matter fMRI activation are important. White matter fMRI activation has the potential to greatly expand the breadth of brain connectivity research, as well as improve the assessment and diagnosis of white matter and connectivity disorders. The current review provides an overview of the motivation to investigate white matter fMRI activation, as well as the published evidence of this phenomenon. We speculate on possible neurophysiologic bases of white matter fMRI signals, and discuss potential explanations for why reports of white matter fMRI activation are relatively scarce. We end with a discussion of future basic and clinical research directions in the study of white matter fMRI.
Collapse
Affiliation(s)
- Jodie R Gawryluk
- Division of Medical Sciences, Department of Psychology, University of Victoria Victoria, BC, Canada
| | - Erin L Mazerolle
- Department of Radiology, Faculty of Medicine, University of Calgary Calgary, AB, Canada
| | - Ryan C N D'Arcy
- Applied Sciences, Simon Fraser University Burnaby, BC, Canada ; Fraser Health Authority, Surrey Memorial Hospital Surrey, BC, Canada
| |
Collapse
|
36
|
Blackmon K, Kuzniecky R, Barr WB, Snuderl M, Doyle W, Devinsky O, Thesen T. Cortical Gray-White Matter Blurring and Cognitive Morbidity in Focal Cortical Dysplasia. Cereb Cortex 2014; 25:2854-62. [PMID: 24770710 DOI: 10.1093/cercor/bhu080] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Focal cortical dysplasia (FCD) is a malformation of cortical development that is associated with high rates of cognitive morbidity. However, the degree to which specific irregularities of dysplastic tissue directly impact cognition remains unknown. This study investigates the relationship between blurring of the cortical gray and white matter boundary on magnetic resonance imaging (MRI) and global cognitive abilities in FCD. Gray-white blurring (GWB) is quantified by sampling the non-normalized T1 image intensity contrast above and below the gray and white matter interface along the cortical mantle. Spherical averaging is used to compare resulting GWB for patients with histopathologically verified FCD with matched controls. Whole-brain correlational analyses are used to investigate the relationship between blurring and general cognitive abilities, controlling for epilepsy duration. Results show that cognitive performance is reduced in patients with FCD relative to controls. Patients show increased GWB in bilateral temporal, parietal, and frontal regions. Furthermore, increased GWB in these regions is linearly related to decreased cognition and mediates group differences in cognitive performance. These findings demonstrate that GWB is a marker of reduced cognitive efficiency in FCD that can potentially be used to probe general and domain-specific cognitive functions in other neurological disorders.
Collapse
Affiliation(s)
- Karen Blackmon
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York 10016, USA
| | - Ruben Kuzniecky
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York 10016, USA
| | - William B Barr
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York 10016, USA
| | - Matija Snuderl
- Department of Pathology, New York University School of Medicine, New York 10016, USA
| | - Werner Doyle
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York 10016, USA
| | - Orrin Devinsky
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York 10016, USA
| | - Thomas Thesen
- Comprehensive Epilepsy Center, Department of Neurology, New York University School of Medicine, New York 10016, USA
| |
Collapse
|
37
|
Weltzien F, Dimarco S, Protti DA, Daraio T, Martin PR, Grünert U. Characterization of secretagogin-immunoreactive amacrine cells in marmoset retina. J Comp Neurol 2013; 522:435-55. [DOI: 10.1002/cne.23420] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/24/2013] [Accepted: 06/25/2013] [Indexed: 11/12/2022]
Affiliation(s)
- Felix Weltzien
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
- Australian Research Council Centre of Excellence in Vision Science; University of Sydney; Australia
| | | | | | - Teresa Daraio
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
| | - Paul R. Martin
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
- Australian Research Council Centre of Excellence in Vision Science; University of Sydney; Australia
- School of Medical Sciences; University of Sydney; Australia
| | - Ulrike Grünert
- Department of Ophthalmology and Save Sight Institute; University of Sydney; Australia
- Australian Research Council Centre of Excellence in Vision Science; University of Sydney; Australia
| |
Collapse
|
38
|
Garcia-Marin V, Ahmed TH, Afzal YC, Hawken MJ. Distribution of vesicular glutamate transporter 2 (VGluT2) in the primary visual cortex of the macaque and human. J Comp Neurol 2013; 521:130-51. [PMID: 22684983 DOI: 10.1002/cne.23165] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2011] [Revised: 11/18/2011] [Accepted: 06/04/2012] [Indexed: 11/05/2022]
Abstract
The majority of thalamic terminals in V1 arise from lateral geniculate nucleus (LGN) afferents. Thalamic afferent terminals are preferentially labeled by an isoform of the vesicular glutamate transporter, VGluT2. The goal of our study was to determine the distribution of VGluT2-ir puncta in macaque and human visual cortex. First, we investigated the distribution of VGluT2-ir puncta in all layers of macaque monkey primary visual cortex (V1), and found a very close correspondence between the known distribution of LGN afferents from previous studies and the distribution of VGluT2-immunoreactive (-ir) puncta. There was also a close correspondence between cytochrome oxidase density and VGluT2-ir puncta distribution. After validating the correspondence in macaque, we made a comparative study in human V1. In many aspects, the distribution of VGluT2-ir puncta in human was qualitatively similar to that of the macaque: high densities in layer 4C, patches of VGluT2-ir puncta in the supragranular layer (2/3), lower but clear distribution in layers 1 and 6, and very few puncta in layers 5 and 4B. However, there were also important differences between macaques and humans. In layer 4A of human, there was a sparse distribution of VGluT2-ir puncta, whereas in macaque, there was a dense distribution with the characteristic honeycomb organization. The results suggest important changes in the pattern of cortical VGluT2 immunostaining that may be related to evolutionary differences in the cortical organization of LGN afferents between Old World monkeys and humans.
