1
|
van der Heijden ME. Converging and Diverging Cerebellar Pathways for Motor and Social Behaviors in Mice. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1754-1767. [PMID: 38780757 PMCID: PMC11489171 DOI: 10.1007/s12311-024-01706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Evidence from clinical and preclinical studies has shown that the cerebellum contributes to cognitive functions, including social behaviors. Now that the cerebellum's role in a wider range of behaviors has been confirmed, the question arises whether the cerebellum contributes to social behaviors via the same mechanisms with which it modulates movements. This review seeks to answer whether the cerebellum guides motor and social behaviors through identical pathways. It focuses on studies in which cerebellar cells, synapses, or genes are manipulated in a cell-type specific manner followed by testing of the effects on social and motor behaviors. These studies show that both anatomically restricted and cerebellar cortex-wide manipulations can lead to social impairments without abnormal motor control, and vice versa. These studies suggest that the cerebellum employs different cellular, synaptic, and molecular pathways for social and motor behaviors. Future studies warrant a focus on the diverging mechanisms by which the cerebellum contributes to a wide range of neural functions.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Fralin Biomedical Research Institute, Virginia Tech Carilion, Roanoke, VA, USA.
- Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, USA.
- School of Neuroscience, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
2
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
3
|
Beekhof GC, Osório C, White JJ, van Zoomeren S, van der Stok H, Xiong B, Nettersheim IH, Mak WA, Runge M, Fiocchi FR, Boele HJ, Hoebeek FE, Schonewille M. Differential spatiotemporal development of Purkinje cell populations and cerebellum-dependent sensorimotor behaviors. eLife 2021; 10:63668. [PMID: 33973524 PMCID: PMC8195607 DOI: 10.7554/elife.63668] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Distinct populations of Purkinje cells (PCs) with unique molecular and connectivity features are at the core of the modular organization of the cerebellum. Previously, we showed that firing activity of PCs differs between ZebrinII-positive and ZebrinII-negative cerebellar modules (Zhou et al., 2014; Wu et al., 2019). Here, we investigate the timing and extent of PC differentiation during development in mice. We found that several features of PCs, including activity levels, dendritic arborization, axonal shape and climbing fiber input, develop differentially between nodular and anterior PC populations. Although all PCs show a particularly rapid development in the second postnatal week, anterior PCs typically have a prolonged physiological and dendritic maturation. In line herewith, younger mice exhibit attenuated anterior-dependent eyeblink conditioning, but faster nodular-dependent compensatory eye movement adaptation. Our results indicate that specific cerebellar regions have unique developmental timelines which match with their related, specific forms of cerebellum-dependent behaviors.
Collapse
Affiliation(s)
| | - Catarina Osório
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Joshua J White
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Bilian Xiong
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | | | - Marit Runge
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Henk-Jan Boele
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Princeton Neuroscience Institute, Princeton, United States
| | - Freek E Hoebeek
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Department for Developmental Origins of Disease, University Medical Center Utrecht Brain Center and Wilhelmina Children's Hospital, Utrecht, Netherlands
| | | |
Collapse
|
4
|
van der Heijden ME, Sillitoe RV. Interactions Between Purkinje Cells and Granule Cells Coordinate the Development of Functional Cerebellar Circuits. Neuroscience 2021; 462:4-21. [PMID: 32554107 PMCID: PMC7736359 DOI: 10.1016/j.neuroscience.2020.06.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 06/02/2020] [Accepted: 06/05/2020] [Indexed: 02/06/2023]
Abstract
Cerebellar development has a remarkably protracted morphogenetic timeline that is coordinated by multiple cell types. Here, we discuss the intriguing cellular consequences of interactions between inhibitory Purkinje cells and excitatory granule cells during embryonic and postnatal development. Purkinje cells are central to all cerebellar circuits, they are the first cerebellar cortical neurons to be born, and based on their cellular and molecular signaling, they are considered the master regulators of cerebellar development. Although rudimentary Purkinje cell circuits are already present at birth, their connectivity is morphologically and functionally distinct from their mature counterparts. The establishment of the Purkinje cell circuit with its mature firing properties has a temporal dependence on cues provided by granule cells. Granule cells are the latest born, yet most populous, neuronal type in the cerebellar cortex. They provide a combination of mechanical, molecular and activity-based cues that shape the maturation of Purkinje cell structure, connectivity and function. We propose that the wiring of Purkinje cells for function falls into two developmental phases: an initial phase that is guided by intrinsic mechanisms and a later phase that is guided by dynamically-acting cues, some of which are provided by granule cells. In this review, we highlight the mechanisms that granule cells use to help establish the unique properties of Purkinje cell firing.
Collapse
Affiliation(s)
- Meike E van der Heijden
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA; Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
5
|
Lackey EP, Sillitoe RV. Eph/ephrin Function Contributes to the Patterning of Spinocerebellar Mossy Fibers Into Parasagittal Zones. Front Syst Neurosci 2020; 14:7. [PMID: 32116578 PMCID: PMC7033604 DOI: 10.3389/fnsys.2020.00007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/24/2020] [Indexed: 12/14/2022] Open
Abstract
Purkinje cell microcircuits perform diverse functions using widespread inputs from the brain and spinal cord. The formation of these functional circuits depends on developmental programs and molecular pathways that organize mossy fiber afferents from different sources into a complex and precisely patterned map within the granular layer of the cerebellum. During development, Purkinje cell zonal patterns are thought to guide mossy fiber terminals into zones. However, the molecular mechanisms that mediate this process remain unclear. Here, we used knockout mice to test whether Eph/ephrin signaling controls Purkinje cell-mossy fiber interactions during cerebellar circuit formation. Loss of ephrin-A2 and ephrin-A5 disrupted the patterning of spinocerebellar terminals into discrete zones. Zone territories in the granular layer that normally have limited spinocerebellar input contained ectopic terminals in ephrin-A2 -/-;ephrin-A5 -/- double knockout mice. However, the overall morphology of the cerebellum, lobule position, and Purkinje cell zonal patterns developed normally in the ephrin-A2 -/-;ephrin-A5 -/- mutant mice. This work suggests that communication between Purkinje cell zones and mossy fibers during postnatal development allows contact-dependent molecular cues to sharpen the innervation of sensory afferents into functional zones.
Collapse
Affiliation(s)
- Elizabeth P Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States
| | - Roy V Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, United States.,Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX, United States.,Developmental Biology Graduate Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Beckinghausen J, Sillitoe RV. Insights into cerebellar development and connectivity. Neurosci Lett 2018; 688:2-13. [PMID: 29746896 DOI: 10.1016/j.neulet.2018.05.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 05/04/2018] [Accepted: 05/06/2018] [Indexed: 02/06/2023]
Abstract
The cerebellum has a well-established role in controlling motor functions such coordination, balance, posture, and skilled learning. There is mounting evidence that it might also play a critical role in non-motor functions such as cognition and emotion. It is therefore not surprising that cerebellar defects are associated with a wide array of diseases including ataxia, dystonia, tremor, schizophrenia, dyslexia, and autism spectrum disorder. What is intriguing is that a seemingly uniform circuit that is often described as being "simple" should carry out all of these behaviors. Analyses of how cerebellar circuits develop have revealed that such descriptions massively underestimate the complexity of the cerebellum. The cerebellum is in fact highly patterned and organized around a series of parasagittal stripes and transverse zones. This topographic architecture partitions all cerebellar circuits into functional modules that are thought to enhance processing power during cerebellar dependent behaviors. What are arguably the most remarkable features of cerebellar topography are the developmental processes that produce them. This review is concerned with the genetic and cellular mechanisms that orchestrate cerebellar patterning. We place a major focus on how Purkinje cells control multiple aspects of cerebellar circuit assembly. Using this model, we discuss evidence for how "zebra-like" patterns in Purkinje cells sculpt the cerebellum, how specific genetic cues mediate the process, and how activity refines the patterns into an adult map that is capable of executing various functions. We also discuss how defective Purkinje cell patterning might impact the pathogenesis of neurological conditions.
