1
|
Schmeichel AM, Coon EA, Parisi JE, Singer W, Low PA, Benarroch EE. Loss of putative GABAergic neurons in the ventrolateral medulla in multiple system atrophy. Sleep 2021; 44:zsab074. [PMID: 33755181 PMCID: PMC8436134 DOI: 10.1093/sleep/zsab074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/17/2021] [Indexed: 11/12/2022] Open
Abstract
STUDY OBJECTIVES Multiple system atrophy (MSA) is associated with disturbances in cardiovascular, sleep and respiratory control. The lateral paragigantocellular nucleus (LPGi) in the ventrolateral medulla (VLM) contains GABAergic neurons that participate in control of rapid eye movement (REM) sleep and cardiovagal responses. We sought to determine whether there was loss of putative GABAergic neurons in the LPGi and adjacent regions in MSA. METHODS Sections of the medulla were processed for GAD65/67 immunoreactivity in eight subjects with clinical and neuropathological diagnosis of MSA and in six control subjects. These putative GABAergic LPGi neurons were mapped based on their relationship to adjacent monoaminergic VLM groups. RESULTS There were markedly decreased numbers of GAD-immunoreactive neurons in the LPGi and adjacent VLM regions in MSA. CONCLUSIONS There is loss of GABAergic neurons in the VLM, including the LPGi in patients with MSA. Whereas these findings provide a possible mechanistic substrate, given the few cases included, further studies are necessary to determine whether they contribute to REM sleep-related cardiovagal and possibly respiratory dysregulation in MSA.
Collapse
Affiliation(s)
| | | | - Joseph E Parisi
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Phillip A Low
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | |
Collapse
|
2
|
Synaptic control of spinal GRPR + neurons by local and long-range inhibitory inputs. Proc Natl Acad Sci U S A 2019; 116:27011-27017. [PMID: 31806757 DOI: 10.1073/pnas.1905658116] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Spinal gastrin-releasing peptide receptor-expressing (GRPR+) neurons play an essential role in itch signal processing. However, the circuit mechanisms underlying the modulation of spinal GRPR+ neurons by direct local and long-range inhibitory inputs remain elusive. Using viral tracing and electrophysiological approaches, we dissected the neural circuits underlying the inhibitory control of spinal GRPR+ neurons. We found that spinal galanin+ GABAergic neurons form inhibitory synapses with GRPR+ neurons in the spinal cord and play an important role in gating the GRPR+ neuron-dependent itch signaling pathway. Spinal GRPR+ neurons also receive inhibitory inputs from local neurons expressing neuronal nitric oxide synthase (nNOS). Moreover, spinal GRPR+ neurons are gated by strong inhibitory inputs from the rostral ventromedial medulla. Thus, both local and long-range inhibitory inputs could play important roles in gating itch processing in the spinal cord by directly modulating the activity of spinal GRPR+ neurons.
Collapse
|
3
|
Buhler AVK, Tachibana S, Zhang Y, Quock RM. nNOS immunoreactivity co-localizes with GABAergic and cholinergic neurons, and associates with β-endorphinergic and met-enkephalinergic opioidergic fibers in rostral ventromedial medulla and A5 of the mouse. Brain Res 2018; 1698:170-178. [PMID: 30081038 DOI: 10.1016/j.brainres.2018.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/24/2018] [Accepted: 08/02/2018] [Indexed: 11/26/2022]
Abstract
The present study examined the co-expression of neuronal nitric oxide synthase (nNOS) in the rostral ventromedial medulla (RVM) and A5 regions of the mouse brainstem within several neurochemical populations involved in nociceptive modulation. Double immunohistochemical methods showed that nNOS+ neurons do not co-localize with serotonergic neurons within any of these regions. Within the RVM, the nuclei raphe magnus and gigantocellularis contain a population of nNOS+/GAD67+ neurons, and within the paragigantocellularis lateralis, there is a smaller population of nNOS+/CHAT+ neurons. Further, nNOS+ neurons overlap the region of expression of β-endorphinergic and met-enkephalinergic fibers within the RVM. No co-labeling was found within the A5 for any of these populations. These findings suggest that pain-modulatory serotonergic neurons within the brainstem do not directly produce nitric oxide (NO). Rather, NO-producing neurons within the RVM belong to GABAergic and cholinergic cell populations, and are in a position to modulate or be modulated by local opioidergic neurons.
Collapse
Affiliation(s)
- Amber V K Buhler
- School of Pharmacy, Pacific University Oregon, 222 SE 8th Ave, Hillsboro, OR 97123, United States.
| | - Sean Tachibana
- School of Pharmacy, Pacific University Oregon, 222 SE 8th Ave, Hillsboro, OR 97123, United States
| | - Yangmiao Zhang
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164, United States
| | - Raymond M Quock
- Department of Psychology, Washington State University, Pullman, WA 99164, United States
| |
Collapse
|
4
|
Increase of histone acetylation in the GABAergic neurons in the rostral ventromedial medulla associated with mechanical hypersensitivity after repeated restraint stress. Brain Res Bull 2018; 142:394-402. [DOI: 10.1016/j.brainresbull.2018.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 09/06/2018] [Accepted: 09/11/2018] [Indexed: 01/31/2023]
|
5
|
Homeostatic regulation through GABA and acetylcholine muscarinic receptors of motor trigeminal neurons following sleep deprivation. Brain Struct Funct 2017; 222:3163-3178. [PMID: 28299422 PMCID: PMC5585289 DOI: 10.1007/s00429-017-1392-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 02/20/2017] [Indexed: 12/21/2022]
Abstract
Muscle tone is regulated across sleep-wake states, being maximal in waking, reduced in slow wave sleep (SWS) and absent in paradoxical or REM sleep (PS or REMS). Such changes in tone have been recorded in the masseter muscles and shown to correspond to changes in activity and polarization of the trigeminal motor 5 (Mo5) neurons. The muscle hypotonia and atonia during sleep depend in part on GABA acting upon both GABAA and GABAB receptors (Rs) and acetylcholine (ACh) acting upon muscarinic 2 (AChM2) Rs. Here, we examined whether Mo5 neurons undergo homeostatic regulation through changes in these inhibitory receptors following prolonged activity with enforced waking. By immunofluorescence, we assessed that the proportion of Mo5 neurons positively stained for GABAARs was significantly higher after sleep deprivation (SD, ~65%) than sleep control (SC, ~32%) and that the luminance of the GABAAR fluorescence was significantly higher after SD than SC and sleep recovery (SR). Although, all Mo5 neurons were positively stained for GABABRs and AChM2Rs (100%) in all groups, the luminance of these receptors was significantly higher following SD as compared to SC and SR. We conclude that the density of GABAA, GABAB and AChM2 receptors increases on Mo5 neurons during SD. The increase in these receptors would be associated with increased inhibition in the presence of GABA and ACh and thus a homeostatic down-scaling in the excitability of the Mo5 neurons after prolonged waking and resulting increased susceptibility to muscle hypotonia or atonia along with sleep.
Collapse
|
6
|
Kozuka Y, Kawamata M, Furue H, Ishida T, Tanaka S, Namiki A, Yamakage M. Changes in synaptic transmission of substantia gelatinosa neurons after spinal cord hemisection revealed by analysis using in vivo patch-clamp recording. Mol Pain 2016; 12:1744806916665827. [PMID: 27573517 PMCID: PMC5006296 DOI: 10.1177/1744806916665827] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 07/25/2016] [Accepted: 07/26/2016] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND After spinal cord injury, central neuropathic pain develops in the majority of spinal cord injury patients. Spinal hemisection in rats, which has been developed as an animal model of spinal cord injury in humans, results in hyperexcitation of spinal dorsal horn neurons soon after the hemisection and thereafter. The hyperexcitation is likely caused by permanent elimination of the descending pain systems. We examined the change in synaptic transmission of substantia gelatinosa neurons following acute spinal hemisection by using an in vivo whole-cell patch-clamp technique. RESULTS An increased spontaneous action potential firings of substantia gelatinosa neurons was detected in hemisected rats compared with that in control animals. The frequencies and amplitudes of spontaneous excitatory postsynaptic currents and of evoked excitatory postsynaptic currentss in response to non-noxious and noxious stimuli were not different between hemisected and control animals. On the contrary, the amplitude and frequency of spontaneous inhibitory postsynaptic currents of substantia gelatinosa neurons in hemisected animals were significantly smaller and lower, respectively, than those in control animals (P < 0.01). Large amplitude and high-frequency spontaneous inhibitory postsynaptic currents, which could not be elicited by mechanical stimuli, were seen in 44% of substantia gelatinosa neurons in control animals but only in 17% of substantia gelatinosa neurons in hemisected animals. In control animals, such large amplitude spontaneous inhibitory postsynaptic currents were suppressed by spinal application of tetrodotoxin (1 µM). Cervical application of lidocaine (2%, 10 µl) also inhibited such large amplitude of inhibitory postsynaptic currents. The proportion of multi-receptive substantia gelatinosa neurons, which exhibit action potential firing in response to non-noxious and noxious stimuli, was much larger in hemisected animals than in control animals. CONCLUSIONS These suggest that substantia gelatinosa neurons receive tonic inhibition by spinal inhibitory interneurons which generate persistent action potentials. Spinal hemisection results in hyperexcitation of substantia gelatinosa neurons at least in part by eliminating the tonic descending control of spinal inhibitory interneurons from supraspinal levels.
Collapse
Affiliation(s)
- Yuji Kozuka
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Mikito Kawamata
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Hidemasa Furue
- Department of Information Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Takashi Ishida
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Satoshi Tanaka
- Department of Anesthesiology and Resuscitology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Akiyoshi Namiki
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Michiaki Yamakage
- Department of Anesthesiology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
7
|
Arrigoni E, Chen MC, Fuller PM. The anatomical, cellular and synaptic basis of motor atonia during rapid eye movement sleep. J Physiol 2016; 594:5391-414. [PMID: 27060683 DOI: 10.1113/jp271324] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 03/02/2016] [Indexed: 01/14/2023] Open
Abstract
Rapid eye movement (REM) sleep is a recurring part of the sleep-wake cycle characterized by fast, desynchronized rhythms in the electroencephalogram (EEG), hippocampal theta activity, rapid eye movements, autonomic activation and loss of postural muscle tone (atonia). The brain circuitry governing REM sleep is located in the pontine and medullary brainstem and includes ascending and descending projections that regulate the EEG and motor components of REM sleep. The descending signal for postural muscle atonia during REM sleep is thought to originate from glutamatergic neurons of the sublaterodorsal nucleus (SLD), which in turn activate glycinergic pre-motor neurons in the spinal cord and/or ventromedial medulla to inhibit motor neurons. Despite work over the past two decades on many neurotransmitter systems that regulate the SLD, gaps remain in our knowledge of the synaptic basis by which SLD REM neurons are regulated and in turn produce REM sleep atonia. Elucidating the anatomical, cellular and synaptic basis of REM sleep atonia control is a critical step for treating many sleep-related disorders including obstructive sleep apnoea (apnea), REM sleep behaviour disorder (RBD) and narcolepsy with cataplexy.
