1
|
Klingbeil EA, Schade R, Lee SH, Kirkland R, de La Serre CB. Manipulation of feeding patterns in high fat diet fed rats improves microbiota composition dynamics, inflammation and gut-brain signaling. Physiol Behav 2024; 285:114643. [PMID: 39059597 DOI: 10.1016/j.physbeh.2024.114643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/29/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
Chronic consumption of high fat (HF) diets has been shown to increase meal size and meal frequency in rodents, resulting in overeating. Reducing meal frequency and establishing periods of fasting, independently of caloric intake, may improve obesity-associated metabolic disorders. Additionally, diet-driven changes in microbiota composition have been shown to play a critical role in the development and maintenance of metabolic disorders. In this study, we used a pair-feeding paradigm to reduce meal frequency and snacking episodes while maintaining overall intake and body weight in HF fed rats. We hypothesized that manipulation of feeding patterns would improve microbiota composition and metabolic outcomes. Male Wistar rats were placed in three groups consuming either a HF, low fat diet (LF, matched for sugar), or pair-fed HF diet for 7 weeks (n = 11-12/group). Pair-fed animals received the same amount of food consumed by the HF fed group once daily before dark onset (HF-PF). Rats underwent oral glucose tolerance and gut peptide cholecystokinin sensitivity tests. Bacterial DNA was extracted from the feces collected during both dark and light cycles and sequenced via Illumina MiSeq sequencing of the 16S V4 region. Our pair-feeding paradigm reduced meal numbers, especially small meals in the inactive phase, without changing total caloric intake. This shift in feeding patterns reduced relative abundances of obesity-associated bacteria and maintained circadian fluctuations in microbial abundances. These changes were associated with improved gastrointestinal (GI) function, reduced inflammation, and improved glucose tolerance and gut to brain signaling. We concluded from these data that targeting snacking may help improve metabolic outcomes, independently of energy content of the diet and hyperphagia.
Collapse
Affiliation(s)
- E A Klingbeil
- Department of Nutritional Sciences, The University of Texas at Austin, United States
| | - R Schade
- Department of Microbiology and Immunology, Stanford University School of Medicine, United States
| | - S H Lee
- Department of Food Sciences, Sun Moon University, South Korea
| | - R Kirkland
- Office of Research, University of Georgia, United States
| | - C B de La Serre
- Department of Nutritional Sciences, University of Georgia, United States; Department of Biomedical Sciences, Colorado State University, United States.
| |
Collapse
|
2
|
Hamza M, Carron R, Dibué M, Moiraghi A, Barrit S, Filipescu C, Landré E, Gavaret M, Domenech P, Pallud J, Zanello M. Right-sided vagus nerve stimulation for drug-resistant epilepsy: A systematic review of the literature and perspectives. Seizure 2024; 117:298-304. [PMID: 38615369 DOI: 10.1016/j.seizure.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/11/2024] [Accepted: 02/18/2024] [Indexed: 04/16/2024] Open
Abstract
BACKGROUND Right-sided vagus nerve stimulation (RS-VNS) is indicated when the procedure was deemed not technically feasible or too risky on the indicated left side. OBJECTIVE The present study aims to systematically review the literature on RS-VNS, assessing its effectiveness and safety. METHODS A systematic review following PRISMA guidelines was conducted: Pubmed/MEDLINE, The Cochrane Library, Scopus, Embase and Web of science databases were searched from inception to August 13th,2023. Gray literature was searched in two libraries. Eligible studies included all studies reporting, at least, one single case of RS-VNS in patients for the treatment of drug-resistant epilepsy. RESULTS Out of 2333 initial results, 415 studies were screened by abstract. Only four were included in the final analysis comprising seven patients with RS-VNS for a drug-resistant epilepsy. One patient experienced nocturnal asymptomatic bradycardia whereas the other six patients did not display any cardiac symptom. RS-VNS was discontinued in one case due to exercise-induced airway disease exacerbation. Decrease of epileptic seizure frequency after RS-VNS ranged from 25 % to 100 % in six cases. In the remaining case, VNS effectiveness was unclear. In one case, RS-VNS was more efficient than left-sided VNS (69 % vs 50 %, respectively) whereas in another case, RS-VNS was less efficient (50 % vs 95 %, respectively). CONCLUSION Literature on the present topic is limited. In six out of seven patients, RS-VNS for drug-resistant epilepsy displayed reasonable effectiveness with a low complication rate. Further research, including prospective studies, is necessary to assess safety and effectiveness of RS-VNS for drug-resistant epilepsy patients.
Collapse
Affiliation(s)
- Meissa Hamza
- Department of Neurosurgery, GHU Paris - Sainte-Anne Hospital, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France
| | - Romain Carron
- Aix Marseille Université, INSERM, INS, Institut de Neurosciences des Systèmes, Marseille, France; Department of Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| | - Maxine Dibué
- Department of Neurosurgery, Friedrich-Schiller University, Jena, Germany; Medical Affairs Neuromodulation International, LivaNova PLC, London United Kingdom
| | - Alessandro Moiraghi
- Department of Neurosurgery, GHU Paris - Sainte-Anne Hospital, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France; Université Paris Cité, INSERM UMR1266, IPNP, Paris, France
| | - Sami Barrit
- Department of Neurosurgery, Erasmus Hospital, Free University of Brussels, Belgium
| | - Cristina Filipescu
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Elisabeth Landré
- Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Martine Gavaret
- Paris Descartes University, Sorbonne Paris Cité, Paris, France; Université Paris Cité, INSERM UMR1266, IPNP, Paris, France; Neurophysiology Department, GHU Paris Psychiatrie et Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Philippe Domenech
- Neuromodulation Institute, GHU Paris, Psychiatrie et neurosciences, Hôpital Saint-Anne, Université Paris Cité, Paris, France; Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin Center, France
| | - Johan Pallud
- Department of Neurosurgery, GHU Paris - Sainte-Anne Hospital, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France; Université Paris Cité, INSERM UMR1266, IPNP, Paris, France
| | - Marc Zanello
- Department of Neurosurgery, GHU Paris - Sainte-Anne Hospital, Paris, France; Paris Descartes University, Sorbonne Paris Cité, Paris, France; Université Paris Cité, INSERM UMR1266, IPNP, Paris, France.
| |
Collapse
|
3
|
Hofmann GC, Gama de Barcellos Filho P, Khodadadi F, Ostrowski D, Kline DD, Hasser EM. Vagotomy blunts cardiorespiratory responses to vagal afferent stimulation via pre- and postsynaptic effects in the nucleus tractus solitarii. J Physiol 2024; 602:1147-1174. [PMID: 38377124 DOI: 10.1113/jp285854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
Viscerosensory information travels to the brain via vagal afferents, where it is first integrated within the brainstem nucleus tractus solitarii (nTS), a critical contributor to cardiorespiratory function and site of neuroplasticity. We have shown that decreasing input to the nTS via unilateral vagus nerve transection (vagotomy) induces morphological changes in nTS glia and reduces sighs during hypoxia. The mechanisms behind post-vagotomy changes are not well understood. We hypothesized that chronic vagotomy alters cardiorespiratory responses to vagal afferent stimulation via blunted nTS neuronal activity. Male Sprague-Dawley rats (6 weeks old) underwent right cervical vagotomy caudal to the nodose ganglion, or sham surgery. After 1 week, rats were anaesthetized, ventilated and instrumented to measure mean arterial pressure (MAP), heart rate (HR), and splanchnic sympathetic and phrenic nerve activity (SSNA and PhrNA, respectively). Vagal afferent stimulation (2-50 Hz) decreased cardiorespiratory parameters and increased neuronal Ca2+ measured by in vivo photometry and in vitro slice imaging of nTS GCaMP8m. Vagotomy attenuated both these reflex and neuronal Ca2+ responses compared to shams. Vagotomy also reduced presynaptic Ca2+ responses to stimulation (Cal-520 imaging) in the nTS slice. The decrease in HR, SSNA and PhrNA due to nTS nanoinjection of exogenous glutamate also was tempered following vagotomy. This effect was not restored by blocking excitatory amino acid transporters. However, the blunted responses were mimicked by NMDA, not AMPA, nanoinjection and were associated with reduced NR1 subunits in the nTS. Altogether, these results demonstrate that vagotomy induces multiple changes within the nTS tripartite synapse that influence cardiorespiratory reflex responses to afferent stimulation. KEY POINTS: Multiple mechanisms within the nucleus tractus solitarii (nTS) contribute to functional changes following vagal nerve transection. Vagotomy results in reduced cardiorespiratory reflex responses to vagal afferent stimulation and nTS glutamate nanoinjection. Blunted responses occur via reduced presynaptic Ca2+ activation and attenuated NMDA receptor expression and function, leading to a reduction in nTS neuronal activation. These results provide insight into the control of autonomic and respiratory function, as well as the plasticity that can occur in response to nerve damage and cardiorespiratory disease.
