1
|
Yue Y, Deng B, Zeng Y, Li W, Qiu X, Hu P, Shen L, Ruan T, Zhou R, Li S, Ying J, Xiong T, Qu Y, Luan Z, Mu D. Oligodendrocyte Progenitor Cell Transplantation Reduces White Matter Injury in a Fetal Goat Model. CNS Neurosci Ther 2024; 30:e70178. [PMID: 39690788 DOI: 10.1111/cns.70178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024] Open
Abstract
BACKGROUND Preterm white matter injury (PWMI) is the most common type of brain injury in preterm infants, in which, oligodendrocyte progenitor cells (OPCs) are predominantly damaged. In this study, human OPCs (hOPCs) were administered to a fetal goat model of PWMI to examine the differentiation potential and therapeutic effects of the cells on PWMI. METHODS Preterm goat fetuses were subjected to hypoxic-ischemia (HI) via intermittent umbilical cord occlusion (5 min × 5). Twenty million hOPCs were administered via a nasal catheter 12 h after an HI insult, and brain tissues were collected 14 or 21 days after the HI insult. Myelin basic protein (MBP) and myelin-associated glycoprotein (MAG) were detected by immunofluorescence and western blotting techniques. The percentage of myelinated nerve fibers and g-ratio were examined using transmission electron microscopy. Inflammatory cells were detected by immunohistochemistry. Inflammatory and neurotrophic factors were measured using enzyme-linked immunosorbent assay. RESULTS Our results showed that intermittent umbilical cord occlusion induced PWMI in fetal goats. Transplanted hOPCs can survive in periventricular and subcortical white matter. Further, transplanted hOPCs expressed markers of mature oligodendrocytes (MBP and MAG) and few cells expressed markers of preoligodendrocytes (NG2 and A2B5), suggesting that these cells can differentiate into mature oligodendrocytes in the brain. In addition, hOPCs administration increased MBP and MAG levels, percentage of myelinated nerve fibers, and thickness of the myelin sheath, indicating a reduction in PWMI. Furthermore, hOPCs did not increase the inflammatory response after HI. Interestingly, hOPC administration decreased tumor necrosis factor-alpha and increased glial-derived neurotrophic factor and brain-derived neurotrophic factor levels after HI, suggesting that additional mechanisms mediate the inflammatory microenvironment and neuroprotective effects. CONCLUSIONS Exogenous hOPCs can differentiate into mature oligodendrocytes in fetal goats and alleviate HI-induced PWMI. Transplantation of hOPCs is a promising strategy for treating PWMI.
Collapse
Affiliation(s)
- Yan Yue
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Bixin Deng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Yan Zeng
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Wenxing Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Xia Qiu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Peng Hu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - LiuHong Shen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Tiechao Ruan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Ruixi Zhou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Shiping Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Junjie Ying
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Tao Xiong
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Yi Qu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| | - Zuo Luan
- Laboratory of Pediatrics, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Dezhi Mu
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Lear CA, Maeda Y, King VJ, Dhillon SK, Beacom MJ, Gunning MI, Lear BA, Davidson JO, Stone PR, Ikeda T, Gunn AJ, Bennet L. Circadian patterns of heart rate variability in fetal sheep after hypoxia-ischaemia: A biomarker of evolving brain injury. J Physiol 2024; 602:6553-6569. [PMID: 37432936 PMCID: PMC11607889 DOI: 10.1113/jp284560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 06/23/2023] [Indexed: 07/13/2023] Open
Abstract
Hypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and severe neurodevelopmental disability in survivors, including cerebral palsy, although there are no reliable biomarkers to detect at risk fetuses that may have suffered a transient period of severe HI. We investigated time and frequency domain measures of fetal heart rate variability (FHRV) for 3 weeks after HI in preterm fetal sheep at 0.7 gestation (equivalent to preterm humans) until 0.8 gestation (equivalent to term humans). We have previously shown that this is associated with delayed development of severe white and grey matter injury, including cystic white matter injury (WMI) resembling that observed in human preterm infants. HI was associated with suppression of time and frequency domain measures of FHRV and reduced their circadian rhythmicity during the first 3 days of recovery. By contrast, circadian rhythms of multiple measures of FHRV were exaggerated over the final 2 weeks of recovery, mediated by a greater reduction in FHRV during the morning nadir, but no change in the evening peak. These data suggest that the time of day at which FHRV measurements are taken affects their diagnostic utility. We further propose that circadian changes in FHRV may be a low-cost, easily applied biomarker of antenatal HI and evolving brain injury. KEY POINTS: Hypoxia-ischaemia (HI) before birth is a key risk factor for stillbirth and probably for disability in survivors, although there are no reliable biomarkers for antenatal brain injury. In preterm fetal sheep, acute HI that is known to lead to delayed development of severe white and grey matter injury over 3 weeks, was associated with early suppression of multiple time and frequency domain measures of fetal heart rate variability (FHRV) and loss of their circadian rhythms during the first 3 days after HI. Over the final 2 weeks of recovery after HI, exaggerated circadian rhythms of frequency domain FHRV measures were observed. The morning nadirs were lower with no change in the evening peak of FHRV. Circadian changes in FHRV may be a low-cost, easily applied biomarker of antenatal HI and evolving brain injury.
Collapse
Affiliation(s)
- Christopher A. Lear
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Yoshiki Maeda
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
- The Department of Obstetrics and GynaecologyMie UniversityMieJapan
| | - Victoria J. King
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Simerdeep K. Dhillon
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Michael J. Beacom
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Mark I. Gunning
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Benjamin A. Lear
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Joanne O. Davidson
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Peter R. Stone
- The Department of Obstetrics and GynaecologyThe University of AucklandAucklandNew Zealand
| | - Tomoaki Ikeda
- The Department of Obstetrics and GynaecologyMie UniversityMieJapan
| | - Alistair J. Gunn
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| | - Laura Bennet
- Department of Physiology, Fetal Physiology and Neuroscience GroupThe University of AucklandAucklandNew Zealand
| |
Collapse
|
3
|
Peers de Nieuwburgh M, Dave A, Khan SA, Ngo M, Hayes KB, Slipenchuk M, Lieberman E, Youssef MR, Crompton D, Choudhry AM, Guo N, Tian Z, Rychik J, Davey MG, Flake AW. Assessment of extremely premature lambs supported by the Extrauterine Environment for Neonatal Development (EXTEND). Pediatr Res 2024; 96:1616-1625. [PMID: 38834782 PMCID: PMC11772227 DOI: 10.1038/s41390-024-03287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/28/2024] [Accepted: 05/07/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND Our team has previously reported physiologic support by the EXTra-uterine Environment for Neonatal Development (EXTEND) of 105 to 117 days gestational age (GA) lambs for up to 28 days with normal organ maturation. However, the fetal lamb brain matures more rapidly, requiring the study of 90-105 day GA fetal lambs to assess more neurodevelopmentally equivalent lambs to the 23-25 week GA extreme premature infant. METHODS Extremely preterm lambs (90-95 days of GA) were delivered by C-section and supported by EXTEND. Estimated circuit flows were maintained at around 325 ml/kg/min. After support on EXTEND, MRI and histopathologic analysis were performed and compared to 105-112 days GA control lambs. RESULTS The extremely preterm group includes 10 animals with a mean GA of 91.6 days, a mean weight at cannulation of 0.98 kg and a mean length of stay on EXTEND of 13.5 days (10-21 days). Hemodynamics and oxygenation showed stable parameters. Animals showed growth and physiologic cardiac function. MRI volumetric and diffusion analysis was comparable to controls. Histologic brain analysis revealed no difference between study groups. CONCLUSION EXTEND appears to support brain and cardiac development in an earlier gestation, less mature, lamb model. IMPACT Prolonged (up to 21 days) physiological support of extremely preterm lambs of closer neurodevelopmental equivalence to the 24-28 gestational week human was achieved using the EXTEND system. EXTEND treatment supported brain growth and development in extremely preterm fetal lambs and was not associated with intraventricular hemorrhage or white matter injury. Daily echocardiography demonstrated physiologic heart function, absence of cardiac afterload, and normal developmental increase in cardiac chamber dimensions. This study demonstrates hemodynamic and metabolic support by the EXTEND system in the extremely preterm ovine model.
Collapse
Affiliation(s)
| | - Apeksha Dave
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Sameer A Khan
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Michelle Ngo
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kevin B Hayes
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Evan Lieberman
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Mohanad R Youssef
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Alia Mohsin Choudhry
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nan Guo
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Zhiyun Tian
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jack Rychik
- Division of Cardiology, Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Alan W Flake
- Center for Fetal Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Wassink G, Cho KHT, Mathai S, Lear CA, Dean JM, Gunn AJ, Bennet L. White matter protection with insulin-like growth factor-1 after hypoxia-ischaemia in preterm foetal sheep. Brain Commun 2024; 6:fcae373. [PMID: 39507274 PMCID: PMC11539755 DOI: 10.1093/braincomms/fcae373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 09/02/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Perinatal hypoxia-ischaemia in extremely preterm infants is associated with long-term neurodevelopmental impairment, for which there is no specific treatment. Insulin-like growth factor-1 can reduce acute brain injury, but its effects on chronic white matter injury after hypoxia-ischaemia are unclear. Preterm-equivalent foetal sheep (0.6 gestation) received either sham-asphyxia or asphyxia induced by umbilical cord occlusion for 30 min, and recovered for either 3 or 35 days after asphyxia. The 35 day recovery groups received either an intracerebroventricular infusion of insulin-like growth factor-1 (1 µg/24 h) or vehicle, from 3 to 14 days after asphyxia. Asphyxia was associated with ventricular enlargement, and loss of frontal and parietal white matter area (P < 0.05 versus sham-asphyxia). This was associated with reduced area fraction of myelin basic protein and numbers of oligodendrocyte transcription factor 2 and mature, anti-adenomatous polyposis coli-positive oligodendrocytes in periventricular white matter (P < 0.05), with persistent inflammation and caspase-3 activation (P < 0.05). Four of eight foetuses developed cystic lesions in temporal white matter. Prolonged infusion with insulin-like growth factor-1 restored frontal white matter area, improved numbers of oligodendrocyte transcription factor 2-positive and mature, anti-adenomatous polyposis coli-positive oligodendrocytes, with reduced astrogliosis and microgliosis after 35 days recovery (P < 0.05 versus asphyxia). One of four foetuses developed temporal cystic lesions. Functionally, insulin-like growth factor-1-treated foetuses had faster recovery of EEG power, but not spectral edge. Encouragingly, these findings show that delayed, prolonged, insulin-like growth factor-1 treatment can improve functional maturation of periventricular white matter after severe asphyxia in the very immature brain, at least in part by suppressing chronic neural inflammation.
Collapse
Affiliation(s)
- Guido Wassink
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Kenta H T Cho
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Sam Mathai
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Christopher A Lear
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Justin M Dean
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland 1023, New Zealand
| |
Collapse
|
5
|
Lear CA, Lear BA, Davidson JO, King VJ, Maeda Y, McDouall A, Dhillon SK, Gunn AJ, Bennet L. Dysmaturation of sleep state and electroencephalographic activity after hypoxia-ischaemia in preterm fetal sheep. J Cereb Blood Flow Metab 2024; 44:1376-1392. [PMID: 38415649 PMCID: PMC11342719 DOI: 10.1177/0271678x241236014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/29/2024]
Abstract
Antenatal hypoxia-ischaemia (HI) in preterm fetal sheep can trigger delayed evolution of severe, cystic white matter injury (WMI), in a similar timecourse to WMI in preterm infants. We therefore examined how severe hypoxia-ischaemia affects recovery of electroencephalographic (EEG) activity. Chronically instrumented preterm fetal sheep (0.7 gestation) received 25 min of complete umbilical cord occlusion (UCO, n = 9) or sham occlusion (controls, n = 9), and recovered for 21 days. HI was associated with a shift to lower frequency EEG activity for the first 5 days with persisting loss of EEG power in the delta and theta bands, and initial loss of power in the alpha and beta bands in the first 14 days of recovery. In the final 3 days of recovery, there was a marked rhythmic shift towards higher frequency EEG activity after UCO. The UCO group spent less time in high-voltage sleep, and in the early evening (7:02 pm ± 47 min) abruptly stopped cycling between sleep states, with a shift to a high frequency state for 2 h 48 min ± 40 min, with tonic electromyographic activity. These findings demonstrate persisting EEG and sleep state dysmaturation after severe hypoxia-ischaemia. Loss of fetal or neonatal sleep state cycling in the early evening may be a useful biomarker for evolving cystic WMI.
Collapse
Affiliation(s)
- Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Victoria J King
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Yoshiki Maeda
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alice McDouall
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
6
|
Vidinopoulos K, Azman Z, Somers A, Zahra VA, Thiel A, Lu H, Pham Y, Tran NT, Allison BJ, Herlenius E, Hooper S, Galinsky R, Polglase GR. Mechanical ventilation induces brainstem inflammation in preterm fetal sheep. Front Pediatr 2023; 11:1225294. [PMID: 37936886 PMCID: PMC10626530 DOI: 10.3389/fped.2023.1225294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/25/2023] [Indexed: 11/09/2023] Open
Abstract
Background Preterm infants have immature respiratory drive and often require prolonged periods of mechanical ventilation. Prolonged mechanical ventilation induces systemic inflammation resulting in ventilation-induced brain injury, however its effect on brainstem respiratory centers is unknown. We aimed to determine the effects of 24 h of mechanical ventilation on inflammation and injury in brainstem respiratory centres of preterm fetal sheep. Methods Preterm fetal sheep at 110 ± 1 days (d) gestation were instrumented to provide mechanical ventilation in utero. At 112 ± 1 d gestation, fetuses received either mechanical ventilation (VENT; n = 7; 3 ml/kg) for 24 h, or no ventilation (CONT; n = 6). At post-mortem, fetal brainstems were collected for assessment of mRNA and histological markers of inflammation and injury. Results In utero ventilation (IUV) did not alter any blood-gas parameters. IUV significantly increased systemic IL-6 and IL-8 concentrations over the 24 h period compared to CONT. The number of ameboid microglia within the nucleus tractus solitarius and the raphe nucleus increased in VENT fetuses (p < 0.05 for both vs. control). The % area fraction of GFAP + staining was not significantly higher within the preBötzinger complex (p = 0.067) and retrotrapezoid nucleus and parafacial respiratory group (p = 0.057) in VENT fetuses compared to CONT. Numbers of caspase-3 and TUNEL-positive cells were similar between groups. Gene expression (mRNA) levels of inflammation, injury, cell death and prostaglandin synthesis within the brainstem were similar between groups. Conclusion Mechanical ventilation induces a systemic inflammatory response with only moderate inflammatory effects within the brainstem respiratory centres of preterm fetal sheep.