Collapse
Affiliation(s)
- Elda Arrigoni
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| | - Michael C Chen
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Patrick M Fuller
- Department of Neurology, Beth Israel Deaconess Medical Center, Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
8
|
Zhang Y, Zhao S, Rodriguez E, Takatoh J, Han BX, Zhou X, Wang F. Identifying local and descending inputs for primary sensory neurons. J Clin Invest 2015; 125:3782-94. [PMID: 26426077 DOI: 10.1172/jci81156] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 07/23/2015] [Indexed: 12/25/2022] Open
Abstract
Primary pain and touch sensory neurons not only detect internal and external sensory stimuli, but also receive inputs from other neurons. However, the neuronal derived inputs for primary neurons have not been systematically identified. Using a monosynaptic rabies viruses-based transneuronal tracing method combined with sensory-specific Cre-drivers, we found that sensory neurons receive intraganglion, intraspinal, and supraspinal inputs, the latter of which are mainly derived from the rostroventral medulla (RVM). The viral-traced central neurons were largely inhibitory but also consisted of some glutamatergic neurons in the spinal cord and serotonergic neurons in the RVM. The majority of RVM-derived descending inputs were dual GABAergic and enkephalinergic (opioidergic). These inputs projected through the dorsolateral funiculus and primarily innervated layers I, II, and V of the dorsal horn, where pain-sensory afferents terminate. Silencing or activation of the dual GABA/enkephalinergic RVM neurons in adult animals substantially increased or decreased behavioral sensitivity, respectively, to heat and mechanical stimuli. These results are consistent with the fact that both GABA and enkephalin can exert presynaptic inhibition of the sensory afferents. Taken together, this work provides a systematic view of and a set of tools for examining peri- and extrasynaptic regulations of pain-afferent transmission.
Collapse
|
9
|
Ootsuka Y, Tanaka M. Control of cutaneous blood flow by central nervous system. Temperature (Austin) 2015; 2:392-405. [PMID: 27227053 PMCID: PMC4843916 DOI: 10.1080/23328940.2015.1069437] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/26/2015] [Accepted: 07/01/2015] [Indexed: 02/07/2023] Open
Abstract
Hairless skin acts as a heat exchanger between body and environment, and thus greatly contributes to body temperature regulation by changing blood flow to the skin (cutaneous) vascular bed during physiological responses such as cold- or warm-defense and fever. Cutaneous blood flow is also affected by alerting state; we 'go pale with fright'. The rabbit ear pinna and the rat tail have hairless skin, and thus provide animal models for investigating central pathway regulating blood flow to cutaneous vascular beds. Cutaneous blood flow is controlled by the centrally regulated sympathetic nervous system. Sympathetic premotor neurons in the medullary raphé in the lower brain stem are labeled at early stage after injection of trans-synaptic viral tracer into skin wall of the rat tail. Inactivation of these neurons abolishes cutaneous vasomotor changes evoked as part of thermoregulatory, febrile or psychological responses, indicating that the medullary raphé is a common final pathway to cutaneous sympathetic outflow, receiving neural inputs from upstream nuclei such as the preoptic area, hypothalamic nuclei and the midbrain. Summarizing evidences from rats and rabbits studies in the last 2 decades, we will review our current understanding of the central pathways mediating cutaneous vasomotor control.
Collapse
Affiliation(s)
- Youichirou Ootsuka
- Centre for Neuroscience; Department of Human Physiology; School of Medicine; Flinders University; Bedford Park; South Australia, Australia
- Department of Physiology; Graduate School of Medical and Dental Sciences; Kagoshima University; Kagoshima, Japan
| | - Mutsumi Tanaka
- Health Effects Research Group; Energy and Environment Research Division; Japan Automobile Research Institute; Tsukuba, Ibaraki, Japan
| |
Collapse
|
10
|
Iceman KE, Corcoran AE, Taylor BE, Harris MB. CO2-inhibited neurons in the medullary raphé are GABAergic. Respir Physiol Neurobiol 2014; 203:28-34. [PMID: 25087734 DOI: 10.1016/j.resp.2014.07.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/24/2014] [Accepted: 07/24/2014] [Indexed: 11/28/2022]
Abstract
Previous studies have reported subsets of medullary raphé neurons that are either stimulated or inhibited by CO2/pH in vitro, in situ, and in vivo. We tested the hypothesis that medullary raphé CO2-inhibited neurons are GABAergic. Extracellular recordings in unanesthetized juvenile in situ rat preparations showed reversible hypercapnia-induced suppression of 19% (63/323) of medullary raphé neurons, and this suppression persisted after antagonism of NMDA, AMPA/kainate, and GABAA receptors. We stained a subset of CO2-inhibited cells and found that most (11/12) had glutamic acid decarboxylase 67 immunoreactivity (GAD67-ir). These data indicate that the majority of acidosis-inhibited medullary raphé neurons are GABAergic, and that their chemosensitivity is independent of major fast synaptic inputs. Thus, CO2-sensitive GABAergic neurons may play a role in central CO2/pH chemoreception.
Collapse
Affiliation(s)
- Kimberly E Iceman
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Andrea E Corcoran
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Barbara E Taylor
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA
| | - Michael B Harris
- Institute of Arctic Biology and Department of Biology and Wildlife, University of Alaska Fairbanks, Fairbanks, AK 99775, USA.
| |
Collapse
|
11
|
Sokolov AY, Lyubashina OA, Amelin AV, Panteleev SS. The role of gamma-aminobutyric acid in migraine pathogenesis. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414020093] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Boucetta S, Cissé Y, Mainville L, Morales M, Jones BE. Discharge profiles across the sleep-waking cycle of identified cholinergic, GABAergic, and glutamatergic neurons in the pontomesencephalic tegmentum of the rat. J Neurosci 2014; 34:4708-27. [PMID: 24672016 PMCID: PMC3965793 DOI: 10.1523/jneurosci.2617-13.2014] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 02/19/2014] [Accepted: 02/22/2014] [Indexed: 01/04/2023] Open
Abstract
Distributed within the laterodorsal tegmental and pedunculopontine tegmental nuclei (LDT and PPT), cholinergic neurons in the pontomesencephalic tegmentum have long been thought to play a critical role in stimulating cortical activation during waking (W) and paradoxical sleep (PS, also called REM sleep), yet also in promoting PS with muscle atonia. However, the discharge profile and thus precise roles of the cholinergic neurons have remained uncertain because they lie intermingled with GABAergic and glutamatergic neurons, which might also assume these roles. By applying juxtacellular recording and labeling in naturally sleeping-waking, head-fixed rats, we investigated the discharge profiles of histochemically identified cholinergic, GABAergic, and glutamatergic neurons in the LDT, SubLDT, and adjoining medial part of the PPT (MPPT) in relation to sleep-wake states, cortical activity, and muscle tone. We found that all cholinergic neurons were maximally active during W and PS in positive correlation with fast (γ) cortical activity, as "W/PS-max active neurons." Like cholinergic neurons, many GABAergic and glutamatergic neurons were also "W/PS-max active." Other GABAergic and glutamatergic neurons were "PS-max active," being minimally active during W and maximally active during PS in negative correlation with muscle tone. Conversely, some glutamatergic neurons were "W-max active," being maximally active during W and minimally active during PS in positive correlation with muscle tone. Through different discharge profiles, the cholinergic, GABAergic, and glutamatergic neurons of the LDT, SubLDT, and MPPT thus appear to play distinct roles in promoting W and PS with cortical activation, PS with muscle atonia, or W with muscle tone.
Collapse
Affiliation(s)
- Soufiane Boucetta
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Youssouf Cissé
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Lynda Mainville
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| | - Marisela Morales
- National Institute on Drug Abuse, Neuronal Networks Section, National Institutes of Health, Baltimore, Maryland 21224
| | - Barbara E. Jones
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada, and
| |
Collapse
|
13
|
Chen T, Wang XL, Qu J, Wang W, Zhang T, Yanagawa Y, Wu SX, Li YQ. Neurokinin-1 Receptor-Expressing Neurons That Contain Serotonin and Gamma-Aminobutyric Acid in the Rat Rostroventromedial Medulla Are Involved in Pain Processing. THE JOURNAL OF PAIN 2013; 14:778-92. [DOI: 10.1016/j.jpain.2013.02.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/24/2012] [Accepted: 02/06/2013] [Indexed: 01/22/2023]
|
14
|
Saadé NE, Al Amin HA, Barchini J, Tchachaghian S, Shamaa F, Jabbur SJ, Atweh SF. Brainstem injection of lidocaine releases the descending pain-inhibitory mechanisms in a rat model of mononeuropathy. Exp Neurol 2012; 237:180-90. [DOI: 10.1016/j.expneurol.2012.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/11/2012] [Accepted: 06/20/2012] [Indexed: 10/28/2022]
|
15
|
Hossaini M, Goos JAC, Kohli SK, Holstege JC. Distribution of glycine/GABA neurons in the ventromedial medulla with descending spinal projections and evidence for an ascending glycine/GABA projection. PLoS One 2012; 7:e35293. [PMID: 22558137 PMCID: PMC3340372 DOI: 10.1371/journal.pone.0035293] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Accepted: 03/14/2012] [Indexed: 11/23/2022] Open
Abstract
The ventromedial medulla (VM), subdivided in a rostral (RVM) and a caudal (CVM) part, has a powerful influence on the spinal cord. In this study, we have identified the distribution of glycine and GABA containing neurons in the VM with projections to the cervical spinal cord, the lumbar dorsal horn, and the lumbar ventral horn. For this purpose, we have combined retrograde tracing using fluorescent microspheres with fluorescent in situ hybridization (FISH) for glycine transporter 2 (GlyT2) and GAD67 mRNAs to identify glycinergic and/or GABAergic (Gly/GABA) neurons. Since the results obtained with FISH for GlyT2, GAD67, or GlyT2 + GAD67 mRNAs were not significantly different, we concluded that glycine and GABA coexisted in the various projection neurons. After injections in the cervical cord, we found that 29% ± 1 (SEM) of the retrogradely labeled neurons in the VM were Gly/GABA (RVM: 43%; CVM: 21%). After lumbar dorsal horn injections 31% ± 3 of the VM neurons were Gly/GABA (RVM: 45%; CVM: 12%), and after lumbar ventral horn injections 25% ± 2 were Gly/GABA (RVM: 35%; CVM: 17%). In addition, we have identified a novel ascending Gly/GABA pathway originating from neurons in the area around the central canal (CC) throughout the spinal cord and projecting to the RVM, emphasizing the interaction between the ventromedial medulla and the spinal cord. The present study has now firmly established that GABA and glycine are present in many VM neurons that project to the spinal cord. These neurons strongly influence spinal processing, most notably the inhibition of nociceptive transmission.
Collapse
Affiliation(s)
- Mehdi Hossaini
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jacqueline A. C. Goos
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Somesh K. Kohli
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan C. Holstege
- Department of Neuroscience, Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Aicher SA, Hermes SM, Whittier KL, Hegarty DM. Descending projections from the rostral ventromedial medulla (RVM) to trigeminal and spinal dorsal horns are morphologically and neurochemically distinct. J Chem Neuroanat 2012; 43:103-11. [PMID: 22119519 PMCID: PMC3319838 DOI: 10.1016/j.jchemneu.2011.11.002] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Revised: 11/08/2011] [Accepted: 11/09/2011] [Indexed: 01/16/2023]
Abstract
Neurons in the rostral ventromedial medulla (RVM) are thought to modulate nociceptive transmission via projections to spinal and trigeminal dorsal horns. The cellular substrate for this descending modulation has been studied with regard to projections to spinal dorsal horn, but studies of the projections to trigeminal dorsal horn have been less complete. In this study, we combined anterograde tracing from RVM with immunocytochemical detection of the GABAergic synthetic enzyme, GAD67, to determine if the RVM sends inhibitory projections to trigeminal dorsal horn. We also examined the neuronal targets of this projection using immunocytochemical detection of NeuN. Finally, we used electron microscopy to verify cellular targets. We compared projections to both trigeminal and spinal dorsal horns. We found that RVM projections to both trigeminal and spinal dorsal horn were directed to postsynaptic profiles in the dorsal horn, including somata and dendrites, and not to primary afferent terminals. We found that RVM projections to spinal dorsal horn were more likely to contact neuronal somata and were more likely to contain GAD67 than projections from RVM to trigeminal dorsal horn. These findings suggest that RVM neurons send predominantly GABAergic projections to spinal dorsal horn and provide direct input to postsynaptic neurons such as interneurons or ascending projection neurons. The RVM projection to trigeminal dorsal horn is more heavily targeted to dendrites and is only modestly GABAergic in nature. These anatomical features may underlie differences between trigeminal and spinal dorsal horns with regard to the degree of inhibition or facilitation evoked by RVM stimulation.
