1
|
Bilici ME, Şıklar Z, Çetinkaya S, Özsu E, Aycan Z, Berberoğlu M. Adrenal hypoandrogenism in adolescents with premature ovarian insufficiency. J Pediatr Endocrinol Metab 2025:jpem-2024-0415. [PMID: 39786952 DOI: 10.1515/jpem-2024-0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/14/2024] [Indexed: 01/12/2025]
Abstract
OBJECTIVES Premature ovarian insufficiency (POI) affects 1 in 10,000 children, with its molecular causes largely unknown. Adult studies suggest that low androgen levels induce ovarian insufficiency, but data on about this in children is limited. This study aims to assess the prevalence of low androgen levels in childhood POI and its relationship with adrenal insufficiency. MATERIALS AND METHODS Idiopathic POI adolescents were categorized into two groups based on DHEAS and total testosterone (TT) measured by chemiluminescence. Low androgen group (LAG) was defined using cut-offs according to Tanner pubarche staging. Demographic, clinical, and laboratory data were compared. Morning cortisol <7 mcg/dL and/or ACTH >96 or <5 pg/mL were planned to undergo ACTH stimulation testing, with a peak cortisol response <18 mcg/dL considered insufficient. RESULTS Forty-three adolescents, mean age 15.5 ± 1.3 years with a 46, XX karyotype, normal FMR1 mutation, FSH levels >40 mIU/mL, and low AMH levels were included. In 14 cases (37.8 %), DHEAS and TT were low. In the LAG, pubarche was absent in seven patients, and initial height SDS was significantly lower. Morning cortisol ranged from 7.9 to 23.5 mcg/dL, with an ACTH of 29.4 ± 9.7 pg/mL. No differences in adrenal steroids or correlations between DHEAS and ACTH were observed. CONCLUSIONS Diminished androgen levels are prevalent in children with idiopathic POI. The potential for this condition to increase the risk of adrenal insufficiency and its impact on secondary ovarian insufficiency remains unclear. This study, the first of its kind in children, underscores the potential role of genetic factors in zona reticularis and ovarian development.
Collapse
Affiliation(s)
- Meliha Esra Bilici
- Bülent Ecevit University Faculty of Medicine, Department of Pediatric Endocrinology and Diabetes, 67630 Zonguldak, Türkiye
| | - Zeynep Şıklar
- Department of Pediatric Endocrinology, Ankara University School of Medicine, Ankara, Türkiye
| | - Semra Çetinkaya
- Dr Sami Ulus Training and Research Hospital for Maternity and Children's Health and Diseases, Ankara, Türkiye
| | - Elif Özsu
- Department of Pediatric Endocrinology, Ankara University School of Medicine, Ankara, Türkiye
| | - Zehra Aycan
- Department of Pediatric Endocrinology, Ankara University School of Medicine, Ankara, Türkiye
| | - Merih Berberoğlu
- Department of Pediatric Endocrinology, Ankara University School of Medicine, Ankara, Türkiye
| |
Collapse
|
2
|
Kanojia N, Guin D, Machahary N, Thakran S, Kukal S, Thakur J, Panda B, Singh P, Srivastava A, Singh P, Grover S, Singh A, Sardana V, Saso L, Kukreti S, Kukreti R. Effect of antiepileptic drug monotherapy on endogenous sex hormonal profile in men and women with epilepsy. Epilepsy Behav 2024; 163:110220. [PMID: 39693860 DOI: 10.1016/j.yebeh.2024.110220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/14/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVE To assess the alterations of endogenous sex hormone profiles in patients with epilepsy (PWE) on different antiepileptic drug (AED) monotherapies compared to healthy controls and drug naïve PWE (DNPWE). METHODS Four databases MEDLINE, EMBASE, SCOPUS, and CENTRAL were searched for analytical observational/intervention studies on the assessment of endogenous sex hormones in PWE compared to healthy controls and DNPWE. Two researchers reviewed the title/abstract, and full-text articles for the selection of the studies independently. Extracted data included information on study details, participant demographics, interventions, method of assessment and study results. The study outcomes were used to calculate the standard mean differences (SMD) and 95% confidence interval (CI) as effect size for assessing differences in the endogenous sex hormone levels between the treatment group and control/DNPWE. RESULTS Among 5888 publications retrieved, 33 studies were included. Enzyme-inducing AEDs (EIAEDs) such as phenytoin (men: SMD = 1.36; 95%CI = 1.06,1.66) and carbamazepine (men: SMD = 0.71; 95%CI = 0.39, 1.04 and women: SMD = 0.54; 95%CI = 0.25, 0.83) and weak-EIAED oxcarbazepine (men: SMD = 0.62; 95%CI = 0.26,0.99) increased the SHBG levels in PWE compared to control. The same trend was observed when comparing it to DNPWE. No significant changes in SHBG were observed for non-EIAEDs valproic acid, lamotrigine and levetiracetam in men. Lamotrigine significantly reduced SHBG in women (SMD = -0.50; 95%CI = -0.85, -0.16) compared to controls. Testosterone (T) levels were significantly reduced for both carbamazepine (SMD = -0.39; 95%CI = -0.67, -0.11) and valproic acid (SMD = -0.48; 95%CI = -0.74, -0.21) treated men compared to control. SIGNIFICANCE Our findings emphasize the importance of screening the endogenous sex hormonal profile in PWE on AED monotherapies to evaluate the associated endocrine-related perturbations which may impact reproductive functions.
Collapse
Affiliation(s)
- Neha Kanojia
- Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Debleena Guin
- Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India; Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi 110042, India
| | - Nitin Machahary
- Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sarita Thakran
- Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Samiksha Kukal
- Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jyotika Thakur
- Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India
| | - Biswajit Panda
- Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India
| | - Priyanka Singh
- Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ankit Srivastava
- Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India; Department of Pharmacology, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard (Hamdard University), New Delhi 110062, India
| | - Pooja Singh
- Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sandeep Grover
- Centre for Genetic Epidemiology, Institute for Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Anju Singh
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India; Department of Chemistry, Ramjas College, University of Delhi, Delhi 110007, India
| | - Viren Sardana
- Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, P. le Aldo Moro 5, 00185 Rome, Italy
| | - Shrikant Kukreti
- Nucleic Acids Research Laboratory, Department of Chemistry, University of Delhi (North Campus), Delhi 110007, India
| | - Ritushree Kukreti
- Council of Scientific and Industrial Research -Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi 110007, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
3
|
Wu R, Gragnoli C. The melanocortin receptor genes are linked to and associated with the risk of polycystic ovary syndrome in Italian families. J Ovarian Res 2024; 17:242. [PMID: 39633478 PMCID: PMC11619144 DOI: 10.1186/s13048-024-01567-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 11/26/2024] [Indexed: 12/07/2024] Open
Abstract
Polycystic ovary syndrome (PCOS) is the most common endocrine disorder occurring in women of reproductive age. The disease is caused by a complex interplay of genetic and environmental factors including genes encoding components of the hypothalamic-pituitary-adrenal (HPA) axis. We have recently reported the association of melanocortin receptor genes (MC1R, MC2R, MC3R, MC4R, and MC5R) with the risk of type 2 diabetes (T2D) and/or major depressive disorder (MDD). The latter 2 disorders are comorbid with PCOS. In this study, we used microarray to test 12 single nucleotide polymorphisms (SNPs) in the MC1R gene, 10 SNPs in the MC2R gene, 5 SNPs in the MC3R gene, 6 SNPs in the MC4R gene, and 4 SNPs in the MC5R gene in 212 original Italian families with PCOS. We identified 1 SNP in MC1R, 1 SNP in MC2R, 2 SNPs in MC3R, and 2 SNPs in MC5R significantly linked and/or associated to/with the risk of PCOS in Italian families. This is the first study to report the novel implication of melanocortin receptor genes (MC1R, MC2R, and MC5R) in PCOS. MC3R and MC4R were previously reported in PCOS. However, functional studies are needed to validate these results.
Collapse
MESH Headings
- Humans
- Polycystic Ovary Syndrome/genetics
- Female
- Polymorphism, Single Nucleotide
- Italy/epidemiology
- Genetic Predisposition to Disease
- Receptors, Melanocortin/genetics
- Receptor, Melanocortin, Type 1/genetics
- Receptor, Melanocortin, Type 4/genetics
- Adult
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 3/genetics
Collapse
Affiliation(s)
- Rongling Wu
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA
- Department of Statistics, Penn State College of Medicine, Hershey, PA, 17033, USA
| | - Claudia Gragnoli
- Department of Public Health Sciences, Penn State College of Medicine, Hershey, PA, 17033, USA.
- Division of Endocrinology, Department of Medicine, Creighton University School of Medicine, Omaha, NE, 68124, USA.
- Molecular Biology Laboratory, Bios Biotech Multi-Diagnostic Health Center, Rome, 00197, Italy.
| |
Collapse
|
4
|
Nowotny HF, Braun L, Reisch N. The Landscape of Androgens in Cushing's Syndrome. Exp Clin Endocrinol Diabetes 2024; 132:670-677. [PMID: 38788777 DOI: 10.1055/a-2333-1907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Hyperandrogenemia in patients with Cushing's syndrome (CS) presents a diagnostic pitfall due to its rare occurrence and overlapping symptoms with more common conditions like polycystic ovary syndrome (PCOS). This review explores the significance of androgen dysregulation in CS, focusing on both classical and 11-oxygenated androgens. While classical androgens contribute to hyperandrogenism in CS, their levels alone do not fully account for clinical symptoms. Recent research highlights the overlooked role of 11oxC19 androgens, particularly 11OHA4 and 11KT, in driving hyperandrogenic manifestations across all CS subtypes. These adrenal-specific and highly potent androgens offer stable expression throughout the lifespan of a woman, serving as valuable diagnostic biomarkers. Understanding their prominence not only aids in subtype differentiation but also provides insights into the complex nature of androgen dysregulation in CS. Recognizing the diagnostic potential of 11oxC19 androgens promises to refine diagnostic approaches and improve clinical management strategies for patients with CS.