Collapse
Affiliation(s)
- Kayla Vidinopoulos
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Zahrah Azman
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Ainsley Somers
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Valerie A. Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Alison Thiel
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Hui Lu
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Yen Pham
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
| | - Nhi Thao Tran
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Beth J. Allison
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Eric Herlenius
- Department of Women’s and Children’s Health, Astrid Lindgren Children’s Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Stuart Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Graeme R. Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Melbourne, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Kelly SB, Tran NT, Polglase GR, Hunt RW, Nold MF, Nold-Petry CA, Olson DM, Chemtob S, Lodygensky GA, Robertson SA, Gunn AJ, Galinsky R. A systematic review of immune-based interventions for perinatal neuroprotection: closing the gap between animal studies and human trials. J Neuroinflammation 2023; 20:241. [PMID: 37864272 PMCID: PMC10588248 DOI: 10.1186/s12974-023-02911-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/28/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Perinatal infection/inflammation is associated with a high risk for neurological injury and neurodevelopmental impairment after birth. Despite a growing preclinical evidence base, anti-inflammatory interventions have not been established in clinical practice, partly because of the range of potential targets. We therefore systematically reviewed preclinical studies of immunomodulation to improve neurological outcomes in the perinatal brain and assessed their therapeutic potential. METHODS We reviewed relevant studies published from January 2012 to July 2023 using PubMed, Medline (OvidSP) and EMBASE databases. Studies were assessed for risk of bias using the SYRCLE risk of bias assessment tool (PROSPERO; registration number CRD42023395690). RESULTS Forty preclinical publications using 12 models of perinatal neuroinflammation were identified and divided into 59 individual studies. Twenty-seven anti-inflammatory agents in 19 categories were investigated. Forty-five (76%) of 59 studies reported neuroprotection, from all 19 categories of therapeutics. Notably, 10/10 (100%) studies investigating anti-interleukin (IL)-1 therapies reported improved outcome, whereas half of the studies using corticosteroids (5/10; 50%) reported no improvement or worse outcomes with treatment. Most studies (49/59, 83%) did not control core body temperature (a known potential confounder), and 25 of 59 studies (42%) did not report the sex of subjects. Many studies did not clearly state whether they controlled for potential study bias. CONCLUSION Anti-inflammatory therapies are promising candidates for treatment or even prevention of perinatal brain injury. Our analysis highlights key knowledge gaps and opportunities to improve preclinical study design that must be addressed to support clinical translation.
Collapse
Affiliation(s)
- Sharmony B Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Nhi T Tran
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia
| | - Rodney W Hunt
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Marcel F Nold
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
- Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Claudia A Nold-Petry
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia
- Department of Paediatrics, Monash University, Melbourne, VIC, Australia
| | - David M Olson
- Department of Obstetrics and Gynaecology, University of Alberta, Edmonton, Canada
| | - Sylvain Chemtob
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Quebec, Canada
| | - Gregory A Lodygensky
- Department of Paediatrics, CHU Sainte Justine Research Centre, University of Montreal, Quebec, Canada
| | - Sarah A Robertson
- The University of Adelaide, Robinson Research Institute, North Adelaide, SA, Australia
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Melbourne, VIC, 3168, Australia.
- Department of Obstetrics and Gynaecology, Monash University, Melbourne, VIC, Australia.
| |
Collapse
|
8
|
Galinsky R, Dhillon SK, Kelly SB, Wassink G, Davidson JO, Lear CA, van den Heuij LG, Bennet L, Gunn AJ. Magnesium sulphate reduces tertiary gliosis but does not improve EEG recovery or white or grey matter cell survival after asphyxia in preterm fetal sheep. J Physiol 2023; 601:1999-2016. [PMID: 36999348 PMCID: PMC10952359 DOI: 10.1113/jp284381] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/09/2023] [Indexed: 04/01/2023] Open
Abstract
Maternal magnesium sulphate (MgSO4 ) treatment is widely recommended before preterm birth for neuroprotection. However, this is controversial because there is limited evidence that MgSO4 provides long-term neuroprotection. Preterm fetal sheep (104 days gestation; term is 147 days) were assigned randomly to receive sham occlusion with saline infusion (n = 6) or i.v. infusion with MgSO4 (n = 7) or vehicle (saline, n = 6) from 24 h before hypoxia-ischaemia induced by umbilical cord occlusion until 24 h after occlusion. Sheep were killed after 21 days of recovery, for fetal brain histology. Functionally, MgSO4 did not improve long-term EEG recovery. Histologically, in the premotor cortex and striatum, MgSO4 infusion attenuated post-occlusion astrocytosis (GFAP+ ) and microgliosis but did not affect numbers of amoeboid microglia or improve neuronal survival. In the periventricular and intragyral white matter, MgSO4 was associated with fewer total (Olig-2+ ) oligodendrocytes compared with vehicle + occlusion. Numbers of mature (CC1+ ) oligodendrocytes were reduced to a similar extent in both occlusion groups compared with sham occlusion. In contrast, MgSO4 was associated with an intermediate improvement in myelin density in the intragyral and periventricular white matter tracts. In conclusion, a clinically comparable dose of MgSO4 was associated with moderate improvements in white and grey matter gliosis and myelin density but did not improve EEG maturation or neuronal or oligodendrocyte survival. KEY POINTS: Magnesium sulphate is widely recommended before preterm birth for neuroprotection; however, there is limited evidence that magnesium sulphate provides long-term neuroprotection. In preterm fetal sheep exposed to hypoxia-ischaemia (HI), MgSO4 was associated with attenuated astrocytosis and microgliosis in the premotor cortex and striatum but did not improve neuronal survival after recovery to term-equivalent age, 21 days after HI. Magnesium sulphate was associated with loss of total oligodendrocytes in the periventricular and intragyral white matter tracts, whereas mature, myelinating oligodendrocytes were reduced to a similar extent in both occlusion groups. In the same regions, MgSO4 was associated with an intermediate improvement in myelin density. Functionally, MgSO4 did not improve long-term recovery of EEG power, frequency or sleep stage cycling. A clinically comparable dose of MgSO4 was associated with moderate improvements in white and grey matter gliosis and myelin density but did not improve EEG maturation or neuronal or oligodendrocyte survival.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityVictoriaAustralia
| | | | - Sharmony B. Kelly
- The Ritchie CentreHudson Institute of Medical ResearchClaytonVictoriaAustralia
- Department of Obstetrics and GynaecologyMonash UniversityVictoriaAustralia
| | - Guido Wassink
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| | | | | | | | - Laura Bennet
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| | - Alistair J. Gunn
- Department of PhysiologyUniversity of AucklandAucklandNew Zealand
| |
Collapse
|
9
|
Bleeser T, Basurto D, Russo F, Vergote S, Valenzuela I, Van den Broucke S, Kunpalin Y, Joyeux L, Van der Veeken L, Vally JC, Emam D, van der Merwe J, Van de Velde M, Devroe S, Deprest J, Rex S. Effects of cumulative duration of repeated anaesthesia exposure on foetal brain development in the ovine model. J Clin Anesth 2023; 85:111050. [PMID: 36640704 DOI: 10.1016/j.jclinane.2022.111050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/30/2022] [Accepted: 12/30/2022] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Anaesthesia is required in 0.4-1% of pregnant women, and prolonged and repeated exposures to anaesthesia may be required. It is unknown whether these exposures may result in foetal neurotoxicity in humans. As sheep have a gestation comparable to that of humans, the objective of this study was to analyse the neurodevelopmental outcome of ovine foetuses that had been exposed in utero to repeated and prolonged anaesthesia. DESIGN Randomized controlled preclinical study. SETTING Anaesthesia for non-obstetric surgery during pregnancy. ANIMALS Twenty-four healthy pregnant Swifter ewes. INTERVENTIONS The ewes were randomized to no anaesthesia exposure (control-group), single exposure (at gestational age 68-70 days), or repeated exposure (at gestational age 68-70 days and 96-98 days) to 2.5 h of sevoflurane anaesthesia and maternal laparotomy. All lambs were delivered at approximately term gestation (gestational age: 140-143 days). MEASUREMENTS The primary outcome was neuron density in the frontal cortex 24 h after birth for the control-group versus the repeated-exposure-group. Key secondary outcome was the time needed to achieve the milestone of standing. Secondary outcomes included other neurobehavioural assessments (e.g., motoric milestones) and histological parameters quantified in multiple brain regions (neuron density, total cell density, proliferation, inflammation, synaptogenesis, astrocytes and myelination). MAIN RESULTS Neuron density in the frontal cortex did not differ between groups (mean ± standard deviation: control-group: 403 ± 39, single-exposure group: 436 ± 23 and repeated-exposure-group: 403 ± 40 neurons/mm2, control-group versus repeated-exposure-group: p = 0.986, control-group versus single-exposure-group: p = 0.097). No significant difference was observed for the time needed to achieve the milestone of standing. Only very limited differences were observed for other histological outcome parameters and neurobehavioural assessments. CONCLUSIONS There is no evidence for foetal neuronal injury or neurobehavioural impairments after a cumulative duration of 5 h repetitive prenatal anaesthesia in sheep.
Collapse
Affiliation(s)
- Tom Bleeser
- Department of Anaesthesiology, UZ Leuven, Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - David Basurto
- Department of Obstetrics and Gynaecology, UZ Leuven, Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Francesca Russo
- Department of Obstetrics and Gynaecology, UZ Leuven, Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Simen Vergote
- Department of Obstetrics and Gynaecology, UZ Leuven, Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Ignacio Valenzuela
- Department of Obstetrics and Gynaecology, UZ Leuven, Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | | | - Yada Kunpalin
- Department of Obstetrics and Gynaecology, UZ Leuven, Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Luc Joyeux
- Department of Obstetrics and Gynaecology, UZ Leuven, Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Department of Paediatric Surgery, Texas Children's Hospital, Houston, TX, United States of America
| | - Lennart Van der Veeken
- Department of Obstetrics and Gynaecology, UZ Leuven, Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Department of Obstetrics and Gynaecology, UZA, Antwerp, Belgium
| | - Janine C Vally
- Department of Anaesthesiology, UZ Leuven, Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Doaa Emam
- Department of Obstetrics and Gynaecology, UZ Leuven, Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Department of Obstetrics and Gynaecology, University Hospitals Tanta, Egypt
| | - Johannes van der Merwe
- Department of Obstetrics and Gynaecology, UZ Leuven, Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Marc Van de Velde
- Department of Anaesthesiology, UZ Leuven, Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Sarah Devroe
- Department of Anaesthesiology, UZ Leuven, Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium
| | - Jan Deprest
- Department of Obstetrics and Gynaecology, UZ Leuven, Department of Development and Regeneration, Cluster Woman and Child, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Institute for Women's Health, University College London, London, United Kingdom
| | - Steffen Rex
- Department of Anaesthesiology, UZ Leuven, Department of Cardiovascular Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium.
| |
Collapse
|
10
|
Lear CA, Beacom MJ, Dhillon SK, Lear BA, Mills OJ, Gunning MI, Westgate JA, Bennet L, Gunn AJ. Dissecting the contributions of the peripheral chemoreflex and myocardial hypoxia to fetal heart rate decelerations in near-term fetal sheep. J Physiol 2023; 601:2017-2041. [PMID: 37017488 DOI: 10.1113/jp284286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/30/2023] [Indexed: 04/06/2023] Open
Abstract
Brief repeated fetal hypoxaemia during labour can trigger intrapartum decelerations of the fetal heart rate (FHR) via the peripheral chemoreflex or the direct effects of myocardial hypoxia, but the relative contribution of these two mechanisms and how this balance changes with evolving fetal compromise remain unknown. In the present study, chronically instrumented near-term fetal sheep received surgical vagotomy (n = 8) or sham vagotomy (control, n = 11) to disable the peripheral chemoreflex and unmask myocardial hypoxia. One-minute complete umbilical cord occlusions (UCOs) were performed every 2.5 min for 4 h or until arterial pressure fell below 20 mmHg. Hypotension and severe acidaemia developed progressively after 65.7 ± 7.2 UCOs in control fetuses and 49.5 ± 7.8 UCOs after vagotomy. Vagotomy was associated with faster development of metabolic acidaemia and faster impairment of arterial pressure during UCOs without impairing centralization of blood flow or neurophysiological adaptation to UCOs. During the first half of the UCO series, before severe hypotension developed, vagotomy was associated with a marked increase in FHR during UCOs. After the onset of evolving severe hypotension, FHR fell faster in control fetuses during the first 20 s of UCOs, but FHR during the final 40 s of UCOs became progressively more similar between groups, with no difference in the nadir of decelerations. In conclusion, FHR decelerations were initiated and sustained by the peripheral chemoreflex at a time when fetuses were able to maintain arterial pressure. After the onset of evolving hypotension and acidaemia, the peripheral chemoreflex continued to initiate decelerations, but myocardial hypoxia became progressively more important in sustaining and deepening decelerations. KEY POINTS: Brief repeated hypoxaemia during labour can trigger fetal heart rate decelerations by either the peripheral chemoreflex or myocardial hypoxia, but how this balance changes with fetal compromise is unknown. Reflex control of fetal heart rate was disabled by vagotomy to unmask the effects of myocardial hypoxia in chronically instrumented fetal sheep. Fetuses were then subjected to repeated brief hypoxaemia consistent with the rates of uterine contractions during labour. We show that the peripheral chemoreflex controls brief decelerations in their entirety at a time when fetuses were able to maintain normal or increased arterial pressure. The peripheral chemoreflex still initiated decelerations even after the onset of evolving hypotension and acidaemia, but myocardial hypoxia made an increasing contribution to sustain and deepen decelerations.