Collapse
Affiliation(s)
- Sue A Aicher
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland, OR 97239-3098, United States.
| | | | | | | |
Collapse
|
17
|
Martin EM, Devidze N, Shelley DN, Westberg L, Fontaine C, Pfaff DW. Molecular and neuroanatomical characterization of single neurons in the mouse medullary gigantocellular reticular nucleus. J Comp Neurol 2011; 519:2574-93. [PMID: 21456014 DOI: 10.1002/cne.22639] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Medullary gigantocellular reticular nucleus (mGi) neurons have been ascribed a variety of behaviors, many of which may fall under the concepts of either arousal or motivation. Despite this, many details of the connectivity of mGi neurons, particularly in reference to those neurons with ascending axons, remain unknown. To provide a neuroanatomical and molecular characterization of these cells, with reference to arousal and level-setting systems, large medullary reticular neurons were characterized with retrograde dye techniques and with real-time reverse transcriptase PCR (RT-PCR) analyses of single-neuron mRNA expression in the mouse. We have shown that receptors consistent with participation in generalized arousal are expressed by single mGi neurons and that receptors from different families of arousal-related neurotransmitters are rarely coexpressed. Through retrograde labeling, we have shown that neurons with ascending axons and neurons with descending axons tend to form like-with-like clusters, a finding that is consistent across age and gender. In comparing the two groups of retrogradely labeled neurons in neonatal animals, those neurons with axons that ascend to the midbrain show markers for GABAergic or coincident GABAergic and glutamatergic function; in contrast, approximately 60% of the neurons with axons that descend to the spinal cord are glutamatergic. We discuss the mGi's relationship to the voluntary and emotional motor systems and speculate that neurons in the mGi may represent a mammalian analogue to Mauthner cells, with a separation of function for neurons with ascending and descending axons.
Collapse
Affiliation(s)
- E M Martin
- Laboratory of Neurobiology and Behavior, The Rockefeller University, New York, New York 10065, USA.
| | | | | | | | | | | |
Collapse
|
18
|
Pedersen NP, Vaughan CW, Christie MJ. Opioid receptor modulation of GABAergic and serotonergic spinally projecting neurons of the rostral ventromedial medulla in mice. J Neurophysiol 2011; 106:731-40. [PMID: 21593395 DOI: 10.1152/jn.01062.2010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The rostral ventromedial medulla (RVM) is an important site of opioid actions and forms part of an analgesic pathway that projects to the spinal cord. The neuronal mechanisms by which opioids act within this brain region remain unclear, particularly in relation to the neurotransmitters GABA and serotonin. In the present study, we examined serotonergic and GABAergic immunoreactivity, identified using immunohistochemistry for tryptophan hydroxylase (TPH) and glutamate decarboxylase (GAD), in combination with in vitro whole cell patch clamping to investigate the role of opioids on the mouse RVM with identified projections to the spinal cord. Tyr-d-Ala-Gly-N-Me-Phe-Gly-ol enkephalin (DAMGO) produced μ-opioid receptor-mediated outward currents in virtually all TPH-immunoreactive projecting neurons and GAD-immunoreactive nonprojecting neurons (87% and 86%). The other groups of RVM neurons displayed mixed responsiveness to DAMGO (40-68%). Deltorphin II and U-69593 produced δ- and κ-opioid receptor-mediated outward currents in smaller subpopulations of RVM neurons, with many of the δ-opioid responders forming a subpopulation of μ-opioid-sensitive GABAergic nonprojecting neurons. These findings are consistent with prior electrophysiological and anatomic studies in the rat RVM and indicate that both serotonergic and GABAergic RVM neurons mediate the actions of μ-opioids. Specifically, μ-opioids have a direct postsynaptic inhibitory influence over both GABAergic and serotonergic neurons, including those that project to the dorsal spinal cord.
Collapse
Affiliation(s)
- Nigel P Pedersen
- Brain and Mind Research Institute, M02G, University of Sydney, Sydney NSW 2006, Australia
| | | | | |
Collapse
|
19
|
Lai YY, Kodama T, Schenkel E, Siegel JM. Behavioral response and transmitter release during atonia elicited by medial medullary stimulation. J Neurophysiol 2010; 104:2024-33. [PMID: 20668280 DOI: 10.1152/jn.00528.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of the medial medulla is responsible for rapid eye movement (REM) sleep atonia and cataplexy. Dysfunction can cause REM sleep behavior disorder and other motor pathologies. Here we report the behavioral effects of stimulation of the nucleus gigantocellularis (NGC) and nucleus magnocellularis (NMC) in unrestrained cats. In waking, 62% of the medial medullary stimulation sites suppressed muscle tone. In contrast, stimulation at all sites, including sites where stimulation produced no change or increased muscle tone in waking, produced decreased muscle tone during slow-wave sleep. In the decerebrate cat electrical stimulation of the NGC increased glycine and decreased norepinephrine (NE) release in the lumbar ventral horn, with no change in γ-aminobutyric acid (GABA) or serotonin (5-HT) release. Stimulation of the NMC increased both glycine and GABA release and also decreased both NE and 5-HT release in the ventral horn. Glutamate levels in the ventral horn were not changed by either NGC or NMC stimulation. We conclude that NGC and NMC play neurochemically distinct but synergistic roles in the modulation of motor activity across the sleep-wake cycle via a combination of increased release of glycine and GABA and decreased release of 5-HT and NE. Stimulation of the medial medulla that elicited muscle tone suppression also triggered rapid eye movements, but never produced the phasic twitches that characterize REM sleep, indicating that the twitching and rapid eye movement generators of REM sleep have separate brain stem substrates.
Collapse
Affiliation(s)
- Yuan-Yang Lai
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles and Veterans Affairs Greater Los Angeles Healthcare System Sepulveda, North Hills, CA 91343, USA.
| | | | | | | |
Collapse
|
20
|
Broadbelt KG, Paterson DS, Rivera KD, Trachtenberg FL, Kinney HC. Neuroanatomic relationships between the GABAergic and serotonergic systems in the developing human medulla. Auton Neurosci 2010; 154:30-41. [PMID: 19926534 PMCID: PMC2844926 DOI: 10.1016/j.autneu.2009.10.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 10/05/2009] [Accepted: 10/06/2009] [Indexed: 12/26/2022]
Abstract
gamma-Amino butyric (GABA) critically influences serotonergic (5-HT) neurons in the raphé and extra-raphé of the medulla oblongata. In this study we hypothesize that there are marked changes in the developmental profile of markers of the human medullary GABAergic system relative to the 5-HT system in early life. We used single- and double-label immunocytochemistry and tissue receptor autoradiography in 15 human medullae from fetal and infant cases ranging from 15 gestational weeks to 10 postnatal months, and compared our findings with an extensive 5-HT-related database in our laboratory. In the raphé obscurus, we identified two subsets of GABAergic neurons using glutamic acid decarboxylase (GAD65/67) immunostaining: one comprised of small, round neurons; the other, medium, spindle-shaped neurons. In three term medullae cases, positive immunofluorescent neurons for both tryptophan hydroxylase and GAD65/67 were counted within the raphé obscurus. This revealed that approximately 6% of the total neurons counted in this nucleus expressed both GAD65/67 and TPOH suggesting co-production of GABA by a subset of 5-HT neurons. The distribution of GABA(A) binding was ubiquitous across medullary nuclei, with highest binding in the raphé obscurus. GABA(A) receptor subtypes alpha1 and alpha3 were expressed by 5-HT neurons, indicating the site of interaction of GABA with 5-HT neurons. These receptor subtypes and KCC2, a major chloride transporter, were differentially expressed across early development, from midgestation (20 weeks) and thereafter. The developmental profile of GABAergic markers changed dramatically relative to the 5-HT markers. These data provide baseline information for medullary studies of human pediatric disorders, such as sudden infant death syndrome.
Collapse
Affiliation(s)
- Kevin G Broadbelt
- Department of Pathology, Children's Hospital Boston, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
21
|
Lü N, Han M, Yang ZL, Wang YQ, Wu GC, Zhang YQ. Nociceptin/Orphanin FQ in PAG modulates the release of amino acids, serotonin and norepinephrine in the rostral ventromedial medulla and spinal cord in rats. Pain 2010; 148:414-425. [PMID: 20036056 DOI: 10.1016/j.pain.2009.11.025] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Revised: 10/28/2009] [Accepted: 11/30/2009] [Indexed: 11/21/2022]
Abstract
High density Nociceptin/Orphanin FQ (N/OFQ) and its receptor (NOPr) have been found in the ventrolateral periaqueductal gray (vlPAG), a main output pathway involved in the descending pain-control system. Our previous study demonstrated that the microinjection of N/OFQ into the vlPAG markedly facilitated nociceptive responses of spinal dorsal horn neurons. The aim of the present work was to further provide evidence for the supraspinal mechanisms of action for N/OFQ-mediated nociceptive facilitation by examining the effect of N/OFQ in the vlPAG on neurotransmitter release in the descending pain-control system, including the nucleus raphe magnus (NRM), nucleus reticularis gigantocellularis (NGC) and dorsal horn of the spinal cord. The results showed that the microinjection of N/OFQ into the vlPAG produced robust decreases in 5-hydroxytryptamine (5-HT, serotonin), norepinephrine (NE), and gamma-aminobutyric acid (GABA), and increase in glutamate (Glu) release in the spinal dorsal horn. Spinal application of 5-HT, 2-Me-5-HT (5-HT(3) receptor agonist), muscimol (GABA(A) receptor agonist), and baclofen (GABA(B) receptor agonist) significantly blocked intra-vlPAG-induced facilitation on nociceptive responses. However, the extracellular concentrations of these neurotransmitters in the NRM and NGC exhibited diversity following intra-vlPAG of N/OFQ. In the NRM, intra-vlPAG injection of N/OFQ significantly decreased 5-HT, NE, and Glu, but increased GABA release. Differently, in the NGC, both NE and GABA releases were attenuated by intra-vlPAG of N/OFQ, whereas the concentration of 5-HT and Glu exhibited a trend to increase. These findings provide direct support for the hypothesis that intra-PAG of N/OFQ-induced facilitation of nociceptive responses is associated with the release of 5-HT, NE, and amino acids.