Collapse
|
39
|
Expression profiling of mouse subplate reveals a dynamic gene network and disease association with autism and schizophrenia. Proc Natl Acad Sci U S A 2013; 110:3555-60. [PMID: 23401504 DOI: 10.1073/pnas.1218510110] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The subplate zone is a highly dynamic transient sector of the developing cerebral cortex that contains some of the earliest generated neurons and the first functional synapses of the cerebral cortex. Subplate cells have important functions in early establishment and maturation of thalamocortical connections, as well as in the development of inhibitory cortical circuits in sensory areas. So far no role has been identified for cells in the subplate in the mature brain and disease association of the subplate-specific genes has not been analyzed systematically. Here we present gene expression evidence for distinct roles of the mouse subplate across development as well as unique molecular markers to extend the repertoire of subplate labels. Performing systematic comparisons between different ages (embryonic days 15 and 18, postnatal day 8, and adult), we reveal the dynamic and constant features of the markers labeling subplate cells during embryonic and early postnatal development and in the adult. This can be visualized using the online database of subplate gene expression at https://molnar.dpag.ox.ac.uk/subplate/. We also identify embryonic similarities in gene expression between the ventricular zones, intermediate zone, and subplate, and distinct postnatal similarities between subplate, layer 5, and layers 2/3. The genes expressed in a subplate-specific manner at some point during development show a statistically significant enrichment for association with autism spectrum disorders and schizophrenia. Our report emphasizes the importance of the study of transient features of the developing brain to better understand neurodevelopmental disorders.
Collapse
|
40
|
Plá V, Paco S, Ghezali G, Ciria V, Pozas E, Ferrer I, Aguado F. Secretory sorting receptors carboxypeptidase E and secretogranin III in amyloid β-associated neural degeneration in Alzheimer's disease. Brain Pathol 2012; 23:274-84. [PMID: 22998035 DOI: 10.1111/j.1750-3639.2012.00644.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/12/2012] [Indexed: 11/29/2022] Open
Abstract
The secretory sorting receptors carboxypeptidase E (CPE) and secretogranin III (SgIII) critically activate peptidic messengers and targeting them at the regulated secretory pathway. In Alzheimer's disease (AD), the wide range of changes includes impaired function of key secretory peptidic cargos such as brain-derived neurotrophic factor (BDNF) and neuropeptides. Here, we analyzed CPE and SgIII in the cerebral cortex of AD patients and transgenic mice. In the normal human cortex, a preferential location in dendrites and perikarya was observed for CPE, whereas SgIII was mainly associated with axons and terminal-like buttons. Interestingly, SgIII and CPE were consistently detected in astroglial cell bodies and thin processes. In AD cortices, a strong wide accumulation of both sorting receptors was detected in dystrophic neurites surrounding amyloid plaques. Occasionally, increased levels of SgIII were also observed in plaque associate-reactive astrocytes. Of note, the main alterations detected for CPE and SgIII in AD patients were faithfully recapitulated by APPswe/PS1dE9 mice. These results implicate for the first time the sorting receptors for regulated secretion in amyloid β-associated neural degeneration. Because CPE and SgIII are essential in the process and targeting of neuropeptides and neurotrophins, their participation in the pathological progression of AD may be suggested.