Collapse
Affiliation(s)
- Jaclyn Beckinghausen
- Department of Pathology and Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute of TX Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA
| | - Roy V Sillitoe
- Department of Pathology and Immunology, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Department of Neuroscience, 1250 Moursund Street, Suite 1325, Houston, TX 77030, USA; Program in Developmental Biology, Baylor College of Medicine, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA; Jan and Dan Duncan Neurological Research Institute of TX Children's Hospital, 1250 Moursund Street, Suite 1325, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Vibulyaseck S, Luo Y, Fujita H, Oh-Nishi A, Ohki-Hamazaki H, Sugihara I. Compartmentalization of the chick cerebellar cortex based on the link between the striped expression pattern of aldolase C and the topographic olivocerebellar projection. J Comp Neurol 2015; 523:1886-912. [DOI: 10.1002/cne.23769] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 02/24/2015] [Accepted: 02/25/2015] [Indexed: 11/08/2022]
Affiliation(s)
- Suteera Vibulyaseck
- Department of Systems Neurophysiology; Graduate School; Tokyo Medical and Dental University; Tokyo 113-8519 Japan
| | - Yuanjun Luo
- Department of Systems Neurophysiology; Graduate School; Tokyo Medical and Dental University; Tokyo 113-8519 Japan
| | - Hirofumi Fujita
- Department of Systems Neurophysiology; Graduate School; Tokyo Medical and Dental University; Tokyo 113-8519 Japan
- Department of Otolaryngology-Head and Neck Surgery; Johns Hopkins University School of Medicine; Baltimore Maryland 21205 USA
| | - Arata Oh-Nishi
- Molecular Neuroimaging Program; Molecular Imaging Center; National Institute of Radiological Sciences; Chiba 263-8555 Japan
| | - Hiroko Ohki-Hamazaki
- Division of Biology; College of Liberal Arts and Sciences; Kitasato University; Sagamihara Kanagawa 252-0373 Japan
| | - Izumi Sugihara
- Department of Systems Neurophysiology; Graduate School; Tokyo Medical and Dental University; Tokyo 113-8519 Japan
- Center for Brain Integration Research; Tokyo Medical and Dental University; Tokyo 113-8519 Japan
| |
Collapse
|
8
|
Redefining the cerebellar cortex as an assembly of non-uniform Purkinje cell microcircuits. Nat Rev Neurosci 2015; 16:79-93. [PMID: 25601779 DOI: 10.1038/nrn3886] [Citation(s) in RCA: 199] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The adult mammalian cerebellar cortex is generally assumed to have a uniform cytoarchitecture. Differences in cerebellar function are thought to arise primarily through distinct patterns of input and output connectivity rather than as a result of variations in cortical microcircuitry. However, evidence from anatomical, physiological and genetic studies is increasingly challenging this orthodoxy, and there are now various lines of evidence indicating that the cerebellar cortex is not uniform. Here, we develop the hypothesis that regional differences in properties of cerebellar cortical microcircuits lead to important differences in information processing.
Collapse
|
9
|
Pakan JMP, Graham DJ, Wylie DR. Climbing fiber projections in relation to zebrin stripes in the ventral uvula in pigeons. J Comp Neurol 2014; 522:3629-43. [PMID: 24825798 DOI: 10.1002/cne.23626] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 05/05/2014] [Accepted: 05/06/2014] [Indexed: 11/09/2022]
Abstract
The cerebellum consists of sagittally oriented zones that are delineated by afferent input, Purkinje cell response properties, and the expression of molecular markers such as zebrin II (ZII). ZII is heterogeneously expressed in Purkinje cells such that there are parasagittal stripes of high expression (ZII+) interdigitated with stripes of little or no expression (ZII-). In pigeons, folium IXcd consists of seven pairs of ZII+/- stripes denoted P1+/- (medial) to P7+/- (lateral). In the present study we examined the climbing fiber input to the medial half of folium IXcd, the ventral uvula, which spans the medial two stripe pairs (P1+/- to P2+/-). Purkinje cells in the ventral uvula respond to patterns of optic flow resulting from self-motion through the environment along translational axes and their climbing fibers originate in the lateral half of the medial column in the inferior olive (mcIO). Using anterograde injections into this region of the mcIO, we found the following topographic relationship: climbing fibers from the caudal lateral mcIO were located in P1+ and medial P1- ZII stripes; climbing fibers from the rostral lateral mcIO were located in lateral P2+ and P2- ZII stripes, and climbing fibers from the middle lateral mcIO were located in lateral P1- and medial P2+ ZII stripes. These data complement our previous findings showing a topographic relationship between Purkinje cell responses to optic flow visual stimuli and ZII stripes. Taken together, we suggest that a ZII+/- stripe pair may represent a functional unit in the pigeon vestibulocerebellum.
Collapse
|
10
|
Affiliation(s)
| | - Richard Hawkes
- Department of Cell Biology and Anatomy, Genes and Development Research Group and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary
| |
Collapse
|
11
|
Clustered fine compartmentalization of the mouse embryonic cerebellar cortex and its rearrangement into the postnatal striped configuration. J Neurosci 2013; 32:15688-703. [PMID: 23136409 DOI: 10.1523/jneurosci.1710-12.2012] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Compartmentalization is essential for a brain area to be involved in different functions through topographic afferent and efferent connections that reflect this organization. The adult cerebellar cortex is compartmentalized into longitudinal stripes, in which Purkinje cells (PCs) have compartment-specific molecular expression profiles. How these compartments form during development is generally not understood. To investigate this process, we focused on the late developmental stages of the cerebellar compartmentalization that occur from embryonic day 17.5 (E17.5), when embryonic compartmentalization is evidently observed, to postnatal day 6 (P6), when adult-type compartmentalization begins to be established. The transformation between these compartmentalization patterns was analyzed by mapping expression patterns of several key molecular markers in serial cerebellar sections in the mouse. A complete set of 54 clustered PC subsets, which had different expression profiles of FoxP2, PLCβ4, EphA4, Pcdh10, and a reporter molecule of the 1NM13 transgenic mouse strain, were distinguished in three-dimensional space in the E17.5 cerebellum. Following individual PC subsets during development indicated that these subsets were rearranged from a clustered and multilayered configuration to a flattened, single-layered and striped configuration by means of transverse slide, longitudinal split, or transverse twist spatial transformations during development. The Purkinje cell-free spaces that exist between clusters at E17.5 become granule cell raphes that separate striped compartments at P6. The results indicate that the ∼50 PC clusters of the embryonic cerebellum will ultimately become the longitudinal compartments of the adult cerebellum after undergoing various peri- and postnatal transformations that alter their relative spatial relationships.
Collapse
|
12
|
Consalez GG, Hawkes R. The compartmental restriction of cerebellar interneurons. Front Neural Circuits 2013; 6:123. [PMID: 23346049 PMCID: PMC3551280 DOI: 10.3389/fncir.2012.00123] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 12/26/2012] [Indexed: 11/13/2022] Open
Abstract
The Purkinje cells (PC's) of the cerebellar cortex are subdivided into multiple different molecular phenotypes that form an elaborate array of parasagittal stripes. This array serves as a scaffold around which afferent topography is organized. The ways in which cerebellar interneurons may be restricted by this scaffolding are less well-understood. This review begins with a brief survey of cerebellar topography. Next, it reviews the development of stripes in the cerebellum with a particular emphasis on the embryological origins of cerebellar interneurons. These data serve as a foundation to discuss the hypothesis that cerebellar compartment boundaries also restrict cerebellar interneurons, both excitatory [granule cells, unipolar brush cells (UBCs)] and inhibitory (e.g., Golgi cells, basket cells). Finally, it is proposed that the same PC scaffold that restricts afferent terminal fields to stripes may also act to organize cerebellar interneurons.