Collapse
Affiliation(s)
- Hanna F Nowotny
- Department of Medicine IV, LMU University Hospital, LMU Munich
| | - Leah Braun
- Department of Medicine IV, LMU University Hospital, LMU Munich
| | - Nicole Reisch
- Department of Medicine IV, LMU University Hospital, LMU Munich
| |
Collapse
|
5
|
Yang J, Ou X, Zeng H, Shao L. A comprehensive review on p38MAPK signaling as a potent radioprotector in testis. Andrology 2024. [PMID: 39287511 DOI: 10.1111/andr.13760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Previous studies have shown that the activation of p38MAPK signaling plays a crucial role in regulating gonadal cell fate decisions in both mouse and human. Excessive activation of p38MAPK by radiation significantly causes testicular damage and negatively affects the male reproductive function. Therefore, fine-tuned regulation of p38MAPK signaling is critical in both physiological and pathological conditions. RESULT This review summarizes the impact of p38MAPK signaling on testicular germ cells and microenvironment under normal condition. The relationship between radiation, reactive oxygen species (ROS), and p38MAPK is summarized. In conclusion, radiation exposure triggers the overactivation of p38MAPK, which is regulated by ROS, resulting in testicular damage. Various p38MAPK-targeting agents are discussed, providing guidance for developing new strategies.
Collapse
Affiliation(s)
- Juan Yang
- Jiangxi Provincial Key Laboratory of Disease Preventive and Public Health, Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiangying Ou
- Jiangxi Provincial Key Laboratory of Disease Preventive and Public Health, Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Huihong Zeng
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lijian Shao
- Jiangxi Provincial Key Laboratory of Disease Preventive and Public Health, Nanchang University, Nanchang, China
- School of Public Health, Jiangxi Medical College, Nanchang University, Nanchang, China
| |
Collapse
|
6
|
Charoensri S, Rege J, Lee C, Marko X, Sherk W, Sholinyan J, Rainey WE, Turcu AF. Human Gonads Do Not Contribute to the Circulating Pool of 11-Oxygenated Androgens. J Clin Endocrinol Metab 2024:dgae420. [PMID: 38885296 DOI: 10.1210/clinem/dgae420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
CONTEXT Androstenedione (A4) and testosterone (T) are produced by both the adrenal glands and the gonads. The adrenal enzyme 11β-hydroxylase (CYP11B1) executes the final step in cortisol synthesis; CYP11B1 also uses A4 and T as substrates, generating 11-hydroxyandrostenedione and 11-hydroxytestosterone, respectively. It has been suggested that CYP11B1 is expressed in the gonads, yet the circulating levels of all 11-oxygenated androgens (11-oxyandrogens) are similar in males and females of reproductive ages, despite enormous differences in T. OBJECTIVE To assess the gonadal contribution to the circulating pool of 11-oxyandrogens. METHODS We used liquid chromatography-tandem mass spectrometry to measure 13 steroids, including traditional and 11-oxyandrogens in: (I) paired gonadal and peripheral vein blood samples obtained during gonadal venograms from 11 patients (7 women), median age 37 (range 31-51 years); and (II) 17 women, median age 57 (range 41-81 years) before and after bilateral salpingo-oophorectomy (BSO). We also compared CYP11B1, 17α-hydroxylase/17,20-lyase (CYP17A1), and 3β-hydroxysteroid dehydrogenase type 2 (HSD3B2) mRNA expression in adrenal, ovarian, and testicular tissue. RESULTS A4, T, estradiol, estrone, progesterone, 17α- and 16α-hydroxyprogesterone were all higher in gonadal veins vs. periphery (p < 0.05 for all), while four 11-oxyandrogens were similar between matched gonadal and peripheral vein samples. Equally, in women who underwent BSO, A4 (median [interquartile range]: 59.7 [47.7-67.6] ng/dL vs. 32.7 [27.4-47.8] ng/dL, p < 0.001) and T (24.1 [16.4-32.3] vs.15.5 [13.7-19.0] ng/dL, p < 0.001) declined, while 11-oxyandrogens remained stable. Gonadal tissue displayed negligible CYP11B1 mRNA. CONCLUSION Despite producing substantial amounts of A4 and T, human gonads are not relevant sources of 11-oxyandrogens.
Collapse
Affiliation(s)
- Suranut Charoensri
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40000, Thailand
| | - Juilee Rege
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Chaelin Lee
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - Xhorlina Marko
- Division of Vascular and Interventional Radiology, University of Michigan, Ann Arbor, Michigan 48109
| | - William Sherk
- Division of Vascular and Interventional Radiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Julieta Sholinyan
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| | - William E Rainey
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109
| | - Adina F Turcu
- Division of Metabolism, Endocrinology and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
7
|
Colombo C, Ceruti D, Succi M, De Leo S, Trevisan M, Moneta C, Fugazzola L. Impact of systemic treatments for advanced thyroid cancer on the adrenal cortex. Eur Thyroid J 2024; 13:e230246. [PMID: 38642580 PMCID: PMC11103760 DOI: 10.1530/etj-23-0246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 04/16/2024] [Indexed: 04/22/2024] Open
Abstract
Background Fatigue is a frequent adverse event during systemic treatments for advanced thyroid cancer, often leading to reduction, interruption, or discontinuation. We were the first group to demonstrate a correlation between fatigue and primary adrenal insufficiency (PAI). Aim The objective was to assess the entire adrenal function in patients on systemic treatments. Methods ACTH, cortisol and all the hormones produced by the adrenal gland were evaluated monthly in 36 patients (25 on lenvatinib, six on vandetanib, and five on selpercatinib). ACTH stimulation tests were performed in 26 cases. Results After a median treatment period of 7 months, we observed an increase in ACTH values in 80-100% of patients and an impaired cortisol response to the ACTH test in 19% of cases. Additionally, dehydroepiandrosterone sulphate, ∆-4-androstenedione and 17-OH progesterone levels were below the median of normal values in the majority of patients regardless of the drug used. Testosterone in females and oestradiol in males were below the median of normal values in the majority of patients on lenvatinib and vandetanib. Finally, aldosterone was below the median of the normal values in most cases, whilst renin levels were normal. Metanephrines and normetanephrines were always within the normal range. Replacement therapy with cortisone acetate improved fatigue in 14/17 (82%) patients with PAI. Conclusion Our data confirm that systemic treatments for advanced thyroid cancer can lead to impaired cortisol secretion. A reduction in the other hormones secreted by the adrenal cortex has been first reported and should be considered in the more appropriate management of these fragile patients.
Collapse
Affiliation(s)
- Carla Colombo
- Endocrine Oncology Unit, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| | - Daniele Ceruti
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Massimiliano Succi
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simone De Leo
- Endocrine Oncology Unit, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
| | - Matteo Trevisan
- Endocrine Oncology Unit, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Claudia Moneta
- Department of Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Fugazzola
- Endocrine Oncology Unit, Department of Endocrine and Metabolic Diseases, Istituto Auxologico Italiano IRCCS, Milan, Italy
- Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
8
|
Augsburger P, Liimatta J, Flück CE. Update on Adrenarche-Still a Mystery. J Clin Endocrinol Metab 2024; 109:1403-1422. [PMID: 38181424 DOI: 10.1210/clinem/dgae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/07/2024]
Abstract
CONTEXT Adrenarche marks the timepoint of human adrenal development when the cortex starts secreting androgens in increasing amounts, in healthy children at age 8-9 years, with premature adrenarche (PA) earlier. Because the molecular regulation and significance of adrenarche are unknown, this prepubertal event is characterized descriptively, and PA is a diagnosis by exclusion with unclear long-term consequences. EVIDENCE ACQUISITION We searched the literature of the past 5 years, including original articles, reviews, and meta-analyses from PubMed, ScienceDirect, Web of Science, Embase, and Scopus, using search terms adrenarche, pubarche, DHEAS, steroidogenesis, adrenal, and zona reticularis. EVIDENCE SYNTHESIS Numerous studies addressed different topics of adrenarche and PA. Although basic studies on human adrenal development, zonation, and zona reticularis function enhanced our knowledge, the exact mechanism leading to adrenarche remains unsolved. Many regulators seem involved. A promising marker of adrenarche (11-ketotestosterone) was found in the 11-oxy androgen pathway. By current definition, the prevalence of PA can be as high as 9% to 23% in girls and 2% to 10% in boys, but only a subset of these children might face related adverse health outcomes. CONCLUSION New criteria for defining adrenarche and PA are needed to identify children at risk for later disease and to spare children with a normal variation. Further research is therefore required to understand adrenarche. Prospective, long-term studies should characterize prenatal or early postnatal developmental pathways that modulate trajectories of birth size, early postnatal growth, childhood overweight/obesity, adrenarche and puberty onset, and lead to abnormal sexual maturation, fertility, and other adverse outcomes.