Collapse
Affiliation(s)
- Ning Lü
- State Key Laboratory of Medical Neurobiology and Institutes of Brain Science, Fudan University, 138 Yi Xue Yuan Road, Shanghai 200032, China
| | | | | | | | | | | |
Collapse
|
22
|
Stornetta RL. Neurochemistry of bulbospinal presympathetic neurons of the medulla oblongata. J Chem Neuroanat 2009; 38:222-30. [PMID: 19665549 DOI: 10.1016/j.jchemneu.2009.07.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2009] [Revised: 07/28/2009] [Accepted: 07/29/2009] [Indexed: 01/19/2023]
Abstract
This review focuses on presympathetic neurons in the medulla oblongata including the adrenergic cell groups C1-C3 in the rostral ventrolateral medulla and the serotonergic, GABAergic and glycinergic neurons in the ventromedial medulla. The phenotypes of these neurons including colocalized neuropeptides (e.g., neuropeptide Y, enkephalin, thyrotropin-releasing hormone, substance P) as well as their relative anatomical location are considered in relation to predicting their function in control of sympathetic outflow, in particular the sympathetic outflows controlling blood pressure and thermoregulation. Several explanations are considered for how the neuroeffectors coexisting in these neurons might be functioning, although their exact purpose remains unknown. Although there is abundant data on potential neurotransmitters and neuropeptides contained in the presympathetic neurons, we are still unable to predict function and physiology based solely on the phenotype of these neurons.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, United States of America.
| |
Collapse
|
23
|
Taepavarapruk N, Taepavarapruk P, John J, Lai YY, Siegel JM, Phillips AG, McErlane SA, Soja PJ. State-dependent changes in glutamate, glycine, GABA, and dopamine levels in cat lumbar spinal cord. J Neurophysiol 2008; 100:598-608. [PMID: 18353913 DOI: 10.1152/jn.01231.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recent studies have indicated that the glycine receptor antagonist strychnine and the gamma-aminobutyric acid type A (GABA A) receptor antagonist bicuculline reduced the rapid-eye-movement (REM) sleep-specific inhibition of sensory inflow via the dorsal spinocerebellar tract (DSCT). These findings imply that the spinal release of glycine and GABA may be due directly to the REM sleep-specific activation of reticulospinal neurons and/or glutamate-activated last-order spinal interneurons. This study used in vivo microdialysis and high-performance liquid chromatography analysis techniques to provide evidence for these possibilities. Microdialysis probes were stereotaxically positioned in the L3 spinal cord gray matter corresponding to sites where maximal cerebellar-evoked field potentials or individual DSCT and nearby spinoreticular tract (SRT) neurons could be recorded. Glutamate, glycine, and GABA levels significantly increased during REM sleep by approximately 48, 48, and 14%, respectively, compared with the control state of wakefulness. In contrast, dopamine levels significantly decreased by about 28% during REM sleep compared with wakefulness. During the state of wakefulness, electrical stimulation of the nucleus reticularis gigantocellularis (NRGc) at intensities sufficient to inhibit DSCT neuron activity, also significantly increased glutamate and glycine levels by about 69 and 45%, respectively, but not GABA or dopamine levels. We suggest that the reciprocal changes in the release of glutamate, glycine, and GABA versus dopamine during REM sleep contribute to the reduction of sensory inflow to higher brain centers via the DSCT and nearby SRT during this behavioral state. The neural pathways involved in this process likely include reticulo- and diencephalospinal and spinal interneurons.
Collapse
Affiliation(s)
- N Taepavarapruk
- Faculty of Pharmaceutical Sciences, University of British Columbia, 2146 East Mall, Vancouver, BC, Canada, V6T 1Z3
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Humphries MD, Gurney K, Prescott TJ. Is there a brainstem substrate for action selection? Philos Trans R Soc Lond B Biol Sci 2007; 362:1627-39. [PMID: 17428776 PMCID: PMC2440776 DOI: 10.1098/rstb.2007.2057] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The search for the neural substrate of vertebrate action selection has focused on structures in the forebrain and midbrain, and particularly on the group of sub-cortical nuclei known as the basal ganglia. Yet, the behavioural repertoire of decerebrate and neonatal animals suggests the existence of a relatively self-contained neural substrate for action selection in the brainstem. We propose that the medial reticular formation (mRF) is the substrate's main component and review evidence showing that the mRF's inputs, outputs and intrinsic organization are consistent with the requirements of an action-selection system. The internal architecture of the mRF is composed of interconnected neuron clusters. We present an anatomical model which suggests that the mRF's intrinsic circuitry constitutes a small-world network and extend this result to show that it may have evolved to reduce axonal wiring. Potential configurations of action representation within the internal circuitry of the mRF are then assessed by computational modelling. We present new results demonstrating that each cluster's output is most likely to represent activation of a component action; thus, coactivation of a set of these clusters would lead to the coordinated behavioural response observed in the animal. Finally, we consider the potential integration of the basal ganglia and mRF substrates for selection and suggest that they may collectively form a layered/hierarchical control system.
Collapse
Affiliation(s)
- M D Humphries
- Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield, Sheffield S10 2TP, UK.
| | | | | |
Collapse
|
25
|
Imbe H, Okamoto K, Aikawa F, Kimura A, Donishi T, Tamai Y, Iwai-Liao Y, Senba E. Effects of peripheral inflammation on activation of p38 mitogen-activated protein kinase in the rostral ventromedial medulla. Brain Res 2006; 1134:131-9. [PMID: 17196178 DOI: 10.1016/j.brainres.2006.11.091] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 11/11/2006] [Accepted: 11/29/2006] [Indexed: 12/25/2022]
Abstract
In the present study, the activation of p38 mitogen-activated protein kinase (p38 MAPK) in the rostral ventromedial medulla (RVM) following the injection of complete Freund's adjuvant (CFA) into the rat hindpaw was examined in order to clarify the mechanisms underlying the dynamic changes in the descending pain modulatory system after peripheral inflammation. Phospho-p38 MAPK-immunoreactive (p-p38 MAPK-IR) neurons were observed in the nucleus raphe magnus (NRM) and nucleus reticularis gigantocellularis pars alpha (GiA). Inflammation induced the activation of p38 MAPK in the RVM, with a peak at 30 min after the injection of CFA into the hindpaw, which lasted for 1 h. In the RVM, the number of p-p38 MAPK-IR neurons per section in rats killed at 30 min after CFA injection (19.4+/-2.0) was significantly higher than that in the naive group (8.4+/-2.4) [p<0.05]. At 30 min after CFA injection, about 40% of p-p38 MAPK-IR neurons in the RVM were serotonergic neurons (tryptophan hydroxylase, TPH, positive) and about 70% of TPH-IR neurons in the RVM were p-p38 MAPK positive. The number of p-p38 MAPK- and TPH-double-positive RVM neurons in the rats with inflammation was significantly higher than that in naive rats [p<0.05]. These findings suggest that inflammation-induced activation of p38 MAPK in the RVM may be involved in the plasticity in the descending pain modulatory system following inflammation.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Oral Anatomy, Osaka Dental University, Kuzuhahanazono-cho 8-1, Hirakata City, 573-1121, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Cao Y, Matsuyama K, Fujito Y, Aoki M. Involvement of medullary GABAergic and serotonergic raphe neurons in respiratory control: electrophysiological and immunohistochemical studies in rats. Neurosci Res 2006; 56:322-31. [PMID: 16962678 DOI: 10.1016/j.neures.2006.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2006] [Revised: 07/11/2006] [Accepted: 08/02/2006] [Indexed: 10/24/2022]
Abstract
In the present study we first examined the possible involvement of the putative neurotransmitters gamma-aminobutyric acid (GABA) and serotonin (5-HT) in raphe-induced facilitatory or inhibitory effects on the respiratory activity of rats. Secondly, we investigated the possibility of spinal projections of GABAergic and serotonergic neurons from the medullary raphe nuclei to the phrenic motor nucleus (PMN). We observed that an intravenous (i.v.) injection of (+)-bicuculline, a GABA(A) receptor antagonist, significantly reduced respiratory inhibition induced by electrical stimulation of the raphe magnus (RM) or the raphe obscurus (RO). On the other hand, an i.v. injection of methysergide, a broad-spectrum 5-HT receptor antagonist, significantly reduced the respiratory facilitation induced by electrical stimulation of the raphe pallidus (RP) or RO. By using a combined method of retrograde tracing with Texas Red injected into the PMN region at segments C4 and C5 and immunohistochemical labeling, we observed that glutamic acid decarboxylase (GAD; a GABA synthesizing enzyme) immunopositive and Texas Red double labeled neurons were predominantly localized in the RM, and additionally in the RO. However 5-HT immunopositive and Texas Red double-labeled neurons were predominantly localized in the RP, and additionally in the RO and RM. These findings suggest that RM-, or RO-induced inhibitory effects, are transmitted, at least in part, to the PMN via a direct GABAergic descending pathway. The RP-, or RO-induced facilitatory effects in rats however, are transmitted via a serotonergic descending pathway.
Collapse
Affiliation(s)
- Ying Cao
- Department of Physiology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | | | | | | |
Collapse
|
27
|
Oh SH, Imbe H, Iwai-Liao Y. TMJ inflammation increases Fos expression in the nucleus raphe magnus induced by subsequent formalin injection of the masseter or hindpaw of rats. Okajimas Folia Anat Jpn 2006; 83:43-52. [PMID: 16944837 DOI: 10.2535/ofaj.83.43] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The study was designed to examine the effect of persistent temporomandibular joint (TMJ) inflammation on neuronal activation in the descending pain modulatory system in response to noxious stimulus. Formalin was injected into the left masseter muscle or hindpaw of rats 10 days after injection of the left TMJ with saline or complete Freund's adjuvant (CFA). The results showed that 10-day persistent TMJ inflammation (induced by CFA) alone did not induce a significant increase in Fos-like immunoreactive (Fos-LI) neurons in the rostral ventromedial medulla (RVM) or locus coeruleus (LC), but that formalin injection of the masseter muscle or hindpaw induced a significant increase in Fos-LI neurons in the RVM and LC of rats with and without TMJ inflammation (P < 0.05). However, persistent TMJ inflammation significantly increased Fos-LI neurons in the nucleus raphe magnus (NRM) induced by subsequent formalin injection of the masseter muscle and hindpaw (70.2% increase and 53.8% increase, respectively, over the control TMJ-saline-injected rats; P < 0.05). The results suggest that persistent TMJ inflammation increases neuronal activity, in particularly in the NRM, by the plastic change of the descending pain modulatory system after ipsilateral application of a noxious stimulus to either orofacial area or a spatially remote body area.
Collapse
Affiliation(s)
- Sang-Hoon Oh
- Department of Oral Anatomy, Osaka Dental University, Kuzuhahanazono-cho 8-1, Hirakata-shi, 573-1121, Japan
| | | | | |
Collapse
|
28
|
Humphries MD, Gurney K, Prescott TJ. The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci 2006; 273:503-11. [PMID: 16615219 PMCID: PMC1560205 DOI: 10.1098/rspb.2005.3354] [Citation(s) in RCA: 367] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Recently, it has been demonstrated that several complex systems may have simple graph-theoretic characterizations as so-called 'small-world' and 'scale-free' networks. These networks have also been applied to the gross neural connectivity between primate cortical areas and the nervous system of Caenorhabditis elegans. Here, we extend this work to a specific neural circuit of the vertebrate brain--the medial reticular formation (RF) of the brainstem--and, in doing so, we have made three key contributions. First, this work constitutes the first model (and quantitative review) of this important brain structure for over three decades. Second, we have developed the first graph-theoretic analysis of vertebrate brain connectivity at the neural network level. Third, we propose simple metrics to quantitatively assess the extent to which the networks studied are small-world or scale-free. We conclude that the medial RF is configured to create small-world (implying coherent rapid-processing capabilities), but not scale-free, type networks under assumptions which are amenable to quantitative measurement.