Collapse
Affiliation(s)
- Virginia Plá
- Department of Cell Biology, University of Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
41
|
Kinney HC, Haynes RL, Xu G, Andiman SE, Folkerth RD, Sleeper LA, Volpe JJ. Neuron deficit in the white matter and subplate in periventricular leukomalacia. Ann Neurol 2012; 71:397-406. [PMID: 22451205 DOI: 10.1002/ana.22612] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
OBJECTIVE The cellular basis of cognitive abnormalities in preterm infants with periventricular leukomalacia (PVL) is uncertain. One important possibility is that damage to white matter and subplate neurons that are critical to the formation of the cerebral cortex occurs in conjunction with oligodendrocyte and axonal injury in PVL. We tested the hypothesis that the overall density of neurons in the white matter and subplate region is significantly lower in PVL cases compared to non-PVL controls. METHODS We used a computer-based method for the determination of the density of microtubule-associated protein 2-immunolabeled neurons in the ventricular/subventricular region, periventricular white matter, central white matter, and subplate region in PVL cases and controls. RESULTS There were 5 subtypes of subcortical neurons: granular, unipolar, bipolar, inverted pyramidal, and multipolar. The neuronal density of the granular neurons in each of the 4 regions was 54 to 80% lower (p≤0.01) in the PVL cases (n=15) compared to controls adjusted for age and postmortem interval (n=10). The overall densities of unipolar, bipolar, multipolar, and inverted pyramidal neurons did not differ significantly between the PVL cases and controls. No granular neurons expressed markers of neuronal and glial immaturity (Tuj1, doublecortin, or NG2). INTERPRETATION These data suggest that quantitative deficits in susceptible granular neurons occur in the white matter distant from periventricular foci, including the subplate region, in PVL, and may contribute to abnormal cortical formation and cognitive dysfunction in preterm survivors.
Collapse
Affiliation(s)
- Hannah C Kinney
- Department of Pathology, Children's Hospital Boston and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Wang X, Sun QQ. Characterization of axo-axonic synapses in the piriform cortex of Mus musculus. J Comp Neurol 2012; 520:832-47. [PMID: 22020781 DOI: 10.1002/cne.22792] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Previous anatomical and physiological studies have established major glutamatergic and GABAergic neuronal subtypes within the piriform cortical circuits. However, quantitative information regarding axo-axonic inhibitory synapses mediated by chandelier cells across major cortical subdivisions of piriform cortex is lacking. Therefore, we examined the properties of these synapses across the entire piriform cortex. Our results show the following. 1) γ-Aminobutyric acid membrane transporter 1-positive varicosities, whose appearance resembles chandelier cartridges, are found around the initial segments of axons of glutamatergic cells across layers II and III. 2) Both the density of axo-axonic cartridges and the degree of γ-aminobutyric acid membrane transporter 1 innervation in each axo-axonic synapse are significantly higher in the piriform cortex than in the neocortex. 3) Glutamate decarboxylase 67, vesicular GABA transporter, and parvalbumin, but not calbindin, are colocalized with the presynaptic varicosities, whereas gephyrin, Na-K-2Cl cotransporter 1, and GABA(A) receptor α1 subunit, but not K-Cl cotransporter 2, are colocalized at the presumed postsynaptic sites. 4) The axo-axonic cartridges innervate the majority of excitatory neurons and are distributed more frequently in putative centrifugal cells and posterior piriform cortex. We further describe the morphology of chandelier cells by using parvalbumin-immunoreactivity and single-cell labeling. In summary, our results demonstrate that a small population of chandelier cells mediates abundant axo-axonic synapses across the entire piriform cortex. Because of the critical location of these inhibitory synapses in relation to action potential regulation, our results highlight a critical role of axo-axonic synapses in regulating information flow and olfactory-related oscillations within the piriform cortex in vivo.