Collapse
Affiliation(s)
- Gabrielle C Hofmann
- Comparative Medicine, University of Missouri, Columbia, Missouri, USA
- Area Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Procopio Gama de Barcellos Filho
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Fateme Khodadadi
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
| | - Daniela Ostrowski
- Department of Pharmacology, A.T. Still University, Kirksville, Missouri, USA
| | - David D Kline
- Area Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Eileen M Hasser
- Area Pathobiology, University of Missouri, Columbia, Missouri, USA
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, USA
- Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
4
|
Kim JS, Williams KC, Kirkland RA, Schade R, Freeman KG, Cawthon CR, Rautmann AW, Smith JM, Edwards GL, Glenn TC, Holmes PV, de Lartigue G, de La Serre CB. The gut-brain axis mediates bacterial driven modulation of reward signaling. Mol Metab 2023; 75:101764. [PMID: 37380023 PMCID: PMC10372379 DOI: 10.1016/j.molmet.2023.101764] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/18/2023] [Accepted: 06/23/2023] [Indexed: 06/30/2023] Open
Abstract
OBJECTIVE Our goal is to investigate if microbiota composition modulates reward signaling and assess the role of the vagus in mediating microbiota to brain communication. METHODS Male germ-free Fisher rats were colonized with gastrointestinal contents from chow (low fat (LF) ConvLF) or HF (ConvHF) fed rats. RESULTS Following colonization, ConvHF rats consumed significantly more food than ConvLF animals. ConvHF rats displayed lower feeding-induced extracellular DOPAC levels (a metabolite of dopamine) in the Nucleus Accumbens (NAc) as well as reduced motivation for HF foods compared to ConvLF rats. Dopamine receptor 2 (DDR2) expression levels in the NAc were also significantly lower in ConvHF animals. Similar deficits were observed in conventionally raised HF fed rats, showing that diet-driven alteration in reward can be initiated via microbiota. Selective gut to brain deafferentation restored DOPAC levels, DRD2 expression, and motivational drive in ConvHF rats. CONCLUSIONS We concluded from these data that a HF-type microbiota is sufficient to alter appetitive feeding behavior and that bacteria to reward communication is mediated by the vagus nerve.
Collapse
Affiliation(s)
- Jiyoung S Kim
- Department of Nutritional Sciences, University of Georgia, USA
| | | | | | - Ruth Schade
- Department of Nutritional Sciences, University of Georgia, USA
| | | | | | | | | | - Gaylen L Edwards
- Department of Physiology and Pharmacology, University of Georgia, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, USA
| | | | - Guillaume de Lartigue
- Monell Chemical Senses Center and Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, USA
| | | |
Collapse
|
5
|
An Z, Wang H, Mokadem M. Role of the Autonomic Nervous System in Mechanism of Energy and Glucose Regulation Post Bariatric Surgery. Front Neurosci 2021; 15:770690. [PMID: 34887725 PMCID: PMC8649921 DOI: 10.3389/fnins.2021.770690] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 10/15/2021] [Indexed: 01/06/2023] Open
Abstract
Even though lifestyle changes are the mainstay approach to address obesity, Sleeve gastrectomy (SG) and Roux-en-Y gastric bypass (RYGB) are the most effective and durable treatments facing this pandemic and its associated metabolic conditions. The traditional classifications of bariatric surgeries labeled them as “restrictive,” “malabsorptive,” or “mixed” types of procedures depending on the anatomical rearrangement of each one of them. This conventional categorization of bariatric surgeries assumed that the “restrictive” procedures induce their weight loss and metabolic effects by reducing gastric content and therefore having a smaller reservoir. Similarly, the “malabsorptive” procedures were thought to induce their main energy homeostatic effects from fecal calorie loss due to intestinal malabsorption. Observational data from human subjects and several studies from rodent models of bariatric surgery showed that neither of those concepts is completely true, at least in explaining the multiple metabolic changes and the alteration in energy balance that those two surgeries induce. Rather, neuro-hormonal mechanisms have been postulated to underly the physiologic effects of those two most performed bariatric procedures. In this review, we go over the role the autonomic nervous system plays- through its parasympathetic and sympathetic branches- in regulating weight balance and glucose homeostasis after SG and RYGB.
Collapse
Affiliation(s)
- Zhibo An
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States
| | - Haiying Wang
- Department of Physiology, Basic Medical School of Jining Medical University, Jining, China
| | - Mohamad Mokadem
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Carver College of Medicine, The University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, The University of Iowa, Iowa City, IA, United States.,Obesity Research and Education Initiative, The University of Iowa, Iowa City, IA, United States.,Iowa City Veterans Affairs Health Care System, Iowa City, IA, United States
| |
Collapse
|
6
|
Isabella AJ, Stonick JA, Dubrulle J, Moens CB. Intrinsic positional memory guides target-specific axon regeneration in the zebrafish vagus nerve. Development 2021; 148:272160. [PMID: 34427308 DOI: 10.1242/dev.199706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 08/19/2021] [Indexed: 11/20/2022]
Abstract
Regeneration after peripheral nerve damage requires that axons re-grow to the correct target tissues in a process called target-specific regeneration. Although much is known about the mechanisms that promote axon re-growth, re-growing axons often fail to reach the correct targets, resulting in impaired nerve function. We know very little about how axons achieve target-specific regeneration, particularly in branched nerves that require distinct targeting decisions at branch points. The zebrafish vagus motor nerve is a branched nerve with a well-defined topographic organization. Here, we track regeneration of individual vagus axons after whole-nerve laser severing and find a robust capacity for target-specific, functional re-growth. We then develop a new single-cell chimera injury model for precise manipulation of axon-environment interactions and find that (1) the guidance mechanism used during regeneration is distinct from the nerve's developmental guidance mechanism, (2) target selection is specified by neurons' intrinsic memory of their position within the brain, and (3) targeting to a branch requires its pre-existing innervation. This work establishes the zebrafish vagus nerve as a tractable regeneration model and reveals the mechanistic basis of target-specific regeneration.
Collapse
Affiliation(s)
- Adam J Isabella
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Jason A Stonick
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Julien Dubrulle
- Shared Resources, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Cecilia B Moens
- Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| |
Collapse
|
7
|
Rautmann AW, de La Serre CB. Microbiota's Role in Diet-Driven Alterations in Food Intake: Satiety, Energy Balance, and Reward. Nutrients 2021; 13:nu13093067. [PMID: 34578945 PMCID: PMC8470213 DOI: 10.3390/nu13093067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/18/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota plays a key role in modulating host physiology and behavior, particularly feeding behavior and energy homeostasis. There is accumulating evidence demonstrating a role for gut microbiota in the etiology of obesity. In human and rodent studies, obesity and high-energy feeding are most consistently found to be associated with decreased bacterial diversity, changes in main phyla relative abundances and increased presence of pro-inflammatory products. Diet-associated alterations in microbiome composition are linked with weight gain, adiposity, and changes in ingestive behavior. There are multiple pathways through which the microbiome influences food intake. This review discusses these pathways, including peripheral mechanisms such as the regulation of gut satiety peptide release and alterations in leptin and cholecystokinin signaling along the vagus nerve, as well as central mechanisms, such as the modulation of hypothalamic neuroinflammation and alterations in reward signaling. Most research currently focuses on determining the role of the microbiome in the development of obesity and using microbiome manipulation to prevent diet-induced increase in food intake. More studies are necessary to determine whether microbiome manipulation after prolonged energy-dense diet exposure and obesity can reduce intake and promote meaningful weight loss.
Collapse
|
8
|
Geisler CE, Ghimire S, Bruggink SM, Miller KE, Weninger SN, Kronenfeld JM, Yoshino J, Klein S, Duca FA, Renquist BJ. A critical role of hepatic GABA in the metabolic dysfunction and hyperphagia of obesity. Cell Rep 2021; 35:109301. [PMID: 34192532 PMCID: PMC8851954 DOI: 10.1016/j.celrep.2021.109301] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/17/2021] [Accepted: 06/03/2021] [Indexed: 12/31/2022] Open
Abstract
Hepatic lipid accumulation is a hallmark of type II diabetes (T2D) associated with hyperinsulinemia, insulin resistance, and hyperphagia. Hepatic synthesis of GABA, catalyzed by GABA-transaminase (GABA-T), is upregulated in obese mice. To assess the role of hepatic GABA production in obesity-induced metabolic and energy dysregulation, we treated mice with two pharmacologic GABA-T inhibitors and knocked down hepatic GABA-T expression using an antisense oligonucleotide. Hepatic GABA-T inhibition and knockdown decreased basal hyperinsulinemia and hyperglycemia and improved glucose intolerance. GABA-T knockdown improved insulin sensitivity assessed by hyperinsulinemic-euglycemic clamps in obese mice. Hepatic GABA-T knockdown also decreased food intake and induced weight loss without altering energy expenditure in obese mice. Data from people with obesity support the notion that hepatic GABA production and transport are associated with serum insulin, homeostatic model assessment for insulin resistance (HOMA-IR), T2D, and BMI. These results support a key role for hepatocyte GABA production in the dysfunctional glucoregulation and feeding behavior associated with obesity.