Collapse
Affiliation(s)
- M D Humphries
- Adaptive Behaviour Research Group, Department of Psychology, University of Sheffield, Sheffield S10 2TP, UK.
| | | | | |
Collapse
|
29
|
Kato G, Yasaka T, Katafuchi T, Furue H, Mizuno M, Iwamoto Y, Yoshimura M. Direct GABAergic and glycinergic inhibition of the substantia gelatinosa from the rostral ventromedial medulla revealed by in vivo patch-clamp analysis in rats. J Neurosci 2006; 26:1787-94. [PMID: 16467527 PMCID: PMC6793630 DOI: 10.1523/jneurosci.4856-05.2006] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Stimulation of the rostral ventromedial medulla (RVM) is believed to exert analgesic effects through the activation of the serotonergic system descending to the spinal dorsal horn; however, how nociceptive transmission is modulated by the descending system has not been fully clarified. To investigate the inhibitory mechanisms affected by the RVM, an in vivo patch-clamp technique was used to record IPSCs from the substantia gelatinosa (SG) of the spinal cord evoked by chemical (glutamate injection) and electrical stimulation (ES) of the RVM in adult rats. In the voltage-clamp mode, the RVM glutamate injection and RVM-ES produced an increase in both the frequency and amplitude of IPSCs in SG neurons that was not blocked by glutamate receptor antagonists. Serotonin receptor antagonists were unexpectedly without effect, but a GABAA receptor antagonist, bicuculline, or a glycine receptor antagonist, strychnine, completely suppressed the RVM stimulation-induced increase in IPSCs. The RVM-ES-evoked IPSCs showed fixed latency and no failure at 20 Hz stimuli with a conduction velocity of >3 m/s (3.1-20.7 m/s), suggesting descending monosynaptic GABAergic and/or glycinergic inputs from the RVM to the SG through myelinated fibers. In the current-clamp mode, action potentials elicited by noxious mechanical stimuli applied to the receptive field of the ipsilateral hindlimb were suppressed by the RVM-ES in more than half of the neurons tested (63%; 10 of 16). These findings suggest that the RVM-mediated antinociceptive effects on noxious inputs to the SG may be exerted preferentially by the direct GABAergic and glycinergic pathways to the SG.
Collapse
|
30
|
Tóth IE, Tóth DE, Boldogkoi Z, Hornyák A, Palkovits M, Blessing WW. Serotonin-Synthesizing Neurons in the Rostral Medullary Raphé/Parapyramidal Region Transneuronally Labelled After Injection of Pseudorabies Virus into the Rat Tail. Neurochem Res 2006; 31:277-86. [PMID: 16570210 DOI: 10.1007/s11064-005-9018-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2005] [Indexed: 11/29/2022]
Abstract
Serotonin-synthesizing raphé/parapyramidal neurons (5-HT neurons) may function as sympathetic premotor neurons regulating sympathetic outflow to the cutaneous vascular bed. In the present study a genetically engineered pseudorabies virus (PRV) expressing green fluorescent protein (GFP) was injected into the rat tail. After survival for 3-4 days the medulla oblongata was examined using double-label immunohistochemistry, with an antibody against GFP for the virus and an antibody against phenylalanine hydroxylase 8 (PH8) for 5-HT synthesis. Sections were examined using light microscopy, and conventional and confocal fluorescence microscopy. There were two subpopulations of PRV+ve neurons in the raphé/parapyramidal region: a more dorsally and laterally located subgroup of medium-sized and large neurons, mainly non-serotonergic, and a more ventrally located subgroup of small mainly serotonin-synthesizing neurons, including those just dorsal to the pyramids, those in raphé pallidus, and those in close relationship to the ventral surface in the parapyramidal-subependymal zone.
Collapse
Affiliation(s)
- Ida E Tóth
- Joint Research Laboratory of Neuromorphology, Semmelweis University of Medicine and Hungarian Academy of Sciences, H-1094 Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
31
|
Cao Y, Fujito Y, Matsuyama K, Aoki M. Effects of electrical stimulation of the medullary raphe nuclei on respiratory movement in rats. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:497-505. [PMID: 16404604 DOI: 10.1007/s00359-005-0087-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Revised: 11/04/2005] [Accepted: 12/21/2005] [Indexed: 12/19/2022]
Abstract
The present study was undertaken to examine the effects of electrical stimulation of the medullary raphe nuclei on respiration in rats anesthetized with ketamine and xylazine. Train pulse stimuli (100 Hz, 10-30 microA) were applied in the regions of the caudal raphe nuclei: the raphe magnus (RM), raphe pallidus (RP) and raphe obscurus (RO). Stimulation of the RM depressed inspiratory movements measured by means of an abdominal pneumograph, whereas stimulation of the RP augmented inspiratory movements. It was revealed that stimulation of the RO induced either inhibitory or facilitatory effects on respiratory movements depending on the stimulation sites. These findings confirm and extend previous studies concerning the effects of raphe stimulation on respiratory activity in cats. The present results demonstrate that in rats the caudal raphe nuclei are involved in respiratory control.
Collapse
Affiliation(s)
- Ying Cao
- Department of Physiology, Sapporo Medical University School of Medicine, Chuo-ku, Sapporo 060-8556, Japan
| | | | | | | |
Collapse
|
32
|
Zhang L, Sykes KT, Buhler AV, Hammond DL. Electrophysiological heterogeneity of spinally projecting serotonergic and nonserotonergic neurons in the rostral ventromedial medulla. J Neurophysiol 2005; 95:1853-63. [PMID: 16338998 DOI: 10.1152/jn.00883.2005] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study examined the passive membrane and action potential properties of serotonergic and nonserotonergic neurons in the rostral ventromedial medulla (RVM) of the rat using whole cell patch-clamp recording techniques in the slice. Serotonergic neurons were identified by immunoreactivity for tryptophan hydroxylase (TrpH). Spinally projecting neurons were retrogradely labeled with 1'-dioactadecyl-3,3,3',3'-tetramethylindocarbodyanine perchlorate (DiI). Three types of neurons were identified within both spinally projecting serotonergic and nonserotonergic populations. Type 1 neurons exhibited irregular or sporadic spontaneous activity interspersed with periods of quiescence. Type 2 neurons were not spontaneously active and were additionally discriminated by a more negative resting membrane potential and a larger-amplitude action potential. Type 3 neurons fired repetitively without pause. Serotonergic neurons had a higher membrane resistance and greater action potential half-width than their nonserotonergic counterparts and rarely exhibited a fast afterhyperpolarization. Serotonergic type 3 neurons also fired more slowly and regularly than nonserotonergic type 3 neurons. Comparison of electrophysiological and immunohistochemical characteristics suggested that the smallest type 3 serotonergic neurons had an increased risk of immunohistochemical "misclassification" due to failure to detect TrpH, possibly due to more complete dialysis of intracellular contents during lengthy recordings. This risk was minimal for type 1 or 2 serotonergic neurons. The three different types of spinally projecting serotonergic neurons also differed markedly in their responsiveness to the mu opioid receptor agonist D-Ala2, NMePhe4, Gly5-ol]enkephalin. These results provide important new electrophysiological and pharmacological evidence for a significant heterogeneity among spinally projecting serotonergic RVM neurons. They may also provide a basis for resolving the controversy concerning the role of serotonergic RVM neurons in opioid analgesia.
Collapse
Affiliation(s)
- Liang Zhang
- Dept. of Anesthesia, University of Iowa, 200 Hawkins Dr., 6 JCP, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
33
|
Landwehr S, Dicke U. Distribution of GABA, glycine, and glutamate in neurons of the medulla oblongata and their projections to the midbrain tectum in plethodontid salamanders. J Comp Neurol 2005; 490:145-62. [PMID: 16052495 DOI: 10.1002/cne.20646] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the medulla oblongata of plethodontid salamanders, GABA-, glycine-, and glutamate-like immunoreactivity (ir) of neurons was studied. Combined tracing and immunohistochemical experiments were performed to analyze the transmitter content of medullary nuclei with reciprocal connections with the tectum mesencephali. The distribution of transmitters differed significantly between rostral and caudal medulla; dual or triple localization of transmitters was present in somata throughout the rostrocaudal extent of the medulla. Regarding the rostral medulla, the largest number of GABA- and gly-ir neurons was found in the medial zone. Neurons of the nucleus reticularis medius (NRM) retrogradely labeled by tracer application into the tectum revealed predominantly gly-ir, often colocalized with glu-ir. The NRM appears to be homologous to the mammalian gigantocellular reticular nucleus, and its glycinergic projection is most likely part of a negative feedback loop between medulla and tectum. Neurons of the dorsal and vestibular nucleus projecting to the tectum were glu-ir and often revealed additional GABA- and/or gly-ir in the vestibular nucleus. Regarding the caudal medulla, the highest density of GABA- and gly-ir cells was found in the lateral zone. Differences in the neurochemistry of the rostral versus caudal medulla appear to result from the transmitter content of projection nuclei in the rostral medulla and support the idea that the rostral medulla is involved in tecto-reticular interaction. Our results likewise underline the role of the NRM in visual object selection and orientation as suggested by behavioral studies and recordings from tectal neurons.
Collapse
Affiliation(s)
- Sandra Landwehr
- Brain Research Institute, University of Bremen, D-28334 Bremen, Germany
| | | |
Collapse
|
34
|
Imbe H, Okamoto K, Okamura T, Kumabe S, Nakatsuka M, Aikawa F, Iwai-Liao Y, Senba E. Effects of peripheral inflammation on activation of ERK in the rostral ventromedial medulla. Brain Res 2005; 1063:151-8. [PMID: 16288729 DOI: 10.1016/j.brainres.2005.09.057] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2005] [Revised: 09/14/2005] [Accepted: 09/25/2005] [Indexed: 01/05/2023]
Abstract
In the present study, the activation of extracellular signal-regulated kinase (ERK) in the rostral ventromedial medulla (RVM) following the injection of complete Freund's adjuvant (CFA) into the rat hindpaw was examined in order to clarify the mechanisms underlying the dynamic changes in the descending pain modulatory system after peripheral inflammation. Phospho-extracellular signal-regulated kinase-immunoreactive (p-ERK-IR) neurons were observed in the nucleus raphe magnus (NRM) and nucleus reticularis gigantocellularis pars alpha (GiA). Inflammation induced the activation of ERK in the RVM, with a peak at 7 h after the injection of CFA into the hindpaw and a duration of 24 h. In the RVM, the number of p-ERK-IR neurons per section in rats killed at 7 h after CFA injection (14.2 +/- 1.7) was significantly higher than that in the control group (4.5 +/- 0.9) [P < 0.01]. At 7 h after CFA injection, about 60% of p-ERK-IR neurons in the RVM were serotonergic neurons. The percentage of RVM serotonergic neurons that are also p-ERK positive in the rats with inflammation (20.5% +/- 2.3%) was seven times higher than that in control rats (2.7% +/- 1.4%) [P < 0.01]. These findings suggest that inflammation-induced activation of ERK in the RVM may be involved in the plasticity in the descending pain modulatory system following inflammation.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Anatomy and Neurobiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City, 641-8509, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Jones TL, Sweitzer SM, Peters MC, Wilson SP, Yeomans DC. GABAB receptors on central terminals of C-afferents mediate intersegmental Adelta-afferent evoked hypoalgesia. Eur J Pain 2005; 9:233-42. [PMID: 15862472 DOI: 10.1016/j.ejpain.2004.06.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2004] [Accepted: 06/29/2004] [Indexed: 10/26/2022]
Abstract
The current study tested the hypothesis that repetitive activation of sciatic Adelta-afferents evokes a saphenous C-afferent hypoalgesia mediated by pre-synaptic GABA(B) receptors. Tonic activation of sciatic Adelta-afferents was produced by cutaneous application of dimethyl sulfoxide (DMSO) followed by repetitive thermal activation of Adelta-afferents on the dorsolateral hind paw. The tonic activation of sciatic Adelta-afferents produced hypoalgesia in saphenous C-afferents. Intrathecal administration of the GABA(B) receptor antagonist, saclofen, attenuated saphenous hypoalgesia demonstrating at least partial mediation by central GABA(B) receptors. To determine if this central GABA(B) receptor activation occurs at pre-synaptic primary afferent terminals or postsynaptic spinal cord neurons, the dorsal hind paws of mice were infected with a recombinant herpes simplex virus type 1 (HSV-1) designed to selectively knock down expression of the GABA(B1a) receptor subunit (PAGB1a) in primary afferents or a control virus encoding the E. coli lacZ gene (PZ). Four weeks after infection, GABA(B) receptor immunoreactivity in the superficial dorsal horns ipsilateral to PAGB1a application was reduced and hypoalgesia in saphenous C-afferents was attenuated when compared to PZ-infected mice. These findings indicate an intersegmental, sciatic Adelta-afferent-evoked hypoalgesic effect on saphenous C-afferent responses that is mediated by pre-synaptic GABA(B) receptors on the terminals of those C-afferents.