Collapse
Affiliation(s)
- Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Michael J Beacom
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Olivia J Mills
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Mark I Gunning
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- Department of Obstetrics and Gynaecology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
- Department of Paediatrics, Starship Children's Hospital, Auckland, New Zealand
| |
Collapse
|
11
|
Sobierajski E, Lauer G, Czubay K, Grabietz H, Beemelmans C, Beemelmans C, Meyer G, Wahle P. Development of myelin in fetal and postnatal neocortex of the pig, the European wild boar Sus scrofa. Brain Struct Funct 2023; 228:947-966. [PMID: 37000250 PMCID: PMC10147765 DOI: 10.1007/s00429-023-02633-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/15/2023] [Indexed: 04/01/2023]
Abstract
Myelination of the neocortex of altricial species is mostly a postnatal event, and the appearance of myelin has been associated with the end of the critical period for ocular dominance plasticity in rodent visual cortex. Due to their precocality, ungulates may tell a different story. Here, we analyzed the development of PDGFRα positive oligodendrocyte precursor cells and expression of myelin proteins in the laminar compartments of fetal and postnatal porcine cortex from E45 onwards. Precursor cell density initially increased and then decreased but remained present at P90. MAG and MBP staining were detectable at E70 in subventricular zone and deep white matter, ascending into gyral white matter at E85, and into the gray matter and marginal zone at E100 (birth in pig at E114). Protein blots confirmed the declining expression of PDGFRα from E65 onwards, and the increase of MBP and MAG expression from E80 onwards. Somatosensory input elicited by spontaneous activity is considered important for the formation of the body representation. Indeed, PDGFRα, MBP and MAG expression started earlier in somatosensory than in visual cortex. Taken together, myelination proceeded in white and gray matter and marginal zone of pig cortex before birth with an areal-specific time course, and an almost mature pattern was present at P5 in visual cortex.
Collapse
Affiliation(s)
- Eric Sobierajski
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - German Lauer
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Katrin Czubay
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Hannah Grabietz
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany
| | - Christa Beemelmans
- Regionalverband Ruhr Grün, Forsthof Üfter Mark, Forsthausweg 306, 46514, Schermbeck, Germany
| | - Christoph Beemelmans
- Regionalverband Ruhr Grün, Forsthof Üfter Mark, Forsthausweg 306, 46514, Schermbeck, Germany
| | - Gundela Meyer
- Department of Basic Medical Science, Faculty of Medicine, University of La Laguna, 38200, Santa Cruz de Tenerife, Tenerife, Spain
| | - Petra Wahle
- Faculty of Biology and Biotechnology, Developmental Neurobiology, Ruhr University Bochum, 44870, Bochum, Germany.
| |
Collapse
|
12
|
Lear BA, Lear CA, Dhillon SK, Davidson JO, Gunn AJ, Bennet L. Evolution of grey matter injury over 21 days after hypoxia-ischaemia in preterm fetal sheep. Exp Neurol 2023; 363:114376. [PMID: 36889575 DOI: 10.1016/j.expneurol.2023.114376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/05/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023]
Abstract
Reduced grey matter volume in preterm infants is associated with later disability, but its time course and relationship with white matter injury are not well understood. We recently showed that moderate-severe hypoxia-ischaemia (HI) in preterm fetal sheep led to severe cystic injury 2-3 weeks later. In the same cohort we now show profound hippocampal neuronal loss from 3 days after HI. By contrast, reduction in cortical area and perimeter developed much more slowly, with maximum reduction at day 21. There was transient upregulation of cleaved caspase-3-positive apoptosis in the cortex at day 3 but no change in neuronal density or macroscopic injury of the cortex. Both microglia and astrocytes were transiently upregulated in the grey matter. EEG power was initially profoundly suppressed but partially recovered by 21 days of recovery, and final power was correlated with white matter area (p < 0.001, r2 = 0.75, F = 24.19), cortical area (p = 0.004, r2 = 0.44, F = 11.90) and hippocampi area (p = 0.049, r2 = 0.23, F = 4.58). In conclusion, the present study suggests that in preterm fetal sheep, hippocampal injury is established within a few days of acute HI, but impaired cortical growth develops slowly, in a similar time course to severe white matter injury.
Collapse
Affiliation(s)
- Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
13
|
Tajonar K, Gonzalez-Ronquillo M, Relling A, Nordquist RE, Nawroth C, Vargas-Bello-Pérez E. Toward assessing the role of dietary fatty acids in lamb's neurological and cognitive development. Front Vet Sci 2023; 10:1081141. [PMID: 36865439 PMCID: PMC9971820 DOI: 10.3389/fvets.2023.1081141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023] Open
Abstract
Understanding and measuring sheep cognition and behavior can provide us with measures to safeguard the welfare of these animals in production systems. Optimal neurological and cognitive development of lambs is important to equip individuals with the ability to better cope with environmental stressors. However, this development can be affected by nutrition with a special role from long-chain fatty acid supply from the dam to the fetus or in lamb's early life. Neurological development in lambs takes place primarily during the first two trimesters of gestation. Through late fetal and early postnatal life, the lamb brain has a high level of cholesterol synthesis. This rate declines rapidly at weaning and remains low throughout adulthood. The main polyunsaturated fatty acids (PUFA) in the brain are ω-6 arachidonic acid and ω-3 docosahexaenoic acid (DHA), which are elements of plasma membranes' phospholipids in neuronal cells. DHA is essential for keeping membrane integrity and is vital for normal development of the central nervous system (CNS), and its insufficiency can damage cerebral functions and the development of cognitive capacities. In sheep, there is evidence that supplying PUFA during gestation or after birth may be beneficial to lamb productive performance and expression of species-specific behaviors. The objective of this perspective is to discuss concepts of ruminant behavior and nutrition and reflect on future research directions that could help to improve our knowledge on how dietary fatty acids (FA) relate to optimal neurological and cognitive development in sheep.
Collapse
Affiliation(s)
- Karen Tajonar
- Departamento de Medicina y Zootecnia de Rumiantes, Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México, Mexico City, Mexico,Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom
| | - Manuel Gonzalez-Ronquillo
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma del Estado de México, Toluca, Mexico
| | - Alejandro Relling
- Department of Animal Science, College of Food, Agricultural, and Environmental Sciences, The Ohio State University, Columbus, OH, United States
| | - Rebecca E. Nordquist
- Unit Animals in Science and Society, Department Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Christian Nawroth
- Institute of Behavioural Physiology, Research Institute for Farm Animal Biology (FBN), Dummerstorf, Germany,*Correspondence: Christian Nawroth ✉
| | - Einar Vargas-Bello-Pérez
- Department of Animal Sciences, School of Agriculture, Policy and Development, University of Reading, Reading, United Kingdom,Einar Vargas-Bello-Pérez ✉
| |
Collapse
|
14
|
Galinsky R, Kelly S, Green E, Hunt R, Nold-Petry C, Gunn A, Nold M. Interleukin-1: an important target for perinatal neuroprotection? Neural Regen Res 2023; 18:47-50. [PMID: 35799507 PMCID: PMC9241389 DOI: 10.4103/1673-5374.341044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Perinatal inflammation is a significant risk factor for lifelong neurodevelopmental impairments such as cerebral palsy. Extensive clinical and preclinical evidence links the severity and pattern of perinatal inflammation to impaired maturation of white and grey matters and reduced brain growth. Multiple pathways are involved in the pathogenesis of perinatal inflammation. However, studies of human and experimental perinatal encephalopathy have demonstrated a strong causative link between perinatal encephalopathy and excessive production of the pro-inflammatory effector cytokine interleukin-1. In this review, we summarize clinical and preclinical evidence that underpins interleukin-1 as a critical factor in initiating and perpatuating systemic and central nervous system inflammation and subsequent perinatal brain injury. We also highlight the important role of endogenous interleukin-1 receptor antagonist in mitigating interleukin-1-driven neuroinflammation and tissue damage, and summarize outcomes from clinical and mechanistic animal studies that establish the commercially available interleukin-1 receptor antagonist, anakinra, as a safe and effective therapeutic intervention. We reflect on the evidence supporting clinical translation of interleukin-1 receptor antagonist for infants at the greatest risk of perinatal inflammation and impaired neurodevelopment, and suggest a path to advance interleukin-1 receptor antagonist along the translational path for perinatal neuroprotection.
Collapse
|
15
|
Davidson JO, van den Heuij LG, Dhillon SK, Miller SL, Lim R, Jenkin G, Gunn AJ, Bennet L. Lack of Neuroprotection with a Single Intravenous Infusion of Human Amnion Epithelial Cells after Severe Hypoxia–Ischemia in Near-Term Fetal Sheep. Int J Mol Sci 2022; 23:ijms23158393. [PMID: 35955531 PMCID: PMC9369428 DOI: 10.3390/ijms23158393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022] Open
Abstract
Background: Hypoxic–ischemic encephalopathy (HIE) around the time of birth results from loss of oxygen (hypoxia) and blood supply (ischemia). Exogenous infusion of multi-potential cells, including human amnion epithelial cells (hAECs), can reduce hypoxic–ischemic (HI) brain injury. However, there are few data on treatment of severe HI in large animal paradigms at term. The aim of the current study was to determine whether infusion of hAECs early after injury may reduce brain damage after ischemia in near-term fetal sheep. Methods: Chronically instrumented fetal sheep (0.85 gestation) received 30 min of global cerebral ischemia followed by intravenous infusion of hAECs from 2 h after the end of ischemia (ischemia-hAEC, n = 6) or saline (ischemia-vehicle, n = 7). Sham control animals received sham ischemia with vehicle infusion (sham control, n = 8). Results: Ischemia was associated with significant suppression of EEG power and spectral edge frequency until the end of the experiment and a secondary rise in cortical impedance from 24 to 72 h, which were not attenuated by hAEC administration. Ischemia was associated with loss of neurons in the cortex, thalamus, striatum and hippocampus, loss of white matter oligodendrocytes and increased microglial numbers in the white matter, which were not affected by hAEC infusion. Conclusions: A single intravenous administration of hAECs did not reduce electrographic or histological brain damage after 30 min of global cerebral ischemia in near-term fetal sheep.
Collapse
Affiliation(s)
- Joanne O. Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
- Correspondence:
| | - Lotte G. van den Heuij
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
| | - Simerdeep K. Dhillon
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.L.M.); (R.L.); (G.J.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3800, Australia
| | - Rebecca Lim
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.L.M.); (R.L.); (G.J.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3800, Australia
| | - Graham Jenkin
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton 3168, Australia; (S.L.M.); (R.L.); (G.J.)
- Department of Obstetrics and Gynaecology, Monash University, Clayton 3800, Australia
| | - Alistair J. Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland 1010, New Zealand; (L.G.v.d.H.); (S.K.D.); (A.J.G.); (L.B.)
| |
Collapse
|
16
|
Chan KYY, Tran NT, Papagianis PC, Zahra VA, Nitsos I, Moxham AM, LaRosa DA, McDonald C, Miller SL, Galinsky R, Alahmari DM, Stojanovska V, Polglase GR. Investigating Pathways of Ventilation Induced Brain Injury on Cerebral White Matter Inflammation and Injury After 24 h in Preterm Lambs. Front Physiol 2022; 13:904144. [PMID: 35860659 PMCID: PMC9289398 DOI: 10.3389/fphys.2022.904144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Initiation of respiratory support in the delivery room increases the risk and severity of brain injury in preterm neonates through two major pathways: an inflammatory pathway and a haemodynamic pathway. The relative contribution of each pathway on preterm brain injury is not known. We aimed to assess the role of the inflammatory and haemodynamic pathway on ventilation-induced brain injury (VIBI) in the preterm lamb. Fetal lambs (125 ± 1 day gestation) were exteriorised, instrumented and ventilated with a high tidal-volume (VT) injurious strategy for 15 min either with placental circulation intact to induce the inflammatory pathway only (INJINF; n = 7) or umbilical cord occluded to induce both the inflammatory and haemodynamic pathways (INJINF+HAE; n = 7). Sham controls were exteriorised but not ventilated (SHAM; n = 5) while unoperated controls (UNOP; n = 7) did not undergo fetal instrumentation. Fetuses were returned in utero following intervention and the ewe allowed to recover. Arterial blood gases and plasma were sampled periodically. Twenty-four hours following intervention, lambs were delivered and maintained on non-injurious ventilation for ∼40 min then brains were collected post-mortem for immunohistochemistry and RT-qPCR to assess inflammation, vascular pathology and cell death within white matter regions. Compared to INJINF lambs, INJINF+HAE lambs achieved a consistently higher VT during injurious ventilation and carotid blood flow was significantly lower than baseline by the end of ventilation. Throughout the 24 h recovery period, systemic arterial IL-6 levels of INJINF+HAE lambs were significantly higher than SHAM while there was no difference between INJINF and SHAM animals. At 24 h, mRNA expression levels of pro-inflammatory cytokines, tight junction proteins, markers of cell death, and histological injury indices of gliosis, blood vessel protein extravasation, oligodendrocyte injury and cell death were not different between groups. Injurious ventilation, irrespective of strategy, did not increase brain inflammation or injury 24 h later when compared to control animals. However, the haemodynamic pathway did influence carotid blood flow adaptations during injurious ventilation and increased systemic arterial IL-6 that may underlie long-term pathology. Future studies are required to further characterise the pathways and their long-term effects on VIBI.
Collapse
Affiliation(s)
- Kyra YY Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Nhi T. Tran
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Paris C. Papagianis
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Valerie A. Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Ilias Nitsos
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Alison M. Moxham
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Domenic A. LaRosa
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Courtney McDonald
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Dhafer M. Alahmari
- Monash Biomedicine Discovery Institute and Department of Medical Imaging and Radiation Sciences, Monash University, Clayton, VIC, Australia
- Monash Biomedical Imaging, Monash University, Clayton, VIC, Australia
- Department of Diagnostic Imaging, King Saud Medical City, Riyadh, Saudi Arabia
| | - Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
| | - Graeme R. Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynaecology, Monash University, Clayton, VIC, Australia
- *Correspondence: Graeme R. Polglase,
| |
Collapse
|
17
|
Murata T, Kyozuka H, Yasuda S, Fukuda T, Tanaka T, Fujimori K. Effects of maternal ritodrine hydrochloride administration on the heart rate of preterm fetal sheep with intraamniotic inflammation. PLoS One 2022; 17:e0265872. [PMID: 35358222 PMCID: PMC8970407 DOI: 10.1371/journal.pone.0265872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 03/04/2022] [Indexed: 11/18/2022] Open
Abstract
Ritodrine hydrochloride is used for pregnancy prolongation and intrauterine fetal resuscitation. However, its clinical significance in intraamniotic inflammation during preterm labor and intrauterine fetal distress is unclear. We investigated the effects of maternal ritodrine hydrochloride administration (MRA; 200 μg/min for 2 h, followed by 800 μg/min for 2 h after 24 h) on fetal physiological parameters. For this purpose, we used chronically instrumented pregnant sheep at 113–119 d (term = 145 d) of gestation without (Group 1, n = 5) and with (Group 2, n = 5) intraamniotic inflammation induced by lipopolysaccharide injection into the amniotic cavity. The changes in fetal heart rate (FHR) and short-term variability (STV) and long-term variability (LTV) in FHR, fetal blood pressure, and fetal arterial blood gas (FABG) values were measured before and at 1 and 2 h after initiating MRA. Before MRA, all parameters were similar between Groups 1 and 2; however, there was significantly higher STV in Group 2 than in Group 1 before MRA at 800 μg/min, significantly higher partial arterial pressure of carbon dioxide in FABG in Group 2 than in Group 1 before MRA at 200 μg/min, and significantly lower blood glucose (BG) in Group 2 than in Group 1 before MRA at 800 μg/min. One hour after MRA, the FHR, STV, and LTV were significantly higher at 800 μg/min than those at the baseline in Group 1, as determined by the Friedman test; however, no significant difference was observed in Group 2. Additionally, the FABG pH significantly decreased 1 h after MRA at 800 μg/min in Group 2, whereas FABG lactate and BG significantly increased 2 h after MRA at 800 μg/min in Groups 1 and 2. Thus, short-term MRA at 800 μg/min increased the FHR, STV, and LTV significantly; these values were further modified under intraamniotic inflammation.