Collapse
Affiliation(s)
- Philipp Augsburger
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| | - Jani Liimatta
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
- Kuopio Pediatric Research Unit (KuPRU), University of Eastern Finland and Kuopio University Hospital, 70029 Kuopio, Finland
| | - Christa E Flück
- Pediatric Endocrinology, Diabetology, and Metabolism, Inselspital, Bern University Hospital, 3010 Bern, Switzerland
- Department of BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
9
|
Knapczyk-Stwora K, Kozlowska A, Jastrzabek D, Grzesiak M, Slomczynska M, Koziorowski M. Impact of endocrine-active compounds on adrenal androgen production in pigs during neonatal period. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 107:104435. [PMID: 38588759 DOI: 10.1016/j.etap.2024.104435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024]
Abstract
This study investigated the impact of neonatal exposure to endocrine-active compounds (EACs): flutamide (antiandrogen), 4-tert-octylphenol (an estrogenic compound), and methoxychlor (an organochlorine insecticide exhibiting estrogenic, antiestrogenic and antiandrogenic activities) on androgen production within porcine adrenal glands. The expression of genes related to androgen synthesis and the level of androgen production were analyzed (i) in the adrenal glands of piglets exposed to EACs during the first 10 days of life (in vivo study), and (ii) in adrenal explants from sow-fed or formula-fed 10-day-old piglets incubated with EACs (ex vivo study). EACs affected the expression of genes linked to adrenal androgen biosynthesis. The prominent effect of methoxychlor on downregulation of StAR, CYP11A1 and HSD3B and upregulation of CYP17A1 and SULT2A1 were demonstrated. Furthermore, our study revealed divergent response to EACs between sow-fed and formula-fed piglets, suggesting that natural feeding may provide protection against adverse EACs effects, particularly those interfering with estrogens action.
Collapse
Affiliation(s)
- Katarzyna Knapczyk-Stwora
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, Krakow 30-387, Poland.
| | - Aleksandra Kozlowska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, Krakow 30-387, Poland
| | - Damian Jastrzabek
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, Krakow 30-387, Poland
| | - Malgorzata Grzesiak
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, Krakow 30-387, Poland
| | - Maria Slomczynska
- Department of Endocrinology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa 9, Krakow 30-387, Poland
| | - Marek Koziorowski
- Institute of Biotechnology, College of Natural Sciences, University of Rzeszow, Pigonia 1, Rzeszow 35-310, Poland; Interdisciplinary Center for Preclinical and Clinical Research, University of Rzeszow, Werynia 2, Kolbuszowa 36-100, Poland
| |
Collapse
|
10
|
Ogawa M, Kitamoto J, Takeda T, Hori M, Shikano K, Yamanaka-Tanaka A, Tanaka T, Kawaguchi T, Terada M, Tanaka T. Decamethylcyclopentasiloxane affects estradiol production in female rats but not H295R cells. J Appl Toxicol 2023; 43:1883-1898. [PMID: 37551828 DOI: 10.1002/jat.4524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 07/18/2023] [Accepted: 07/19/2023] [Indexed: 08/09/2023]
Abstract
Sex hormones, such as androgens and estrogens, are predominantly produced in the gonads (ovaries and testes) and adrenal cortex. Endocrine-disrupting chemicals (EDCs) are substances that mimic, block, or interfere with hormones in the endocrine systems of humans and organisms. EDCs mainly act via nuclear receptors and steroidogenesis-related enzymes. In the OECD conceptual framework for testing and assessment of EDCs, several well-known assays are used to identify the potential disruption of nuclear receptors both in vivo and in vitro, whereas the H295R steroidogenesis assay is the only assay that detects the disruption of steroidogenesis. Forskolin and prochloraz are often used as positive controls in the H295R steroidogenesis assay. Decamethylcyclopentasiloxane (D5) was suspected one of EDCs, but the effects of D5 on steroidogenesis remain unclear. To establish a short-term in vivo screening method that detects the disruption of steroidogenesis, rats in the present study were fed a diet containing forskolin, prochloraz, or D5 for 14 days. Forskolin increased plasma levels of 17β-estradiol (E2) and testosterone as well as the mRNA level of Cyp19 in both the adrenal glands and ovaries. Prochloraz induced the loss of cyclicity in the sexual cycle and decreased plasma levels of E2 and testosterone. D5 increased E2 levels and shortened the estrous cycle in a dose-dependent manner; however, potential endocrine disruption was not detected in the H295R steroidogenesis assay. These results demonstrate the importance of comprehensively assessing the endocrine-disrupting effects of chemicals on steroidogenesis in vivo.
Collapse
Affiliation(s)
- Masahiro Ogawa
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Junya Kitamoto
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Takeo Takeda
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Masami Hori
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Kisako Shikano
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Amami Yamanaka-Tanaka
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Tomoki Tanaka
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Tomoya Kawaguchi
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Megumi Terada
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| | - Taku Tanaka
- Life Science Research Institute, Kumiai Chemical Industry Co., Ltd., Shizuoka, Japan
| |
Collapse
|
11
|
Patani A, Balram D, Yadav VK, Lian KY, Patel A, Sahoo DK. Harnessing the power of nutritional antioxidants against adrenal hormone imbalance-associated oxidative stress. Front Endocrinol (Lausanne) 2023; 14:1271521. [PMID: 38098868 PMCID: PMC10720671 DOI: 10.3389/fendo.2023.1271521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Oxidative stress, resulting from dysregulation in the secretion of adrenal hormones, represents a major concern in human health. The present review comprehensively examines various categories of endocrine dysregulation within the adrenal glands, encompassing glucocorticoids, mineralocorticoids, and androgens. Additionally, a comprehensive account of adrenal hormone disorders, including adrenal insufficiency, Cushing's syndrome, and adrenal tumors, is presented, with particular emphasis on their intricate association with oxidative stress. The review also delves into an examination of various nutritional antioxidants, namely vitamin C, vitamin E, carotenoids, selenium, zinc, polyphenols, coenzyme Q10, and probiotics, and elucidates their role in mitigating the adverse effects of oxidative stress arising from imbalances in adrenal hormone levels. In conclusion, harnessing the power of nutritional antioxidants has the potential to help with oxidative stress caused by an imbalance in adrenal hormones. This could lead to new research and therapeutic interventions.
Collapse
Affiliation(s)
- Anil Patani
- Department of Biotechnology, Smt. S.S. Patel Nootan Science and Commerce College, Sankalchand Patel University, Visnagar, Gujarat, India
| | - Deepak Balram
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Virendra Kumar Yadav
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Kuang-Yow Lian
- Department of Electrical Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ashish Patel
- Department of Life Sciences, Hemchandracharya North Gujarat University, Gujarat, India
| | - Dipak Kumar Sahoo
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
12
|
Azhar S, Shen WJ, Hu Z, Kraemer FB. MicroRNA regulation of adrenal glucocorticoid and androgen biosynthesis. VITAMINS AND HORMONES 2023; 124:1-37. [PMID: 38408797 DOI: 10.1016/bs.vh.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Steroid hormones are derived from a common precursor molecule, cholesterol, and regulate a wide range of physiologic function including reproduction, salt balance, maintenance of secondary sexual characteristics, response to stress, neuronal function, and various metabolic processes. Among the steroids synthesized by the adrenal and gonadal tissues, adrenal mineralocorticoids, and glucocorticoids are essential for life. The process of steroidogenesis is regulated at multiple levels largely by transcriptional, posttranscriptional, translational, and posttranslational regulation of the steroidogenic enzymes (i.e., cytochrome P450s and hydroxysteroid dehydrogenases), cellular compartmentalization of the steroidogenic enzymes, and cholesterol processing and transport proteins. In recent years, small noncoding RNAs, termed microRNAs (miRNAs) have been recognized as major post-transcriptional regulators of gene expression with essential roles in numerous biological processes and disease pathologies. Although their role in the regulation of steroidogenesis is still emerging, several recent studies have contributed significantly to our understanding of the role miRNAs play in the regulation of the steroidogenic process. This chapter focuses on the recent developments in miRNA regulation of adrenal glucocorticoid and androgen production in humans and rodents.
Collapse
Affiliation(s)
- Salman Azhar
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Stanford Diabetes Research Center, Stanford, CA, United States.
| | - Wen-Jun Shen
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States
| | - Zhigang Hu
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, P.R. China
| | - Fredric B Kraemer
- Geriatric Research, Education and Clinical Center, VA Palo Alto Health Care System, Palo Alto, CA, United States; Division of Endocrinology, Gerontology and Metabolism, Stanford University School of Medicine, Stanford, CA, United States; Stanford Diabetes Research Center, Stanford, CA, United States
| |
Collapse
|
13
|
Ghosh C, Maity R, Roy A, Mallick C. Dose-Dependent Protective Effect of Hygrophila auriculata Seeds on Cyproterone Acetate-Induced Testicular Dysfunction. Reprod Sci 2023; 30:3359-3371. [PMID: 37286756 DOI: 10.1007/s43032-023-01279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 05/24/2023] [Indexed: 06/09/2023]
Abstract
Infertility affects 15% of global population. This study was designed to search out the most effective dose of chloroform fraction of hydro-ethanolic extract of Hygrophila auriculata seed to ameliorate cyproterone acetate (CPA)-treated male subfertility. The rats were made subfertile by CPA at the dose of 2.5 mg/100gm body weight for 45 days. The male subfertility represented by low sperm concentration, less motile, less viable, and less hypo osmotic tail swelled spermatozoa in CPA-treated group. Serum LH, FSH, and testosterone levels were significantly decreased in CPA-treated group in respect to control. Androgenic key enzyme Δ5,3β-HSD, 17β-HSD activities and gene expression pattern were also decreased significantly in respect to control. These antispermatogenic and antiandrogenic activities of CPA were significantly recovered after the treatment of Hygrophila auriculata at the dose of 2.5 mg, 5mg, and 10 mg/100gm body weight. CPA also generate oxidative free radical that indicated by altered catalase, superoxide dismutase, and peroxidase activities and protein expression pattern along with conjugated diene and thiobarbituric acid reactive substance levels in testis. Expression pattern of Bax and Bcl2 genes were deviated from control after CPA treatment. Significant diminution of body weight, organo-somatic indices, and SGOT, SGPT activities were observed in CPA-treated group. All these biomarkers significantly recovered towards control after the treatment of Hygrophila auriculata at different doses. More significant recovery was observed in 5 mg and 10 mg of chloroform fraction-treated group and 5 mg dose, i.e., the minimum therapeutic dose to recover the CPA-induced subfertility.