Collapse
Affiliation(s)
- Caroline E Geisler
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susma Ghimire
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Stephanie M Bruggink
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Kendra E Miller
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Savanna N Weninger
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Jason M Kronenfeld
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Frank A Duca
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
9
|
Geisler CE, Ghimire S, Hepler C, Miller KE, Bruggink SM, Kentch KP, Higgins MR, Banek CT, Yoshino J, Klein S, Renquist BJ. Hepatocyte membrane potential regulates serum insulin and insulin sensitivity by altering hepatic GABA release. Cell Rep 2021; 35:109298. [PMID: 34192533 PMCID: PMC8341405 DOI: 10.1016/j.celrep.2021.109298] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 04/17/2021] [Accepted: 06/03/2021] [Indexed: 01/10/2023] Open
Abstract
Hepatic lipid accumulation in obesity correlates with the severity of hyperinsulinemia and systemic insulin resistance. Obesity-induced hepatocellular lipid accumulation results in hepatocyte depolarization. We have established that hepatocyte depolarization depresses hepatic afferent vagal nerve firing, increases GABA release from liver slices, and causes hyperinsulinemia. Preventing hepatic GABA release or eliminating the ability of the liver to communicate to the hepatic vagal nerve ameliorates the hyperinsulinemia and insulin resistance associated with diet-induced obesity. In people with obesity, hepatic expression of GABA transporters is associated with glucose infusion and disposal rates during a hyperinsulinemic euglycemic clamp. Single-nucleotide polymorphisms in hepatic GABA re-uptake transporters are associated with an increased incidence of type 2 diabetes mellitus. Herein, we identify GABA as a neuro-hepatokine that is dysregulated in obesity and whose release can be manipulated to mute or exacerbate the glucoregulatory dysfunction common to obesity.
Collapse
Affiliation(s)
- Caroline E Geisler
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA; Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Susma Ghimire
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Chelsea Hepler
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA; Robert H. Lurie Medical Research Center, Northwestern University, Chicago, IL 60611, USA
| | - Kendra E Miller
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Stephanie M Bruggink
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Kyle P Kentch
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Mark R Higgins
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA
| | | | - Jun Yoshino
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Samuel Klein
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO, USA
| | - Benjamin J Renquist
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ 85721, USA.
| |
Collapse
|
10
|
Hofmann GC, Hasser EM, Kline DD. Unilateral vagotomy alters astrocyte and microglial morphology in the nucleus tractus solitarii of the rat. Am J Physiol Regul Integr Comp Physiol 2021; 320:R945-R959. [PMID: 33978480 PMCID: PMC8285617 DOI: 10.1152/ajpregu.00019.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/09/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022]
Abstract
The nucleus tractus solitarii (nTS) is the initial site of integration of sensory information from the cardiorespiratory system and contributes to reflex responses to hypoxia. Afferent fibers of the bilateral vagus nerves carry input from the heart, lungs, and other organs to the nTS where it is processed and modulated. Vagal afferents and nTS neurons are integrally associated with astrocytes and microglia that contribute to neuronal activity and influence cardiorespiratory control. We hypothesized that vagotomy would alter glial morphology and cardiorespiratory responses to hypoxia. Unilateral vagotomy (or sham surgery) was performed in rats. Prior to and seven days after surgery, baseline and hypoxic cardiorespiratory responses were monitored in conscious and anesthetized animals. The brainstem was sectioned and caudal, mid-area postrema (mid-AP), and rostral sections of the nTS were prepared for immunohistochemistry. Vagotomy increased immunoreactivity (-IR) of astrocytic glial fibrillary acidic protein (GFAP), specifically at mid-AP in the nTS. Similar results were found in the dorsal motor nucleus of the vagus (DMX). Vagotomy did not alter nTS astrocyte number, yet increased astrocyte branching and altered morphology. In addition, vagotomy both increased nTS microglia number and produced morphologic changes indicative of activation. Cardiorespiratory baseline parameters and hypoxic responses remained largely unchanged, but vagotomized animals displayed fewer augmented breaths (sighs) in response to hypoxia. Altogether, vagotomy alters nTS glial morphology, indicative of functional changes in astrocytes and microglia that may affect cardiorespiratory function in health and disease.
Collapse
Affiliation(s)
- Gabrielle C Hofmann
- Comparative Medicine, University of Missouri, Columbia, Missouri
- Area Pathobiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Eileen M Hasser
- Area Pathobiology, University of Missouri, Columbia, Missouri
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - David D Kline
- Area Pathobiology, University of Missouri, Columbia, Missouri
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
11
|
Neurotrophin-4 is essential for survival of the majority of vagal afferents to the mucosa of the small intestine, but not the stomach. Auton Neurosci 2021; 233:102811. [PMID: 33932866 DOI: 10.1016/j.autneu.2021.102811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/03/2021] [Accepted: 04/14/2021] [Indexed: 01/06/2023]
Abstract
Vagal afferents form the primary gut-to-brain neural axis, communicating signals that regulate gastrointestinal (GI) function and promote satiation, appetition and reward. Neurotrophin-4 (NT-4) is essential for the survival of vagal smooth muscle afferents of the small intestine, but not the stomach. Here we took advantage of near-complete labeling of GI vagal mucosal afferents in Nav1.8cre-Rosa26tdTomato transgenic mice to determine whether these afferents depend on NT-4 for survival. We quantified the density and distribution of vagal afferent terminals in the stomach and small intestine mucosa and their central terminals in the solitary tract nucleus (NTS) and area postrema in NT-4 knockout (KO) and control mice. NT-4KO mice exhibited a 75% reduction in vagal afferent terminals in proximal duodenal villi and a 55% decrease in the distal ileum, whereas, those in the stomach glands remained intact. Vagal crypt afferents were also reduced in some regions of the small intestine, but to a lesser degree. Surprisingly, NT-4KO mice exhibited an increase in labeled terminals in the medial NTS. These findings, combined with previous results, suggest NT-4 is essential for survival of a large proportion of all classes of vagal afferents that innervate the small intestine, but not those that supply the stomach. Thus, NT-4KO mice could be valuable for distinguishing gastric and intestinal vagal afferent regulation of GI function and feeding. The apparent plasticity of central vagal afferent terminals - an increase in their density - could have compensated for loss of peripheral terminals by maintaining near-normal levels of satiety signaling.
Collapse
|
12
|
Siqueira BS, Ceglarek VM, Gomes ECZ, Vettorazzi JF, Rentz T, Nenevê JZ, Volinski KZ, Moraes SS, Malta A, de Freitas Mathias PC, de Oliveira Emilio HR, Balbo SL, Grassiolli S. Vagotomy and Splenectomy Reduce Insulin Secretion and Interleukin-1β. Pancreas 2021; 50:607-616. [PMID: 33939676 DOI: 10.1097/mpa.0000000000001809] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVES This study aimed to evaluate the effect of vagotomy, when associated with splenectomy, on adiposity and glucose homeostasis in Wistar rats. METHODS Rats were divided into 4 groups: vagotomized (VAG), splenectomized (SPL), VAG + SPL, and SHAM. Glucose tolerance tests were performed, and physical and biochemical parameters evaluated. Glucose-induced insulin secretion and protein expression (Glut2/glucokinase) were measured in isolated pancreatic islets. Pancreases were submitted to histological and immunohistochemical analyses, and vagus nerve neural activity was recorded. RESULTS The vagotomized group presented with reduced body weight, growth, and adiposity; high food intake; reduced plasma glucose and triglyceride levels; and insulin resistance. The association of SPL with the VAG surgery attenuated, or abolished, the effects of VAG and reduced glucose-induced insulin secretion and interleukin-1β area in β cells, in addition to lowering vagal activity. CONCLUSIONS The absence of the spleen attenuated or blocked the effects of VAG on adiposity, triglycerides and glucose homeostasis, suggesting a synergistic effect of both on metabolism. The vagus nerve and spleen modulate the presence of interleukin-1β in β cells, possibly because of the reduction of glucose-induced insulin secretion, indicating a bidirectional flow between autonomous neural firing and the spleen, with repercussions for the endocrine pancreas.
Collapse
Affiliation(s)
- Bruna Schumaker Siqueira
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Vanessa Marieli Ceglarek
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | | | | | - Thiago Rentz
- Obesity and Comorbidities Research Center, University of Campinas (UNICAMP), Campinas
| | - Juliane Zanon Nenevê
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Karoline Zanella Volinski
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Sandra Schmidt Moraes
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Ananda Malta
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá (UEM), Maringá
| | - Paulo Cezar de Freitas Mathias
- Laboratory of Secretion Cell Biology, Department of Biotechnology, Genetics and Cell Biology, State University of Maringá (UEM), Maringá
| | | | - Sandra Lucinei Balbo
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| | - Sabrina Grassiolli
- From the Laboratory of Endocrine Physiology and Metabolism (LAFEM), Western Paraná State University (UNIOESTE)
| |
Collapse
|
13
|
Ibañez C, Vicencio S, Quintanilla ME, Maldonado P. Interoception and alcohol addiction: Vagotomy induces long-lasting suppression of relapse-type behavior. Addict Biol 2021; 26:e12836. [PMID: 31846188 DOI: 10.1111/adb.12836] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/19/2019] [Accepted: 09/09/2019] [Indexed: 01/17/2023]
Abstract
Drug addictions are chronic mental disorders characterized by compulsive drug seeking and drug use, despite their negative consequences. It is a priority to find therapeutic alternatives to prevent relapse, as there are still no treatments that can ensure abstinence. One of the neural systems implicated in the appearance of the states of discomfort that motivate relapse is the interoceptive system, which oversees our internal body states. However, less attention has been given to the peripheral components of the interoceptive system and their role in addictions. Within these pathways, the vagus nerve represents one of the main visceral afferents of the interoceptive system. We hypothesized that the interruption of visceral afferent pathways would decrease the motivational effects of the drug, thereby either decreasing or preventing drug cravings. To test this idea, we used rats of a high-alcohol-drinking line and measured the effect that vagus nerve resection had on the relapse-like alcohol drinking, expressed as the alcohol deprivation effect, a phenomenon that has been linked to addiction-related events such as alcohol cravings. We found that even though vagotomy completely eliminates the effect of alcohol deprivation, it has no impact on water consumption or animal weight. These results give us valuable information about the relationship between the autonomic nervous system and alcohol use disorders and allow us to propose new clinical research that might have translational options.