Collapse
Affiliation(s)
- Toni L Jones
- Anesthesia Department, Stanford University School of Medicine, CA 94305, USA
| | | | | | | | | |
Collapse
|
36
|
Imbe H, Murakami S, Okamoto K, Iwai-Liao Y, Senba E. The effects of acute and chronic restraint stress on activation of ERK in the rostral ventromedial medulla and locus coeruleus. Pain 2005; 112:361-371. [PMID: 15561392 DOI: 10.1016/j.pain.2004.09.015] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2004] [Revised: 08/18/2004] [Accepted: 09/14/2004] [Indexed: 12/20/2022]
Abstract
Extracellular signal-regulated kinase (ERK) is a key molecule in numerous cellular and physiological processes in the CNS. Exposure to stressors causes substantial effects on the perception and response to pain. The rostral ventromedial medulla (RVM) and the locus coeruleus (LC) play crucial roles in descending pain modulation system. In the present study, the activation of ERK in the RVM and the LC in rats following acute and chronic restraint stress was examined in order to characterize the mechanisms underlying stress induced analgesic and hyperalgesic responses. Rats were stressed by restraint 6h daily for 3 weeks. The acute and chronic restraint stresses produced analgesic and hyperalgesic reactions, respectively, to thermal stimuli applied to the tail. The phospho-ERK-immunoreactive (p-ERK-IR) neurons were observed in the nucleus raphe magnus (NRM), nucleus reticularis gigantocellularis pars alpha (GiA) and LC. In the RVM, the number of p-ERK-IR neurons per section in the 3-week restraint rats (14.3+/-1.2) was significantly higher than that in the control rats (8.9+/-0.7) [P<0.01]. About 75% of p-ERK-IR neurons in the RVM in the 3-week restraint rats were serotonergic neurons. Protein levels of tryptophan hydroxylase were significantly increased in the RVM region in the 3-week restraint rats. On the other hand, the chronic restraint stress significantly decreased p-ERK-IR in the LC [P<0.05]. These findings suggest that chronic restraint stress-induced activation of ERK in the RVM and the suppression in the LC may be involved in the modulation of the pain threshold by chronic stress.
Collapse
Affiliation(s)
- Hiroki Imbe
- Department of Anatomy and Neurobiology, Wakayama Medical University, Kimiidera 811-1, Wakayama City 641-8509, Japan Department of Oral Anatomy, Osaka Dental University, Kuzuhahanazono-cho 8-1, Hirakata City 573-1121, Japan
| | | | | | | | | |
Collapse
|
37
|
Stornetta RL, McQuiston TJ, Guyenet PG. GABAergic and glycinergic presympathetic neurons of rat medulla oblongata identified by retrograde transport of pseudorabies virus and in situ hybridization. J Comp Neurol 2005; 479:257-70. [PMID: 15457502 DOI: 10.1002/cne.20332] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Electron microscopy suggests that up to half the synaptic input to sympathetic preganglionic neurons (SPGNs) is GABAergic or glycinergic. A proportion of this input is suspected to originate from neurons located within the medulla oblongata. The present study provides definitive evidence for the existence of these supraspinal presympathetic (PS) neurons with inhibitory phenotypes. PS neurons were identified by retrograde trans-synaptic migration of pseudorabies virus (PRV) injected into the adrenal gland. GABAergic or glycinergic cell bodies were identified by the presence of glutamate decarboxylase (GAD)-67 mRNA or glycine transporter (GlyT)-2 mRNA detected with in situ hybridization (ISH). Neither GABAergic nor glycinergic PS neurons were tyrosine hydroxylase (TH)-immunoreactive (ir). GABAergic PS neurons were located within the ventral gigantocellular nucleus, gigantocellular nucleus alpha, and medial reticular formation, mostly medial to the TH-ir PS neurons. About 30% of GABAergic PS neurons were serotonergic cells located in the raphe pallidus (RPa) and parapyramidal region (PPyr). Glycinergic PS neurons had the same general distribution as the GABAergic cells, except that no glycinergic neurons were located in the RPa or PPyr and none were serotonergic. PRV immunohistochemistry combined with ISH for both GlyT2 and GAD-67 mRNAs showed that at least 63% of midline medulla GABAergic PS neurons were also glycinergic and 76% of glycinergic PS neurons were GABAergic. In conclusion, the rostral ventromedial medulla contains large numbers of GABAergic and glycinergic neurons that innervate adrenal gland SPGNs. Over half of these PS neurons may release both transmitters. The physiological role of this medullary inhibitory input remains to be explored.
Collapse
Affiliation(s)
- Ruth L Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | | | |
Collapse
|
38
|
Sukhotinsky I, Hopkins DA, Lu J, Saper CB, Devor M. Movement suppression during anesthesia: Neural projections from the mesopontine tegmentum to areas involved in motor control. J Comp Neurol 2005; 489:425-48. [PMID: 16025457 DOI: 10.1002/cne.20636] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microinjection of pentobarbital and GABA(A)-receptor agonists into a brainstem region we have called the mesopontine tegmental anesthesia area (MPTA; Devor and Zalkind [2001] Pain 94:101-112) induces a general anesthesia-like state. As in systemic general anesthesia, rats show loss of the righting reflex, atonia, nonresponsiveness to noxious stimuli, and apparent loss of consciousness. GABA(A) agonist anesthetics acting on the MPTA might suppress movement by engaging endogenous motor regulatory systems previously identified in research on decerebrate rigidity and REM sleep atonia. Anterograde and retrograde tracing revealed that the MPTA has multiple descending projections to pontine and medullary areas known to be associated with motor control and atonia. Prominent among these are the dorsal pontine reticular formation and components of the rostral ventromedial medulla (RVM). The MPTA also has direct projections to the intermediate gray matter and ventral horn of the spinal cord via the lateral and anterior funiculi. These projections show a rostrocaudal topography: neurons in the rostral MPTA project to the RVM, but only minimally to the spinal cord, while those in the caudal MPTA project to both targets. Finally, the MPTA has ascending projections to motor control areas including the substantia nigra, subthalamic nucleus, and the caudate-putamen. Projections are bilateral with an ipsilateral predominance. We propose that GABA(A) agonist anesthetics induce immobility at least in part by acting on these endogenous motor control pathways via the MPTA. Analysis of MPTA connectivity has the potential for furthering our understanding of the neural circuitry responsible for the various functional components of general anesthesia.
Collapse
Affiliation(s)
- Inna Sukhotinsky
- Department of Cell and Animal Biology, Institute of Life Sciences, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | | | |
Collapse
|
39
|
Babic T, Ciriello J. Medullary and spinal cord projections from cardiovascular responsive sites in the rostral ventromedial medulla. J Comp Neurol 2004; 469:391-412. [PMID: 14730590 DOI: 10.1002/cne.11024] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The rostral ventromedial medulla (RVMM) is a sympathoexcitatory area. However, little is known about its efferent projections. In this study, biotinylated dextran amine (BDA) or Phaseolus vulgaris leucoagglutinin (PHA-L) were used to investigate the medullary and spinal cord projections from pressor sites in RVMM. Initially, RVMM was systematically explored in urethane-anesthetized rats using microinjection of L-glutamate for sites that elicited increases in arterial pressure. A pressor area was identified that included the rostral magnocellular reticular and rostral lateral paragigantocellular reticular nuclei. In the second series of experiments, BDA or PHA-L was iontophoretically injected into RVMM pressor sites. Anterograde labeling was observed throughout the brainstem and spinal cord, bilaterally, but with an ipsilateral predominance. Dense labeling was observed within the nucleus of the solitary tract (NTS); the greatest density of labeling was observed in the caudal dorsolateral, medial, and ventrolateral subnuclei. Additionally, light to moderately dense labeling was found within the nucleus substantia gelatinosus and commissural nucleus. In the nucleus ambiguus/ventrolateral medullary (Amb/VLM) region, the density of labeling was greatest in caudal regions. Within Amb, most of the labeling was localized to its external formation. Anterograde labeling was also found throughout the spinal cord. In the thoracolumbar segments, dense axonal labeling was observed within the dorsolateral funiculus. These labeled axons innervated the intermediolateral nucleus and the central autonomic area. Taken together, these data suggest that RVMM neurons elicit increases in sympathetic activity by likely providing a direct excitatory input to spinal sympathetic preganglionic neurons, and by a direct inhibitory input to medullary cardioinhibitory and depressor areas.
Collapse
Affiliation(s)
- Tanja Babic
- Department of Physiology and Pharmacology, Faculty of Medicine and Dentistry, Health Sciences Centre, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | | |
Collapse
|
40
|
Simpson KL, Waterhouse BD, Lin RCS. Differential expression of nitric oxide in serotonergic projection neurons: neurochemical identification of dorsal raphe inputs to rodent trigeminal somatosensory targets. J Comp Neurol 2003; 466:495-512. [PMID: 14566945 DOI: 10.1002/cne.10912] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The dorsal raphe (DR) is invested with nitric oxide synthase (NOS)-expressing profiles. To characterize the connections of NO-containing cells and further assess neurochemical relationships maintained by DR, the transmitter identity of the raphe projection to the trigeminal somatosensory system was examined. Rats were injected with retrograde tracer into vibrissae-related target areas or with anterograde tracer into DR. NADPH-diaphorase (NADPHd) histochemistry or NOS-immunostaining was combined with serotonin (5HT)- or serotonin transporter (SERT)-immunolabeling to examine: 1) the presence of NO in 5HT-containing axons from DR; 2) the distribution of NO-containing fibers with respect to other nitrergic profiles in the somatosensory system; and 3) the propensity for individual projection neurons in specific subdivisions of DR to colocalize 5HT and NO. Results confirm that "barrel-like" patches can be identified in several adult trigeminal relay nuclei by NADPHd histochemistry and demonstrate that fibers from DR contain 5HT and NO. Observations include a high percentage of cortical midline projection neurons which contained NADPHd (70-80%) and coexpressed 5HT. In contrast, approximately 40% of retrogradely labeled DR-thalamus cells in the lateral wing demonstrated NADPHd or 5HT expression, but not both in the same neuron. Colocalization of NADPHd and 5HT within individual DR projection neurons indicates that: i) DR is a source of nitrergic input to trigeminal structures, and ii) NO and 5HT may be simultaneously released to influence information-processing within somatosensory targets. Disparities in NADPHd expression between retrogradely labeled DR neuronal subpopulations further suggest functional differences in the impact of NO on cortical and subcortical targets.