Collapse
Affiliation(s)
- Chaitali Ghosh
- Clinical Nutrition and Dietetics, Department of Biomedical Laboratory Science and Management (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721 102, India
| | - Ratnabali Maity
- Clinical Nutrition and Dietetics, Department of Biomedical Laboratory Science and Management (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721 102, India
| | - Aaishi Roy
- Clinical Nutrition and Dietetics, Department of Biomedical Laboratory Science and Management (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721 102, India
| | - Chhanda Mallick
- Clinical Nutrition and Dietetics, Department of Biomedical Laboratory Science and Management (UGC Innovative Department), Vidyasagar University, Midnapore, West Bengal, 721 102, India.
| |
Collapse
|
14
|
Yoshida T, Matsubara K, Ogata-Kawata H, Miyado M, Ishiwata K, Nakabayashi K, Hata K, Kageyama I, Tamaoka S, Shimada Y, Fukami M, Sasaki S. Variations in gender identity and sexual orientation of university students. Sex Med 2023; 11:qfad057. [PMID: 37965377 PMCID: PMC10642543 DOI: 10.1093/sexmed/qfad057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/16/2023] Open
Abstract
Background Previous studies have shown that a small percentage of people in the general population have atypical gender identity and/or sexual orientation. Aim This study aimed to explore variations in gender identity and sexual orientation in university students and determine genetic factors associated with these variations. Methods Deviations from complete gender congruence and exclusive heterosexual orientation in 736 Japanese university students were quantitatively assessed with self-assessment questionnaires. Next, we conducted genetic tests for 80 participants who showed relatively low gender identity scores and/or atypical sexual orientation. These genetic tests consisted of repeat number analysis of the androgen receptor gene (AR) and a SKAT-O: an optimal unified sequence kernel association test, which is an exome-based rare variant association study. The results of the genetic tests were compared with the Japanese reference data and the results of our 637 control samples. Outcomes We calculated the gender identity and sexual orientation scores of all participants and analyzed the molecular data of 80 selected participants. Results The gender identity scores of 736 participants were broadly distributed: only ~15% of natal males and ~5% of natal females had the maximum score that corresponds to complete gender congruence. The sexual orientation scores also varied: ~80% of natal males and ~60% of natal females showed exclusive heterosexual orientation. We found no association between gender characteristics and AR repeat numbers. The SKAT-O showed that rare damaging variants of TDRP and 3 other genes were more common in the 80 participants than in the control group. Clinical Implications Our data support the view that gender is a phenotypic continuum rather than a binary trait. Strength and Limitations This study quantitatively assessed the gender characteristics of a large cohort of university students. Moreover, we conducted systematic screening for genetic factors associated with gender variations. The weaknesses of the study were the limited analytic power of the questionnaires, the relatively small sample for molecular analyses, and incomplete clinical information and relatively advanced ages of the control group. Conclusion This study revealed significant variations in gender identity and sexual orientation in university students, which may be partly associated with variants in TDRP or other genes.
Collapse
Affiliation(s)
- Tomoko Yoshida
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Keiko Matsubara
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Hiroko Ogata-Kawata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Mami Miyado
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Keisuke Ishiwata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kazuhiko Nakabayashi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Ikuko Kageyama
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Satoshi Tamaoka
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Yukiko Shimada
- Department of Child Studies, Faculty of Human Development, Kokugakuin University, Kanagawa, 225-0003, Japan
| | - Maki Fukami
- Department of Molecular Endocrinology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Shoko Sasaki
- Graduate School of Arts and Letters, Meiji University, Tokyo ,101-0064, Japan
| |
Collapse
|
15
|
Zou Y, Zhang L, Yue M, Zou Z, Wu X, Zhang Q, Huang Y, Zeng S, Chen C, Gao J. Reproductive effects of pubertal exposure to neonicotinoid thiacloprid in immature male mice. Toxicol Appl Pharmacol 2023; 474:116629. [PMID: 37468076 DOI: 10.1016/j.taap.2023.116629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/02/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
Thiacloprid (THIA) is a kind of neonicotinoid, a widely used insecticide class. Animal studies of adult and prenatal exposure to THIA have revealed deleterious effects on mammalian sperm fertility and embryonic development. A recent cross-sectional study linked higher THIA concentrations to delayed genitalia development stages in adolescent boys, suggesting that pubertal exposure to THIA may adversely affect reproductive development in immature males. Hence, this study aimed to investigate the effects of daily oral administration of THIA during puberty on the reproductive system of developing male mice. Young male C57 BL/6 J mice aged 21 days were administrated with THIA at concentrations of 10 (THIA-10), 50 (THIA-50) and 100 mg/kg (THIA-100) for 4 weeks by oral gavage. It is found that exposure to 100 mg/kg THIA diminished sexual behavior in immature male mice, caused a decrease in the spermatogenic cell layers and irregular arrangement of the seminiferous epithelium, and down-regulated the mRNA levels of spermatogenesis-related genes Ddx4, Scp3, Atg5, Crem, and Ki67, leading to an increase of sperm abnormality rate. In addition, THIA exposure at 50 and 100 mg/kg reduced the serum levels of testosterone and FSH, and decreased the expression levels of Star and Cyp11a1 related to testosterone biosynthesis. THIA exposure at 10 mg/kg did not produce any of the above significant changes. In conclusion, the high dose of THIA exposure impaired reproductive function in immature mice. It seems that THIA has no detrimental effects on the reproductive system of mice at low dose of 10 mg/kg.
Collapse
Affiliation(s)
- Yong Zou
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Liyu Zhang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Min Yue
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Zhen Zou
- Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China; Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Xu Wu
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Qiuyan Zhang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Yue Huang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Shaohua Zeng
- China Coal Technology & Engineering Group Chongqing Research Institute, Chongqing 400039, People's Republic of China
| | - Chengzhi Chen
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China; Dongsheng Lung-Brain Disease Joint Lab, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| | - Jieying Gao
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing 400016, People's Republic of China.
| |
Collapse
|
16
|
Thavaraputta S, Ungprasert P, Witchel SF, Fazeli PK. Anorexia nervosa and adrenal hormones: a systematic review and meta-analysis. Eur J Endocrinol 2023; 189:S64-S73. [PMID: 37669399 PMCID: PMC10498414 DOI: 10.1093/ejendo/lvad123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/02/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023]
Abstract
OBJECTIVE Anorexia nervosa is a primary psychiatric disorder characterized by self-induced negative energy balance. A number of hormonal responses and adaptations occur in response to starvation and low body weight including changes in adrenocortical hormones. Our objective was to systematically review adrenocortical hormone levels in anorexia nervosa. DESIGN/METHODS We searched MEDLINE and EMBASE for studies that reported at least one adrenocortical hormone, including dehydroepiandrosterone (DHEA), DHEA-sulphate (DHEA-S), progesterone, 17-hydroxyprogesterone, pregnenolone, cortisol (serum, urine, cerebrospinal fluid, and hair sample), aldosterone, androstenedione, and testosterone in patients with anorexia nervosa and normal-weight healthy controls from inception until October 2021. Means and standard deviations for each hormone were extracted from the studies to calculate a mean difference (MD). A pooled MD was then calculated by combining MDs of each study using the random-effects model. RESULTS We included a total of 101 studies with over 2500 females with anorexia nervosa. Mean cortisol levels were significantly higher in anorexia nervosa as compared to normal-weight controls for multiple forms of measurement, including morning cortisol, 12-hour and 24-hour pooled serum cortisol, 24-hour urine cortisol, and after an overnight dexamethasone suppression test. In contrast, mean serum total testosterone and DHEA-S levels were significantly lower among patients with anorexia nervosa. CONCLUSIONS Women with anorexia nervosa have higher cortisol levels and lower DHEA-S and testosterone levels compared to women without anorexia nervosa. This finding is important to consider when evaluating low-weight women for disorders involving the adrenal axis, especially Cushing's syndrome.