Collapse
Affiliation(s)
- G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute Milan, Italy
| | | |
Collapse
|
13
|
Purkinje cell compartmentalization in the cerebellum of the spontaneous mutant mouse dreher. Brain Struct Funct 2012; 219:35-47. [PMID: 23160833 DOI: 10.1007/s00429-012-0482-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 11/01/2012] [Indexed: 12/19/2022]
Abstract
The cerebellar morphological phenotype of the spontaneous neurological mutant mouse dreher (Lmx1a(dr-J)) results from cell fate changes in dorsal midline patterning involving the roof plate and rhombic lip. Positional cloning revealed that the gene Lmx1a, which encodes a LIM homeodomain protein, is mutated in dreher, and is expressed in the developing roof plate and rhombic lip. Loss of Lmx1a causes reduction of the roof plate, an important embryonic signaling center, and abnormal cell fate specification within the embryonic cerebellar rhombic lip. In adult animals, these defects result in variable, medial fusion of the cerebellar vermis and posterior cerebellar vermis hypoplasia. It is unknown whether deleting Lmx1a results in displacement or loss of specific lobules in the vermis. To distinguish between an ectopic and absent vermis, the expression patterns of two Purkinje cell-specific compartmentation antigens, zebrin II/aldolase C and the small heat shock protein HSP25 were analyzed in dreher cerebella. The data reveal that despite the reduction in volume and abnormal foliation of the cerebellum, the transverse zones and parasagittal stripe arrays characteristic of the normal vermis are present in dreher, but may be highly distorted. In dreher mutants with a severe phenotype, zebrin II stripes are fragmented and distributed non-symmetrically about the cerebellar midline. We conclude that although Purkinje cell agenesis or selective Purkinje cell death may contribute to the dreher phenotype, our data suggest that aberrant anlage patterning and granule cell development lead to Purkinje cell ectopia, which ultimately causes abnormal cerebellar architecture in dreher.
Collapse
|
14
|
Dastjerdi FV, Consalez GG, Hawkes R. Pattern formation during development of the embryonic cerebellum. Front Neuroanat 2012; 6:10. [PMID: 22493569 PMCID: PMC3318227 DOI: 10.3389/fnana.2012.00010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 03/14/2012] [Indexed: 12/04/2022] Open
Abstract
The patterning of the embryonic cerebellum is vital to establish the elaborate zone and stripe architecture of the adult. This review considers early stages in cerebellar Purkinje cell patterning, from the organization of the ventricular zone to the development of Purkinje cell clusters—the precursors of the adult stripes.
Collapse
Affiliation(s)
- F V Dastjerdi
- Faculty of Medicine, Department of Cell Biology and Anatomy, Genes and Development Research Group, Hotchkiss Brain Institute, University of Calgary, Calgary AB, Canada
| | | | | |
Collapse
|
15
|
Armstrong CL, Chung SH, Armstrong JN, Hochgeschwender U, Jeong YG, Hawkes R. A novel somatostatin-immunoreactive mossy fiber pathway associated with HSP25-immunoreactive purkinje cell stripes in the mouse cerebellum. J Comp Neurol 2009; 517:524-38. [PMID: 19795496 DOI: 10.1002/cne.22167] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Somatostatin 28 immunoreactivity (Sst28-ir) identifies a specific subset of mossy fiber terminals in the adult mouse cerebellum. By using double-labeling immunohistochemistry, we determined that Sst28-ir is associated with presynaptic mossy fiber terminal rosettes, and not Purkinje cells, Golgi cells, or unipolar brush cells. Sst28-ir mossy fibers are restricted to the central zone (lobules VI/VII) and nodular zone (lobules IX, X) of the vermis, and the paraflocculus and flocculus. Within each transverse zone the mossy fiber terminal fields form a reproducible array of parasagittal stripes. The boundaries of Sst28-ir stripes align with a specific array of Purkinje cell stripes revealed by using immunocytochemistry for the small heat shock protein HSP25. In the cerebellum of the homozygous weaver mouse, in which a subpopulation of HSP25-ir Purkinje cells are located ectopically, the corresponding Sst28-ir mossy fiber projection is also ectopic, suggesting a role for a specific Purkinje cell subset in afferent pattern formation. Likewise, in the scrambler mutant mouse, Sst28-ir mossy fibers show a very close association with HSP25-ir Purkinje cell clusters. HSP25 itself does not appear to be critical for normal patterning, however: in the KJR mouse, which does not express cerebellar HSP25, Sst28 expression appears to be normal. Likewise, the Purkinje cell patterning antigens zebrin II and HSP25 are expressed normally in both Sst- and Sst-receptor knockout mice, suggesting that somatostatinergic transmission is not necessary for Purkinje cell stripe formation.
Collapse
Affiliation(s)
- C L Armstrong
- Department of Biomedical Science, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | | | | | | | | | | |
Collapse
|
16
|
Chung SH, Sillitoe R, Croci L, Badaloni A, Consalez G, Hawkes R. Purkinje cell phenotype restricts the distribution of unipolar brush cells. Neuroscience 2009; 164:1496-508. [DOI: 10.1016/j.neuroscience.2009.09.080] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Revised: 09/18/2009] [Accepted: 09/28/2009] [Indexed: 10/20/2022]
|
17
|
|
18
|
Zordan P, Croci L, Hawkes R, Consalez GG. Comparative analysis of proneural gene expression in the embryonic cerebellum. Dev Dyn 2008; 237:1726-35. [PMID: 18498101 DOI: 10.1002/dvdy.21571] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The embryonic cerebellum contains two germinative epithelia: the rhombic lip and the ventricular zone. While the lineage of glutamatergic neurons arising from the rhombic lip has been characterized, plenty remains to be learned about the factors giving rise to the array of ventricular zone-derived gamma-aminobutyric acid (GABA)ergic neurons. In the present study, we describe the expression of proneural genes Mash1/Ascl1, Ngn1/Neurog1, and Ngn2/Neurog2 in the cerebellar primordium at key stages of Purkinje cell and interneuron development, and compare them with the expression of other genes active in the same context. Our results indicate that Ngn1, Ngn2 and Mash1 are expressed at relevant stages of cerebellar neurogenesis in the prospective cerebellar nuclei and in the ventricular zone, excluding the Math1/Atoh1-positive rhombic lip. Their expression domains are only partially overlapping, suggesting that they may contribute selectively to ventricular zone regionalization, giving rise to the diversity of cerebellar GABA neurons and, possibly, Purkinje cell subtypes.
Collapse
Affiliation(s)
- Paola Zordan
- San Raffaele Scientific Institute and San Raffaele University, Milan, Italy
| | | | | | | |
Collapse
|
19
|
Golgi cell dendrites are restricted by Purkinje cell stripe boundaries in the adult mouse cerebellar cortex. J Neurosci 2008; 28:2820-6. [PMID: 18337412 DOI: 10.1523/jneurosci.4145-07.2008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the general uniformity in cellular composition of the adult cerebellar cortex, there is a complex underlying pattern of parasagittal stripes of Purkinje cells with characteristic molecular phenotypes and patterns of connectivity. It is not known whether interneuron processes are restricted at stripe boundaries. To begin to address the issue, three strategies were used to explore how cerebellar Golgi cell dendrites are organized with respect to parasagittal stripes: first, double immunofluorescence staining combining anti-neurogranin to identify Golgi cell dendrites with the Purkinje cell compartmentation antigens zebrin II/aldolase C, HNK-1, and phospholipase Cbeta4; second, zebrin II immunohistochemistry combined with a rapid Golgi-Cox impregnation procedure to reveal Golgi cell dendritic arbors; third, stripe antigen expression was used on sections of a GlyT2-EGFP transgenic mouse in which reporter expression is prominent in Golgi cell dendrites. In each case, the dendritic projections of Golgi cells were studied in the vicinity of Purkinje cell stripe boundaries. The data presented here show that the dendrites of a cerebellar interneuron, the Golgi cell, respect the fundamental cerebellar stripe cytoarchitecture.