Collapse
Affiliation(s)
- Tsuyoshi Murata
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
- * E-mail:
| | - Hyo Kyozuka
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shun Yasuda
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Toma Fukuda
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Teruyoshi Tanaka
- Department of Biomolecular Science, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Keiya Fujimori
- Department of Obstetrics and Gynecology, Fukushima Medical University School of Medicine, Fukushima, Japan
| |
Collapse
|
18
|
Love SA, Haslin E, Bellardie M, Andersson F, Barantin L, Filipiak I, Adriaensen H, Fazekas CL, Leroy L, Zelena D, Morisse M, Elleboudt F, Moussu C, Lévy F, Nowak R, Chaillou E. Maternal deprivation and milk replacement affect the integrity of gray and white matter in the developing lamb brain. Dev Neurobiol 2022; 82:214-232. [DOI: 10.1002/dneu.22869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 01/17/2022] [Accepted: 01/27/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Scott A. Love
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | | | | | | | | | | | | | - Csilla L. Fazekas
- Institute of Experimental Medicine Budapest Hungary
- János Szentágothai Doctoral School of Neurosciences Semmelweis University Budapest Hungary
| | - Laurène Leroy
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | - Dóra Zelena
- Institute of Experimental Medicine Budapest Hungary
- Centre for Neuroscience, Szentágothai Research Centre Institute of Physiology Medical School University of Pécs Pécs Hungary
| | - Mélody Morisse
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | | | | | - Frédéric Lévy
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | - Raymond Nowak
- CNRS, IFCE, INRAE Université de Tours PRC Nouzilly France
| | | |
Collapse
|
19
|
Fetal heart rate variability is a biomarker of rapid but not progressive exacerbation of inflammation in preterm fetal sheep. Sci Rep 2022; 12:1771. [PMID: 35110628 PMCID: PMC8810879 DOI: 10.1038/s41598-022-05799-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/11/2022] [Indexed: 12/14/2022] Open
Abstract
Perinatal infection/inflammation can trigger preterm birth and contribute to neurodevelopmental disability. There are currently no sensitive, specific methods to identify perinatal infection. We investigated the utility of time, frequency and non-linear measures of fetal heart rate (FHR) variability (FHRV) to identify either progressive or more rapid inflammation. Chronically instrumented preterm fetal sheep were randomly assigned to one of three different 5d continuous i.v. infusions: 1) control (saline infusions; n = 10), 2) progressive lipopolysaccharide (LPS; 200 ng/kg over 24 h, doubled every 24 h for 5d, n = 8), or 3) acute-on-chronic LPS (100 ng/kg over 24 h then 250 ng/kg/24 h for 4d plus 1 μg boluses at 48, 72, and 96 h, n = 9). Both LPS protocols triggered transient increases in multiple measures of FHRV at the onset of infusions. No FHRV or physiological changes occurred from 12 h after starting progressive LPS infusions. LPS boluses during the acute-on-chronic protocol triggered transient hypotension, tachycardia and an initial increase in multiple time and frequency domain measures of FHRV, with an asymmetric FHR pattern of predominant decelerations. Following resolution of hypotension after the second and third LPS boluses, all frequencies of FHRV became suppressed. These data suggest that FHRV may be a useful biomarker of rapid but not progressive preterm infection/inflammation.
Collapse
|
20
|
Kelly SB, Stojanovska V, Zahra VA, Moxham A, Miller SL, Moss TJM, Hooper SB, Nold MF, Nold-Petry CA, Dean JM, Bennet L, Polglase GR, Gunn AJ, Galinsky R. Interleukin-1 blockade attenuates white matter inflammation and oligodendrocyte loss after progressive systemic lipopolysaccharide exposure in near-term fetal sheep. J Neuroinflammation 2021; 18:189. [PMID: 34465372 PMCID: PMC8408978 DOI: 10.1186/s12974-021-02238-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 08/11/2021] [Indexed: 12/14/2022] Open
Abstract
Background Increased systemic and tissue levels of interleukin (IL)-1β are associated with greater risk of impaired neurodevelopment after birth. In this study, we tested the hypothesis that systemic IL-1 receptor antagonist (Ra) administration would attenuate brain inflammation and injury in near-term fetal sheep exposed to lipopolysaccharide (LPS). Methods Chronically instrumented near-term fetal sheep at 0.85 of gestation were randomly assigned to saline infusion (control, n = 9), repeated LPS infusions (0 h = 300 ng, 24 h = 600 ng, 48 h = 1200 ng, n = 8) or repeated LPS plus IL-1Ra infusions (13 mg/kg infused over 4 h) started 1 h after each LPS infusion (n = 9). Sheep were euthanized 4 days after starting infusions for histology. Results LPS infusions increased circulating cytokines and were associated with electroencephalogram (EEG) suppression with transiently reduced mean arterial blood pressure, and increased carotid artery perfusion and fetal heart rate (P < 0.05 vs. control for all). In the periventricular and intragyral white matter, LPS-exposure increased IL-1β immunoreactivity, numbers of caspase 3+ cells and microglia, reduced astrocyte and olig-2+ oligodendrocyte survival but did not change numbers of mature CC1+ oligodendrocytes, myelin expression or numbers of neurons in the cortex and subcortical regions. IL-1Ra infusions reduced circulating cytokines and improved recovery of EEG activity and carotid artery perfusion. Histologically, IL-1Ra reduced microgliosis, IL-1β expression and caspase-3+ cells, and improved olig-2+ oligodendrocyte survival. Conclusion IL-1Ra improved EEG activity and markedly attenuated systemic inflammation, microgliosis and oligodendrocyte loss following LPS exposure in near-term fetal sheep. Further studies examining the long-term effects on brain maturation are now needed. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02238-4.
Collapse
Affiliation(s)
- Sharmony B Kelly
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia
| | - Valerie A Zahra
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia
| | - Alison Moxham
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia
| | - Suzanne L Miller
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Timothy J M Moss
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia
| | - Stuart B Hooper
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Marcel F Nold
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Paediatrics, Monash University, Melbourne, Victoria, Australia.,Monash Newborn, Monash Children's Hospital, Melbourne, Australia
| | - Claudia A Nold-Petry
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Paediatrics, Monash University, Melbourne, Victoria, Australia
| | - Justin M Dean
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Graeme R Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia.,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Ritchie Centre, Hudson Institute of Medical Research, 27-31 Wright street, Melbourne, Victoria, 3168, Australia. .,Department of Obstetrics and Gynaecology, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
21
|
Davies KL, Smith DJ, El-Bacha T, Stewart ME, Easwaran A, Wooding PFP, Forhead AJ, Murray AJ, Fowden AL, Camm EJ. Development of cerebral mitochondrial respiratory function is impaired by thyroid hormone deficiency before birth in a region-specific manner. FASEB J 2021; 35:e21591. [PMID: 33891344 DOI: 10.1096/fj.202100075r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/13/2021] [Accepted: 03/26/2021] [Indexed: 12/20/2022]
Abstract
Thyroid hormones regulate adult metabolism partly through actions on mitochondrial oxidative phosphorylation (OXPHOS). They also affect neurological development of the brain, but their role in cerebral OXPHOS before birth remains largely unknown, despite the increase in cerebral energy demand during the neonatal period. Thus, this study examined prepartum development of cerebral OXPHOS in hypothyroid fetal sheep. Using respirometry, Complex I (CI), Complex II (CII), and combined CI&CII OXPHOS capacity were measured in the fetal cerebellum and cortex at 128 and 142 days of gestational age (dGA) after surgical thyroidectomy or sham operation at 105 dGA (term ~145 dGA). Mitochondrial electron transfer system (ETS) complexes, mRNA transcripts related to mitochondrial biogenesis and ATP production, and mitochondrial density were quantified using molecular techniques. Cerebral morphology was assessed by immunohistochemistry and stereology. In the cortex, hypothyroidism reduced CI-linked respiration and CI abundance at 128 dGA and 142 dGA, respectively, and caused upregulation of PGC1α (regulator of mitochondrial biogenesis) and thyroid hormone receptor β at 128 dGA and 142 dGA, respectively. In contrast, in the cerebellum, hypothyroidism reduced CI&II- and CII-linked respiration at 128 dGA, with no significant effect on the ETS complexes. In addition, cerebellar glucocorticoid hormone receptor and adenine nucleotide translocase (ANT1) were downregulated at 128 dGA and 142 dGA, respectively. These alterations in mitochondrial function were accompanied by reduced myelination. The findings demonstrate the importance of thyroid hormones in the prepartum maturation of cerebral mitochondria and have implications for the etiology and treatment of the neurodevelopmental abnormalities associated with human prematurity and congenital hypothyroidism.
Collapse
Affiliation(s)
- Katie L Davies
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Danielle J Smith
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Tatiana El-Bacha
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Max E Stewart
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Akshay Easwaran
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Peter F P Wooding
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Alison J Forhead
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.,Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Andrew J Murray
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Abigail L Fowden
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Emily J Camm
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
22
|
Lear CA, Bennet L, Lear BA, Westgate JA, Gunn AJ. Lack of evidence for impaired preload or Bezold-Jarisch activation during brief umbilical cord occlusions in fetal sheep. Am J Physiol Regul Integr Comp Physiol 2021; 320:R532-R540. [PMID: 33533313 DOI: 10.1152/ajpregu.00357.2020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Impaired cardiac preload secondary to umbilical cord occlusion (UCO) has been hypothesized to contribute to intrapartum decelerations, brief falls in fetal heart rate (FHR), through activation of the Bezold-Jarisch reflex. This cardioprotective reflex increases parasympathetic and inhibits sympathetic outflows triggering hypotension, bradycardia, and peripheral vasodilation, but its potential to contribute to intrapartum decelerations has never been systematically examined. In this study, we performed bilateral cervical vagotomy to remove the afferent arm and the efferent parasympathetic arm of the Bezold-Jarisch reflex. Twenty-two chronically instrumented fetal sheep at 0.85 of gestation received vagotomy (n = 7) or sham vagotomy (control, n = 15), followed by three 1-min complete UCOs separated by 4-min reperfusion periods. UCOs in control fetuses were associated with a rapid fall in FHR and reduced femoral blood flow mediated by intense femoral vasoconstriction, leading to hypertension. Vagotomy abolished the rapid fall in FHR (P < 0.001) and, despite reduced diastolic filling time, increased both carotid (P < 0.001) and femoral (P < 0.05) blood flow during UCOs, secondary to carotid vasodilation (P < 0.01) and delayed femoral vasoconstriction (P < 0.05). Finally, vagotomy was associated with an attenuated rise in cortical impedance during UCOs (P < 0.05), consistent with improved cerebral substrate supply. In conclusion, increased carotid and femoral blood flows after vagotomy are consistent with increased left and right ventricular output, which is incompatible with the hypothesis that labor-like UCOs impair ventricular filling. Overall, the cardiovascular responses to vagotomy do not support the hypothesis that the Bezold-Jarisch reflex is activated by UCO. The Bezold-Jarisch reflex is therefore mechanistically unable to contribute to intrapartum decelerations.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Benjamin A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
23
|
Lear CA, Kasai M, Drury PP, Davidson JO, Miyagi E, Bennet L, Gunn AJ. Plasma vasopressin levels are closely associated with fetal hypotension and neuronal injury after hypoxia-ischemia in near-term fetal sheep. Pediatr Res 2020; 88:857-864. [PMID: 32179873 DOI: 10.1038/s41390-020-0845-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/11/2020] [Accepted: 02/17/2020] [Indexed: 01/14/2023]
Abstract
BACKGROUND Sensitive biomarkers are needed to rapidly identify high-risk infants after hypoxia-ischemia for neuroprotective treatment. Hypotension is a key determinant of hypoxic-ischemic neural injury, and a potent stimulus of humoral pressors including angiotensin-II and arginine vasopressin. We therefore aimed to quantify the relationship between vasopressin and angiotensin-II levels in the latent phase after hypoxia-ischemia induced by umbilical cord occlusion (UCO) with both the severity of preceding hypotension and subsequent neuronal injury. METHODS Chronically instrumented near-term fetal sheep underwent sham-UCO or UCO for either 15 min or until mean arterial pressure was <8 mmHg. Neuronal injury was assessed after 72 h recovery. RESULTS Umbilical cord occlusion was associated with severe hypotension that recovered after UCO; two fetuses developed profound secondary hypotension within 6 h and died. Vasopressin levels but not angiotensin-II were significantly elevated 1-3 h after UCO and were closely associated with the severity of hypotension during UCO and the subsequent severity of neuronal loss in the parasagittal and lateral cortex, caudate nucleus and putamen. The Youden cut-point for vasopressin at 1 h was 180.0 pmol/L, with sensitivity 100% and specificity 92.3% for severe neuronal injury or death. CONCLUSION Vasopressin levels shortly after moderate-severe hypoxia-ischemia may be a useful early biomarker to guide the timely implementation of neuroprotective treatment. IMPACT It can be difficuIt to rapidly identify infants who might benefit from therapeutic hypothermia. We investigated whether increases in plasma pressor hormones early after hypoxia-ischemia were biomarkers for neonatal hypoxic-ischemic encephalopathy using near-term fetal sheep. Arginine vasopressin levels were elevated at 1-3 h after hypoxia-ischemia and were predictive of the severity of preceding hypotension and subsequent risk of severe neuronal injury or death after hypoxia-ischemia. Arginine vasopressin may help identify neonates at high risk of hypoxic-ischemic encephalopathy early within the therapeutic window for hypothermia.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Michi Kasai
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,The Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Paul P Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Etsuko Miyagi
- The Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
24
|
Diagnostic Specificity of Cerebral Magnetic Resonance Imaging for Punctate White Matter Lesion Assessment in a Preterm Sheep Fetus Model. Reprod Sci 2020; 28:1175-1184. [PMID: 33237519 DOI: 10.1007/s43032-020-00401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 10/22/2022]
Abstract
Recent studies, using magnetic resonance imaging (MRI) to assess white matter injury in preterm brains, increasingly recognize punctate white matter lesions (PWML) as the primary lesion type. There are some papers showing the relationship between the size and number of PWML and the prognosis of infants. However, the histopathological features are still unknown. In this study, we experimentally induced periventricular leukomalacia (PVL) in a sheep fetus model, aiming to find whether MRI can visualize necrotic foci (small incipient lesions of PVL) as PWML. Three antenatal insults were employed to induce PVL in preterm fetuses at gestational day 101-117: (i) hypoxia under intrauterine inflammation, (ii) restriction of artificial placental blood flow, and (iii) restriction of artificial placental blood flow after exposure to intrauterine inflammation. MRI was performed 3-5 days after the insults, and standard histological studies of the PVL validated its findings. Of the 89 necrotic foci detected in histological samples from nine fetuses with PVL, 78 were visualized as PWML. Four of the lesions detected as abnormal findings on MRI could not be histologically detected as corresponding abnormal findings. The diagnostic sensitivity and positive predictive values of histologic focal necrosis visualized as PWML were 0.92 and 0.95, respectively. The four lesions were excluded from these analyses. These data suggest that MRI can visualize PVL necrotic foci as PWML 3-5 days after the injury induction. PWML can spontaneously become obscure with time after birth, so their accurate diagnosis in the acute phase can prevent overlooking mild PVL.