Collapse
Affiliation(s)
- Subhanudh Thavaraputta
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
- Division of Endocrinology and Metabolism, Department of Medicine, Faculty of Medicine, Chulalongkorn University and Excellence Center in Diabetes, Hormone, and Metabolism, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok 10330, Thailand
| | - Patompong Ungprasert
- Department of Rheumatic and Immunologic Diseases, Cleveland Clinic, Cleveland, OH 44195, United States
| | - Selma F Witchel
- Division of Pediatric Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224, United States
| | - Pouneh K Fazeli
- Neuroendocrinology Unit, Division of Endocrinology and Metabolism, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, United States
| |
Collapse
|
17
|
Podgórski R, Sumińska M, Rachel M, Pikuła B, Fichna P, Bidlingmaier M, Fichna M. Changes of androgen and corticosterone metabolites excretion and conversion in cystic fibrosis. Front Endocrinol (Lausanne) 2023; 14:1244127. [PMID: 37711888 PMCID: PMC10497873 DOI: 10.3389/fendo.2023.1244127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
Cystic fibrosis (CF) is a life-threatening inherited disease related to a mutation in the CFTR gene, that leads to serious health complications such as chronic pulmonary infections, pancreatic insufficiency, dysfunction of the sweat glands and reproductive system. For the first time, we have described the profile of corticosterone and androgen metabolites in urine, as well as the activity of enzymes involved in steroid genesis and metabolism in people with CF, using gas chromatography/mass spectrometry. A significant reduction in the excretion of most of the measured metabolites in CF was found. These differences were observed in the group of progestagen metabolites, as well as among metabolites of corticosterone and androgens. We revealed higher activities of 17β-hydroxysteroid dehydrogenase and 17,20-lyase in the Δ4 pathway compared with controls, what can promote the androgen synthesis through the backdoor androgen pathway. We have also found the increased conversion activity of 11-oxyganated steroids by 5a-reductase in backdoor pathway. Levels of the most potent and vital androgens (testosterone and dihydrotestosterone) are comparable in both groups. However, the excretion of dehydroepiandrosterone was lower in CF. Decreased cholesterol lipoprotein levels may contribute to limited intracellular cholesterol supply and reduced adrenal steroidogenesis in CF individuals. Changes in the activity of some steroidogenesis enzymes may suggest the presence of some peripheral adaptive mechanisms in CF to maintain androgen balance in the body despite the limited sufficiency of secretion by the adrenal cortex.
Collapse
Affiliation(s)
- Rafał Podgórski
- Department of Biochemistry, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Marta Sumińska
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Rachel
- Department of Pediatric, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Barbara Pikuła
- Department of Biology, Institute of Medical Sciences, Medical College of Rzeszow University, Rzeszow, Poland
| | - Piotr Fichna
- Department of Pediatric Diabetes, Auxology and Obesity, Poznan University of Medical Sciences, Poznan, Poland
| | - Martin Bidlingmaier
- Endocrine Laboratory, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - Marta Fichna
- Department of Endocrinology, Metabolism and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
18
|
Raj A, Chakole S, Agrawal S, Gupta A, Khekade H, Prasad R, Lohakare T, Wanjari M. The Impact of Menopause on Cardiovascular Aging: A Comprehensive Review of Androgen Influences. Cureus 2023; 15:e43569. [PMID: 37719547 PMCID: PMC10503403 DOI: 10.7759/cureus.43569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/16/2023] [Indexed: 09/19/2023] Open
Abstract
Menopause represents a critical life stage in women, characterized by hormonal changes that significantly impact cardiovascular health. While the decline in estrogen levels has long been recognized as a major contributor to cardiovascular aging in menopausal women, the role of androgens, particularly testosterone, has gained increasing attention in recent years. This comprehensive review aims to provide a thorough understanding of the impact of menopause on cardiovascular aging, with a specific focus on the influences of androgens. A literature search was conducted to gather relevant studies and clinical evidence exploring the relationship between menopause, androgens, and cardiovascular health. The review integrates findings from various studies to present a holistic view of the topic. The review outlines the changes in hormone levels during menopause and discusses the cardiovascular risk factors associated with this transition. Furthermore, it explores the impact of menopause on cardiovascular structure and function, elucidating the underlying mechanisms that contribute to cardiovascular aging. Androgens' significance in maintaining cardiovascular homeostasis is discussed, followed by exploring the effects of androgen decline during menopause on lipid profiles, insulin sensitivity, vascular function, and other cardiovascular parameters. The review delves into the mechanisms of androgen action on the cardiovascular system, emphasizing the role of androgen receptors and the intricate interplay between androgens, estrogens, and other hormones. Clinical evidence supporting the effects of androgens on cardiovascular aging is presented, including studies investigating the association between androgen levels and cardiovascular outcomes. Additionally, the impact of androgen replacement therapy (ART) on cardiovascular risk markers and events in menopausal women is examined, along with controversies and conflicting findings surrounding the use of androgen therapy in cardiovascular aging. This structured review provides a comprehensive understanding of the impact of menopause on cardiovascular aging, with a specific focus on the role of androgens. By highlighting the significance of androgens in cardiovascular health during menopause, this review aims to create an initial impression and interest among readers, inviting potential citations in the future. The findings underscore the need for further research and offer insights into managing cardiovascular aging in menopausal women, including lifestyle interventions, pharmacological approaches, and the potential role of personalized medicine and precision therapies.
Collapse
Affiliation(s)
- Aditya Raj
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Swarupa Chakole
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Suyash Agrawal
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anannya Gupta
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Harshal Khekade
- Community Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Roshan Prasad
- Internal Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Tejaswee Lohakare
- Pediatrics, Smt. Radhikabai Meghe Memorial College of Nursing, Wardha, IND
| | - Mayur Wanjari
- Research and Development, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
19
|
Wróbel TM, Jørgensen FS, Pandey AV, Grudzińska A, Sharma K, Yakubu J, Björkling F. Non-steroidal CYP17A1 Inhibitors: Discovery and Assessment. J Med Chem 2023; 66:6542-6566. [PMID: 37191389 DOI: 10.1021/acs.jmedchem.3c00442] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
CYP17A1 is an enzyme that plays a major role in steroidogenesis and is critically involved in the biosynthesis of steroid hormones. Therefore, it remains an attractive target in several serious hormone-dependent cancer diseases, such as prostate cancer and breast cancer. The medicinal chemistry community has been committed to the discovery and development of CYP17A1 inhibitors for many years, particularly for the treatment of castration-resistant prostate cancer. The current Perspective reflects upon the discovery and evaluation of non-steroidal CYP17A1 inhibitors from a medicinal chemistry angle. Emphasis is placed on the structural aspects of the target, key learnings from the presented chemotypes, and design guidelines for future inhibitors.
Collapse
Affiliation(s)
- Tomasz M Wróbel
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Flemming Steen Jørgensen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Amit V Pandey
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Angelika Grudzińska
- Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4a, 20093 Lublin, Poland
| | - Katyayani Sharma
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Jibira Yakubu
- Pediatric Endocrinology, Department of Pediatrics, University Children's Hospital, Inselspital, Bern and Translational Hormone Research Program, Department of Biomedical Research, University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Fredrik Björkling
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
20
|
Söderqvist G, Naessén S. Androgens impact on psychopathological variables according to CPRS, and EDI 2 scores: In women with bulimia nervosa, and eating disorder not otherwise specified. J Steroid Biochem Mol Biol 2023; 226:106217. [PMID: 36368624 DOI: 10.1016/j.jsbmb.2022.106217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/28/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
Abstract
Bulimia nervosa (BN) is characterized by binge eating, compensatory behavior, over-evaluation of weight and shape, which often co-occur with symptoms of anxiety and depression. Depression is the most common comorbid diagnosis in women with eating disorders. The role of androgens in the pathophysiology of depression has been recognized in recent years. However, the research on psychopathological comorbidity and androgen levels in bulimic disease is sparse. This study aimed to investigate, if there were any correlations between the androgens, testosterone (T), dehydroepiandrosterone sulphate (DHEAS), androstenedione (A4), 5α-dihydrotestosterone, (5α-DHT), and test scores of psychopathological variables, in women with bulimia nervosa (BN), eating disorder not otherwise specified of purging subtype (EDNOS-P) assessed by CPRS, and EDI 2. Women with DSM-IV diagnosis of BN (n = 36), EDNOS-P (n = 27), and healthy control subjects (n = 58) evaluated for fifteen psychopathological variables, i.a. depressive symptoms, impulsivity, personal traits, as well as serum androgen levels. All women were euthyroid, and polycystic ovarian syndrome (PCOS) diagnosis was excluded. Although androgen levels were almost equal for all three groups, significant correlations between core psychopathological symptoms (9/15) of bulimia nervosa and the most potent endogenous androgen, 5α-DHT, was found only in the EDNOS-P group. The role of 5α-DHT in women is not fully elucidated. Both animal and human studies have shown that the brain is able to locally synthesize steroids de novo and is a target of steroid hormones. Maybe these results can be interpreted in the light of differences in androgen receptor variability, metabolism and origin of T and 5α-DHT.