Collapse
|
20
|
Sillitoe RV, Joyner AL. Morphology, molecular codes, and circuitry produce the three-dimensional complexity of the cerebellum. Annu Rev Cell Dev Biol 2007; 23:549-77. [PMID: 17506688 DOI: 10.1146/annurev.cellbio.23.090506.123237] [Citation(s) in RCA: 282] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The most noticeable morphological feature of the cerebellum is its folded appearance, whereby fissures separate its anterior-posterior extent into lobules. Each lobule is molecularly coded along the medial-lateral axis by parasagittal stripes of gene expression in one cell type, the Purkinje cells (PCs). Additionally, within each lobule distinct combinations of afferents terminate and supply the cerebellum with synchronized sensory and motor information. Strikingly, afferent terminal fields are organized into parasagittal domains, and this pattern bears a close relationship to PC molecular coding. Thus, cerebellum three-dimensional complexity obeys a basic coordinate system that can be broken down into morphology and molecular coding. In this review, we summarize the sequential stages of cerebellum development that produce its laminar structure, foliation, and molecular organization. We also introduce genes that regulate morphology and molecular coding, and discuss the establishment of topographical circuits within the context of the two coordinate systems. Finally, we discuss how abnormal cerebellar organization may result in neurological disorders like autism.
Collapse
Affiliation(s)
- Roy V Sillitoe
- Developmental Biology Program, Sloan-Kettering Institute, New York, NY 10021, USA.
| | | |
Collapse
|
21
|
Pakan JMP, Iwaniuk AN, Wylie DRW, Hawkes R, Marzban H. Purkinje cell compartmentation as revealed by Zebrin II expression in the cerebellar cortex of pigeons (Columba livia). J Comp Neurol 2007; 501:619-30. [PMID: 17278140 DOI: 10.1002/cne.21266] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Purkinje cells in the cerebellum express the antigen zebrin II (aldolase C) in many vertebrates. In mammals, zebrin is expressed in a parasagittal fashion, with alternating immunopositive and immunonegative stripes. Whether a similar pattern is expressed in birds is unknown. Here we present the first investigation into zebrin II expression in a bird: the adult pigeon (Columba livia). Western blotting of pigeon cerebellar homogenates reveals a single polypeptide with an apparent molecular weight of 36 kDa that is indistinguishable from zebrin II in the mouse. Zebrin II expression in the pigeon cerebellum is prominent in Purkinje cells, including their dendrites, somata, axons, and axon terminals. Parasagittal stripes were apparent with bands of Purkinje cells that strongly expressed zebrin II (+ve) alternating with bands that expressed zebrin II weakly or not at all (-ve). The stripes were most prominent in folium IXcd, where there were seven +ve/-ve stripes, bilaterally. In folia VI-IXab, several thin stripes were observed spanning the mediolateral extent of the folia, including three pairs of +ve/-ve stripes that extended across the lateral surface of the cerebellum. In folium VI the zebrin II expression in Purkinje cells was stronger overall, resulting in less apparent stripes. In folia II-V, four distinct +ve/-ve stripes were apparent. Finally, in folia I (lingula) and X (nodulus) all Purkinje cells strongly expressed zebrin II. These data are compared with studies of zebrin II expression in other species, as well as physiological and neuroanatomical studies that address the parasagittal organization of the pigeon cerebellum.
Collapse
Affiliation(s)
- Janelle M P Pakan
- University Centre for Neuroscience, University of Alberta, Edmonton, Alberta T6G 2E9, Canada.
| | | | | | | | | |
Collapse
|
22
|
Croci L, Chung SH, Masserdotti G, Gianola S, Bizzoca A, Gennarini G, Corradi A, Rossi F, Hawkes R, Consalez GG. A key role for the HLH transcription factor EBF2COE2,O/E-3 in Purkinje neuron migration and cerebellar cortical topography. Development 2006; 133:2719-29. [PMID: 16774995 DOI: 10.1242/dev.02437] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Early B-cell factor 2 (EBF2) is one of four mammalian members of an atypical helix-loop-helix transcription factor family (COE). COE proteins have been implicated in various aspects of nervous and immune system development. We and others have generated and described mice carrying a null mutation of Ebf2, a gene previously characterized in the context of Xenopus laevis primary neurogenesis and neuronal differentiation. In addition to deficits in neuroendocrine and olfactory development, and peripheral nerve maturation, Ebf2 null mice feature an ataxic gait and obvious motor deficits associated with clear-cut abnormalities of cerebellar development. The number of Purkinje cells (PCs) in the Ebf2 null is markedly decreased, resulting in a small cerebellum with notable foliation defects,particularly in the anterior vermis. We show that this stems from the defective migration of a molecularly defined PC subset that subsequently dies by apoptosis. Part of the striped cerebellar topography is disrupted due to cell death and, in addition, many of the surviving PCs, that would normally adopt a zebrin II-negative phenotype, transdifferentiate to Zebrin II-positive, an unprecedented finding suggesting that Ebf2 is required for the establishment of a proper cerebellar cortical map.
Collapse
Affiliation(s)
- Laura Croci
- San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Larouche M, Hawkes R. From clusters to stripes: The developmental origins of adult cerebellar compartmentation. THE CEREBELLUM 2006; 5:77-88. [PMID: 16818382 DOI: 10.1080/14734220600804668] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Many aspects of the adult cerebellum are organized into parasagittal stripes, including several types of neurons and prominent afferent and efferent projections. Purkinje cells are the best-studied example of parasagittal organization in the cerebellum and, in particular, zebrin II/aldolase C is the stereotypical molecular marker of Purkinje cell stripe heterogeneity in the adult. Zebrin II is a member of the so-called 'late-onset' class of parasagittal markers, which are first expressed shortly after the birth of the mouse and do not reach maturity until 2-3 weeks postnatal. In contrast, 'early-onset' pattern markers are expressed in ordered Purkinje cell clusters in the embryonic cerebellum but become expressed homogeneously shortly after birth. The approximately 10 day temporal gap between the patterned expression of early and late markers has impeded the identification of putative genealogical relationships between clusters and stripes. This review will describe Purkinje cell patterns and their transitions, and critically discuss the evidence for genealogical relationships between early and late patterns.
Collapse
Affiliation(s)
- Matt Larouche
- Department of Cell Biology and Anatomy, Genes and Development Research Group, Hotchkiss Brain Institute, Faculty of Medicine, The University of Calgary, Calgary, Alberta, Canada
| | | |
Collapse
|
24
|
Larouche M, Che PM, Hawkes R. Neurogranin expression identifies a novel array of Purkinje cell parasagittal stripes during mouse cerebellar development. J Comp Neurol 2006; 494:215-27. [PMID: 16320235 DOI: 10.1002/cne.20791] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Markers that reveal the parasagittal organization of cerebellar Purkinje cells may be grouped into two classes based on the time during development when they are expressed. In mice, early-onset markers are defined by their heterogeneous expression in clusters of Purkinje cells during late embryogenesis, which disappears shortly following birth. Late-onset markers are generally not expressed until about 1 week after birth and do not reach a stable striped expression pattern until about 3 weeks postnatally. Currently, no endogenous markers are known that are heterogeneously expressed in the temporal gap between these two classes. Here we present immunocytochemical evidence that parasagittal stripes of Purkinje cells express a member of the calpacitin protein family, neurogranin, possibly from as early as embryonic day (E) 13 and definitively from E15, in a pattern that persists up to postnatal day (P) 20. Neurogranin is thus the first endogenous marker of a Purkinje cell subset capable of bridging the temporal gap between the early- and late-onset patterns. In the early neonate, up to five pairs of neurogranin-immunopositive Purkinje cell stripes run parasagittally through the cerebellum, with the exact number dependent on the rostrocaudal position. Expression is lost during postnatal development in a transverse zone-dependent fashion. Purkinje cells in the central and nodular zones lose neurogranin expression between approximately P4 and P6, whereas expression in the posterior zone persists until approximately P20. Neurogranin immunoreactivity will be a valuable tool in helping to clarify the relationships between early- and late-onset patterns.