Collapse
|
25
|
Lear CA, Davidson JO, Dhillon SK, King VJ, Lear BA, Magawa S, Maeda Y, Ikeda T, Gunn AJ, Bennet L. Effects of antenatal dexamethasone and hyperglycemia on cardiovascular adaptation to asphyxia in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2020; 319:R653-R665. [PMID: 33074015 DOI: 10.1152/ajpregu.00216.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Antenatal glucocorticoids improve outcomes among premature infants but are associated with hyperglycemia, which can exacerbate hypoxic-ischemic injury. It is still unclear how antenatal glucocorticoids or hyperglycemia modulate fetal cardiovascular adaptations to severe asphyxia. In this study, preterm fetal sheep received either saline or 12 mg im maternal dexamethasone, followed 4 h later by complete umbilical cord occlusion (UCO) for 25 min. An additional cohort of fetuses received titrated glucose infusions followed 4 h later by UCO to control for the possibility that hyperglycemia contributed to the cardiovascular effects of dexamethasone. Fetuses were studied for 7 days after UCO. Maternal dexamethasone was associated with fetal hyperglycemia (P < 0.001), increased arterial pressure (P < 0.001), and reduced femoral (P < 0.005) and carotid (P < 0.05) vascular conductance before UCO. UCO was associated with bradycardia, femoral vasoconstriction, and transient hypertension. For the first 5 min of UCO, fetal blood pressure in the dexamethasone-asphyxia group was greater than saline-asphyxia (P < 0.001). However, the relative increase in arterial pressure was not different from saline-asphyxia. Fetal heart rate and femoral vascular conductance fell to similar nadirs in both saline and dexamethasone-asphyxia groups. Dexamethasone did not affect the progressive decline in femoral vascular tone or arterial pressure during continuing UCO. By contrast, there were no effects of glucose infusions on the response to UCO. In summary, maternal dexamethasone but not fetal hyperglycemia increased fetal arterial pressure before and for the first 5 min of prolonged UCO but did not augment the cardiovascular adaptations to acute asphyxia.
Collapse
Affiliation(s)
- Christopher A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Simerdeep K Dhillon
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Victoria J King
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Benjamin A Lear
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Shoichi Magawa
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Yoshiki Maeda
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- The Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
26
|
McGovern PE, Hornick MA, Mejaddam AY, Lawrence K, Schupper AJ, Rossidis AC, Baumgarten H, Vossough A, Didier RA, Kim A, Partridge EA, Hwang G, Young K, Peranteau WH, Davey MG, Flake AW. Neurologic outcomes of the premature lamb in an extrauterine environment for neonatal development. J Pediatr Surg 2020; 55:2115-2123. [PMID: 32014247 DOI: 10.1016/j.jpedsurg.2019.12.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 12/14/2019] [Accepted: 12/26/2019] [Indexed: 10/25/2022]
Abstract
BACKGROUND/PURPOSE Neurologic injury remains the most important morbidity of prematurity. Those born at the earliest gestational ages can face a lifetime of major disability. Perinatal insults result in developmental delay, cerebral palsy, and other profound permanent neurologic impairments. The EXTracorporeal Environment for Neonatal Development (EXTEND) aims to transition premature neonates through this sensitive period, but it's impact on neurologic development requires analysis. METHODS Fetal sheep were maintained in a fluid-filled environment for up to 28 days. Physiologic parameters were measured continuously; tissues were subsequently fixed and preserved for myelin quantification, glial cell staining, and structural assessment via magnetic resonance. Surviving animals were functionally assessed. RESULTS No evidence of fetal brain ischemia or white matter tract injury associated with the EXTEND system was detected, and the degree of myelination was regionally appropriate and consistent with age matched controls. No evidence of neurologic injury or immaturity was visible on magnetic resonance; animals that transitioned from the system had no persistent neurologic deficits. CONCLUSIONS No evidence of major neurologic morbidity was found in animals supported on the EXTEND system, though more work needs to be done in order to verify its safety during critical periods of neurologic development.
Collapse
Affiliation(s)
- Patrick E McGovern
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Matthew A Hornick
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ali Y Mejaddam
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kendall Lawrence
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alexander J Schupper
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Avery C Rossidis
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Heron Baumgarten
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Arastoo Vossough
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ryne A Didier
- Department of Radiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aimee Kim
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Emily A Partridge
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Grace Hwang
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathleen Young
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - William H Peranteau
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Marcus G Davey
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Alan W Flake
- The Center for Fetal Research, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| |
Collapse
|
27
|
Lear CA, Westgate JA, Kasai M, Beacom MJ, Maeda Y, Magawa S, Miyagi E, Ikeda T, Bennet L, Gunn AJ. Parasympathetic activity is the key regulator of heart rate variability between decelerations during brief repeated umbilical cord occlusions in fetal sheep. Am J Physiol Regul Integr Comp Physiol 2020; 319:R541-R550. [PMID: 32877241 DOI: 10.1152/ajpregu.00186.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fetal heart rate variability (FHRV) is a widely used index of intrapartum well being. Both arms of the autonomic system regulate FHRV under normoxic conditions in the antenatal period. However, autonomic control of FHRV during labor when the fetus is exposed to repeated, brief hypoxemia during uterine contractions is poorly understood. We have previously shown that the sympathetic nervous system (SNS) does not regulate FHRV during labor-like hypoxia. We therefore investigated the hypothesis that the parasympathetic system is the main mediator of intrapartum FHRV. Twenty-six chronically instrumented fetal sheep at 0.85 of gestation received either bilateral cervical vagotomy (n = 7), atropine sulfate (n = 7), or sham treatment (control, n = 12), followed by three 1-min complete umbilical cord occlusions (UCOs) separated by 4-min reperfusion periods. Parasympathetic blockade reduced three measures of FHRV before UCOs (all P < 0.01). Between UCOs, atropine and vagotomy were associated with marked tachycardia (both P < 0.005), suppressed measures of FHRV (all P < 0.01), and abolished FHRV on visual inspection compared with the control group. Tachycardia in the atropine and vagotomy groups resolved over the first 10 min after the final UCO, in association with evidence that the SNS contribution to FHRV progressively returned during this time. Our findings support that SNS control of FHRV is acutely suppressed for at least 4 min after a deep intrapartum deceleration and takes 5-10 min to recover. The parasympathetic system is therefore likely to be the key mediator of FHRV once frequent FHR decelerations are established during labor.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Jenny A Westgate
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Michi Kasai
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Michael J Beacom
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Yoshiki Maeda
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Shoichi Magawa
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
28
|
Chan KYY, Miller SL, Schmölzer GM, Stojanovska V, Polglase GR. Respiratory Support of the Preterm Neonate: Lessons About Ventilation-Induced Brain Injury From Large Animal Models. Front Neurol 2020; 11:862. [PMID: 32922358 PMCID: PMC7456830 DOI: 10.3389/fneur.2020.00862] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/07/2020] [Indexed: 11/25/2022] Open
Abstract
Many preterm neonates require mechanical ventilation which increases the risk of cerebral inflammation and white matter injury in the immature brain. In this review, we discuss the links between ventilation and brain injury with a focus on the immediate period after birth, incorporating respiratory support in the delivery room and subsequent mechanical ventilation in the neonatal intensive care unit. This review collates insight from large animal models in which acute injurious ventilation and prolonged periods of ventilation have been used to create clinically relevant brain injury patterns. These models are valuable resources in investigating the pathophysiology of ventilation-induced brain injury and have important translational implications. We discuss the challenges of reconciling lung and brain maturation in commonly used large animal models. A comprehensive understanding of ventilation-induced brain injury is necessary to guide the way we care for preterm neonates, with the goal to improve their neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Kyra Y. Y. Chan
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Suzanne L. Miller
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Georg M. Schmölzer
- Neonatal Research Unit, Centre for the Studies of Asphyxia and Resuscitation, Royal Alexandra Hospital, Edmonton, AB, Canada
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Vanesa Stojanovska
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| | - Graeme R. Polglase
- The Ritchie Centre, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Obstetrics and Gynecology, Monash University, Clayton, VIC, Australia
| |
Collapse
|
29
|
Lear CA, Kasai M, Booth LC, Drury PP, Davidson JO, Maeda Y, Magawa S, Miyagi E, Ikeda T, Westgate JA, Bennet L, Gunn AJ. Peripheral chemoreflex control of fetal heart rate decelerations overwhelms the baroreflex during brief umbilical cord occlusions in fetal sheep. J Physiol 2020; 598:4523-4536. [PMID: 32705685 DOI: 10.1113/jp279573] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 07/13/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS The majority of intrapartum decelerations are widely believed to be mediated by the baroreflex secondary to brief umbilical cord occlusions (UCOs) but this remains unproven. We examined the responses to brief-UCOs in fetal sheep and compared these to a phenylephrine-stimulated baroreflex in a separate cohort. A further cohort was instrumented with near-infrared spectroscopy to measure cerebral oxygenation during UCO. The first 3-4 s of the brief-UCOs were consistent with a baroreflex, and associated with a minor fall in fetal heart rate (FHR). Thereafter, the remainder of the FHR decelerations were highly consistent with the peripheral chemoreflex. The baroreflex is not sufficient to produce deep, rapid decelerations characteristic of variable decelerations and it is therefore likely to be a minor contributor to intrapartum decelerations. ABSTRACT Fetal heart rate (FHR) monitoring is widely used to assess fetal wellbeing during labour, yet the physiology underlying FHR patterns remains incompletely understood. The baroreflex is widely believed to mediate brief intrapartum decelerations, but evidence supporting this theory is lacking. We therefore investigated the physiological changes in near-term fetal sheep during brief repeated umbilical cord occlusions (brief-UCOs, n = 15). We compared this to separate cohorts that underwent a phenylephrine challenge to stimulate the baroreflex (n = 9) or were instrumented with near-infrared spectroscopy and underwent prolonged 15-min complete UCO (prolonged-UCO, n = 9). The first 3-4 s of brief-UCOs were associated with hypertension (P = 0.000), a fall in FHR by 9.7-16.9 bpm (P = 0.002). The FHR/MAP relationship during this time was consistent with that observed during a phenylephrine-induced baroreflex. At 4-5 s, the FHR/MAP relationship began to deviate from the phenylephrine baroreflex curve as FHR fell independently of MAP until its nadir in association with intense peripheral vasoconstriction (P = 0.000). During prolonged-UCO, cerebral oxygenation remained steady until 4 s after the start of prolonged-UCO, and then began to fall (P = 0.000). FHR and cerebral oxygenation then fell in parallel until the FHR nadir. In conclusion, the baroreflex has a minor role in mediating the first 3-4 s of FHR decelerations during complete UCO, but thereafter the peripheral chemoreflex is the dominant mediator. Overall, the baroreflex is neither necessary nor sufficient to produce deep, rapid decelerations characteristic of variable decelerations; it is therefore likely to be a minor contributor to intrapartum decelerations.
Collapse
Affiliation(s)
- Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Michi Kasai
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Lindsea C Booth
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Paul P Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Yoshiki Maeda
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Shoichi Magawa
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University, Yokohama, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Jenny A Westgate
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
30
|
Disdier C, Awa F, Chen X, Dhillon SK, Galinsky R, Davidson JO, Lear CA, Bennet L, Gunn AJ, Stonestreet BS. Lipopolysaccharide-induced changes in the neurovascular unit in the preterm fetal sheep brain. J Neuroinflammation 2020; 17:167. [PMID: 32466771 PMCID: PMC7257152 DOI: 10.1186/s12974-020-01852-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/21/2020] [Indexed: 02/06/2023] Open
Abstract
Background Exposure to inflammation during pregnancy can predispose to brain injury in premature infants. In the present study, we investigated the effects of prolonged exposure to inflammation on the cerebrovasculature of preterm fetal sheep. Methods Chronically instrumented fetal sheep at 103–104 days of gestation (full term is ~ 147 days) received continuous low-dose lipopolysaccharide (LPS) infusions (100 ng/kg over 24 h, followed by 250 ng/kg/24 h for 96 h plus boluses of 1 μg LPS at 48, 72, and 96 h) or the same volume of normal saline (0.9%, w/v). Ten days after the start of LPS exposure at 113–114 days of gestation, the sheep were killed, and the fetal brain perfused with formalin in situ. Vessel density, pericyte and astrocyte coverage of the blood vessels, and astrogliosis in the cerebral cortex and white matter were determined using immunohistochemistry. Results LPS exposure reduced (P < 0.05) microvascular vessel density and pericyte vascular coverage in the cerebral cortex and white matter of preterm fetal sheep, and increased the activation of perivascular astrocytes, but decreased astrocytic vessel coverage in the white matter. Conclusions Prolonged exposure to LPS in preterm fetal sheep resulted in decreased vessel density and neurovascular remodeling, suggesting that chronic inflammation adversely affects the neurovascular unit and, therefore, could contribute to long-term impairment of brain development.