Collapse
Affiliation(s)
- Carlos Ibañez
- Department of Psychiatry Clinical Hospital of the Universidad de Chile Santiago Chile
| | - Sergio Vicencio
- Biomedical Neuroscience Institute, Faculty of Medicine Universidad de Chile Santiago Chile
- Department of Neuroscience, Faculty of Medicine Universidad de Chile Santiago Chile
| | - María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences Universidad de Chile Santiago Chile
| | - Pedro Maldonado
- Biomedical Neuroscience Institute, Faculty of Medicine Universidad de Chile Santiago Chile
- Department of Neuroscience, Faculty of Medicine Universidad de Chile Santiago Chile
| |
Collapse
|
14
|
Obesity and Related Type 2 Diabetes: A Failure of the Autonomic Nervous System Controlling Gastrointestinal Function? GASTROINTESTINAL DISORDERS 2020. [DOI: 10.3390/gidisord2040039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The pandemic spread of obesity and type 2 diabetes is a serious health problem that cannot be contained with common therapies. At present, the most effective therapeutic tool is metabolic surgery, which substantially modifies the gastrointestinal anatomical structure. This review reflects the state of the art research in obesity and type 2 diabetes, describing the probable reason for their spread, how the various brain sectors are involved (with particular emphasis on the role of the vagal system controlling different digestive functions), and the possible mechanisms for the effectiveness of bariatric surgery. According to the writer’s interpretation, the identification of drugs that can modulate the activity of some receptor subunits of the vagal neurons and energy-controlling structures of the central nervous system (CNS), and/or specific physical treatment of cortical areas, could reproduce, non-surgically, the positive effects of metabolic surgery.
Collapse
|
15
|
Kim JS, Kirkland RA, Lee SH, Cawthon CR, Rzepka KW, Minaya DM, de Lartigue G, Czaja K, de La Serre CB. Gut microbiota composition modulates inflammation and structure of the vagal afferent pathway. Physiol Behav 2020; 225:113082. [PMID: 32682966 DOI: 10.1016/j.physbeh.2020.113082] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/02/2020] [Accepted: 07/15/2020] [Indexed: 12/17/2022]
Abstract
Vagal afferent neurons (VAN), located in the nodose ganglion (NG) innervate the gut and terminate in the nucleus of solitary tract (NTS) in the brainstem. They are the primary sensory neurons integrating gut-derived signals to regulate meal size. Chronic high-fat diet (HFD) consumption impairs vagally mediated satiety, resulting in overfeeding. There is evidence that HFD consumption leads to alterations in both vagal nerve function and structural integrity. HFD also leads to marked gut microbiota dysbiosis; in rodent models, dysbiosis is sufficient to induce weight gain. In this study, we investigated the effect of microbiota dysbiosis on gut-brain vagal innervation independently of diet. To do so, we recolonized microbiota-depleted rats with gastrointestinal (GI) contents isolated from donor animals fed either a HFD (45 or 60% fat) or a low fat diet (LFD, 13% fat). We used two different depletion models while maintaining the animals on LFD: 1) conventionally raised Fischer and Wistar rats that underwent a depletion paradigm using an antibiotic cocktail and 2) germ free (GF) raised Fischer rats. Following recolonization, receiver animals were designated as ConvLF and ConvHF. Fecal samples were collected throughout these studies and analyzed via 16S Illumina sequencing. In both models, bacteria that were identified as characteristic of HFD were successfully transferred to recipient animals. Three weeks post-colonization, ConvHF rats showed significant increases in ionized calcium-binding adapter molecule-1 (Iba1) positive immune cells in the NG compared to ConvLF animals. Additionally, using isolectin B4 (IB4) staining to identify c-fibers, we found that, compared to ConvLF animals, ConvHF rats displayed decreased innervation at the level of the medial NTS; c-fibers at this level are believed to be primarily of vagal origin. This alteration in vagal structure was associated with a loss in satiety induced by the gut peptide cholecystokinin (CCK). Increased presence of immunocompetent Iba1+ cells along the gut-brain axis and alterations in NTS innervation were still evident in ConvHF rats compared to ConvLF animals 12 weeks post-colonization and were associated with increases in food intake and body weight (BW). We conclude from these data that microbiota dysbiosis can alter gut-brain vagal innervation, potentially via recruitment and/or activation of immune cells.
Collapse
Affiliation(s)
- J S Kim
- Dept. of Foods and Nutrition, USA
| | | | - S H Lee
- Dept. of Foods and Nutrition, USA
| | | | - K W Rzepka
- Dept. of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, USA
| | - D M Minaya
- Dept. of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, USA
| | - G de Lartigue
- Dept. of Pharmacodynamics, University of Florida, Gainesville, FL, USA
| | - K Czaja
- Dept. of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
16
|
Consumption of a high energy density diet triggers microbiota dysbiosis, hepatic lipidosis, and microglia activation in the nucleus of the solitary tract in rats. Nutr Diabetes 2020; 10:20. [PMID: 32518225 PMCID: PMC7283362 DOI: 10.1038/s41387-020-0119-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/30/2020] [Accepted: 05/06/2020] [Indexed: 02/06/2023] Open
Abstract
Introduction Obesity is a multifactorial chronic inflammatory disease. Consumption of high energy density (HED) diets is associated with hyperphagia, increased body weight and body fat accumulation, and obesity. Our lab has previously shown that short-term (4 weeks) consumption of a HED diet triggers gut microbiota dysbiosis, gut inflammation, and reorganization of the gut-brain vagal communication. Objetives The aim of this study was to investigate the effect of long-term (6 months) consumption of HED diet on body composition, gut microbiome, hepatocellular lipidosis, microglia activation in the nucleus of the solitary tract, and systemic inflammation. Methods Male Sprague–Dawley rats were fed a low energy density (LED) diet for 2 weeks and then switched to a HED diet for 26 weeks. Twenty-four-hour food intake, body weight, and body composition were measured twice a week. Blood serum and fecal samples were collected at baseline, 1, 4, 8, and 26 weeks after introduction of the HED diet. Serum samples were used to measure insulin, leptin, and inflammatory cytokines using Enzyme-linked Immunosorbent Assay. Fecal samples were assessed for 16 S rRNA genome sequencing. Results HED diet induced microbiota dysbiosis within a week of introducing the diet. In addition, there was significant microglia activation in the intermediate NTS and marked hepatic lipidosis after 4 weeks of HED diet. We further observed changes in the serum cytokine profile after 26 weeks of HED feeding. Conclusions These data suggest that microbiota dysbiosis is the first response of the organism to HED diets, followed by increased liver fat accumulation, microglia activation in the brain, and circulating levels of inflammatory markers. To our knowledge, this is the first study to present longitudinal and cross-sectional results on effect of long-term consumption of HED diets on all these parameters in a single cohort of animals.
Collapse
|
17
|
Minaya DM, Di Lorenzo PM, Hajnal A, Czaja K. Roux-en-Y gastric bypass surgery triggers rapid DNA fragmentation in vagal afferent neurons in rats. Acta Neurobiol Exp (Wars) 2020. [DOI: 10.21307/ane-2019-040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
18
|
Minaya DM, Di Lorenzo PM, Hajnal A, Czaja K. Roux‑en‑Y gastric bypass surgery triggers rapid DNA fragmentation in vagal afferent neurons in rats. Acta Neurobiol Exp (Wars) 2019; 79:432-444. [PMID: 31885399 PMCID: PMC7033620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Previous studies have shown that Roux‑en‑Y gastric bypass (RYGB), one of the most effective weight loss treatments for obesity, results in neurodegenerative responses in vagal afferent gut‑brain connection reflected by microglia activation and reduced sensory input to the nucleus tractus solitarius (NTS). However, it is not known whether RYGB‑induced microglia activation is the cause or an effect of the reported neuronal damage. Therefore, the aim of this study was to establish the order of neurodegenerative responses in vagal afferents after RYGB in the nodose ganglia (NG) and NTS in male and female rats. Sprague‑Dawley rats were fed regular chow or an energy‑dense diet for two weeks followed by RYGB or sham surgery. Twenty‑four hours later, animals were sacrificed and NG and NTS were collected. Neuronal cell damage was determined by TUNEL assay. Microglia activation was determined by quantifying the fluorescent staining against the ionizing calcium adapter‑binding molecule 1. Reorganization of vagal afferents was evaluated by fluorescent staining against isolectin 4. Results of the study revealed significantly increased DNA fragmentation in vagal neurons in the NG when observed at 24 h after RYGB. The surgery did not produce rapid changes in the density of vagal afferents and microglia activation in the NTS. These data indicate that decreased density of vagal afferents and increased microglia activation in the NTS likely ensue as a res ult of RYGB‑induced neuronal damage.