Collapse
Affiliation(s)
- Matt Larouche
- Department of Cell Biology and Anatomy, Genes and Development Research Group, Hotchkiss Brain Institute, Faculty of Medicine, The University of Calgary, Alberta T2N 4N1, Canada
| | | | | |
Collapse
|
25
|
Shumway C, Morissette J, Bower JM. Mechanisms underlying reorganization of fractured tactile cerebellar maps after deafferentation in developing and adult rats. J Neurophysiol 2005; 94:2630-43. [PMID: 15987764 DOI: 10.1152/jn.00161.2005] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Our previous studies showed that fractured tactile cerebellar maps in rats reorganize after deafferentation during development and in adulthood while maintaining a fractured somatotopy. Several months after deafferentation of the infraorbital branch of the trigeminal nerve, the missing upper lip innervation is replaced in the tactile maps in the granule cell layer of crus IIa. The predominant input into the denervated area is always the upper incisor representation. This study examined whether this reorganization was caused by mechanisms intrinsic to the cerebellum or extrinsic, i.e., occurring in somatosensory structures afferent to the cerebellum. We first compared normal and deafferented maps and found that the expansion of the upper incisor is not caused by a preexisting bias in the strength or abundance of upper incisor input in normal animals. We then mapped tactile representations before and immediately after denervation. We found that the pattern of reorganization observed in the cerebellum several months later is not caused by unmasking of a silent or weaker upper incisor representation. Both results indicate that the reorganization is not a result of subsequent growth or sprouting mechanism within the cerebellum itself. Finally, we compared postlesion maps in the cerebellum and the somatosensory cortex. We found that the upper incisor representation significantly expands in both regions and that this expansion is correlated, suggesting that reorganization in the cerebellum is a passive consequence of reorganization in afferent cerebellar pathways. This result has important developmental and functional implications.
Collapse
Affiliation(s)
- Caroly Shumway
- Computation and Neural Systems Program, California Institute of Technology, Pasadena, USA.
| | | | | |
Collapse
|
26
|
Jeong YG, Lee KY, Lee BC, Lee NS, Lee KY, Won MH, Fukui Y. Post-natal changes of cyclin-dependent kinase 5 activator expression in the developing rat cerebellum. Anat Histol Embryol 2005; 34:20-6. [PMID: 15649222 DOI: 10.1111/j.1439-0264.2004.00555.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
cDNA of cyclin-dependent kinase 5 (Cdk5) was cloned based on its primary sequence homology to Cdc2 and Cdk2. Cdk5 requires the neuronal Cdk5 activators such as p35 or p39(nck5ai) (p39) for its activity. In this study, we examined post-natal changes in the p39 expression pattern during the development of the rat cerebellum. p39 began to express in somata and dendrites of Purkinje cells at post-natal day 3 (PD3). In particular, at PD12, parasagittal bands (stripes) with p39 immunoreactivity were weakly observed. At PD21, p39-immunoreactive stripes were developed when compared with the PD12 group. At this age stage, p39 immunoreactivity became weak in somata of Purkinje cells, not forming stripes. At PD28, a series of parasagittal bands were more distinct than those of the PD21 group, and p39 immunoreactivity disappeared in Purkinje cells, not forming p39 immunoreactive stripes. In the adults, p39 immunoreactivity in Purkinje cells was similar to that found in the PD28 group which showed that parasagittal bands were very narrow, and became progressively more slender. Therefore, we suggest that the post-natal changes of p39 expression in Purkinje cells in the cerebellum is an autonomous characteristic of Purkinje cells with a role of Cdk5 activators.
Collapse
Affiliation(s)
- Y G Jeong
- Department of Anatomy, College of Medicine, Konyang University, Nonsan, Chungnam 320-711, South Korea.
| | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
The object of this review is to assemble much of the literature concerning Purkinje cell death in cerebellar pathology and to relate this to what is now known about the complex topography of the cerebellar cortex. A brief introduction to Purkinje cells, and their regionalization is provided, and then the data on Purkinje cell death in mouse models and, where appropriate, their human counterparts, have been arranged according to several broad categories--naturally-occurring and targeted mutations leading to Purkinje cell death, Purkinje cell death due to toxins, Purkinje cell death in ischemia, Purkinje cell death in infection and in inherited disorders, etc. The data reveal that cerebellar Purkinje cell death is much more topographically complex than is usually appreciated.
Collapse
Affiliation(s)
- Justyna R Sarna
- Genes Development Research Group, Department of Cell Biology & Anatomy, Faculty of Medicine, The University of Calgary, 3330 Hospital Drive NW, Calgary, Alta., Canada T2N 4N1
| | | |
Collapse
|
28
|
Hamamura M, Watanabe S, Fukumaki Y. Selective changes in the shapes of parasagittal bands of Aldoc (Zebrin) mRNA in the rat vermis of the cerebellum after repeated methamphetamine injections. CEREBELLUM (LONDON, ENGLAND) 2004; 3:236-47. [PMID: 15686102 DOI: 10.1080/14734220410019066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
In the cerebellum the mossy and climbing projections, which excite Purkinje cells, display a parasagittal and striped organization. These projections also excite Zebrin (aldolase C: Aldoc) parasagittally. To evaluate the possibility that external stimuli can change the organization of the bands of Aldoc mRNA, we compared the effects of repeated methamphetamine administration on the Aldoc mRNA stripes in the four transverse (anterior, central, posterior and nodular) regions of the vermis with the effects on the glutamate transporter EAAT4 (SCL1A 6) mRNA stripes. In the posterior region the injections four times daily increased the fragmentation of the Aldoc mRNA stripes. The presence of a large amount of fragmentation (forty/cerebellum slice), was accompanied with large lateral dislocations of the Aldoc mRNA stripes. In the central and nodular regions, where the size of the stripe areas decreased significantly the stripes were dislocated laterally. The dislocations of the Aldoc mRNA bands did not occur after a single methamphetamine injection and thus repeated injections were necessary to change the distributions of the lateral bands. In contrast, the distributions of the SCL1A 6 mRNA stripes did not change, even though there was mild fragmentation (six/slice) of the SLC1A 6 mRNA stripes in the anterior region and decreases in the numbers (twelve/slice) in the nodular region. We concluded that excess dopamine selectively changes the location of the Aldoc mRNA compartments in the vermis while the SLC1A 6 mRNA stripes could be changed by other inputs and thus the specific transmitter system might change the specific compartment of the cerebellum.
Collapse
Affiliation(s)
- Mitsuko Hamamura
- Research Center for Genetic Information, Medical Institute of Bioregulation, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan.
| | | | | |
Collapse
|
29
|
Sillitoe RV, Künzle H, Hawkes R. Zebrin II compartmentation of the cerebellum in a basal insectivore, the Madagascan hedgehog tenrec Echinops telfairi. J Anat 2003; 203:283-96. [PMID: 14529046 PMCID: PMC1571161 DOI: 10.1046/j.1469-7580.2003.00216.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mammalian cerebellum is histologically uniform. However, underlying the simple laminar architecture is a complex arrangement of parasagittal stripes and transverse zones that can be revealed by the expression of zebrin II/aldolase C. The cerebellar cortex of rodents, for example, is organized into four transverse zones: anterior, central, posterior and nodular. Within the anterior and posterior zones, parasagittal stripes of Purkinje cells expressing zebrin II alternate with those that do not. Zonal boundaries appear to be independent of cerebellar lobulation. To explore this model further, and to broaden our understanding of the evolution of cerebellar patterning, zebrin II expression has been studied in the cerebellum of the Madagascan hedgehog tenrec (Echinops telfairi), a basal insectivore with a lissiform cerebellum with only five lobules. Zebrin II expression in the tenrec reveals an array of four transverse zones as in rodents, two with homogeneous zebrin II expression, two further subdivided into stripes, that closely resembles the expression pattern described in other mammals. We conclude that a zone-and-stripe organization may be a common feature of the mammalian cerebellar vermis and hemispheres, and that zonal boundaries and cerebellar lobules and fissures form independently.