Collapse
Affiliation(s)
- Gunnar Söderqvist
- Department of Women's, and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Sabine Naessén
- Department of Women's, and Children's Health, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
21
|
Bachelot G, Bachelot A, Bonnier M, Salem JE, Farabos D, Trabado S, Dupont C, Kamenicky P, Houang M, Fiet J, Le Bouc Y, Young J, Lamazière A. Combining metabolomics and machine learning models as a tool to distinguish non-classic 21-hydroxylase deficiency from polycystic ovary syndrome without adrenocorticotropic hormone testing. Hum Reprod 2023; 38:266-276. [PMID: 36427016 DOI: 10.1093/humrep/deac254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/03/2022] [Indexed: 11/27/2022] Open
Abstract
STUDY QUESTION Can a combination of metabolomic signature and machine learning (ML) models distinguish nonclassic 21-hydroxylase deficiency (NC21OHD) from polycystic ovary syndrome (PCOS) without adrenocorticotrophic hormone (ACTH) testing? SUMMARY ANSWER A single sampling methodology may be an alternative to the dynamic ACTH test in order to exclude the diagnosis of NC21OHD in the presence of a clinical hyperandrogenic presentation at any time of the menstrual cycle. WHAT IS KNOWN ALREADY The clinical presentation of patients with NC21OHD is similar with that for other disorders of androgen excess. Currently, cosyntropin stimulation remains the gold standard diagnosis of NC21OHD. STUDY DESIGN, SIZE, DURATION The study was designed using a bicentric recruitment: an internal training set included 19 women with NC21OHD and 19 controls used for developing the model; a test set included 17 NC21OHD, 72 controls and 266 PCOS patients used to evaluate the performance of the diagnostic strategy thanks to an ML approach. PARTICIPANTS/MATERIALS, SETTING, METHODS Fifteen steroid species were measured in serum by liquid chromatography-mass spectrometry (LC-MS/MS). This set of 15 steroids (defined as 'steroidome') used to map the steroid biosynthesis pathway was the input for our models. MAIN RESULTS AND THE ROLE OF CHANCE From a single sample, modeling involving metabolic pathway mapping by profiling 15 circulating steroids allowed us to identify perfectly NC21OHD from a confounding PCOS population. The constructed model using baseline LC-MS/MS-acquired steroid fingerprinting successfully excluded all 17 NC21OHDs (sensitivity and specificity of 100%) from 266 PCOS from an external testing cohort of originally 549 women, without the use of ACTH testing. Blood sampling timing during the menstrual cycle phase did not impact the efficiency of our model. LIMITATIONS, REASONS FOR CAUTION The main limitations were the use of a restricted and fully prospective cohort as well as an analytical issue, as not all laboratories are equipped with mass spectrometers able to routinely measure this panel of 15 steroids. Moreover, the robustness of our model needs to be established with a larger prospective study for definitive validation in clinical practice. WIDER IMPLICATIONS OF THE FINDINGS This tool makes it possible to propose a new semiology for the management of hyperandrogenism. The model presents better diagnostic performances compared to the current reference strategy. The management of patients may be facilitated by limiting the use of ACTH tests. Finally, the modeling process allows a classification of steroid contributions to rationalize the biomarker approach and highlight some underlying pathophysiological mechanisms. STUDY FUNDING/COMPETING INTEREST(S) This study was supported by 'Agence Française de Lutte contre le dopage' and DIM Région Ile de France. This study was supported by the French institutional PHRC 2010-AOR10032 funding source and APHP. All authors declare no competing financial interests. TRIAL REGISTRATION NUMBER N/A.
Collapse
Affiliation(s)
- Guillaume Bachelot
- Service de Biologie de La Reproduction-CECOS, Hôpital Tenon, AP-HP.Sorbonne Université, Paris, France.,Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Paris, France.,Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, Paris, France
| | - Anne Bachelot
- Service d'Endocrinologie et Médecine de La Reproduction, Centre de Référence Des Maladies Endocriniennes Rares de La Croissance et du Développement, Centre Des Pathologies Gynécologiques Rares, Hôpital Pitié Salpêtrière (APHP), Sorbonne Université, Paris, France
| | - Marion Bonnier
- Service d'Endocrinologie et Médecine de La Reproduction, Centre de Référence Des Maladies Endocriniennes Rares de La Croissance et du Développement, Centre Des Pathologies Gynécologiques Rares, Hôpital Pitié Salpêtrière (APHP), Sorbonne Université, Paris, France
| | - Joe-Elie Salem
- CIC-1901 and Department of Pharmacology, Pitié-Salpêtrière Hospital, AP-HP, Sorbonne Université, Inserm, Paris, France
| | - Dominique Farabos
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Paris, France
| | - Severine Trabado
- Service de Génétique Moléculaire, Pharmacogénétique et Hormonologie, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France.,INSERM UMR-U1185, Paris-Saclay University, Le Kremlin-Bicêtre, France
| | - Charlotte Dupont
- Service de Biologie de La Reproduction-CECOS, Hôpital Tenon, AP-HP.Sorbonne Université, Paris, France.,Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Paris, France
| | - Peter Kamenicky
- INSERM UMR-U1185, Paris-Saclay University, Le Kremlin-Bicêtre, France.,University Paris-Saclay, Orsay, France.,Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Muriel Houang
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Paris, France.,Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Jean Fiet
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Paris, France.,Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, Paris, France
| | - Yves Le Bouc
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Paris, France.,Explorations Fonctionnelles Endocriniennes, Hôpital Armand Trousseau, AP-HP, Paris, France
| | - Jacques Young
- INSERM UMR-U1185, Paris-Saclay University, Le Kremlin-Bicêtre, France.,University Paris-Saclay, Orsay, France.,Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hospital, Le Kremlin-Bicêtre, France
| | - Antonin Lamazière
- Sorbonne Université, Saint Antoine Research Center, INSERM UMR 938, Paris, France.,Département de Métabolomique Clinique, Hôpital Saint Antoine, AP-HP.Sorbonne Université, Paris, France
| |
Collapse
|
22
|
Michael P, Roversi G, Brown K, Sharifi N. Adrenal Steroids and Resistance to Hormonal Blockade of Prostate and Breast Cancer. Endocrinology 2023; 164:bqac218. [PMID: 36580423 PMCID: PMC10091490 DOI: 10.1210/endocr/bqac218] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/21/2022] [Accepted: 12/28/2022] [Indexed: 12/30/2022]
Abstract
Prostate cancer and breast cancer are sex-steroid-dependent diseases that are driven in major part by gonadal sex steroids. Testosterone (T) is converted to 5α-dihydrotestosterone, both of which stimulate the androgen receptor (AR) and prostate cancer progression. Estradiol is the major stimulus for estrogen receptor-α (ERα) and proliferation of ERα-expressing breast cancer. However, the human adrenal provides an alternative source for sex steroids. A number of different androgens are produced by the adrenals, the most abundant of which is dehydroepiandrosterone (DHEA) and DHEA sulfate. These precursor steroids are subject to metabolism by peripherally expressed enzymes that are responsible for the synthesis of potent androgens and estrogens. In the case of prostate cancer, the regulation of one of these enzymatic steps occurs at least in part by way of a germline-encoded missense in 3β-hydroxysteroid dehydrogenase-1 (3βHSD1), which regulates potent androgen biosynthesis and clinical outcomes in men with advanced prostate cancer treated with gonadal T deprivation. The sex steroids that drive prostate cancer and breast cancer require a common set of enzymes for their generation. However, the pathways diverge once 3-keto, Δ4-androgens are generated and these steroids are either turned into potent androgens by steroid-5α-reductase, or into estrogens by aromatase. Alternative steroid receptors have also emerged as disease- and treatment-resistance modifiers, including a role for AR in breast cancer and glucocorticoid receptor both in breast and prostate cancer. In this review, we integrate the commonalities of adrenal steroid physiology that regulate both prostate and breast cancer while recognizing the clear distinctions between these diseases.
Collapse
Affiliation(s)
- Patrick Michael
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Gustavo Roversi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | - Kristy Brown
- Sandra and Edward Meyer Cancer Center and Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| | - Nima Sharifi
- Genitourinary Malignancies Research Center, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Urology, Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
- Department of Hematology and Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| |
Collapse
|
23
|
Snaterse G, Hofland J, Lapauw B. The role of 11-oxygenated androgens in prostate cancer. ENDOCRINE ONCOLOGY (BRISTOL, ENGLAND) 2023; 3:e220072. [PMID: 37434644 PMCID: PMC10305623 DOI: 10.1530/eo-22-0072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/13/2023] [Indexed: 07/13/2023]
Abstract
11-oxygenated androgens are a class of steroids capable of activating the androgen receptor (AR) at physiologically relevant concentrations. In view of the AR as a key driver of prostate cancer (PC), these steroids are potential drivers of disease and progression. The 11-oxygenated androgens are adrenal-derived, and persist after androgen deprivation therapy (ADT), the mainstay treatment for advanced PC. Consequently, these steroids are of particular interest in the castration-resistant prostate cancer (CRPC) setting. The principal androgen of the pathway, 11-ketotestosterone (11KT), is a potent AR agonist and the predominant circulating active androgen in CRPC patients. Additionally, several precursor steroids are present in the circulation which can be converted into active androgens by steroidogenic enzymes present in PC cells. In vitro evidence suggests that adaptations frequently observed in CRPC favour the intratumoral accumulation of 11-oxygenated androgens in particular. Still, apparent gaps in our understanding of the physiology and role of the 11-oxygenated androgens remain. In particular, in vivo and clinical evidence supporting these in vitro findings is limited. Despite recent advances, a comprehensive assessment of intratumoral concentrations has not yet been performed. The exact contribution of the 11-oxygenated androgens to CRPC progression therefore remains unclear. This review will focus on the current evidence linking the 11-oxygenated androgens to PC, will highlight current gaps in our knowledge, and will provide insight into the potential clinical importance of the 11-oxygenated androgens in the CRPC setting based on the current evidence.