Collapse
Affiliation(s)
- Dulce M Minaya
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, USA
| | | | - Andras Hajnal
- Department of Neural and Behavioral Sciences, Pennsylvania State University, College of Medicine, Hershey, USA
| | - Krzysztof Czaja
- Department of Veterinary Biosciences and Diagnostic Imaging, University of Georgia, Athens, USA;
| |
Collapse
|
19
|
Gut adaptation after metabolic surgery and its influences on the brain, liver and cancer. Nat Rev Gastroenterol Hepatol 2018; 15:606-624. [PMID: 30181611 DOI: 10.1038/s41575-018-0057-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metabolic surgery is the best treatment for long-term weight loss maintenance and comorbidity control. Metabolic operations were originally intended to change anatomy to alter behaviour, but we now understand that the anatomical changes can modulate physiology to change behaviour. They are no longer considered only mechanically restrictive and/or malabsorptive procedures; rather, they are considered metabolic procedures involving complex physiological changes, whereby gut adaptation influences signalling pathways in several other organs, including the liver and the brain, regulating hunger, satiation, satiety, body weight, glucose metabolism and immune functions. The integrative physiology of gut adaptation after these operations consists of a complex mechanistic web of communication between gut hormones, bile acids, gut microbiota, the brain and both enteric and central nervous systems. The understanding of nutrient sensing via enteroendocrine cells, the enteric nervous system, hypothalamic peptides and adipose tissue and of the role of inflammation has advanced our knowledge of this integrative physiology. In this Review, we focus on the adaptation of gut physiology to the anatomical alterations from Roux-en-Y gastric bypass and vertical sleeve gastrectomy and the influence of these procedures on food intake, weight loss, nonalcoholic fatty liver disease (NAFLD) and cancer. We also aim to demonstrate the underlying mechanisms that could explain how metabolic surgery could be used as a therapeutic option in NAFLD and certain obesity-related cancers.
Collapse
|
20
|
de Lartigue G, Xu C. Mechanisms of vagal plasticity influencing feeding behavior. Brain Res 2018; 1693:146-150. [PMID: 29903616 PMCID: PMC6996925 DOI: 10.1016/j.brainres.2018.03.030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/21/2018] [Accepted: 03/26/2018] [Indexed: 12/18/2022]
Abstract
Sensory neurons of the vagus nerve receive many different peripheral signals that can change rapidly and frequently throughout the day. The ability of these neurons to convey the vast array of nuanced information to the brain requires neuronal adaptability. In this review we discuss evidence for neural plasticity in vagal afferent neurons as a mechanism for conveying nuanced information to the brain important for the control of feeding behavior. We provide evidence that synaptic plasticity, changes in membrane conductance, and neuropeptide specification are mechanisms that allow flexibility in response to metabolic cues that can be disrupted by chronic intake of energy dense diets.
Collapse
Affiliation(s)
| | - Chelsea Xu
- Department Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
21
|
Rytel L, Szymanska K, Gonkowski I, Wojtkiewicz J. Neurochemical characterization of intramural nerve fibres in the porcine oesophagus. Anat Histol Embryol 2018; 47:517-526. [PMID: 30105873 DOI: 10.1111/ahe.12391] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 06/14/2018] [Accepted: 06/27/2018] [Indexed: 12/15/2022]
Abstract
The gastrointestinal (GI) tract is innervated by nerve processes derived from the intramural enteric neurons and neurons localized outside the digestive tract. This study analysed the neurochemical characterization of nerves in the wall of the porcine oesophagus using single immunofluorescence technique. Immunoreactivity to vesicular acetylcholine transporter (VAChT), neuropeptide Y (NPY), vasoactive intestinal polypeptide (VIP), somatostatin (SOM), galanin (GAL), neuronal isoform of nitric oxide synthase (nNOS), substance P (SP), leucine enkephalin (LENK), calcitonin gene-related peptide (CGRP) or dopamine beta-hydroxylase (DBH) was investigated in intramuscular and intramucosal nerves of the cervical, thoracic and abdominal oesophagus. The results indicate that all of the substances studied were present in the oesophageal nerves. The density of particular populations of fibres depended on the segment of the oesophagus. The most numerous were fibres immunoreactive to VIP in the longitudinal and circular muscle layers of the abdominal oesophagus: The number of these fibres amounted to 16.4 ± 0.8 and 18.1 ± 3.1, respectively. In turn, the least numerous were CGRP-positive fibres, which were present only in the circular muscle layer of the cervical oesophagus and mucosal layer of the abdominal oesophagus in the number of 0.3 ± 0. The obtained results show that nerves in the porcine oesophageal wall are very diverse in their neurochemical coding, and differences between particular parts of the oesophagus suggest that organization of the innervation clearly depends on the fragment of this organ.
Collapse
Affiliation(s)
- Liliana Rytel
- Faculty of Veterinary Medicine, Department of Internal Disease with Clinic, University of Warmia and Mazury, Olsztyn, Poland
| | - Kamila Szymanska
- Faculty of Veterinary Medicine, Department of Clinical Physiology, University of Warmia and Mazury, Olsztyn, Poland
| | - Ignacy Gonkowski
- Department of Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Joanna Wojtkiewicz
- Department of Pathophysiology, School of Medicine, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
22
|
Diet, gut microbiota composition and feeding behavior. Physiol Behav 2018; 192:177-181. [DOI: 10.1016/j.physbeh.2018.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/23/2018] [Accepted: 03/23/2018] [Indexed: 02/07/2023]
|
23
|
Kapica M, Puzio I, Kato I, Kuwahara A, Zabielski R, Antushevich H. Exogenous obestatin affects pancreatic enzyme secretion in rat through two opposite mechanisms, direct inhibition and vagally-mediated stimulation. JOURNAL OF ANIMAL AND FEED SCIENCES 2018. [DOI: 10.22358/jafs/89734/2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Abstract
PURPOSES Our aim was to investigate the effects of selective celiac branch vagotomy on food intake and glycemic control after ileal transposition (IT) and the possible roles of the vagus on the improvement of diabetes. MATERIALS AND METHODS Forty non-obese rats with diabetes underwent either IT, IT + celiac branch vagotomy (ITV), sham IT (SI), or sham IT + celiac branch vagotomy (SIV). They were pair fed, and the food intake, body weight, fasting plasma glucose, and glucagon-like peptide 1 (GLP-1) level were monitored. The number of activated pro-opiomelanocortin (POMC) neurons and POMC-derived peptides were measured after sacrifice. RESULTS The fasting glucose level of the ITV group was higher (7.0 ± 0.7 mmol/L vs. 5.7 ± 0.3, P = 0.01), and the area under the curve of the oral glucose tolerance test (AUCOGTT) value was greater than that of the IT group (1101.8 ± 90.3 (mmol/l) min vs. 986.9 ± 47.7 (mmol/l) min, P = 0.01). There was no significant difference in the postprandial GLP-1 level between these two groups, but the number of activated neurons in the ITV group was less than that of the IT group (10.3 ± 2.1 vs. 14.9 ± 2.3, P < 0.01), while the relative content level of POMC-derived peptides in the ITV group was half that of the IT group (P < 0.01). CONCLUSIONS The celiac branches of the vagus might contribute to less eating and improvement of diabetes after IT. The activating vagus strategy might be a goal for the treatment of diabetes.
Collapse
|
25
|
Cawthon CR, de La Serre CB. Gut bacteria interaction with vagal afferents. Brain Res 2018; 1693:134-139. [PMID: 29360469 DOI: 10.1016/j.brainres.2018.01.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/03/2018] [Accepted: 01/08/2018] [Indexed: 12/25/2022]
Abstract
Contemporary techniques including the use of germ-free models and next generation sequencing have deepened our understanding of the gut microbiota dynamics and its influence on host physiology. There is accumulating evidence that the gut microbiota can communicate to the CNS and is involved in the development of metabolic and behavioral disorders. Vagal afferent terminals are positioned beneath the gut epithelium where they can receive, directly or indirectly, signals produced by the gut microbiota, to affect host behavior, including feeding behavior. Supplementation with L. Rhamnosus in mice notably causes a decrease in anxiety and these effects are abolished by vagotomy. Additionally, chronic treatment with bacterial byproduct lipopolysaccharide (LPS) blunts vagally-mediated post-ingestive feedback and is associated with increased food intake. Inflammation in the nodose ganglion (NG), the location of vagal afferent neurons' cell bodies, may be a key triggering factor of microbiota-driven vagal alteration. Interestingly, several models show that vagal damage leads to an increase in immune cell (microglia) activation in the NG and remodeling of the vagal pathway. Similarly, diet-driven microbiota dysbiosis is associated with NG microglia activation and decreased vagal outputs to the CNS. Crucially, preventing dysbiosis and microglia activation in high-fat diet fed rodents normalizes vagal innervation and energy intake, highlighting the importance of microbiota/vagal communication in controlling feeding behavior. As of today, new consideration of potential roles for glial influence on vagal communication and new methods of vagal afferent ablation open opportunities to increase our understanding of how the gut microbiota influence its host's health and behavior.