Collapse
Affiliation(s)
- Clémence Disdier
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Fares Awa
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | - Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA
| | | | - Robert Galinsky
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, Alpert Medical School of Brown University, 101 Dudley Street, Providence, RI, 02905, USA.
| |
Collapse
|
31
|
Galinsky R, Dean JM, Lingam I, Robertson NJ, Mallard C, Bennet L, Gunn AJ. A Systematic Review of Magnesium Sulfate for Perinatal Neuroprotection: What Have We Learnt From the Past Decade? Front Neurol 2020; 11:449. [PMID: 32536903 PMCID: PMC7267212 DOI: 10.3389/fneur.2020.00449] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/28/2020] [Indexed: 12/14/2022] Open
Abstract
There is an important unmet need to improve long term outcomes of encephalopathy for preterm and term infants. Meta-analyses of large controlled trials suggest that maternal treatment with magnesium sulfate (MgSO4) is associated with a reduced risk of cerebral palsy and gross motor dysfunction after premature birth. However, to date, follow up to school age has found an apparent lack of long-term clinical benefit. Because of this inconsistency, it remains controversial whether MgSO4 offers sustained neuroprotection. We systematically reviewed preclinical and clinical studies reported from January 1 2010, to January 31 2020 to evaluate the most recent advances and knowledge gaps relating to the efficacy of MgSO4 for the treatment of perinatal brain injury. The outcomes of MgSO4 in preterm and term-equivalent animal models of perinatal encephalopathy were highly inconsistent between studies. None of the perinatal rodent studies that suggested benefit directly controlled body or brain temperature. The majority of the studies did not control for sex, study long term histological and functional outcomes or use pragmatic treatment regimens and many did not report controlling for potential study bias. Finally, most of the recent preterm or term human studies that tested the potential of MgSO4 for perinatal neuroprotection were relatively underpowered, but nevertheless, suggest that any improvements in neurodevelopment were at best modest or absent. On balance, these data suggest that further rigorous testing in translational preclinical models of perinatal encephalopathy is essential to ensure safety and best regimens for optimal preterm neuroprotection, and before further clinical trials of MgSO4 for perinatal encephalopathy at term are undertaken.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Obstetrics and Gynecology, The Ritchie Centre, Hudson Institute of Medical Research, Monash University, Melbourne, VIC, Australia.,Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Justin M Dean
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Ingran Lingam
- Neonatology, Institute for Women's Health, University College London, London, United Kingdom
| | - Nicola J Robertson
- Neonatology, Institute for Women's Health, University College London, London, United Kingdom
| | - Carina Mallard
- Department of Neuroscience and Physiology, University of Gothenburg, Sahlgrenska Academy, Gothenburg, Sweden
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Abbasi H, Gunn AJ, Bennet L, Unsworth CP. Latent Phase Identification of High-Frequency Micro-Scale Gamma Spike Transients in the Hypoxic Ischemic EEG of Preterm Fetal Sheep Using Spectral Analysis and Fuzzy Classifiers. SENSORS 2020; 20:s20051424. [PMID: 32150987 PMCID: PMC7085637 DOI: 10.3390/s20051424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Premature babies are at high risk of serious neurodevelopmental disabilities, which in many cases are related to perinatal hypoxic–ischemic encephalopathy (HIE). Studies of neuroprotection in animal models consistently suggest that treatment must be started as early as possible in the first 6 h after hypoxia–ischemia (HI), the so-called latent phase before secondary deterioration, to improve outcomes. We have shown in preterm sheep that EEG biomarkers of injury, in the form of high-frequency micro-scale spike transients, develop and evolve in this critical latent phase after severe asphyxia. Real-time automatic identification of such events is important for the early and accurate detection of HI injury, so that the right treatment can be implemented at the right time. We have previously reported successful strategies for accurate identification of EEG patterns after HI. In this study, we report an alternative high-performance approach based on the fusion of spectral Fourier analysis and Type-I fuzzy classifiers (FFT-Type-I-FLC). We assessed its performance in over 2520 min of latent phase EEG recordings from seven asphyxiated in utero preterm fetal sheep exposed to a range of different occlusion periods. The FFT-Type-I-FLC classifier demonstrated 98.9 ± 1.0% accuracy for identification of high-frequency spike transients in the gamma frequency band (namely 80–120 Hz) post-HI. The spectral-based approach (FFT-Type-I-FLC classifier) has similar accuracy to our previous reverse biorthogonal wavelets rbio2.8 basis function and type-1 fuzzy classifier (rbio-WT-Type-1-FLC), providing competitive performance (within the margin of error: 0.89%), but it is computationally simpler and would be readily adapted to identify other potentially relevant EEG waveforms.
Collapse
Affiliation(s)
- Hamid Abbasi
- Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland 1142, New Zealand;
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.)
- Correspondence:
| | - Alistair J. Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.)
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand; (A.J.G.); (L.B.)
| | - Charles P. Unsworth
- Department of Engineering Science, Faculty of Engineering, University of Auckland, Auckland 1142, New Zealand;
| |
Collapse
|
33
|
Hermes M, Antonow-Schlorke I, Hollstein D, Kuehnel S, Rakers F, Frauendorf V, Dreiling M, Rupprecht S, Schubert H, Witte OW, Schwab M. Maternal psychosocial stress during early gestation impairs fetal structural brain development in sheep. Stress 2020; 23:233-242. [PMID: 31469022 DOI: 10.1080/10253890.2019.1652266] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Maternal stress, especially during early pregnancy, predisposes offspring to neuropsychiatric disorders. We hypothesized that maternal psychosocial stress (MPS) during pregnancy affects fetal structural neurodevelopment depending on the gestational age of exposure. Fetal sheep brains were harvested at 130 days gestation (dG, term 150 dG) from ewes frequently isolated from flock-mates during early gestation (first and second trimester; n = 10) or late gestation (third trimester; n = 10), or from control flock-mates (n = 8). Immunohistochemistry for formation of neuronal processes, myelination, synaptic density, cell proliferation and programed cell death was performed on brain tissue sections. Sections of the cortical gray matter, the hippocampal CA3 region and the superficial, subcortical and deep white matter were examined morphometrically. Stress effects depended on the brain region and time of exposure. Stress during early gestation but not during late gestation reduced the amount of neuronal processes in the cerebral cortex and hippocampus by 36.9 ± 10.1% (p < 0.05, mean ± SEM) and 36.9 ± 15.8% (p < 0.05), respectively, accompanied by a decrease in synaptic density in the cerebral cortex and hippocampus by 39.8 ± 23.1% (p < 0.05) and 32.9 ± 13.4% (p < 0.01). Myelination was decreased in white matter layers on average by 44.8 ± 11.7% (p < 0.05) accompanied by reduced (glial) cell proliferation in the deep white matter by 83.6 ± 12.4% (p < 0.05). In contrast, stress during the third trimester had no effect in any brain region. Chronic MPS during the first and second trimester induced prolonged effects on neuronal network and myelin formation which might contribute to disturbed neurobehavioral, cognitive and motor development in offspring of stressed mothers.Lay summaryMany women are exposed to stressful events during pregnancy. Maternal stress especially during early pregnancy predisposes for offspring's neuropsychiatric disorders. In our sheep study, we show that disturbance of fetal brain development is a potential mechanism and is worst during 1st and 2nd trimester.
Collapse
Affiliation(s)
- Markus Hermes
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | | | - Dorothea Hollstein
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Sarah Kuehnel
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Florian Rakers
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Vilmar Frauendorf
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Michelle Dreiling
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Sven Rupprecht
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
- Else Kröner-Forschungskolleg AntiAge, Bad Homburg, Germany
| | - Harald Schubert
- Institute of Lab Animal Sciences and Welfare, Jena University Hospital, Jena, Germany
| | - Otto W Witte
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| | - Matthias Schwab
- Hans Berger Department of Neurology, Jena University Hospital, Jena, Germany
| |
Collapse
|
34
|
Kasai M, Lear CA, Davidson JO, Beacom MJ, Drury PP, Maeda Y, Miyagi E, Ikeda T, Bennet L, Gunn AJ. Early sinusoidal heart rate patterns and heart rate variability to assess hypoxia-ischaemia in near-term fetal sheep. J Physiol 2019; 597:5535-5548. [PMID: 31529698 DOI: 10.1113/jp278523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/26/2019] [Indexed: 12/22/2022] Open
Abstract
KEY POINTS •Therapeutic hypothermia needs to be started as early as possible in the first 6 h after acute injury caused by hypoxia-ischaemia (HI), but the severity and timing of HI are often unclear. In this study we evaluated whether measures of heart rate variability (HRV) might provide early biomarkers of HI. •The duration but not magnitude of suppression of HRV power and conversely increased sample entropy of the heart rate were associated with severity of HI, such that changes in the first 3 h did not discriminate between groups. •Relative changes in HRV power bands showed different patterns between groups and therefore may have the potential to evaluate the severity of HI. •Aberrant fetal heart rate patterns and increased arginine vasopressin levels in the first hour after moderate and severe HI were correlated with loss of EEG power after 3 days' recovery, suggesting potential utility as early biomarkers of outcome. ABSTRACT Therapeutic hypothermia is partially neuroprotective after acute injury caused by hypoxia-ischaemia (HI), likely because the timing and severity of HI are often unclear, making timely recruitment for treatment challenging. We evaluated the utility of changes in heart rate variability (HRV) after HI as biomarkers of the timing and severity of acute HI. Chronically instrumented fetal sheep at 0.85 gestational age were exposed to different durations of umbilical cord occlusion to produce mild (n = 6), moderate (n = 8) or severe HI (n = 8) or to sham occlusion (n = 5). Heart rate (HR) and HRV indices were assessed until 72 h after HI. All HI groups showed suppressed very low frequency HRV power and elevated sample entropy for the first 3 h; more prolonged changes were associated with greater severity of HI. Analysis of relative changes in spectral power showed that the moderate and severe groups showed a shift towards higher HRV frequencies, which was most marked after severe HI. This shift was associated with abnormal rhythmic HR patterns including sinusoidal patterns in the first hour after HI, and with elevated plasma levels of arginine vasopressin, which were correlated with subsequent loss of EEG power by day 3. In conclusion, absolute changes in HRV power in the first 3 h after acute HI were not significantly related to the severity of HI. The intriguing relative shift in spectral power towards higher frequencies likely reflects greater autonomic dysfunction after severe HI. However, sinusoidal HR patterns and elevated vasopressin levels may have utility as biomarkers of severe HI.
Collapse
Affiliation(s)
- Michi Kasai
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand.,Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Christopher A Lear
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Joanne O Davidson
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Michael J Beacom
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Paul P Drury
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Yoshiki Maeda
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand.,Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Etsuko Miyagi
- Department of Obstetrics and Gynecology, Yokohama City University School of Medicine, Yokohama, Japan
| | - Tomoaki Ikeda
- Department of Obstetrics and Gynecology, Mie University, Mie, Japan
| | - Laura Bennet
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| | - Alistair J Gunn
- Fetal Physiology and Neuroscience Group, Department of Physiology, University of Auckland, New Zealand
| |
Collapse
|
35
|
Zeng Y, Wang H, Zhang L, Tang J, Shi J, Xiao D, Qu Y, Mu D. The optimal choices of animal models of white matter injury. Rev Neurosci 2019; 30:245-259. [PMID: 30379639 DOI: 10.1515/revneuro-2018-0044] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/16/2018] [Indexed: 12/25/2022]
Abstract
White matter injury, the most common neurological injury in preterm infants, is a major cause of chronic neurological morbidity, including cerebral palsy. Although there has been great progress in the study of the mechanism of white matter injury in newborn infants, its pathogenesis is not entirely clear, and further treatment approaches are required. Animal models are the basis of study in pathogenesis, treatment, and prognosis of white matter injury in preterm infants. Various species have been used to establish white matter injury models, including rodents, rabbits, sheep, and non-human primates. Small animal models allow cost-effective investigation of molecular and cellular mechanisms, while large animal models are particularly attractive for pathophysiological and clinical-translational studies. This review focuses on the features of commonly used white matter injury animal models, including their modelling methods, advantages, and limitations, and addresses some clinically relevant animal models that allow reproduction of the insults associated with clinical conditions that contribute to white matter injury in human infants.
Collapse
Affiliation(s)
- Yan Zeng
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Huiqing Wang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Li Zhang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Jun Tang
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Jing Shi
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dongqiong Xiao
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Yi Qu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China
| | - Dezhi Mu
- Department of Pediatrics, West China Second University Hospital, Sichuan University, No. 20, section 3, Renmin South Road, Chengdu, Sichuan 610041, China.,Key Laboratory of Obstetric and Gynecologic and Pediatric Diseases and Birth Defects, Ministry of Education, Sichuan University, Chengdu 610041, China, Telephone: +86-28-85503226, Fax: +86-28-85559065
| |
Collapse
|
36
|
Carrasco M, Stafstrom CE. How Early Can a Seizure Happen? Pathophysiological Considerations of Extremely Premature Infant Brain Development. Dev Neurosci 2019; 40:417-436. [PMID: 30947192 DOI: 10.1159/000497471] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/04/2019] [Indexed: 11/19/2022] Open
Abstract
Seizures in neonates represent a neurologic emergency requiring prompt recognition, determination of etiology, and treatment. Yet, the definition and identification of neonatal seizures remain challenging and controversial, in part due to the unique physiology of brain development at this life stage. These issues are compounded when considering seizures in premature infants, in whom the complexities of brain development may engender different clinical and electrographic seizure features at different points in neuronal maturation. In extremely premature infants (< 28 weeks gestational age), seizure pathophysiology has not been explored in detail. This review discusses the physiological and structural development of the brain in this developmental window, focusing on factors that may lead to seizures and their consequences at this early time point. We hypothesize that the clinical and electrographic phenomenology of seizures in extremely preterm infants reflects the specific pathophysiology of brain development in that age window.