Collapse
Affiliation(s)
- Gido Snaterse
- Department of Endocrinology and Metabolism, Ghent University Hospital, Ghent, Belgium
| | - Johannes Hofland
- Section of Endocrinology, Department of Internal Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Bruno Lapauw
- Department of Endocrinology and Metabolism, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
24
|
Alemany M. The Roles of Androgens in Humans: Biology, Metabolic Regulation and Health. Int J Mol Sci 2022; 23:11952. [PMID: 36233256 PMCID: PMC9569951 DOI: 10.3390/ijms231911952] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
Androgens are an important and diverse group of steroid hormone molecular species. They play varied functional roles, such as the control of metabolic energy fate and partition, the maintenance of skeletal and body protein and integrity and the development of brain capabilities and behavioral setup (including those factors defining maleness). In addition, androgens are the precursors of estrogens, with which they share an extensive control of the reproductive mechanisms (in both sexes). In this review, the types of androgens, their functions and signaling are tabulated and described, including some less-known functions. The close interrelationship between corticosteroids and androgens is also analyzed, centered in the adrenal cortex, together with the main feedback control systems of the hypothalamic-hypophysis-gonads axis, and its modulation by the metabolic environment, sex, age and health. Testosterone (T) is singled out because of its high synthesis rate and turnover, but also because age-related hypogonadism is a key signal for the biologically planned early obsolescence of men, and the delayed onset of a faster rate of functional losses in women after menopause. The close collaboration of T with estradiol (E2) active in the maintenance of body metabolic systems is also presented Their parallel insufficiency has been directly related to the ravages of senescence and the metabolic syndrome constellation of disorders. The clinical use of T to correct hypoandrogenism helps maintain the functionality of core metabolism, limiting excess fat deposition, sarcopenia and cognoscitive frailty (part of these effects are due to the E2 generated from T). The effectiveness of using lipophilic T esters for T replacement treatments is analyzed in depth, and the main problems derived from their application are discussed.
Collapse
Affiliation(s)
- Marià Alemany
- Facultat de Biologia, Universitat de Barcelona, Av. Diagonal, 635, 08028 Barcelona, Catalonia, Spain;
- Institut de Biomedicina, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
25
|
Genetic Testing for a Patient with Suspected 3 Beta-Hydroxysteroid Dehydrogenase Deficiency: A Case of Unreported Genetic Variants. J Clin Med 2022; 11:jcm11195767. [PMID: 36233635 PMCID: PMC9573289 DOI: 10.3390/jcm11195767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/23/2022] Open
Abstract
3beta-hydroxysteroid dehydrogenase type II deficiency (HSD3B2 deficiency), a rare form of congenital adrenal hyperplasia (CAH), is characterized by varying degrees of salt loss and incomplete masculinization in males and mild virilization or normal external genitalia in females. We report the case of a patient (46XY) showing salt loss and incomplete masculinization, markedly elevated levels of 17OHP (17 hydroxyprogesterone), ACTH (Adreno Cortico Tropic Hormone), testosterone and delta4androstenedione (delta4A), low levels of cortisol and absence of bone skeletal alterations that frequently characterize POR (Cytochrome P450 oxidoreductase) deficiency. Mutation analysis by Sanger sequencing of the HSD3B2 gene showed that the patient presented with a compound heterozygote for two novel variants c.370A>G p.Ser124Gly and c.308-6 G>A. The two HSD3B2 gene variants were also present in the patient’s older brother showing only incomplete masculinization. The in silico analysis revealed a probable damaging effect of c.370A>G p.Ser124Gly: residue p.Ser124 is highly conserved among species and seems to be located in the catalytic site of the enzyme, playing a pivotal role in NAD(H) binding to its substrate. Intronic c.308-6G>A variant is predicted to be likely pathogenic; the substitution seems to cause a change in the splice acceptor site located 6bp downstream of the variant. The two siblings seem to be affected by 3β-HSD2 deficiency; nevertheless, the two novel variants are likely to cause variable expressivity of the disease.
Collapse
|
26
|
Role of p38 MAPK Signalling in Testis Development and Male Fertility. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:6891897. [PMID: 36092154 PMCID: PMC9453003 DOI: 10.1155/2022/6891897] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/31/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022]
Abstract
The testis is an important male reproductive organ, which ensures reproductive function via the secretion of testosterone and the generation of spermatozoa. Testis development begins in the embryonic period, continues after birth, and generally reaches functional maturation at puberty. The stress-activated kinase, p38 mitogen-activated protein kinase (MAPK), regulates multiple cell processes including proliferation, differentiation, apoptosis, and cellular stress responses. p38 MAPK signalling plays a crucial role in testis development by regulating spermatogenesis, the fate determination of pre-Sertoli, and primordial germ cells during embryogenesis, the proliferation of testicular cells in the postnatal period, and the functions of mature Sertoli and Leydig cells. In addition, p38 MAPK signalling is involved in decreased male fertility when exposed to various harmful stimuli. This review will describe in detail the biological functions of p38 MAPK signalling in testis development and male reproduction, together with its pathological role in male infertility.
Collapse
|
27
|
Lagunas N, Fernández-García JM, Blanco N, Ballesta A, Carrillo B, Arevalo MA, Collado P, Pinos H, Grassi D. Organizational Effects of Estrogens and Androgens on Estrogen and Androgen Receptor Expression in Pituitary and Adrenal Glands in Adult Male and Female Rats. Front Neuroanat 2022; 16:902218. [PMID: 35815333 PMCID: PMC9261283 DOI: 10.3389/fnana.2022.902218] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/11/2022] [Indexed: 01/15/2023] Open
Abstract
Sex steroid hormones, such as androgens and estrogens, are known to exert organizational action at perinatal periods and activational effects during adulthood on the brain and peripheral tissues. These organizational effects are essential for the establishment of biological axes responsible for regulating behaviors, such as reproduction, stress, and emotional responses. Estradiol (E2), testosterone, and their metabolites exert their biological action through genomic and non-genomic mechanisms, bounding to canonical receptors, such as estrogen receptor (ER)α, ERβ, and androgen receptor (AR) or membrane receptors, such as the G protein-coupled estrogen receptor (GPER), respectively. Expression of ERs and AR was found to be different between males and females both in the brain and peripheral tissues, suggesting a sex-dependent regulation of their expression and function. Therefore, studying the ERs and AR distribution and expression levels is key to understand the central and peripheral role of sex steroids in the establishment of sex-specific behaviors in males and females. We investigated the organizational effects of estrogens and androgens in the pituitary and adrenal glands of adult male and female rats. For this, selective blockade of AR with flutamide or 5α-reductase with finasteride or aromatase with letrozole during the first 5 days of life has been performed in male and female pups and then quantification of ERs and AR expression in both glands has been carried out in adulthood. Data show that inhibition of dihydrotestosterone (DHT) and E2 production during the first five postnatal days mainly decreases the ER expression in male to female values and AR expression in female to male levels in the pituitary gland and increases AR expression in female to male levels in the adrenal gland. In contrast, blocking the action of androgens differentially modulates the ERs in males and females and decreases AR in both males and females in both glands. Altogether, the results suggest that neonatal modifications of the androgen and estrogen pathways can potentially lead to permanent modifications of the neuroendocrine functions of the pituitary and adrenal glands in the adulthood of both sexes.
Collapse
Affiliation(s)
- Natalia Lagunas
- Department of Legal Medicine, Psychiatry and Pathology, School of Medicine, Complutense University of Madrid, Madrid, Spain
| | - José Manuel Fernández-García
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- Department of Psychology, Universidad Villanueva, Madrid, Spain
| | - Noemí Blanco
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
| | - Antonio Ballesta
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- Department of Psychology, Faculty of Biomedical Science and Health, European University of Madrid, Madrid, Spain
| | - Beatriz Carrillo
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Maria-Angeles Arevalo
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
| | - Paloma Collado
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Helena Pinos
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- University Institute of Research-UNED-Institute of Health Carlos III (IMIENS), Madrid, Spain
| | - Daniela Grassi
- Department of Psychobiology, National University of Distance Education, Madrid, Spain
- Neuroactive Steroids Lab, Cajal Institute, CSIC, Madrid, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain
- Department of Anatomy, Histology and Neuroscience, Autonomous University of Madrid, Madrid, Spain
- *Correspondence: Daniela Grassi
| |
Collapse
|
28
|
Yue M, Liu Q, Wang F, Zhou W, Liu L, Wang L, Zou Y, Zhang L, Zheng M, Zeng S, Gao J. Urinary neonicotinoid concentrations and pubertal development in Chinese adolescents: A cross-sectional study. ENVIRONMENT INTERNATIONAL 2022; 163:107186. [PMID: 35325769 DOI: 10.1016/j.envint.2022.107186] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 02/14/2022] [Accepted: 03/13/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Animal studies suggest that exposure to certain neonicotinoids may interfere with the normal function of endocrine system in mammals. However, evidence from human studies is limited. OBJECTIVES This study conducted a cross-sectional analysis to examine urinary neonicotinoids concentrations in Chinese adolescents and its association with pubertal development. METHODS 774 urine samples from 439 boys (median age: 13.7 years; 25th-75th percentile: 12.7-14.5 years) and 335 girls (median age: 13.7 years; 25th-75th percentile: 12.7-14.5 years) were collected for determination of ten neonicotinoids (imidacloprid, nitenpyram, acetamiprid, thiacloprid, imidaclothiz, thiamethoxam, clothianidin, dinotefuran, flonicamid, sulfoxaflor) and one metabolite (N-desmethyl-acetamiprid). Urinary creatinine was detected for concentration adjustment. Pubertal development including pubic hair, axillary hair, genitalia (boys), testicular volume (boys) and breast (girls) assessed by Tanner stages and others (spermarche, facial hair for boys and menarche for girls) were obtained by physical examination and questionnaire. Logistic and bayesian kernel machine regression were used to investigate the association between neonicotinoids concentrations and pubertal developments. RESULTS High detection rates ranged from 72.0% to 100.0% for all neonicotinoids. Boys and girls with thiacloprid concentration at the >75th percentile had lower stage of genitalia development (OR: 0.83, 95% CI: 0.33-0.93) and higher stage of axillary hair development (OR: 1.46, 95% CI: 1.12-3.41), respectively, compared with those at the <25th percentile. The estimate change in genitalia stage was significantly different at or above the 75th percentile concentration of neonicotinoids mixture compared to the 50th percentile concentration. No associations were found between other urinary neonicotinoids and other indicators of puberty. CONCLUSIONS Higher thiacloprid concentration was associated with delayed genitalia development in boys and early axillary hair development in girls. Neonicotinoids mixture was negatively associated with genitalia stage in the joint effect. Given the characteristic of the cross-sectional study, our results need further confirmation of the causal relationship.