Collapse
Affiliation(s)
- Carolina R Cawthon
- Department of Foods and Nutrition, University of Georgia, 372 Dawson Hall, 305 Sanford Drive, Athens, GA 30602 USA.
| | - Claire B de La Serre
- Department of Foods and Nutrition, University of Georgia, 372 Dawson Hall, 305 Sanford Drive, Athens, GA 30602 USA.
| |
Collapse
|
26
|
Breit S, Kupferberg A, Rogler G, Hasler G. Vagus Nerve as Modulator of the Brain-Gut Axis in Psychiatric and Inflammatory Disorders. Front Psychiatry 2018; 9:44. [PMID: 29593576 PMCID: PMC5859128 DOI: 10.3389/fpsyt.2018.00044] [Citation(s) in RCA: 513] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/01/2018] [Indexed: 12/13/2022] Open
Abstract
The vagus nerve represents the main component of the parasympathetic nervous system, which oversees a vast array of crucial bodily functions, including control of mood, immune response, digestion, and heart rate. It establishes one of the connections between the brain and the gastrointestinal tract and sends information about the state of the inner organs to the brain via afferent fibers. In this review article, we discuss various functions of the vagus nerve which make it an attractive target in treating psychiatric and gastrointestinal disorders. There is preliminary evidence that vagus nerve stimulation is a promising add-on treatment for treatment-refractory depression, posttraumatic stress disorder, and inflammatory bowel disease. Treatments that target the vagus nerve increase the vagal tone and inhibit cytokine production. Both are important mechanism of resiliency. The stimulation of vagal afferent fibers in the gut influences monoaminergic brain systems in the brain stem that play crucial roles in major psychiatric conditions, such as mood and anxiety disorders. In line, there is preliminary evidence for gut bacteria to have beneficial effect on mood and anxiety, partly by affecting the activity of the vagus nerve. Since, the vagal tone is correlated with capacity to regulate stress responses and can be influenced by breathing, its increase through meditation and yoga likely contribute to resilience and the mitigation of mood and anxiety symptoms.
Collapse
Affiliation(s)
- Sigrid Breit
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Aleksandra Kupferberg
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Gerhard Rogler
- Department of Gastroenterology and Hepatology, University Hospital Zurich, Zurich, Switzerland
| | - Gregor Hasler
- Division of Molecular Psychiatry, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| |
Collapse
|
27
|
Stefanidis A, Oldfield BJ. Neuroendocrine mechanisms underlying bariatric surgery: Insights from human studies and animal models. J Neuroendocrinol 2017; 29. [PMID: 28887853 DOI: 10.1111/jne.12534] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/31/2017] [Accepted: 09/01/2017] [Indexed: 02/06/2023]
Abstract
Obesity has reached epidemic proportions and, to date, bariatric surgery remains the only effective treatment for morbid obesity in terms of its capacity to achieve durable weight loss. Bariatric surgery procedures, including Roux-en-Y gastric bypass (RYGB), adjustable gastric banding (AGB) and sleeve gastrectomy (SG), have been the primary procedures conducted over the past decade, with SG increasing in popularity over the past 5 years at the expense of both RYGB and AGB. Although these procedures were initially proposed to function via restrictive or malabsorptive mechanisms, it is now clear that profound physiological changes underlie the metabolic improvements in patients who undergo bariatric surgery. Data generated in human patients and animal models highlight the rapid and sustained changes in gut hormones that coincide with these procedures. Furthermore, recent studies highlight the involvement of the nervous system, specifically the vagus nerve, in mediating the reduction in appetite and food intake following bariatric surgery. What is unclear is where these pathways converge and interact within the gut-brain axis and whether vagally-mediated circuits are sufficient to drive the metabolic sequalae following bariatric surgery.
Collapse
Affiliation(s)
- A Stefanidis
- Department of Physiology, Monash University, Clayton, VIC, Australia
| | - B J Oldfield
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
28
|
Vaughn AC, Cooper EM, DiLorenzo PM, O'Loughlin LJ, Konkel ME, Peters JH, Hajnal A, Sen T, Lee SH, de La Serre CB, Czaja K. Energy-dense diet triggers changes in gut microbiota, reorganization of gut‑brain vagal communication and increases body fat accumulation. Acta Neurobiol Exp (Wars) 2017; 77:18-30. [PMID: 28379213 DOI: 10.21307/ane-2017-033] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Obesity is associated with consumption of energy-dense diets and development of systemic inflammation. Gut microbiota play a role in energy harvest and inflammation and can influence the change from lean to obese phenotypes. The nucleus of the solitary tract (NTS) is a brain target for gastrointestinal signals modulating satiety and alterations in gut-brain vagal pathway may promote overeating and obesity. Therefore, we tested the hypothesis that high-fat diet‑induced changes in gut microbiota alter vagal gut-brain communication associated with increased body fat accumulation. Sprague-Dawley rats consumed a low energy‑dense rodent diet (LFD; 3.1 kcal/g) or high energy‑dense diet (HFD, 5.24 kcal/g). Minocycline was used to manipulate gut microbiota composition. 16S Sequencing was used to determine microbiota composition. Immunofluorescence against IB4 and Iba1 was used to determine NTS reorganization and microglia activation. Nodose ganglia from LFD rats were isolated and co-cultured with different bacteria strains to determine neurotoxicity. HFD altered gut microbiota with increases in Firmicutes/Bacteriodetes ratio and in pro-inflammatory Proteobacteria proliferation. HFD triggered reorganization of vagal afferents and microglia activation in the NTS, associated with weight gain. Minocycline-treated HFD rats exhibited microbiota profile comparable to LFD animals. Minocycline suppressed HFD‑induced reorganization of vagal afferents and microglia activation in the NTS, and reduced body fat accumulation. Proteobacteria isolated from cecum of HFD rats were toxic to vagal afferent neurons in culture. Our findings show that diet‑induced shift in gut microbiome may disrupt vagal gut‑brain communication resulting in microglia activation and increased body fat accumulation.
Collapse
Affiliation(s)
- Alexandra C Vaughn
- Washington State University, Integrative Physiology and Neuroscience, Pullman, WA, USA
| | - Erin M Cooper
- Washington State University, Integrative Physiology and Neuroscience, Pullman, WA, USA
| | | | - Levi J O'Loughlin
- Washington State University, School of Molecular Biosciences, Pullman, WA, USA
| | - Michael E Konkel
- Washington State University, School of Molecular Biosciences, Pullman, WA, USA
| | - James H Peters
- Washington State University, Integrative Physiology and Neuroscience, Pullman, WA, USA
| | - Andras Hajnal
- The Pennsylvania State University, College of Medicine, Neural and Behavioral Sciences, Hershey, PA, USA
| | - Tanusree Sen
- University of Georgia, Veterinary Biosciences and Diagnostic Imaging, Athens, GA, USA
| | - Sun Hye Lee
- University of Georgia, Foods and Nutrition, Athens, GA, USA
| | | | - Krzysztof Czaja
- University of Georgia, Veterinary Biosciences and Diagnostic Imaging, Athens, GA, USA,
| |
Collapse
|
29
|
Sen T, Cawthon CR, Ihde BT, Hajnal A, DiLorenzo PM, de La Serre CB, Czaja K. Diet-driven microbiota dysbiosis is associated with vagal remodeling and obesity. Physiol Behav 2017; 173:305-317. [PMID: 28249783 DOI: 10.1016/j.physbeh.2017.02.027] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/27/2017] [Accepted: 02/22/2017] [Indexed: 02/06/2023]
Abstract
Obesity is one of the major health issues in the United States. Consumption of diets rich in energy, notably from fats and sugars (high-fat/high-sugar diet: HF/HSD) is linked to the development of obesity and a popular dietary approach for weight loss is to reduce fat intake. Obesity research traditionally uses low and high fat diets and there has been limited investigation of the potential detrimental effects of a low-fat/high-sugar diet (LF/HSD) on body fat accumulation and health. Therefore, in the present study, we investigated the effects of HF/HSD and LF/HSD on microbiota composition, gut inflammation, gut-brain vagal communication and body fat accumulation. Specifically, we tested the hypothesis that LF/HSD changes the gut microbiota, induces gut inflammation and alters vagal gut-brain communication, associated with increased body fat accumulation. Sprague-Dawley rats were fed an HF/HSD, LF/HSD or control low-fat/low-sugar diet (LF/LSD) for 4weeks. Body weight, caloric intake, and body composition were monitored daily and fecal samples were collected at baseline, 1, 6 and 27days after the dietary switch. After four weeks, blood and tissues (gut, brain, liver and nodose ganglia) were sampled. Both HF/HSD and LF/HSD-fed rats displayed significant increases in body weight and body fat compared to LF/LSD-fed rats. 16S rRNA sequencing showed that both HF/HSD and LF/HSD-fed animals exhibited gut microbiota dysbiosis characterized by an overall decrease in bacterial diversity and an increase in Firmicutes/Bacteriodetes ratio. Dysbiosis was typified by a bloom in Clostridia and Bacilli and a marked decrease in Lactobacillus spp. LF/HSD-fed animals showed a specific increase in Sutterella and Bilophila, both Proteobacteria, abundances of which have been associated with liver damage. Expression of pro-inflammatory cytokines, such as IL-6, IL-1β and TNFα, was upregulated in the cecum while levels of tight junction protein occludin were downregulated in both HF/HSD and LF/HSD fed rats. HF/HSD and LF/HSD-fed rats also exhibited an increase in cecum and serum levels of lipopolysaccharide (LPS), a pro-inflammatory bacterial product. Immunofluorescence revealed the withdrawal of vagal afferents from the gut and at their site of termination the nucleus of the solitary tract (NTS) in both the HF/HSD and LF/HSD rats. Moreover, there was significant microglia activation in the nodose ganglia, which contain the vagal afferent neuron cell bodies, of HF/HSD and LF/HSD rats. Taken together, these data indicate that, similar to HF/HSD, consumption of an LF/HSD induces dysbiosis of gut microbiota, increases gut inflammation and alters vagal gut-brain communication. These changes are associated with an increase in body fat accumulation.