Collapse
Affiliation(s)
- Roy V Sillitoe
- Department of Cell Biology & Anatomy, and Genes and Development Research Group, Faculty of Medicine, The University of Calgary, Alberta, Canada
| | | | | |
Collapse
|
30
|
Abnormal dysbindin expression in cerebellar mossy fiber synapses in the mdx mouse model of Duchenne muscular dystrophy. J Neurosci 2003. [PMID: 12878699 DOI: 10.1523/jneurosci.23-16-06576.2003] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dystrophin-associated protein complex (DPC), comprising sarcoglycans, dystroglycans, dystrobrevins, and syntrophins, is a component of synapses both in muscle and brain. Dysbindin is a novel component of the DPC, which binds to beta-dystrobrevin and may serve as an adaptor protein that links the DPC to an intracellular signaling cascade. Disruption of the DPC results in muscular dystrophy, and mutations in the human ortholog of dysbindin have been implicated in the pathogenesis of schizophrenia. In both cases, patients also present with neurological symptoms reminiscent of cerebellar problems. In the mouse cerebellum, dysbindin immunoreactivity is expressed at high levels in a subset of mossy fiber synaptic glomeruli in the granular layer. Lower levels of dysbindin immunoreactivity are also detected in Purkinje cell dendrites. In the cerebellar vermis, dysbindin-immunoreactive glomeruli are restricted to an array of parasagittal stripes that bears a consistent relationship to Purkinje cell parasagittal band boundaries as defined by the expression of the respiratory isoenzyme zebrin II/aldolase c. In a mouse model of Duchenne muscular dystrophy, the mdx mutant, in which dystrophin is not expressed, there is a dramatic increase in the number of dysbindin-immunoreactive glomeruli in the posterior cerebellar vermis. Moreover, the topography of the terminal fields is disrupted, replacing the stripes by a homogeneous distribution. Abnormal synaptic organization in the cerebellum may contribute to the neurological problems associated with muscular dystrophy and schizophrenia.
Collapse
|
31
|
Marzban H, Khanzada U, Shabir S, Hawkes R, Langnaese K, Smalla KH, Bockers TM, Gundelfinger ED, Gordon-Weeks PR, Beesley PW. Expression of the immunoglobulin superfamily neuroplastin adhesion molecules in adult and developing mouse cerebellum and their localisation to parasagittal stripes. J Comp Neurol 2003; 462:286-301. [PMID: 12794733 DOI: 10.1002/cne.10719] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Neuroplastin (np) 55 and 65 are immunoglobulin superfamily members that arise by alternative splicing of the same gene and have been implicated in long-term activity-dependent synaptic plasticity. Both biochemical and immunocytochemical data suggest that np55 is the predominant isoform (>95% of total neuroplastin) in cerebellum. Neuroplastin immunoreactivity is concentrated in the molecular layer and synaptic glomeruli in the granule cell layer. Expression in the molecular layer appears to be postsynaptic. First, neuroplastin is associated with Purkinje cell dendrites in two mouse granuloprival cerebellar mutants, disabled and cerebellar deficient folia. Second, in an acid sphingomyelinase knockout mouse with widespread protein trafficking defects, neuroplastin accumulates in the Purkinje cell somata. Finally, primary cerebellar cultures show neuroplastin expression in Purkinje cell dendrites and somata lacking normal histotypic organization and synaptic connections, and high-magnification views indicate a preferential association with dendritic spines. In the molecular layer, differences in neuroplastin expression levels present as a parasagittal array of stripes that alternates with that revealed by the expression of another compartmentation antigen, zebrin II/aldolase c. Neuroplastin immunoreactivity is first detected weakly at postnatal day 3 (P3) in the anterior lobe vermis. By P5, parasagittal stripes are already apparent in the immature molecular layer. At this stage, punctate deposits are also localised at the perimeter of the Purkinje cell perikarya; these are no longer detected by P15. The data suggest a role for neuroplastins in the development and maintenance of normal synaptic connections in the cerebellum.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Cell Biology and Anatomy, Genes and Development Research Group, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Expression of heat-shock protein Hsp25 in mouse Purkinje cells during development reveals novel features of cerebellar compartmentation. J Comp Neurol 2001; 429:7-21. [PMID: 11086286 DOI: 10.1002/1096-9861(20000101)429:1<7::aid-cne2>3.0.co;2-q] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The small heat shock protein Hsp25 is constitutively expressed in the adult mouse cerebellum by parasagittal stripes of Purkinje cells confined to the caudal central zone ( approximately lobules VI and VII), the nodular zone ( approximately ventral lobule IX and lobule X), and the paraflocculi/flocculi. During development several distinct phases in Hsp25 expression can be distinguished. Hsp25-immunopositive Purkinje cells are first seen at birth, when four clusters are visible in the vermis of lobules IV/V, and scattered Hsp25-immunoreactive Purkinje cells are seen in lobule VIII. By postnatal day 2/3, six narrow parasagittal stripes of Hsp25-immunopositive Purkinje cells are seen in the vermis of the anterior lobe. In the posterior lobules, most Purkinje cells in the vermis of lobules VIII and IX express Hsp25. This initial limited expression is followed by a phase of widespread expression (postnatal days 6-9) in which Hsp25 immunoreactivity is detected in virtually all Purkinje cells. This global cerebellar expression of Hsp25 then gradually disappears, first in the anterior zone and the hemispheres and subsequently in the posterior zone, to leave the restricted adult expression pattern. Western blotting analysis and immunoprecipitation with anti-Hsp25 suggest that all immunocytochemistry can be attributed the expression of Hsp25. Furthermore, visual deprivation had no effect on the development of Hsp25 expression in Purkinje cells, suggesting that visuomotor input is not responsible for the establishment of constitutive Hsp25 expression in the cerebellar cortex.
Collapse
Affiliation(s)
- C L Armstrong
- Department of Cell Biology & Anatomy, and Genes and Development Research Group, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
33
|
Beierbach E, Park C, Ackerman SL, Goldowitz D, Hawkes R. Abnormal dispersion of a purkinje cell subset in the mouse mutant cerebellar deficient folia (cdf). J Comp Neurol 2001. [DOI: 10.1002/cne.1052] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
34
|
Abstract
The cerebellar cortex is subdivided rostrocaudally and mediolaterally into a reproducible array of zones and stripes. This makes the cerebellum a valuable model for studying pattern formation in the vertebrate central nervous system. The structure of the adult mouse cerebellar cortex and the series of embryological events that generate the topography are reviewed.Key words: zebrin, Hsp25, Purkinje cells.
Collapse
|
35
|
Abstract
Staggerer (sg/sg) is an autosomal recessive mutation in an orphan nuclear hormone receptor gene, RORalpha, that causes a cell-autonomous, lineage-specific block in the development of the Purkinje cell. Purkinje cell number is reduced by about 75-90% in adult mutants, and many of the surviving cells are small and ectopically positioned. To determine whether Purkinje cell numbers are reduced owing to either agenesis or cell death, cohorts of Purkinje cells were labeled with the birth-date marker bromodeoxyuridine (BrdU) at embryonic day (E) 10.5 or E11.5. The total number of BrdU-labeled profiles was then compared between cerebella from wild-type mice, heterozygous staggerer, and staggerer mutants at E17.5 and postnatal day (P)5. There was no significant difference between sg/sg mutants and +/sg or +/+ controls in the number of BrdU-labeled profiles or in cerebellar volumes in the E17 embryos. By P5, however, cerebellar volume was significantly reduced in the sg/sg mutants compared to controls (p <.005) and the number of BrdU-labeled profiles was reduced by 33% following E11.5 BrdU injections (p <.02). The results suggest that Purkinje cell genesis is not affected by the staggerer mutation and that Purkinje cell loss begins some time after E17. RORalpha is highly expressed in Purkinje cells by E14, so the delay between initial RORalpha expression and sg/sg Purkinje cell loss suggests that the staggerer mutation does not directly cause Purkinje cell death.