Collapse
Affiliation(s)
- Kimberly L Simpson
- Department of Anatomy, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | | | |
Collapse
|
41
|
Meléndez-Ferro M, Pérez-Costas E, Villar-Cheda B, Rodríguez-Muñoz R, Anadón R, Rodicio MC. Ontogeny of gamma-aminobutyric acid-immunoreactive neurons in the rhombencephalon and spinal cord of the sea lamprey. J Comp Neurol 2003; 464:17-35. [PMID: 12866126 DOI: 10.1002/cne.10773] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The development of neurons expressing gamma-aminobutyric acid (GABA) in the rhombencephalon and spinal cord of the sea lamprey (Petromyzon marinus) was studied for the first time with an anti-GABA antibody. The earliest GABA-immunoreactive (GABAir) neurons appear in late embryos in the basal plate of the isthmus, caudal rhombencephalon, and rostral spinal cord. In prolarvae, the GABAir neurons of the rhombencephalon appear to be distributed in spatially restricted cellular domains that, at the end of the prolarval period, form four longitudinal GABAir bands (alar dorsal, alar ventral, dorsal basal, and ventral basal). In the spinal cord, we observed only three GABAir longitudinal bands (dorsal, intermediate, and ventral). The larval pattern of GABAir neuronal populations was established by the 30-mm stage, and the same populations were observed in premetamorphic and adult lampreys. The ontogeny of GABAergic populations in the lamprey rhombencephalon and spinal cord is, in general, similar to that previously described in mouse and Xenopus.
Collapse
Affiliation(s)
- Miguel Meléndez-Ferro
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Hurley RW, Banfor P, Hammond DL. Spinal pharmacology of antinociception produced by microinjection of mu or delta opioid receptor agonists in the ventromedial medulla of the rat. Neuroscience 2003; 118:789-96. [PMID: 12710986 DOI: 10.1016/s0306-4522(03)00041-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This study examined the role of spinal GABAergic, serotoninergic and alpha(2) adrenergic receptors in the antinociception produced by the microinjection of equi-antinociceptive doses of selective opioid receptor agonists in the nucleus raphe magnus (NRM) or the nucleus reticularis gigantocellularis pars alpha (NGCpalpha) of the rat. Rats were pretreated with intrathecal administration of either the GABA(A) receptor antagonist bicuculline, the GABA(B) receptor antagonist CGP35348, the serotonin(1/2) receptor antagonist methysergide, the alpha(2) adrenergic receptor antagonist yohimbine or saline. Ten minutes later, either the delta(1) opioid receptor agonist [D-Pen(2,5)]enkephalin (DPDPE), delta(2) opioid receptor agonist [D-Ala(2),Glu(4)]deltorphin (DELT) or mu opioid receptor agonist [D-Ala(2),NMePhe(4),Gly-ol(5)]enkephalin (DAMGO) was microinjected into the NRM, NGCpalpha or sites in the medulla outside these two regions. The increase in tail-flick latency produced by microinjection of DPDPE into the NRM or NGCpalpha was antagonized by intrathecal pretreatment with either methysergide or yohimbine. Intrathecal pretreatment with CGP35348 antagonized the antinociception produced by microinjection of DPDPE in the NRM, whereas bicuculline antagonized the antinociception produced by microinjection of DPDPE in the NGCpalpha. The increase in tail-flick latency produced by microinjection of DELT into the NGCpalpha, but not the NRM was antagonized by intrathecal pretreatment with yohimbine or CGP35348. Intrathecal pretreatment with methysergide or bicuculline did not antagonize the antinociception produced by microinjection of DELT into either the NRM or the NGCpalpha. The increase in tail-flick latency produced by microinjection of DAMGO in the NRM was antagonized by intrathecal pretreatment with methysergide or CGP35348, but not by bicuculline or yohimbine. Taken together, these results support the hypothesis that the antinociception produced by activation of delta(1), delta(2) or mu opioid receptors in the rostral ventromedial medulla is mediated by different neural substrates.
Collapse
MESH Headings
- Adrenergic alpha-Antagonists/pharmacology
- Animals
- Drug Interactions/physiology
- Efferent Pathways/cytology
- Efferent Pathways/drug effects
- Efferent Pathways/metabolism
- GABA Antagonists/pharmacology
- Male
- Medulla Oblongata/cytology
- Medulla Oblongata/drug effects
- Medulla Oblongata/metabolism
- Narcotics/pharmacology
- Neurons/drug effects
- Neurons/metabolism
- Nociceptors/drug effects
- Nociceptors/metabolism
- Pain/metabolism
- Pain/physiopathology
- Rats
- Rats, Sprague-Dawley
- Reaction Time/drug effects
- Reaction Time/physiology
- Receptors, GABA/drug effects
- Receptors, GABA/metabolism
- Receptors, Opioid/agonists
- Receptors, Opioid/metabolism
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/metabolism
- Receptors, Serotonin/drug effects
- Receptors, Serotonin/metabolism
- Serotonin Antagonists/pharmacology
- Spinal Cord/cytology
- Spinal Cord/drug effects
- Spinal Cord/metabolism
Collapse
Affiliation(s)
- R W Hurley
- Department of Anesthesia and Critical Care, University of Chicago, Chicago, IL 60637, USA
| | | | | |
Collapse
|
43
|
Abstract
A possible mechanism underlying adaptive control of the respiratory system is gain modulation of the discharge frequency (F(n)) patterns of medullary respiratory neurons mediated by GABA(A) receptors. Antagonism of GABA(A) receptors with bicuculline results in an F(n) pattern that is an amplified replica of the underlying control pattern. The contours of F(n) patterns remain proportional to one another. Studies suggest that a tonic GABA(A)ergic input constrains the control- and reflexly-induced activities of these neurons to about 35-50% of the discharge rate without this inhibitory input. The pharmacology of this mechanism is unusual in that picrotoxin, a noncompetitive GABA(A) receptor antagonist, does not produce gain modulation, but is able to block the silent phase inhibition (e.g. E phase of an I neuron). Alterations in the amplitude of spike afterhyperpolarizations mediated by Ca(2+) activated K(+) channels also produces gain modulation. This mechanism modulates exogenously- and endogenously-induced neuronal activities, whereas the bicuculline-sensitive GABAergic mechanism modulates only the respiratory-related activities. Thus, these two forms of gain modulation, acting in cascade manner, may provide robust mechanisms for the optimal control of respiratory, as well as other behavioral functions (e.g. coughing, sneezing, vomiting) mediated by respiratory premotor neurons.
Collapse
Affiliation(s)
- Edward J Zuperku
- Research Service/151, Zablocki VA Medical Center, Milwaukee, WI 53295, USA.
| | | |
Collapse
|
44
|
Abstract
Upon receipt in the dorsal horn (DH) of the spinal cord, nociceptive (pain-signalling) information from the viscera, skin and other organs is subject to extensive processing by a diversity of mechanisms, certain of which enhance, and certain of which inhibit, its transfer to higher centres. In this regard, a network of descending pathways projecting from cerebral structures to the DH plays a complex and crucial role. Specific centrifugal pathways either suppress (descending inhibition) or potentiate (descending facilitation) passage of nociceptive messages to the brain. Engagement of descending inhibition by the opioid analgesic, morphine, fulfils an important role in its pain-relieving properties, while induction of analgesia by the adrenergic agonist, clonidine, reflects actions at alpha(2)-adrenoceptors (alpha(2)-ARs) in the DH normally recruited by descending pathways. However, opioids and adrenergic agents exploit but a tiny fraction of the vast panoply of mechanisms now known to be involved in the induction and/or expression of descending controls. For example, no drug interfering with descending facilitation is currently available for clinical use. The present review focuses on: (1) the organisation of descending pathways and their pathophysiological significance; (2) the role of individual transmitters and specific receptor types in the modulation and expression of mechanisms of descending inhibition and facilitation and (3) the advantages and limitations of established and innovative analgesic strategies which act by manipulation of descending controls. Knowledge of descending pathways has increased exponentially in recent years, so this is an opportune moment to survey their operation and therapeutic relevance to the improved management of pain.
Collapse
Affiliation(s)
- Mark J Millan
- Department of Psychopharmacology, Institut de Recherches Servier, 125 Chemin de Ronde, 78290 Croissy/Seine, Paris, France.
| |
Collapse
|
45
|
Gerendai I, Tóth IE, Kocsis K, Boldogkoi Z, Medveczky I, Halász B. Transneuronal labelling of nerve cells in the CNS of female rat from the mammary gland by viral tracing technique. Neuroscience 2002; 108:103-18. [PMID: 11738135 DOI: 10.1016/s0306-4522(01)00399-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using the viral transneuronal tracing technique, the cell groups in the CNS transneuronally connected with the female mammary gland were detected. Lactating and non-lactating female rats were infected with pseudorabies virus injected into the mammary gland. The other group of animals was subjected to virus injection into the skin of the back. Four days after virus injection, infected neurons detected by immunocytochemistry, were present in the dorsal root ganglia ipsilateral to inoculation and in the intermediolateral cell column of the spinal cord. In addition, a few labelled cells could be detected in the dorsal horn and in the central autonomic nucleus (lamina X) of the spinal cord. At this survival time several brain stem nuclei including the A5 noradrenergic cell group, the caudal raphe nuclei (raphe obscurus, raphe pallidus, raphe magnus), the A1/C1 noradrenergic and adrenergic cell group, the nucleus of the solitary tract, the area postrema, the gigantocellular reticular nucleus, and the locus coeruleus contained virus-infected neurons. In some animals, additional cell groups, among others the periaqueductal gray and the red nucleus displayed labelling. In the diencephalon, a significant number of virus-infected neurons could be detected in the hypothalamic paraventricular nucleus. In most cases, virus-labelled neurons were present also in the lateral hypothalamus, in the retrochiasmatic area, and in the anterior hypothalamus. In the telencephalon, in some animals a few virus-infected neurons could be found in the preoptic area, in the bed nucleus of the stria terminalis, in the central amygdala, and in the somatosensory cortex. At the longer (5 days) survival time each cell group mentioned displayed immunopositive neurons, and the number of infected cells increased. The pattern of labelling was similar in animals subjected to virus inoculation into the mammary gland and into the skin. The distribution and density of labelling was similar in lactating and non-lactating rats. The present findings provide the first morphological data on the localization of CNS structures connected with the preganglionic neurons of the sympathetic motor system innervating the mammary gland. It may be assumed that the structures found virus-infected belong to the neuronal circuitry involved in the control of the sympathetic motor innervation of the mammary gland.