Collapse
Affiliation(s)
- Tanusree Sen
- Department of Veterinary Biosciences & Diagnostic Imaging, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, United States
| | - Carolina R Cawthon
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, United States
| | - Benjamin Thomas Ihde
- Department of Veterinary Biosciences & Diagnostic Imaging, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, United States
| | - Andras Hajnal
- The Pennsylvania State University, College of Medicine, Neural and Behavioral Sciences, Hershey, PA 17033, United States
| | | | - Claire B de La Serre
- Department of Foods and Nutrition, College of Family and Consumer Sciences, University of Georgia, Athens, GA 30602, United States.
| | - Krzysztof Czaja
- Department of Veterinary Biosciences & Diagnostic Imaging, College of Veterinary Medicine, The University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
30
|
Vaughn AC, Cooper EM, DiLorenzo PM, O'Loughlin LJ, Konkel ME, Peters JH, Hajnal A, Sen T, Lee SH, de La Serre CB, Czaja K. Energy-dense diet triggers changes in gut microbiota, reorganization of gut‑brain vagal communication and increases body fat accumulation. Acta Neurobiol Exp (Wars) 2017. [PMID: 28379213 DOI: 10.21307/ane-2017-03] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
Obesity is associated with consumption of energy-dense diets and development of systemic inflammation. Gut microbiota play a role in energy harvest and inflammation and can influence the change from lean to obese phenotypes. The nucleus of the solitary tract (NTS) is a brain target for gastrointestinal signals modulating satiety and alterations in gut-brain vagal pathway may promote overeating and obesity. Therefore, we tested the hypothesis that high-fat diet‑induced changes in gut microbiota alter vagal gut-brain communication associated with increased body fat accumulation. Sprague-Dawley rats consumed a low energy‑dense rodent diet (LFD; 3.1 kcal/g) or high energy‑dense diet (HFD, 5.24 kcal/g). Minocycline was used to manipulate gut microbiota composition. 16S Sequencing was used to determine microbiota composition. Immunofluorescence against IB4 and Iba1 was used to determine NTS reorganization and microglia activation. Nodose ganglia from LFD rats were isolated and co-cultured with different bacteria strains to determine neurotoxicity. HFD altered gut microbiota with increases in Firmicutes/Bacteriodetes ratio and in pro-inflammatory Proteobacteria proliferation. HFD triggered reorganization of vagal afferents and microglia activation in the NTS, associated with weight gain. Minocycline-treated HFD rats exhibited microbiota profile comparable to LFD animals. Minocycline suppressed HFD‑induced reorganization of vagal afferents and microglia activation in the NTS, and reduced body fat accumulation. Proteobacteria isolated from cecum of HFD rats were toxic to vagal afferent neurons in culture. Our findings show that diet‑induced shift in gut microbiome may disrupt vagal gut‑brain communication resulting in microglia activation and increased body fat accumulation.
Collapse
Affiliation(s)
- Alexandra C Vaughn
- Washington State University, Integrative Physiology and Neuroscience, Pullman, WA, USA
| | - Erin M Cooper
- Washington State University, Integrative Physiology and Neuroscience, Pullman, WA, USA
| | | | - Levi J O'Loughlin
- Washington State University, School of Molecular Biosciences, Pullman, WA, USA
| | - Michael E Konkel
- Washington State University, School of Molecular Biosciences, Pullman, WA, USA
| | - James H Peters
- Washington State University, Integrative Physiology and Neuroscience, Pullman, WA, USA
| | - Andras Hajnal
- The Pennsylvania State University, College of Medicine, Neural and Behavioral Sciences, Hershey, PA, USA
| | - Tanusree Sen
- University of Georgia, Veterinary Biosciences and Diagnostic Imaging, Athens, GA, USA
| | - Sun Hye Lee
- University of Georgia, Foods and Nutrition, Athens, GA, USA
| | | | - Krzysztof Czaja
- University of Georgia, Veterinary Biosciences and Diagnostic Imaging, Athens, GA, USA,
| |
Collapse
|
31
|
Vazquez E, Barranco A, Ramirez M, Gruart A, Delgado-Garcia JM, Jimenez ML, Buck R, Rueda R. Dietary 2'-Fucosyllactose Enhances Operant Conditioning and Long-Term Potentiation via Gut-Brain Communication through the Vagus Nerve in Rodents. PLoS One 2016; 11:e0166070. [PMID: 27851789 PMCID: PMC5113009 DOI: 10.1371/journal.pone.0166070] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 10/22/2016] [Indexed: 01/06/2023] Open
Abstract
2´-fucosyllactose (2´-FL) is an abundant human milk oligosaccharide (HMO) in human milk with diverse biological effects. We recently reported ingested 2´-FL stimulates central nervous system (CNS) function, such as hippocampal long term potentiation (LTP) and learning and memory in rats. Conceivably the effect of 2´-FL on CNS function may be via the gut-brain axis (GBA), specifically the vagus nerve, and L-fucose (Fuc) may play a role. This study had two aims: (1) determine if the effect of ingested 2´-FL on the modulation of CNS function is dependent on the integrity of the molecule; and (2) confirm if oral 2´-FL modified hippocampal LTP and associative learning related skills in rats submitted to bilateral subdiaphragmatic vagotomy. Results showed that 2´-FL but not Fuc enhanced LTP, and vagotomy inhibited the effects of oral 2´-FL on LTP and associative learning related paradigms. Taken together, the data show that dietary 2´-FL but not its Fuc moiety affects cognitive domains and improves learning and memory in rats. This effect is dependent on vagus nerve integrity, suggesting GBA plays a role in 2´-FL-mediated cognitive benefits.
Collapse
Affiliation(s)
- Enrique Vazquez
- Strategic R&D Department, Abbott Nutrition, Granada, 18004, Spain
- * E-mail:
| | | | - Maria Ramirez
- Strategic R&D Department, Abbott Nutrition, Granada, 18004, Spain
| | - Agnes Gruart
- Division of Neurosciences, Pablo de Olavide University, Seville, 41013, Spain
| | | | - Maria L. Jimenez
- Strategic R&D Department, Abbott Nutrition, Granada, 18004, Spain
| | - Rachael Buck
- Strategic R&D Department, Abbott Nutrition, Columbus, OH, United States of America
| | - Ricardo Rueda
- Strategic R&D Department, Abbott Nutrition, Granada, 18004, Spain
| |
Collapse
|
32
|
Blasi C. The Role of the Vagal Nucleus Tractus Solitarius in the Therapeutic Effects of Obesity Surgery and Other Interventional Therapies on Type 2 Diabetes. Obes Surg 2016; 26:3045-3057. [DOI: 10.1007/s11695-016-2419-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
33
|
Momose-Sato Y, Sato K. Development of synaptic networks in the mouse vagal pathway revealed by optical mapping with a voltage-sensitive dye. Eur J Neurosci 2016; 44:1906-18. [PMID: 27207499 DOI: 10.1111/ejn.13283] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/09/2016] [Accepted: 05/17/2016] [Indexed: 11/27/2022]
Abstract
The central issue in developmental neuroscience is when and how neural synaptic networks are established and become functional within the central nervous system (CNS). Investigations of the neural network organization have been hampered because conventional electrophysiological means have some technical limitations. In this study, the multiple-site optical recording technique with a voltage-sensitive dye was employed to survey the developmental organization of the vagal system in the mouse embryo. Stimulation of the vagus nerve in E11-E14 mouse embryos elicited optical responses in areas corresponding to the vagal sensory and motor nuclei. Postsynaptic responses in the first-order sensory nucleus, the nucleus of the tractus solitarius (NTS), were identified from E11, suggesting that sensory information becomes transferred to the brain at this stage. In addition to the NTS, optical responses were identified in the rostral and contralateral brainstem regions, which corresponded to second/higher order nuclei of the vagus nerve including the parabrachial nucleus (PBN). Postsynaptic responses in the second/higher-order nuclei were detected from E12, suggesting that polysynaptic networks were functional at this stage. We discuss the results of our optical mapping, comparing them with previous findings obtained in the chick and rat embryos, and suggest some fundamental principles in the functional organization of synaptic networks in the embryonic brain.