Collapse
Affiliation(s)
- M W Vogel
- Maryland Psychiatric Research Center, University of Maryland Medical School, P.O. Box 21247, Baltimore, Maryland 21228, USA
| | | | | | | |
Collapse
|
36
|
Armstrong CL, Krueger-Naug AM, Currie RW, Hawkes R. Constitutive expression of the 25-kDa heat shock protein Hsp25 reveals novel parasagittal bands of purkinje cells in the adult mouse cerebellar cortex. J Comp Neurol 2000; 416:383-97. [PMID: 10602096 DOI: 10.1002/(sici)1096-9861(20000117)416:3<383::aid-cne9>3.0.co;2-m] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Despite the reported absence of the 25-kDa heat shock protein Hsp25 in the rodent cerebellum, we have determined that Hsp25 is constitutively expressed in a subset of Purkinje cells in the adult cerebellum of the mouse. No other cerebellar neurons are Hsp25 immunoreactive, but there is weak staining associated with blood vessels. In the vermis, Hsp25-immunoreactive Purkinje cells are confined to two regions: one in lobules VI/VII, the other in lobules IX/X. In each region, only a subset of the Purkinje cells is immunoreactive. These cells are grouped in five parasagittal bands arranged symmetrically about the midline. The boundaries of these expression domains correspond to transverse zones previously inferred from other expression patterns. A third Hsp25-immunopositive domain is seen in the paraflocculus and flocculus. Again, only a subset of Purkinje cells within the paraflocculus and flocculus express Hsp25, revealing three distinct bands. Previous descriptions of compartmentation antigens have not differentiated between adult populations of Purkinje cells in these regions, suggesting that Hsp25 is a novel compartmentation antigen in the adult cerebellum.
Collapse
Affiliation(s)
- C L Armstrong
- Department of Cell Biology and Anatomy, and Genes and Development Research Group, Faculty of Medicine, The University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | | | | | | |
Collapse
|
37
|
Hallem JS, Thompson JH, Gundappa-Sulur G, Hawkes R, Bjaalie JG, Bower JM. Spatial correspondence between tactile projection patterns and the distribution of the antigenic Purkinje cell markers anti-zebrin I and anti-zebrin II in the cerebellar folium crus IIA of the rat. Neuroscience 1999; 93:1083-94. [PMID: 10473273 DOI: 10.1016/s0306-4522(99)00144-x] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
We have compared the band-like distribution of the Purkinje cell-specific polypeptides zebrin I and zebrin II with the spatial organization of tactile projections to crus IIa in the cerebellar hemisphere of the rat. Maps of tactile responses in the granular layer of the cerebellar hemispheres are fractured into discontinuous regions, termed "patches". High-density micromapping was used to identify specific patches and their boundaries within this fractured somatotopic map. In one series of experiments, medial and lateral boundaries of the large central ipsilateral upper lip-related patch were identified and labeled with either Fast Blue or India Ink. Following immunocytochemical processing, the band-like distribution of immunostained Purkinje cells (zebrin-positive bands) and the identified patch boundaries were digitized and reconstructed in three dimensions. Comparisons between these two features demonstrate a spatial correspondence between zebrin transitions and the boundaries of the electrophysiologically defined upper lip-related patch. In another series of experiments, we outlined the boundaries or centers of several smaller patches consistently located in the medial portion of the folium. Again, we found a correspondence between the distribution of granule cell layer tactile patches and the zebrin staining pattern. The correspondence between tactile projection patterns and molecular features demonstrated in the present study implies that there is a distinct and largely fixed spatial pattern of organization in the cerebellar hemispheres. We discuss possible causal connections and developmental determinates, as well as the physiological significance of the correspondence between the two features.
Collapse
Affiliation(s)
- J S Hallem
- Department of Anatomy, Institute of Basic Medical Sciences, University of Oslo, Norway
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
A fundamental question in brain development is how neurons make the precise topographic connections necessary for function. The hypothesis that transient expression of calcium (Ca2+) signaling molecules may have a role in this process was tested by studying human cerebella at midgestation. In addition, four adult brains, two controls and two from patients with ataxia, were studied as well. The temporal and spatial distribution of intracellular Ca2+ channel/receptors, inositol trisphosphate receptor type 1 (IP3R1) and ryanodine receptor (RyR) and three Ca2+ binding proteins were examined with immunocytochemical methods. A positive immune reaction with all markers of Ca2+ signaling was found in the Purkinje cell layer starting from 17 g.w. (gestational weeks), the youngest age studied. The immune reactions were not homogeneous throughout the extent of the Purkinje cell layer, but instead displayed a 'patchy' appearance in all intrauterine stages. In the adult cerebellum the expression of Ca2+ signaling molecules was homogenous. In the two cerebella obtained from patients suffering from ataxia, a several-fold reduction of immunostaining with IP3R1 was found. Our findings suggest that transient and differential mobilization of intracellular Ca2+ in seemingly homogenous neuronal types may play a role in development of highly organized projection maps of the cerebellar cortex. Moreover, lack of IP3R1 in the diseased brains suggests that internal stores of Ca2+ play an important role in normal function of the cerebellum.
Collapse
Affiliation(s)
- N Zecevic
- Department of Neurology, University of Connecticut Health Center, Farmington 06030-1840, USA.
| | | | | |
Collapse
|
39
|
Milosevic A, Zecevic N. Developmental changes in human cerebellum: Expression of intracellular calcium receptors, calcium-binding proteins, and phosphorylated and nonphosphorylated neurofilament protein. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980713)396:4<442::aid-cne3>3.0.co;2-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
40
|
|
41
|
Abstract
Developmental and experimental studies of climbing fiber and mossy fiber connectivity in the cerebellum have suggested that Purkinje cells are the critical organizing elements for connectivity patterns. This hypothesis is supported by evidence that spinocerebellar mossy fiber projections are abnormally diffuse in P25 sg/sg mutant mice in which the differentiation of a reduced number of sg/sg Purkinje cells is blocked due to a cell autonomous defect. However, mossy fiber distribution may be disrupted in sg/sg mutants not because of the Purkinje cell deficits, but because of the death of virtually all granule cells following the 4th postnatal week. To test this hypothesis, we have analyzed the distribution of wheat germ agglutinin-horseradish peroxidase (WGA-HRP)-labeled spinocerebellar mossy fiber terminals in sg/sg mutants at the end of the period of granule cell genesis (postnatal day [P] 12-P13) and before massive granule cell death (P16). Two percent WGA-HRP was injected into the lower thoracic/upper lumbar region of the spinal cord of eight homozygous sg/sg mutants (P12-P16) and five controls (+/sg and +/+). We have found that spinocerebellar mossy fibers segregate into distinct terminal fields in the anterior cerebellar lobules of P12 to P16 sg/sg mutants, although the medial-lateral distribution of spinocerebellar mossy fiber projections is different from controls. The results from this study and previous analysis of sg/sg mutants support the hypothesis that topographic cues are expressed in the early postnatal staggerer mutant, but mossy fiber terminals become disorganized or retract as granule cells die in the older staggerer mutant. J. Comp. Neurol. 378:354-362, 1997.
Collapse
Affiliation(s)
- Z Ji
- Maryland Psychiatric Research Center, University of Maryland Medical School, Baltimore 21228, USA
| | | | | |
Collapse
|
42
|
Affiliation(s)
- R Hawkes
- Department of Anatomy, Faculty of Medicine, University of Calgary, Alberta, Canada.
| |
Collapse
|
43
|
Ji Z, Ebralidze A, Tonegawa S, Vogel MW. Spinocerebellar mossy fiber terminal topography in the NR2C/PKC gamma double mutant cerebellum. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 97:138-42. [PMID: 8946062 DOI: 10.1016/s0165-3806(96)00112-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The spatiotemporal expression patterns of the NR2C subunit of the NMDA receptor and PKC gamma isoform during cerebellar development suggests that both proteins are involved in the molecular mechanisms of synaptogenesis. However, the topographic distribution of WGA-HRP labeled spinocerebellar mossy fiber terminals in NR2C/PKC gamma double mutants (n = 4) appears similar to controls (n = 3). While the results do not rule out a role for NR2C receptor subunits and the PKC gamma isoform in cerebellar synaptogenesis, they indicate that neither is necessary for the formation or maintenance of normal spinocerebellar mossy fiber afferent maps.