Collapse
Affiliation(s)
- Xinjun Wang
- Department of Zoology and Physiology, University of Wyoming, Laramie, Wyoming 82071, USA
| | | |
Collapse
|
43
|
Rockland KS, Nayyar N. Association of type I neurons positive for NADPH-diaphorase with blood vessels in the adult monkey corpus callosum. Front Neural Circuits 2012; 6:4. [PMID: 22363265 PMCID: PMC3282256 DOI: 10.3389/fncir.2012.00004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 02/01/2012] [Indexed: 12/11/2022] Open
Abstract
Sagittal sections through the corpus callosum of adult macaque monkeys (n = 7) reveal a subpopulation of neurons positive for NADPH-diaphorase (NADPHd). These are sparsely distributed, with 2–12 neurons scored over the anterior two-thirds of the callosum (about 14 mm). Neurons are densely labeled, type 1; but on the basis of soma and dendritic morphology, these neurons exhibit distinct heterogeneity. In one subpopulation, the cell body is narrowly attenuated (7–10 μm in width). These have bipolar dendrites, extending 300–800 μm from the cell body. One or both of the dendrites is often closely associated with blood vessels and tends to be aligned dorso-ventral, perpendicular to the body of the callosum. Another subpopulation of neurons has a larger soma (typically, 15 μm × 20 μm) and more multipolar dendrites, which are not as obviously associated with blood vessels. White matter neurons positive for NADPHd have previously been observed as a transient population, most numerous during development, in the human corpus callosum, as well as in that of other species. Their persistence in the corpus callosum of adult macaques and their close association with blood vessels has not previously been reported and is suggestive of roles other than axon guidance.
Collapse
Affiliation(s)
- Kathleen S Rockland
- Laboratory for Cortical Organization and Systematics, RIKEN Brain Science Institute Wako-shi, Saitama, Japan
| | | |
Collapse
|
44
|
Individual differences in verbal abilities associated with regional blurring of the left gray and white matter boundary. J Neurosci 2011; 31:15257-63. [PMID: 22031871 DOI: 10.1523/jneurosci.3039-11.2011] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Blurring of the cortical gray and white matter border on MRI is associated with normal aging, pathological aging, and the presence of focal cortical dysplasia. However, it remains unclear whether normal variations in signal intensity contrast at the gray and white matter junction reflect the functional integrity of subjacent tissue. This study explores the relationship between verbal abilities and gray and white matter contrast (GWC) in healthy human adults. Participants were scanned at 3 T MRI and administered standardized measures of verbal expression and verbal working memory. GWC was estimated by calculating the non-normalized T1 image intensity contrast above and below the cortical gray/white matter interface. Spherical averaging and whole-brain correlational analyses were performed. Sulcal regions exhibited higher contrast compared to gyral regions. We found a strongly lateralized and regionally specific profile with reduced verbal expression abilities associated with blurring in left hemisphere inferior frontal cortex and temporal pole. Reduced verbal working memory was associated with blurring in widespread left frontal and temporal cortices. Such lateralized and focal results provide support for GWC as a measure of regional functional integrity and highlight its potential role in probing the neuroanatomical substrates of cognition in healthy and diseased populations.
Collapse
|
45
|
Oeschger FM, Wang WZ, Lee S, García-Moreno F, Goffinet AM, Arbonés ML, Rakic S, Molnár Z. Gene expression analysis of the embryonic subplate. ACTA ACUST UNITED AC 2011; 22:1343-59. [PMID: 21862448 PMCID: PMC4972418 DOI: 10.1093/cercor/bhr197] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The subplate layer of the cerebral cortex is comprised of a heterogeneous population of cells and contains some of the earliest-generated neurons. In the embryonic brain, subplate cells contribute to the guidance and areal targeting of thalamocortical axons. At later developmental stages, they are predominantly involved in the maturation and plasticity of the cortical circuitry and the establishment of functional modules. We aimed to further characterize the embryonic murine subplate population by establishing a gene expression profile at embryonic day (E) 15.5 using laser capture microdissection and microarrays. The microarray identified over 300 transcripts with higher expression in the subplate compared with the cortical plate at this stage. Using quantitative reverse transcription-polymerase chain reaction, in situ hybridization (ISH), and immunohistochemistry (IHC), we have confirmed specific expression in the E15.5 subplate for 13 selected genes, which have not been previously associated with this compartment (Abca8a, Cdh10, Cdh18, Csmd3, Gabra5, Kcnt2, Ogfrl1, Pls3, Rcan2, Sv2b, Slc8a2, Unc5c, and Zdhhc2). In the reeler mutant, the expression of the majority of these genes (9 of 13) was shifted in accordance with the altered position of subplate. These genes belong to several functional groups and likely contribute to synapse formation and axonal growth and guidance in subplate cells.
Collapse
Affiliation(s)
- Franziska M Oeschger
- Department of Physiology, Anatomy and Genetics, Oxford University, Oxford OX1 3QX, UK
| | | | | | | | | | | | | | | |
Collapse
|