Collapse
Affiliation(s)
- Yoko Momose-Sato
- Department of Nutrition and Dietetics, College of Nutrition, Kanto Gakuin University, 1-50-1 Mutsuura-Higashi, Kanazawa-ku, Yokohama, 236-8503, Japan
| | - Katsushige Sato
- Department of Health and Nutrition Sciences, Faculty of Human Health, Komazawa Women's University, Tokyo, Japan
| |
Collapse
|
34
|
Boxwell AJ, Chen Z, Mathes CM, Spector AC, Le Roux CW, Travers SP, Travers JB. Effects of high-fat diet and gastric bypass on neurons in the caudal solitary nucleus. Physiol Behav 2015. [PMID: 26216080 DOI: 10.1016/j.physbeh.2015.07.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Bariatric surgery is an effective treatment for obesity that involves both peripheral and central mechanisms. To elucidate central pathways by which oral and visceral signals are influenced by high-fat diet (HFD) and Roux-en-Y gastric bypass (RYGB) surgery, we recorded from neurons in the caudal visceral nucleus of the solitary tract (cNST, N=287) and rostral gustatory NST (rNST,N=106) in rats maintained on a HFD and lab chow (CHOW) or CHOW alone, and subjected to either RYGB or sham surgery. Animals on the HFD weighed significantly more than CHOW rats and RYGB reversed and then blunted weight gain regardless of diet. Using whole-cell patch clamp recording in a brainstem slice, we determined the membrane properties of cNST and rNST neurons associated with diet and surgery. We could not detect differences in rNST neurons associated with these manipulations. In cNST neurons, neither the threshold for solitary tract stimulation nor the amplitude of evoked EPSCs at threshold varied by condition; however suprathreshold EPSCs were larger in HFD compared to chow-fed animals. In addition, a transient outward current, most likely an IA current, was increased with HFD and RYGB reduced this current as well as a sustained outward current. Interestingly, hypothalamic projecting cNST neurons preferentially express IA and modulate transmission of afferent signals (Bailey, '07). Thus, diet and RYGB have multiple effects on the cellular properties of neurons in the visceral regions of NST, with potential to influence inputs to forebrain feeding circuits.
Collapse
Affiliation(s)
- A J Boxwell
- Ohio State Univ., Columbus, OH, United States
| | - Z Chen
- Ohio State Univ., Columbus, OH, United States
| | - C M Mathes
- Florida State Univ., Tallahassee, FL, United States
| | - A C Spector
- Florida State Univ., Tallahassee, FL, United States
| | | | - S P Travers
- Ohio State Univ., Columbus, OH, United States
| | - J B Travers
- Ohio State Univ., Columbus, OH, United States.
| |
Collapse
|
35
|
Herrity AN, Petruska JC, Stirling DP, Rau KK, Hubscher CH. The effect of spinal cord injury on the neurochemical properties of vagal sensory neurons. Am J Physiol Regul Integr Comp Physiol 2015; 308:R1021-33. [PMID: 25855310 DOI: 10.1152/ajpregu.00445.2014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/01/2015] [Indexed: 12/29/2022]
Abstract
The vagus nerve is composed primarily of nonmyelinated sensory neurons whose cell bodies are located in the nodose ganglion (NG). The vagus has widespread projections that supply most visceral organs, including the bladder. Because of its nonspinal route, the vagus nerve itself is not directly damaged from spinal cord injury (SCI). Because most viscera, including bladder, are dually innervated by spinal and vagal sensory neurons, an impact of SCI on the sensory component of vagal circuitry may contribute to post-SCI visceral pathologies. To determine whether SCI, in male Wistar rats, might impact neurochemical characteristics of NG neurons, immunohistochemical assessments were performed for P2X3 receptor expression, isolectin B4 (IB4) binding, and substance P expression, three known injury-responsive markers in sensory neuronal subpopulations. In addition to examining the overall population of NG neurons, those innervating the urinary bladder also were assessed separately. All three of the molecular markers were represented in the NG from noninjured animals, with the majority of the neurons binding IB4. In the chronically injured rats, there was a significant increase in the number of NG neurons expressing P2X3 and a significant decrease in the number binding IB4 compared with noninjured animals, a finding that held true also for the bladder-innervating population. Overall, these results indicate that vagal afferents, including those innervating the bladder, display neurochemical plasticity post-SCI that may have implications for visceral homeostatic mechanisms and nociceptive signaling.
Collapse
Affiliation(s)
- April N Herrity
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
| | - Jeffrey C Petruska
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky; Department of Neurological Surgery, University of Louisville, Louisville, Kentucky
| | - David P Stirling
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky; Department of Neurological Surgery, University of Louisville, Louisville, Kentucky; Department of Microbiology & Immunology, University of Louisville School of Medicine, Louisville, Kentucky; and
| | - Kristofer K Rau
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky; Department of Anesthesiology, University of Louisville, Louisville, Kentucky
| | - Charles H Hubscher
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky; Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky;
| |
Collapse
|
36
|
Sleeve gastrectomy and Roux-en-Y gastric bypass alter the gut-brain communication. Neural Plast 2015; 2015:601985. [PMID: 25722893 PMCID: PMC4333325 DOI: 10.1155/2015/601985] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 10/15/2014] [Accepted: 10/17/2014] [Indexed: 12/15/2022] Open
Abstract
This study investigated the anatomical integrity of vagal innervation of the gastrointestinal tract following vertical sleeve gastrectomy (VSG) and Roux-en-Y gastric bypass (RYGB) operations. The retrograde tracer fast blue (FB) was injected into the stomach to label vagal neurons originating from nodose ganglion (NG) and dorsal motor nucleus of the vagus (DMV). Microglia activation was determined by quantifying changes in the fluorescent staining of hindbrain sections against an ionizing calcium adapter binding molecule 1 (Iba1). Reorganization of vagal afferents in the hindbrain was studied by fluorescent staining against isolectin 4 (IB4). The density of Iba1- and IB4-immunoreactivity was analyzed using Nikon Elements software. There was no difference in the number of FB-labeled neurons located in NG and DMV between VSG and VSG-sham rats. RYGB, but not RYGB-sham rats, showed a dramatic reduction in number of FB-labeled neurons located in the NG and DMV. VSG increased, while the RYGB operation decreased, the density of vagal afferents in the nucleus tractus solitarius (NTS). The RYGB operation, but not the VSG procedure, significantly activated microglia in the NTS and DMV. Results of this study show that the RYGB, but not the VSG procedure, triggers microglia activation in vagal structures and remodels gut-brain communication.
Collapse
|
37
|
Gallaher ZR, Johnston ST, Czaja K. Neural proliferation in the dorsal root ganglia of the adult rat following capsaicin-induced neuronal death. J Comp Neurol 2014; 522:3295-307. [PMID: 24700150 DOI: 10.1002/cne.23598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 03/26/2014] [Accepted: 03/27/2014] [Indexed: 12/31/2022]
Abstract
Glial proliferation is a major component of the nervous system's response to injury. In addition to glial proliferation, injury may induce neuronal proliferation in areas of the adult nervous system not considered neurogenic. We have previously reported increased neural proliferation within adult nodose ganglia following capsaicin-induced neuronal death. However, proliferation within the dorsal root ganglia (DRG) remains to be characterized. We hypothesized that capsaicin-induced neuronal death would increase proliferation of satellite glial cells (SGCs) within the DRG. To test this hypothesis, 6-week-old Sprague-Dawley rats received a neurotoxic dose of capsaicin, and proliferation was quantified and characterized at multiple time points thereafter. Proliferation of satellite glial cells expressing the progenitor cell marker nestin was increased at 1 and 3 days following capsaicin administration as shown by BrdU incorporation. In addition to SGCs was a large population of proliferating resident macrophages, as shown by retrovirally mediated expression of GFP. SGC proliferation at these early time points was followed by recovery of neuronal numbers after a loss of 40% of the neuronal population in the DRG. This recovery in neuronal number correlated with recovery of function as shown by paw withdrawal from a noxious heat source. Further understanding of the role that glial proliferation plays in the recovery of neuronal numbers and function may lead to the development of therapeutic treatments for neurodegenerative conditions.
Collapse
Affiliation(s)
- Zachary R Gallaher
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, Washington, 99164-6520
| | | | | |
Collapse
|
38
|
Hayes MR, Mietlicki-Baase EG, Kanoski SE, De Jonghe BC. Incretins and amylin: neuroendocrine communication between the gut, pancreas, and brain in control of food intake and blood glucose. Annu Rev Nutr 2014; 34:237-60. [PMID: 24819325 DOI: 10.1146/annurev-nutr-071812-161201] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Arguably the most fundamental physiological systems for all eukaryotic life are those governing energy balance. Without sufficient energy, an individual is unable to survive and reproduce. Thus, an ever-growing appreciation is that mammalian physiology developed a redundant set of neuroendocrine signals that regulate energy intake and expenditure, which maintains sufficient circulating energy, predominantly in the form of glucose, to ensure that energy needs are met throughout the body. This orchestrated control requires cross talk between the gastrointestinal tract, which senses the incoming meal; the pancreas, which produces glycemic counterregulatory hormones; and the brain, which controls autonomic and behavioral processes regulating energy balance. Therefore, this review highlights the physiological, pharmacological, and pathophysiological effects of the incretin hormones glucagon-like peptide-1 and gastric inhibitory polypeptide, as well as the pancreatic hormone amylin, on energy balance and glycemic control.
Collapse
Affiliation(s)
- Matthew R Hayes
- Translational Neuroscience Program, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104;
| | | | | | | |
Collapse
|