Collapse
Affiliation(s)
- Melisa Carrasco
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Carl E Stafstrom
- Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA,
| |
Collapse
|
37
|
Abbasi H, Bennet L, Gunn AJ, Unsworth CP. Latent Phase Detection of Hypoxic-Ischemic Spike Transients in the EEG of Preterm Fetal Sheep Using Reverse Biorthogonal Wavelets & Fuzzy Classifier. Int J Neural Syst 2019; 29:1950013. [PMID: 31184228 DOI: 10.1142/s0129065719500138] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hypoxic-ischemic (HI) studies in preterms lack reliable prognostic biomarkers for diagnostic tests of HI encephalopathy (HIE). Our group's observations from in utero fetal sheep models suggest that potential biomarkers of HIE in the form of developing HI micro-scale epileptiform transients emerge along suppressed EEG/ECoG background during a latent phase of 6-7h post-insult. However, having to observe for the whole of the latent phase disqualifies any chance of clinical intervention. A precise automatic identification of these transients can help for a well-timed diagnosis of the HIE and to stop the spread of the injury before it becomes irreversible. This paper reports fusion of Reverse-Biorthogonal Wavelets with Type-1 Fuzzy classifiers, for the accurate real-time automatic identification and quantification of high-frequency HI spike transients in the latent phase, tested over seven in utero preterm sheep. Considerable high performance of 99.78 ± 0.10% was obtained from the Rbio-Wavelet Type-1 Fuzzy classifier for automatic identification of HI spikes tested over 42h of high-resolution recordings (sampling-freq:1024Hz). Data from post-insult automatic time-localization of high-frequency HI spikes reveals a promising trend in the average rate of the HI spikes, even in the animals with shorter occlusion periods, which highlights considerable higher number of transients within the first 2h post-insult.
Collapse
Affiliation(s)
- Hamid Abbasi
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
Morrison JL, Berry MJ, Botting KJ, Darby JRT, Frasch MG, Gatford KL, Giussani DA, Gray CL, Harding R, Herrera EA, Kemp MW, Lock MC, McMillen IC, Moss TJ, Musk GC, Oliver MH, Regnault TRH, Roberts CT, Soo JY, Tellam RL. Improving pregnancy outcomes in humans through studies in sheep. Am J Physiol Regul Integr Comp Physiol 2018; 315:R1123-R1153. [PMID: 30325659 DOI: 10.1152/ajpregu.00391.2017] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Experimental studies that are relevant to human pregnancy rely on the selection of appropriate animal models as an important element in experimental design. Consideration of the strengths and weaknesses of any animal model of human disease is fundamental to effective and meaningful translation of preclinical research. Studies in sheep have made significant contributions to our understanding of the normal and abnormal development of the fetus. As a model of human pregnancy, studies in sheep have enabled scientists and clinicians to answer questions about the etiology and treatment of poor maternal, placental, and fetal health and to provide an evidence base for translation of interventions to the clinic. The aim of this review is to highlight the advances in perinatal human medicine that have been achieved following translation of research using the pregnant sheep and fetus.
Collapse
Affiliation(s)
- Janna L Morrison
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Mary J Berry
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Kimberley J Botting
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Jack R T Darby
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Martin G Frasch
- Department of Obstetrics and Gynecology, University of Washington , Seattle, Washington
| | - Kathryn L Gatford
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Dino A Giussani
- Department of Physiology, Development, and Neuroscience, University of Cambridge , Cambridge , United Kingdom
| | - Clint L Gray
- Department of Paediatrics and Child Health, University of Otago , Wellington , New Zealand
| | - Richard Harding
- Department of Anatomy and Developmental Biology, Monash University , Clayton, Victoria , Australia
| | - Emilio A Herrera
- Pathophysiology Program, Biomedical Sciences Institute (ICBM), Faculty of Medicine, University of Chile , Santiago , Chile
| | - Matthew W Kemp
- Division of Obstetrics and Gynecology, University of Western Australia , Perth, Western Australia , Australia
| | - Mitchell C Lock
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - I Caroline McMillen
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Timothy J Moss
- The Ritchie Centre, Hudson Institute of Medical Research, Department of Obstetrics and Gynaecology, Monash University , Clayton, Victoria , Australia
| | - Gabrielle C Musk
- Animal Care Services, University of Western Australia , Perth, Western Australia , Australia
| | - Mark H Oliver
- Liggins Institute, University of Auckland , Auckland , New Zealand
| | - Timothy R H Regnault
- Department of Obstetrics and Gynecology and Department of Physiology and Pharmacology, Western University, and Children's Health Research Institute , London, Ontario , Canada
| | - Claire T Roberts
- Robinson Research Institute and Adelaide Medical School, University of Adelaide , Adelaide, South Australia , Australia
| | - Jia Yin Soo
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Ross L Tellam
- Early Origins of Adult Health Research Group, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
39
|
Abbasi H, Drury PP, Lear CA, Gunn AJ, Davidson JO, Bennet L, Unsworth CP. EEG sharp waves are a biomarker of striatal neuronal survival after hypoxia-ischemia in preterm fetal sheep. Sci Rep 2018; 8:16312. [PMID: 30397231 PMCID: PMC6218488 DOI: 10.1038/s41598-018-34654-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 10/16/2018] [Indexed: 01/12/2023] Open
Abstract
The timing of hypoxia-ischemia (HI) in preterm infants is often uncertain and there are few biomarkers to determine whether infants are in a treatable stage of injury. We evaluated whether epileptiform sharp waves recorded from the parietal cortex could provide early prediction of neuronal loss after HI. Preterm fetal sheep (0.7 gestation) underwent acute HI induced by complete umbilical cord occlusion for 25 minutes (n = 6) or sham occlusion (control, n = 6). Neuronal survival was assessed 7 days after HI by immunohistochemistry. Sharp waves were quantified manually and using a wavelet-type-2-fuzzy-logic-system during the first 4 hours of recovery. HI resulted in significant subcortical neuronal loss. Sharp waves counted by the automated classifier in the first 30 minutes after HI were associated with greater neuronal survival in the caudate nucleus (r = 0.80), whereas sharp waves between 2–4 hours after HI were associated with reduced neuronal survival (r = −0.83). Manual and automated counts were closely correlated. This study suggests that automated quantification of sharp waves may be useful for early assessment of HI injury in preterm infants. However, the pattern of evolution of sharp waves after HI was markedly affected by the severity of neuronal loss, and therefore early, continuous monitoring is essential.
Collapse
Affiliation(s)
- Hamid Abbasi
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand
| | - Paul P Drury
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, Faculty of Medical and Health Sciences, The University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- Department of Engineering Science, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
40
|
Jisa KA, Clarey DD, Peeples ES. Magnetic Resonance Imaging Findings of Term and Preterm Hypoxic-Ischemic Encephalopathy: A Review of Relevant Animal Models and Correlation to Human Imaging. Open Neuroimag J 2018; 12:55-65. [PMID: 30450146 PMCID: PMC6198416 DOI: 10.2174/1874440001812010055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 08/07/2018] [Accepted: 09/16/2018] [Indexed: 11/22/2022] Open
Abstract
Background: Neonatal hypoxic-ischemic encephalopathy is brain injury caused by decreased perfusion and oxygen delivery that most commonly occurs in the context of delivery complications such as umbilical cord compression or placental abruption. Imaging is a key component for guiding treatment and prediction of prognosis, and the most sensitive clinical imaging modality for the brain injury patterns seen in hypoxic-ischemic encephalopathy is magnetic resonance imaging. Objective: The goal of this review is to compare magnetic resonance imaging findings demonstrated in the available animal models of hypoxic-ischemic encephalopathy to those found in preterm (≤ 36 weeks) and term (>36 weeks) human neonates with hypoxic-ischemic encephalopathy, with special attention to the strengths and weaknesses of each model. Methods: A structured literature search was performed independently by two authors and the results of the searches were compiled. Animal model, human brain age equivalency, mechanism of injury, and area of brain injury were recorded for comparison to imaging findings in preterm and term human neonates with hypoxic-ischemic encephalopathy. Conclusion: Numerous animal models have been developed to better elicit the expected findings that occur after HIE by allowing investigators to control many of the clinical variables that result in injury. Although modeling the same disease process, magnetic resonance imaging findings in the animal models vary with the species and methods used to induce hypoxia and ischemia. The further development of animal models of HIE should include a focus on comparing imaging findings, and not just pathologic findings, to human studies.
Collapse
Affiliation(s)
- Kyle A Jisa
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dillon D Clarey
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States
| | - Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
41
|
Disdier C, Chen X, Kim JE, Threlkeld SW, Stonestreet BS. Anti-Cytokine Therapy to Attenuate Ischemic-Reperfusion Associated Brain Injury in the Perinatal Period. Brain Sci 2018; 8:E101. [PMID: 29875342 PMCID: PMC6025309 DOI: 10.3390/brainsci8060101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 05/31/2018] [Accepted: 06/05/2018] [Indexed: 12/26/2022] Open
Abstract
Perinatal brain injury is a major cause of morbidity and long-standing disability in newborns. Hypothermia is the only therapy approved to attenuate brain injury in the newborn. However, this treatment is unfortunately only partially neuroprotective and can only be used to treat hypoxic-ischemic encephalopathy in full term infants. Therefore, there is an urgent need for adjunctive therapeutic strategies. Post-ischemic neuro-inflammation is a crucial contributor to the evolution of brain injury in neonates and constitutes a promising therapeutic target. Recently, we demonstrated encouraging neuroprotective capacities of anti-cytokine monoclonal antibodies (mAbs) in an ischemic-reperfusion (I/R) model of brain injury in the ovine fetus. The purpose of this review is to summarize the current knowledge regarding the inflammatory response in the perinatal sheep brain after I/R injury and to review our recent findings regarding the beneficial effects of treatment with anti-cytokine mAbs.
Collapse
Affiliation(s)
- Clémence Disdier
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA.
| | - Xiaodi Chen
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA.
| | - Jeong-Eun Kim
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA.
| | | | - Barbara S Stonestreet
- Department of Pediatrics, Women & Infants Hospital of Rhode Island, The Alpert Medical School of Brown University, Providence, RI 02905, USA.
| |
Collapse
|
42
|
Bennet L, Walker DW, Horne RSC. Waking up too early - the consequences of preterm birth on sleep development. J Physiol 2018; 596:5687-5708. [PMID: 29691876 DOI: 10.1113/jp274950] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/16/2017] [Indexed: 12/12/2022] Open
Abstract
Good quality sleep of sufficient duration is vital for optimal physiological function and our health. Sleep deprivation is associated with impaired neurocognitive function and emotional control, and increases the risk for cardiometabolic diseases, obesity and cancer. Sleep develops during fetal life with the emergence of a recognisable pattern of sleep states in the preterm fetus associated with the development, maturation and connectivity within neural networks in the brain. Despite the physiological importance of sleep, surprisingly little is known about how sleep develops in individuals born preterm. Globally, an estimated 15 million babies are born preterm (<37 weeks gestation) each year, and these babies are at significant risk of neural injury and impaired brain development. This review discusses how sleep develops during fetal and neonatal life, how preterm birth impacts on sleep development to adulthood, and the factors which may contribute to impaired brain and sleep development, leading to altered neurocognitive, behavioural and motor capabilities in the infant and child. Going forward, the challenge is to identify specific risk factors for impaired sleep development in preterm babies to allow for the design of interventions that will improve the quality and quantity of sleep throughout life.
Collapse
Affiliation(s)
- Laura Bennet
- Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - David W Walker
- School of Health and Biomedical Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Rosemary S C Horne
- The Ritchie Centre, Department of Paediatrics, Monash University and Hudson Institute of Medical Research, Melbourne, Victoria, Australia
| |
Collapse
|
43
|
Bennet L, Galinsky R, Draghi V, Lear CA, Davidson JO, Unsworth CP, Gunn AJ. Time and sex dependent effects of magnesium sulphate on post-asphyxial seizures in preterm fetal sheep. J Physiol 2018; 596:6079-6092. [PMID: 29572829 DOI: 10.1113/jp275627] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/12/2018] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS We evaluated the effect of magnesium sulphate (MgSO4 ) on seizures induced by asphyxia in preterm fetal sheep. MgSO4 did not prevent seizures, but significantly reduced the total duration, number of seizures, seizure amplitude and average seizure burden. Saline-asphyxia male fetuses had significantly more seizures than female fetuses, but male fetuses showed significantly greater reduction in seizures during MgSO4 infusion than female fetuses. A circadian profile of seizure activity was observed in all fetuses, with peak seizures seen around 04.00-06.00 h on the first and second days after the end of asphyxia. This study is the first to demonstrate that MgSO4 has utility as an anti-seizure agent after hypoxia-ischaemia. More information is needed about the mechanisms mediating the effect of MgSO4 on seizures and sexual dimorphism, and the influence of circadian rhythms on seizure expression. ABSTRACT Seizures are common in newborns after asphyxia at birth and are often refractory to anti-seizure agents. Magnesium sulphate (MgSO4 ) has anticonvulsant effects and is increasingly given to women in preterm labour for potential neuroprotection. There is limited information on its effects on perinatal seizures. We examined the hypothesis that MgSO4 infusion would reduce fetal seizures after asphyxia in utero. Preterm fetal sheep at 0.7 gestation (104 days, term = 147 days) were given intravenous infusions of either saline (n = 14) or MgSO4 (n = 12, 160 mg bolus + 48 mg h-1 infusion over 48 h). Fetuses underwent umbilical cord occlusion (UCO) for 25 min, 24 h after the start of infusion. The start time for seizures did not differ between groups, but MgSO4 significantly reduced the total number of seizures (P < 0.001), peak seizure amplitude (P < 0.05) and seizure burden (P < 0.005). Within the saline-asphyxia group, male fetuses had significantly more seizures than females (P < 0.05). Within the MgSO4 -asphyxia group, although both sexes had fewer seizures than the saline-asphyxia group, the greatest effect of MgSO4 was on male fetuses, with reduced numbers of seizures (P < 0.001) and seizure burden (P < 0.005). Only 1 out of 6 MgSO4 males had seizures on the second day post-UCO compared to 5 out of 6 MgSO4 female fetuses (P = 0.08). Finally, seizures showed a circadian profile with peak seizures between 04.00 and 06.00 h on the first and second day post-UCO. Collectively, these results suggest that MgSO4 may have utility in treating perinatal seizures and has sexually dimorphic effects.