Collapse
Affiliation(s)
- I Gerendai
- Hungarian Academy of Sciences and Semmelweis University, Department of Human Morphology and Developmental Biology, Budapest, Hungary
| | | | | | | | | | | |
Collapse
|
46
|
Lazarov NE. Comparative analysis of the chemical neuroanatomy of the mammalian trigeminal ganglion and mesencephalic trigeminal nucleus. Prog Neurobiol 2002; 66:19-59. [PMID: 11897404 DOI: 10.1016/s0301-0082(01)00021-1] [Citation(s) in RCA: 189] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A characteristic peculiarity of the trigeminal sensory system is the presence of two distinct populations of primary afferent neurons. Most of their cell bodies are located in the trigeminal ganglion (TG) but part of them lie in the mesencephalic trigeminal nucleus (MTN). This review compares the neurochemical content of central versus peripheral trigeminal primary afferent neurons. In the TG, two subpopulations of primary sensory neurons, containing immunoreactive (IR) material, are identified: a number of glutamate (Glu)-, substance P (SP)-, neurokinin A (NKA)-, calcitonin gene-related peptide (CGRP)-, cholecystokinin (CCK)-, somatostatin (SOM)-, vasoactive intestinal polypeptide (VIP)- and galanin (GAL)-IR ganglion cells with small and medium-sized somata, and relatively less numerous larger-sized neuropeptide Y (NPY)- and peptide 19 (PEP 19)-IR trigeminal neurons. In addition, many nitric oxide synthase (NOS)- and parvalbumin (PV)-IR cells of all sizes as well as fewer, mostly large, calbindin D-28k (CB)-containing neurons are seen. The majority of the large ganglion cells are surrounded by SP-, CGRP-, SOM-, CCK-, VIP-, NOS- and serotonin (SER)-IR perisomatic networks. In the MTN, the main subpopulation of large-sized neurons display Glu-immunoreactivity. Additionally, numerous large MTN neurons exhibit PV- and CB-immunostaining. On the other hand, certain small MTN neurons, most likely interneurons, are found to be GABAergic. Furthermore, NOS-containing neurons can be detected in the caudal and the mesencephalic-pontine junction portions of the nucleus. Conversely, no immunoreactivity to any of the examined neuropeptides is observed in the cell bodies of MTN neurons but these are encircled by peptidergic, catecholaminergic, serotonergic and nitrergic perineuronal arborizations in a basket-like manner. Such a discrepancy in the neurochemical features suggests that the differently fated embryonic migration, synaptogenesis, and peripheral and central target field innervation can possibly affect the individual neurochemical phenotypes of trigeminal primary afferent neurons.
Collapse
Affiliation(s)
- Nikolai E Lazarov
- Department of Anatomy, Faculty of Medicine, Thracian University, 11 Armejska Street, BG-6003 Stara Zagora, Bulgaria.
| |
Collapse
|
47
|
Odeh F, Antal M. The projections of the midbrain periaqueductal grey to the pons and medulla oblongata in rats. Eur J Neurosci 2001; 14:1275-86. [PMID: 11703456 DOI: 10.1046/j.0953-816x.2001.01760.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is now established that stimulation of the ventrolateral midbrain periaqueductal grey (PAG) evokes inhibition of nociceptive spinal neurons, which results in analgesia and a powerful attenuation of pain behaviour. It is postulated that the PAG exerts this inhibitory effect on spinal nociceptive functions through the activation of descending serotonergic and noradrenergic pathways that arise from the rostral ventromedial medulla (RVM) and pontine noradrenergic nuclei. To investigate the neuroanatomical substrate of this functional link between the PAG and RVM, as well as the pontine noradrenergic nuclei in the rat, we labelled axons that project from the ventrolateral PAG to various regions of the pons and medulla oblongata using the anterograde tracing substance, Phaseolus vulgaris leucoagglutinin. We demonstrated that some of PAG efferents really do terminate in the RVM and pontine noradrenergic nuclei, but a substantial proportion of them project to the intermediate subdivision of the pontobulbar reticular formation. Combining the axonal tracing with serotonin- and tyrosine-hydroxylase-immunohistochemistry, we also found that, in contrast to previous results, PAG efferents make relatively few appositions with serotonin- and tyrosine-hydroxylase-immunoreactive neurons in the RVM and pontine noradrenergic nuclei; most of them terminate in nonimmunoreactive territories. The results suggest that the ventrolateral PAG may activate a complex pontobulbar neuronal assembly including neurons in the intermediate subdivision of the pontobulbar reticular formation, serotonin- and tyrosine-hydroxylase-immunoreactive and nonimmunoreactive neurons in the RVM and pontine noradrenergic nuclei. This pontobulbar neural circuitry, then, may mediate the PAG-evoked activities towards the spinal dorsal horn resulting in the inhibition of spinal nociceptive functions.
Collapse
Affiliation(s)
- F Odeh
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, University of Debrecen, Debrecen, H-4012 Hungary
| | | |
Collapse
|
48
|
Lonstein JS, De Vries GJ. Maternal behaviour in lactating rats stimulates c-fos in glutamate decarboxylase-synthesizing neurons of the medial preoptic area, ventral bed nucleus of the stria terminalis, and ventrocaudal periaqueductal gray. Neuroscience 2001; 100:557-68. [PMID: 11098119 DOI: 10.1016/s0306-4522(00)00287-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Increased activity of the immediate-early gene c-fos can be observed in many areas of the lactating rat brain after dams physically interact with pups and display maternal behaviour. These sites include the medial preoptic area, ventral bed nucleus of the stria terminalis, and the ventrolateral caudal periaqueductal gray, each of which is critical for the normal performance of particular maternal behaviours. The phenotype of cells in these areas that show increased c-fos activity after maternal behaviour, however, is unknown. Via double-label immunocytochemistry, we determined if the population of cells in these sites that express c-fos after maternal behaviour in lactating rats overlaps with the population that expresses the 67,000 mol. wt isoform of glutamate decarboxlyase, the synthesizing enzyme for the inhibitory neurotransmitter GABA. Lactating rats were separated from pups beginning on day 5 postpartum, and 48h later half were allowed to interact with a litter of pups for 60min whereas the other half were not. Dams re-exposed to pups were highly maternal, retrieving and licking them as well as displaying prolonged nursing behaviour that included milk letdown. Both groups of dams had a similar number of 67,000 mol. wt glutamate decarboxylase-immunoreactive cells in each site, although the number of 67,000 mol. wt glutamate decarboxylase-immunoreactive cells per microscopic field was significantly greater in the caudal ventrolateral periaqueductal gray than in the ventral bed nucleus of the stria terminalis, which in turn was greater than the medial preoptic area. In pup-stimulated dams, two to fourfold more Fos-immunoreactive cells were found in these three sites compared with non-stimulated controls. Labeling for Fos immunoreactivity and 67,000 mol. wt glutamate decarboxylase immunoreactivity was heterogeneous within each site. In the medial preoptic area, more Fos-immunoreactive and 67,000 mol. wt glutamate decarboxylase-immunoreactive cells (either single or dual-labeled) were found dorsally than ventrally. In the ventral bed nucleus of the stria terminalis, more Fos-immunoreactive and 67,000 mol. wt glutamate decarboxylase-immunoreactive cells were found medially than laterally. Within the caudal ventrolateral periaqueductal gray, 67,000 mol. wt glutamate decarboxylase-immunoreactive labeling was greatest ventromedially, while high numbers of Fos-immunoreactive nuclei were found both ventromedially and ventrolaterally. In pup-stimulated dams, more than half (53% in the medial preoptic area, 59% in the ventral bed nucleus of the stria terminalis, and 61% in the caudal ventrolateral periaqueductal gray) of the total population of Fos-immunoreactive cells also expressed 67,000 mol. wt glutamate decarboxylase. These results suggest that many of the neurons in these sites that show elevated c-fos activity after maternal behaviour are either local inhibitory interneurons or provide inhibitory input to other neural sites. These inhibitory mechanisms may be critical for the display of postpartum nurturance, possibly facilitating maternal behaviour by removing tonic inhibition on sites necessary for maternal responding or by restricting activity in neural sites that inhibit it.
Collapse
Affiliation(s)
- J S Lonstein
- Center for Neuroendocrine Studies, Tobin Hall, Box 37720, University of Massachusetts, Amherst, MA 01003, USA.
| | | |
Collapse
|
49
|
Nosaka S, Murata K, Kobayashi M, Cheng ZB, Maruyama J. Inhibition of baroreflex vagal bradycardia by activation of the rostral ventrolateral medulla in rats. Am J Physiol Heart Circ Physiol 2000; 279:H1239-47. [PMID: 10993790 DOI: 10.1152/ajpheart.2000.279.3.h1239] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In stressful conditions, baroreflex vagal bradycardia (BVB) is often suppressed while blood pressure is increased. To address the role of the rostral ventrolateral medulla (RVL), a principal source of sympathetic tone, in inhibition of BVB, we microinjected DL-homocysteic acid (DLH, 6 nmol) into the RVL of chloralose-urethan-anesthetized, sinoaortic-denervated rats to examine the effect on BVB. The BVB was provoked by electrical stimulation of the aortic depressor nerve ipsilateral to the injection sites. DLH microinjection was found to suppress BVB while increasing blood pressure. The inhibition of BVB was observed even during the early phase in which DLH transiently suppressed central inspiratory activity. The inhibition was not affected either by upper spinal cord transection or suprapontine decerebration. Similar results were obtained by microinjection of bicuculline methiodide (160 pmol), a GABA antagonist, into the RVL of carotid sinus nerve-preserved rats due to withdrawal of a tonic GABA-mediated, inhibitory influence including the input from arterial baroreceptors. In conclusion, activation of the RVL inhibits BVB at brain stem level independently of central inspiratory drive.
Collapse
Affiliation(s)
- S Nosaka
- Department of Physiology, Mie University School of Medicine, Tsu, Mie 514-8507, Japan.
| | | | | | | | | |
Collapse
|
50
|
c-Fos expression in GABAergic, serotonergic, and other neurons of the pontomedullary reticular formation and raphe after paradoxical sleep deprivation and recovery. J Neurosci 2000. [PMID: 10844036 DOI: 10.1523/jneurosci.20-12-04669.2000] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The brainstem contains the neural systems that are necessary for the generation of the state of paradoxical sleep (PS) and accompanying muscle atonia. Important for its initiation are the pontomesencephalic cholinergic neurons that project into the pontomedullary reticular formation and that we have recently shown increase c-Fos expression as a reflection of neural activity in association with PS rebound after deprivation in rats (Maloney et al. , 1999). As a continuation, we examined in the present study c-Fos expression in the pontomedullary reticular and raphe neurons, including importantly GABAergic neurons [immunostained for glutamic acid decarboxylase (GAD)] and serotonergic neurons [immunostained for serotonin (Ser)]. Numbers of single-labeled c-Fos+ neurons were significantly increased with PS rebound only in the pars oralis of the pontine reticular nuclei (PnO), where numbers of GAD+/c-Fos+ neurons were conversely significantly decreased. c-Fos+ neurons were positively correlated with PS, whereas GAD+/c-Fos+ neurons were negatively correlated with PS, suggesting that disinhibition of reticular neurons in the PnO from locally projecting GABAergic neurons may be important in the generation of PS. In contrast, through the caudal pons and medulla, GAD+/c-Fos+ cells were increased with PS rebound, covaried positively with PS and negatively with the electromyogram (EMG). In the raphe pallidus-obscurus, Ser+/c-Fos+ neurons were positively correlated, in a reciprocal manner to GAD+/c-Fos+ cells, with EMG, suggesting that disfacilitation by removal of a serotonergic influence and inhibition by imposition of a GABAergic influence within the lower brainstem and spinal cord may be important in the development of muscle atonia accompanying PS.
Collapse
|