Collapse
Affiliation(s)
- Z Ji
- Maryland Psychiatric Research Center University of Maryland Medical School, Baltimore 21228, USA
| | | | | | | |
Collapse
|
44
|
Vogel MW, Ji Z, Millen K, Joyner AL. The Engrailed-2 homeobox gene and patterning of spinocerebellar mossy fiber afferents. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1996; 96:210-8. [PMID: 8922683 DOI: 10.1016/0165-3806(96)00122-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The mouse Engrailed-2 gene, En-2, appears to be involved in cerebellar pattern formation. Homozygous null mutants for En-2 have abnormal foliation patterns in the posterior half of the cerebellum and there are changes in Purkinje and granule cell gene expression in some posterior folia, possibly reflecting changes in cell identity. We have examined the distribution of spinocerebellar mossy fiber terminals in homozygous En-2hd null mutants to determine if En-2 is involved in regulating the pattern of afferent connectivity in the cerebellum. Spinocerebellar mossy fiber terminals were labeled following WGA-HRP injections in the lumbar region of 5 homozygous En-2hd mutants and 4 heterozygous controls. The distribution of spinocerebellar mossy fiber terminals was consistently altered in lobules VIII and IX of the En-2hd mutants. The principal changes were a reduction in the number of mossy fiber terminal fields in the dorsal aspect of lobule VIII and the dorsal midline field in lobule IX was fused into a single compartment. The results suggest that the deletion of En-2 expression does not transform lobule identity, at least with respect to afferent fiber positional information cues. However, the changes in foliation and afferent connectivity in the En-2 mutant support a broad role for the En-2 gene in cerebellar patterning.
Collapse
Affiliation(s)
- M W Vogel
- Maryland Psychiatric Research Center, University of Maryland Medical School, Baltimore 21228, USA.
| | | | | | | |
Collapse
|
45
|
Zanjani HS, Vogel MW, Delhaye-Bouchaud N, Martinou JC, Mariani J. Increased cerebellar Purkinje cell numbers in mice overexpressing a human bcl-2 transgene. J Comp Neurol 1996; 374:332-41. [PMID: 8906502 DOI: 10.1002/(sici)1096-9861(19961021)374:3<332::aid-cne2>3.0.co;2-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The Purkinje cell is a primary organizer in the development of the cerebellum. Purkinje cells may provide positional information cues that regulate afferent innervation, and Purkinje cell target size controls the adult number of afferent olivary neurons and granule cells. While Purkinje cells are necessary for the survival of olivary neurons and granule cells during periods of programmed cell death, little is known about the survival requirements of Purkinje cells in vivo. To determine if Purkinje cells are subject to programmed cell death during development we have analyzed Purkinje cell numbers in two lines of transgenic mice that overexpress a human gene for bcl-2 (Hu-bcl-2). Bcl-2 is a protooncogene that inhibits apoptosis in many cell types. Overexpression of bcl-2 in vitro and in vivo rescues neurons from trophic factor deprivation or naturally occurring cell death. In the mice analyzed in this study, transgene expression is driven by the neuron-specific enolase promoter that is first expressed embryonically in most regions of the brain in one line and postnatally in the second line. We have counted Purkinje cells in three adult control mice, five early overexpressing transgenics, and three late expressing transgenics. The number of Purkinje cells in the Hu-bcl-2 transgenic mice is significantly increased above control numbers, with an increase of 43% in the embryonically overexpressing line and an increase of 27% in the postnatally overexpressing line. Because bcl-2 overexpression has been shown to rescue other neurons from programmed cell death, the increase in Purkinje cell numbers in overexpressing bcl-2 transgenics suggests that Purkinje cells undergo a period of cell death during normal development.
Collapse
Affiliation(s)
- H S Zanjani
- Laboratoire de Neurobiologie du Développement, Institut des Neurosciences et URA CNRS 1488, Université Pierre et Marie Curie, Paris, France
| | | | | | | | | |
Collapse
|
46
|
Ji Z, Hawkes R. Partial ablation of the neonatal external granular layer disrupts mossy fiber topography in the adult rat cerebellum. J Comp Neurol 1996; 371:578-88. [PMID: 8841911 DOI: 10.1002/(sici)1096-9861(19960805)371:4<578::aid-cne7>3.0.co;2-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The spinocerebellar projection in the rat is compartmentalized in an array of parasagittal bands of mossy fiber terminals. These bands align reproducibly with bands of Purkinje cells that differentially express zebrin II. To investigate whether this alignment is obligatory, Purkinje cell and mossy fiber compartmentation has been compared in the rat cerebellum where the cytoarchitecture was contorted by neonatal administration of methylazoxymethanol. Methylazoxymethanol ablates many granule cell precursors, leaving a much reduced external granular layer, and adult rats that received a single methylazoxymethanol injection at birth showed varying degrees of abnormal cerebellar foliation. Zebrin II immunocytochemistry nevertheless revealed no fundamental abnormality in the Purkinje cell compartments. However, despite the normal Purkinje cell compartmentation being retained, the spinocerebellar mossy fiber-Purkinje cell topography is disrupted by methylazoxymethanol treatment. The normal precise array of parasagittal mossy fiber terminal fields becomes blurred across the lobule, and the normal clear banding is difficult to follow. These data suggest that, despite the early topography being dependent on the Purkinje cells, the granule cell-mossy fiber interactions also regulate the topography of the spinocerebellar projection.
Collapse
Affiliation(s)
- Z Ji
- Department of Anatomy, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|
47
|
Zagrebelsky M, Rossi F, Hawkes R, Strata P. Topographically organized climbing fibre sprouting in the adult rat cerebellum. Eur J Neurosci 1996; 8:1051-4. [PMID: 8743752 DOI: 10.1111/j.1460-9568.1996.tb01591.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adaptive recovery following brain injury requires the topography of projection maps to be restored. In the adult mammalian brain, the regeneration of severed axons does not normally occur and repair mainly relies on collateral reinnervation from uninjured neurons. Although reinnervation can be target specific at the single cell level, it is not known if the new connections are organized correctly. The normal olivocerebellar projection had precise topography in which subnuclei of the inferior olive terminate as climbing fibres on chemically defined bands of cerebellar Purkinje cells. This precision has been exploited to determine the topography of climbing fibre sprouting following an inferior olive lesion in the adult rat. Collateral reinnervation was found to respect the boundaries between the Purkinje cell compartments. Thus, topographical cues are available in the adult during post-lesion plasticity to guide the restoration of the olivocerebellar projection map.
Collapse
Affiliation(s)
- M Zagrebelsky
- Department of Neuroscience, University of Turin, Corso Rafaello 30, 1-10125 Turin, Italy
| | | | | | | |
Collapse
|
48
|
Abstract
The cerebellum is comprised of multiple bands of cells, each with characteristic afferent and efferent projections, and patterns of gene expression. The most studied example of a striped pattern of expression is the antigen recognized by monoclonal antibody antizebrin II. Zebrin II is expressed by subsets of Purkinje cells that form an array of parasagittal bands that extend rostrocaudally throughout the cerebellar cortex, separated by similar bands of Purkinje cells that do not express zebrin II. Recent cloning studies have revealed that the zebrin II antigen is the respiratory isoenzyme aldolase C. This article reviews the cellular and molecular compartmentation of the cerebellum together with the molecular biology of the aldolase C gene, and speculates on possible reasons for a striped pattern of expression.
Collapse
Affiliation(s)
- R Hawkes
- Department of Anatomy, Faculty of Medicine, University of Calgary, Alberta, Canada
| | | |
Collapse
|