Collapse
Affiliation(s)
- Laura Bennet
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Robert Galinsky
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Vittoria Draghi
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Christopher A Lear
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Charles P Unsworth
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| | - Alistair J Gunn
- The Fetal Physiology and Neuroscience Group, The Department of Physiology, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
44
|
Galinsky R, Dhillon SK, Lear CA, Yamaguchi K, Wassink G, Gunn AJ, Bennet L. Magnesium sulfate and sex differences in cardiovascular and neural adaptations during normoxia and asphyxia in preterm fetal sheep. Am J Physiol Regul Integr Comp Physiol 2018; 315:R205-R217. [PMID: 29561649 DOI: 10.1152/ajpregu.00390.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Magnesium sulfate (MgSO4) is recommended for preterm neuroprotection, preeclampsia, and preterm labor prophylaxis. There is an important, unmet need to carefully test clinical interventions in both sexes. Therefore, we aimed to investigate cardiovascular and neurophysiological adaptations to MgSO4 during normoxia and asphyxia in preterm male and female fetal sheep. Fetuses were instrumented at 98 ± 1 days of gestation (term = 147 days). At 104 days, unanesthetized fetuses were randomly assigned to intravenous MgSO4 ( n = 12 female, 10 male) or saline ( n = 13 female, 10 male). At 105 days fetuses underwent umbilical cord occlusion for up to 25 min. Occlusions were stopped early if mean arterial blood pressure (MAP) fell below 8 mmHg or asystole occurred for >20 s. During normoxia, MgSO4 was associated with similar reductions in fetal heart rate (FHR), EEG power, and movement in both sexes ( P < 0.05 vs. saline controls) and suppression of α- and β-spectral band power in males ( P < 0.05 vs. saline controls). During occlusion, similar FHR and MAP responses occurred in MgSO4-treated males and females compared with saline controls. Recovery of FHR and MAP after release of occlusion was more prolonged in MgSO4-treated males ( P < 0.05 vs. saline controls). During and after occlusion, EEG power was lower in MgSO4-treated females ( P < 0.05 vs. saline controls). In conclusion, MgSO4 infusion was associated with subtle sex-specific effects on EEG spectral power and cardiac responses to asphyxia in utero, possibly reflecting sex-specific differences in interneuronal connectivity and regulation of cardiac output.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Physiology, University of Auckland , Auckland , New Zealand.,The Ritchie Centre, Hudson Institute of Medical Research , Clayton, VIC , Australia
| | | | - Christopher A Lear
- Department of Physiology, University of Auckland , Auckland , New Zealand
| | - Kyohei Yamaguchi
- Department of Physiology, University of Auckland , Auckland , New Zealand
| | - Guido Wassink
- Department of Physiology, University of Auckland , Auckland , New Zealand
| | - Alistair J Gunn
- Department of Physiology, University of Auckland , Auckland , New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland , Auckland , New Zealand
| |
Collapse
|
45
|
Gilles F, Gressens P, Dammann O, Leviton A. Hypoxia-ischemia is not an antecedent of most preterm brain damage: the illusion of validity. Dev Med Child Neurol 2018; 60:120-125. [PMID: 28656697 PMCID: PMC5745320 DOI: 10.1111/dmcn.13483] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/06/2017] [Indexed: 01/05/2023]
Abstract
UNLABELLED Brain injury in preterm newborn infants is often attributed to hypoxia-ischemia even when neither hypoxia nor ischemia is documented, and many causative speculations are based on the same assumption. We review human and animal study contributions with their strengths and limitations, and conclude that - despite all the work done in human fetal neuropathology and developmental models in animals - the evidence remains unconvincing that hypoxemia, in the fetus or newborn infant, contributes appreciably to any encephalopathy of prematurity. Giving an inappropriate causal name to a disorder potentially limits the options for change, should our understanding of the etiologies advance. The only observationally-based title we think appropriate is 'encephalopathy of prematurity'. Future pathophysiological research should probably include appropriately designed epidemiology studies, highly active developmental processes, infection and other inflammatory stimuli, the immature immune system, long chain fatty acids and their transporters, and growth (neurotrophic) factors. WHAT THIS PAPER ADDS Fetal hypoxemia is rarely documented in brain injury studies. Animal studies fail to consider human-animal fetal anatomical differences. Putative treatments from animal models have not found clinical use. Observational studies constitute the only approach to etiological understanding. No convincing evidence yet that hypoxemia injures preterm brain. Encephalopathy of prematurity is preferable to hypoxia-ischemia as a term for this disorder. Encephalopathy of prematurity is preferable to hypoxia-ischemia as a term for this disorder.
Collapse
Affiliation(s)
| | - Pierre Gressens
- InsermU1141Hôpital Robert DebréParisFrance,Univ Paris DiderotSorbonne Paris CitéUMRS 1141ParisFrance,Centre for the Developing BrainDivision of Imaging Sciences and Biomedical EngineeringKCLSt. Thomas' HospitalLondonUK
| | - Olaf Dammann
- Tufts University School of MedicineBostonMAUSA,Hannover Medical SchoolHannoverGermany
| | - Alan Leviton
- Boston Children's Hospital and Harvard Medical SchoolBostonMAUSA
| |
Collapse
|
46
|
The mechanical importance of myelination in the central nervous system. J Mech Behav Biomed Mater 2017; 76:119-124. [PMID: 28462864 DOI: 10.1016/j.jmbbm.2017.04.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Accepted: 04/12/2017] [Indexed: 02/06/2023]
Abstract
Neurons in the central nervous system are surrounded and cross-linked by myelin, a fatty white substance that wraps around axons to create an electrically insulating layer. The electrical function of myelin is widely recognized; yet, its mechanical importance remains underestimated. Here we combined nanoindentation testing and histological staining to correlate brain stiffness to the degree of myelination in immature, pre-natal brains and mature, post-natal brains. We found that both gray and white matter tissue stiffened significantly (p≪0.001) upon maturation: the gray matter stiffness doubled from 0.31±0.20kPa pre-natally to 0.68±0.20kPa post-natally; the white matter stiffness tripled from 0.45±0.18kPa pre-natally to 1.33±0.64kPa post-natally. At the same time, the white matter myelin content increased significantly (p≪0.001) from 58±2% to 74±9%. White matter stiffness and myelin content were correlated with a Pearson correlation coefficient of ρ=0.92 (p≪0.001). Our study suggests that myelin is not only important to ensure smooth electrical signal propagation in neurons, but also to protect neurons against physical forces and provide a strong microstructural network that stiffens the white matter tissue as a whole. Our results suggest that brain tissue stiffness could serve as a biomarker for multiple sclerosis and other forms of demyelinating disorders. Understanding how tissue maturation translates into changes in mechanical properties and knowing the precise brain stiffness at different stages of life has important medical implications in development, aging, and neurodegeneration.
Collapse
|
47
|
Galinsky R, Draghi V, Wassink G, Davidson JO, Drury PP, Lear CA, Gunn AJ, Bennet L. Magnesium sulfate reduces EEG activity but is not neuroprotective after asphyxia in preterm fetal sheep. J Cereb Blood Flow Metab 2017; 37:1362-1373. [PMID: 27317658 PMCID: PMC5453457 DOI: 10.1177/0271678x16655548] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 04/21/2016] [Accepted: 05/17/2016] [Indexed: 12/29/2022]
Abstract
Magnesium sulfate is now widely recommended for neuroprotection for preterm birth; however, this has been controversial because there is little evidence that magnesium sulfate is neuroprotective. Preterm fetal sheep (104 days gestation; term is 147 days) were randomly assigned to receive sham occlusion (n = 7), i.v. magnesium sulfate (n = 10) or saline (n = 8) starting 24 h before asphyxia until 24 h after asphyxia. Sheep were killed 72 h after asphyxia. Magnesium sulfate infusion reduced electroencephalograph power and fetal movements before asphyxia. Magnesium sulfate infusion did not affect electroencephalograph power during recovery, but was associated with marked reduction of the post-asphyxial seizure burden (mean ± SD: 34 ± 18 min vs. 107 ± 74 min, P < 0.05). Magnesium sulfate infusion did not affect subcortical neuronal loss. In the intragyral and periventricular white matter, magnesium sulfate was associated with reduced numbers of all (Olig-2+ve) oligodendrocytes in the intragyral (125 ± 23 vs. 163 ± 38 cells/field) and periventricular white matter (162 ± 39 vs. 209 ± 44 cells/field) compared to saline-treated controls ( P < 0.05), but no effect on microglial induction or astrogliosis. In conclusion, a clinically comparable dose of magnesium sulfate showed significant anticonvulsant effects after asphyxia in preterm fetal sheep, but did not reduce asphyxia-induced brain injury and exacerbated loss of oligodendrocytes.
Collapse
Affiliation(s)
- Robert Galinsky
- Department of Physiology, University of Auckland, Auckland, New Zealand
- The Ritchie Centre, the Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Vittoria Draghi
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Guido Wassink
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Joanne O Davidson
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Paul P Drury
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | | | - Alistair J Gunn
- Department of Physiology, University of Auckland, Auckland, New Zealand
| | - Laura Bennet
- Department of Physiology, University of Auckland, Auckland, New Zealand
| |
Collapse
|
48
|
Spasova MS, Chen X, Sadowska GB, Horton ER, Lim YP, Stonestreet BS. Ischemia reduces inter-alpha inhibitor proteins in the brain of the ovine fetus. Dev Neurobiol 2016; 77:726-737. [PMID: 27618403 DOI: 10.1002/dneu.22451] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 09/02/2016] [Accepted: 09/08/2016] [Indexed: 01/04/2023]
Abstract
Hypoxic-ischemic (HI) brain injury is a major cause of neurological abnormalities in the perinatal period. Inflammation contributes to the evolution of HI brain injury. Inter-alpha inhibitor proteins (IAIPs) are a family of proteins that are part of the innate immune system. We have reported that endogenous IAIPs exhibit developmental changes in ovine brain and that exogenous IAIP treatment reduces neuronal death in HI neonatal rats. However, the effects of HI on endogenous IAIPs in brain have not been previously examined. In this study, we examined the effects of ischemia-reperfusion on endogenous IAIPs levels in fetal sheep brain. Cerebral cortex, cerebellum, cervical spinal cord, choroid plexus, and CSF were snap frozen from sham control fetuses at 127 days gestation and after 30-min of carotid occlusion and 4-, 24-, and 48-h of reperfusion. IAIP levels were determined by Western immunoblot. IAIP expressions of the 250 kDa Inter-alpha inhibitor (IaI) and 125 kDa Pre-alpha inhibitor (PaI) in cerebral cortex and PaI in cerebellum were reduced (p < 0.05) 4-h after ischemia compared with controls and returned toward control levels 24- and 48-h after ischemia. CSF PaI and IaI were reduced 48 h after ischemia. We conclude that IAIPs in cerebral cortex and cerebellum are reduced by brain ischemia, and return toward control levels between 24 and 48 h after ischemia. However, changes in CSF IAIPs were delayed, exhibiting decreases 48 h after ischemia. We speculate that the decreases in endogenous IAIPs reflect increased utilization, potentially suggesting that they have endogenous neuroprotective properties. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 726-737, 2017.
Collapse
Affiliation(s)
- Mariya S Spasova
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| | - Xiaodi Chen
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| | - Grazyna B Sadowska
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| | - Edward R Horton
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| | - Yow-Pin Lim
- ProThera Biologics, Inc, Providence, RI, 02903
| | - Barbara S Stonestreet
- Department of Pediatrics, the Alpert Medical School of Brown University, Women & Infants Hospital of Rhode Island, Providence, RI, 02905
| |
Collapse
|
49
|
Hunter DS, Hazel SJ, Kind KL, Liu H, Marini D, Giles LC, De Blasio MJ, Owens JA, Pitcher JB, Gatford KL. Effects of induced placental and fetal growth restriction, size at birth and early neonatal growth on behavioural and brain structural lateralization in sheep. Laterality 2016; 22:560-589. [PMID: 27759494 DOI: 10.1080/1357650x.2016.1243552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Poor perinatal growth in humans results in asymmetrical grey matter loss in fetuses and infants and increased functional and behavioural asymmetry, but specific contributions of pre- and postnatal growth are unclear. We therefore compared strength and direction of lateralization in obstacle avoidance and maze exit preference tasks in offspring of placentally restricted (PR: 10M, 13F) and control (CON: 23M, 17F) sheep pregnancies at 18 and 40 weeks of age, and examined gross brain structure of the prefrontal cortex at 52 weeks of age (PR: 14M, 18F; CON: 23M, 25F). PR did not affect lateralization direction, but 40-week-old PR females had greater lateralization strength than CON (P = .021). Behavioural lateralization measures were not correlated with perinatal growth. PR did not alter brain morphology. In males, cross-sectional areas of the prefrontal cortex and left hemisphere correlated positively with skull width at birth, and white matter area correlated positively with neonatal growth rate of the skull (all P < .05). These studies reinforce the need to include progeny of both sexes in future studies of neurodevelopmental programming, and suggest that restricting in utero growth has relatively mild effects on gross brain structural or behavioural lateralization in sheep.
Collapse
Affiliation(s)
- Damien Seth Hunter
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia.,c School of Animal and Veterinary Sciences , Adelaide , South Australia , Australia
| | - Susan J Hazel
- c School of Animal and Veterinary Sciences , Adelaide , South Australia , Australia
| | - Karen L Kind
- a Robinson Research Institute , North Adelaide , Australia.,c School of Animal and Veterinary Sciences , Adelaide , South Australia , Australia
| | - Hong Liu
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| | - Danila Marini
- c School of Animal and Veterinary Sciences , Adelaide , South Australia , Australia
| | - Lynne C Giles
- a Robinson Research Institute , North Adelaide , Australia.,d School of Population Health , University of Adelaide , Adelaide , South Australia , Australia
| | - Miles J De Blasio
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| | - Julie A Owens
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| | - Julia B Pitcher
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| | - Kathryn L Gatford
- a Robinson Research Institute , North Adelaide , Australia.,b Discipline of Obstetrics and Gynaecology, Adelaide Medical School , Adelaide , Australia
| |
Collapse
|
50
|
Hunter DS, Hazel SJ, Kind KL, Owens JA, Pitcher JB, Gatford KL. Programming the brain: Common outcomes and gaps in knowledge from animal studies of IUGR. Physiol Behav 2016; 164:233-48. [DOI: 10.1016/j.physbeh.2016.06.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/06/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022]
|