Collapse
Affiliation(s)
- Min Yue
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Qin Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Feng Wang
- Chongqing Nan'an Center for Disease Control and Prevention, Chongqing 400067, PR China
| | - Wenli Zhou
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Liying Liu
- Chongqing Nan'an Center for Disease Control and Prevention, Chongqing 400067, PR China
| | - Lu Wang
- Chongqing Nan'an Center for Disease Control and Prevention, Chongqing 400067, PR China
| | - Yong Zou
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Liyu Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Meilin Zheng
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China
| | - Shaohua Zeng
- China Coal Technology & Engineering Group Chongqing Research Institute, Chongqing 400039, PR China
| | - Jieying Gao
- School of Public Health and Management, Chongqing Medical University, Chongqing 400016, PR China.
| |
Collapse
|
29
|
Ågmo A, Laan E. Sexual incentive motivation, sexual behavior, and general arousal: Do rats and humans tell the same story? Neurosci Biobehav Rev 2022; 135:104595. [PMID: 35231490 DOI: 10.1016/j.neubiorev.2022.104595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/28/2022] [Accepted: 02/24/2022] [Indexed: 12/13/2022]
Abstract
Sexual incentive stimuli activate sexual motivation and heighten the level of general arousal. The sexual motive may induce the individual to approach the incentive, and eventually to initiate sexual acts. Both approach and the ensuing copulatory interaction further enhance general arousal. We present data from rodents and humans in support of these assertions. We then suggest that orgasm is experienced when the combined level of excitation surpasses a threshold. In order to analyze the neurobiological bases of sexual motivation, we employ the concept of a central motive state. We then discuss the mechanisms involved in the long- and short-term control of that state as well as those mediating the momentaneous actions of sexual incentive stimuli. This leads to an analysis of the neurobiology behind the interindividual differences in responsivity of the sexual central motive state. Knowledge is still fragmentary, and many contradictory observations have been made. Nevertheless, we conclude that the basic mechanisms of sexual motivation and the role of general arousal are similar in rodents and humans.
Collapse
Affiliation(s)
- Anders Ågmo
- Department of Psychology, University of Tromsø, Norway.
| | - Ellen Laan
- Department of Sexology and Psychosomatic Gynaecology, Amsterdam UMC, University of Amsterdam, The Netherlands
| |
Collapse
|
30
|
Koperniku A, Garcia AA, Mochly-Rosen D. Boosting the Discovery of Small Molecule Inhibitors of Glucose-6-Phosphate Dehydrogenase for the Treatment of Cancer, Infectious Diseases, and Inflammation. J Med Chem 2022; 65:4403-4423. [PMID: 35239352 PMCID: PMC9553131 DOI: 10.1021/acs.jmedchem.1c01577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
We present an overview of small molecule glucose-6-phosphate dehydrogenase (G6PD) inhibitors that have potential for use in the treatment of cancer, infectious diseases, and inflammation. Both steroidal and nonsteroidal inhibitors have been identified with steroidal inhibitors lacking target selectivity. The main scaffolds encountered in nonsteroidal inhibitors are quinazolinones and benzothiazinones/benzothiazepinones. Three molecules show promise for development as antiparasitic (25 and 29) and anti-inflammatory (32) agents. Regarding modality of inhibition (MOI), steroidal inhibitors have been shown to be uncompetitive and reversible. Nonsteroidal small molecules have exhibited all types of MOI. Strategies to boost the discovery of small molecule G6PD inhibitors include exploration of structure-activity relationships (SARs) for established inhibitors, employment of high-throughput screening (HTS), and fragment-based drug discovery (FBDD) for the identification of new hits. We discuss the challenges and gaps associated with drug discovery efforts of G6PD inhibitors from in silico, in vitro, and in cellulo to in vivo studies.
Collapse
Affiliation(s)
- Ana Koperniku
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
- Corresponding Author: Ana Koperniku,
| | - Adriana A. Garcia
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, School of Medicine, Stanford University, 269 Campus Dr, Stanford, CA 94305, USA
| |
Collapse
|
31
|
Satoh M, Hasegawa Y. Factors affecting prepubertal and pubertal bone age progression. Front Endocrinol (Lausanne) 2022; 13:967711. [PMID: 36072933 PMCID: PMC9441639 DOI: 10.3389/fendo.2022.967711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/03/2022] [Indexed: 12/03/2022] Open
Abstract
Bone age (BA) is a clinical marker of bone maturation which indicates the developmental stage of endochondral ossification at the epiphysis and the growth plate. Hormones that promote the endochondral ossification process include growth hormone, insulin-like growth factor-1, thyroid hormone, estrogens, and androgens. In particular, estrogens are essential for growth plate fusion and closure in both sexes. Bone maturation in female children is more advanced than in male children of all ages. The promotion of bone maturation seen in females before the onset of puberty is thought to be an effect of estrogen because estrogen levels are higher in females than in males before puberty. Sex hormones are essential for bone maturation during puberty. Since females have their pubertal onset about two years earlier than males, bone maturation in females is more advanced than in males during puberty. In the present study, we aimed to review the factors affecting prepubertal and pubertal BA progression, BA progression in children with hypogonadism, and bone maturation and deformities in children with Turner syndrome.
Collapse
Affiliation(s)
- Mari Satoh
- Department of Pediatrics, Toho University Omori Medical Center, Tokyo, Japan
- *Correspondence: Mari Satoh,
| | - Yukihiro Hasegawa
- Division of Endocrinology and Metabolism, Tokyo Metropolitan Children’s Medical Center, Tokyo, Japan
| |
Collapse
|
32
|
Bendarska-Czerwińska A, Zmarzły N, Morawiec E, Panfil A, Bryś K, Czarniecka J, Ostenda A, Dziobek K, Sagan D, Boroń D, Michalski P, Pallazo-Michalska V, Grabarek BO. Endocrine disorders and fertility and pregnancy: An update. Front Endocrinol (Lausanne) 2022; 13:970439. [PMID: 36733805 PMCID: PMC9887196 DOI: 10.3389/fendo.2022.970439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
It is estimated that more and more couples suffer from fertility and pregnancy maintenance disorders. It is associated with impaired androgen secretion, which is influenced by many factors, ranging from genetic to environmental. It is also important to remember that fertility disorders can also result from abnormal anatomy of the reproductive male and female organ (congenital uterine anomalies - septate, unicornuate, bicornuate uterus; acquired defects of the uterus structure - fibroids, polyps, hypertrophy), disturbed hormonal cycle and obstruction of the fallopian tubes resulting from the presence of adhesions due to inflammation, endometriosis, and surgery, abnormal rhythm of menstrual bleeding, the abnormal concentration of hormones. There are many relationships between the endocrine organs, leading to a chain reaction when one of them fails to function properly. Conditions in which the immune system is involved, including infections and autoimmune diseases, also affect fertility. The form of treatment depends on infertility duration and the patient's age. It includes ovulation stimulation with clomiphene citrate or gonadotropins, metformin use, and weight loss interventions. Since so many different factors affect fertility, it is important to correctly diagnose what is causing the problem and to modify the treatment regimen if necessary. This review describes disturbances in the hormone secretion of individual endocrine organs in the context of fertility and the maintenance of pregnancy.
Collapse
Affiliation(s)
- Anna Bendarska-Czerwińska
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- American Medical Clinic, Katowice, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| | - Nikola Zmarzły
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| | - Emilia Morawiec
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Microbiology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Agata Panfil
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Kamil Bryś
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | - Justyna Czarniecka
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
| | | | | | - Dorota Sagan
- Medical Center Dormed Medical SPA, Busko-Zdroj, Poland
| | - Dariusz Boroń
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
| | | | | | - Beniamin Oskar Grabarek
- Department of Molecular, Biology Gyncentrum Fertility Clinic, Katowice, Poland
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine, University of Technology, Academy of Silesia in Katowice, Zabrze, Poland
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Academy of Silesia, Zabrze, Poland
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, Kraków, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, Katowice, Poland
- *Correspondence: Anna Bendarska-Czerwińska, ; Nikola Zmarzły, ; Beniamin Oskar Grabarek,
| |
Collapse
|
33
|
Pitsava G, Maria AG, Faucz FR. Disorders of the adrenal cortex: Genetic and molecular aspects. Front Endocrinol (Lausanne) 2022; 13:931389. [PMID: 36105398 PMCID: PMC9465606 DOI: 10.3389/fendo.2022.931389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Adrenal cortex produces glucocorticoids, mineralocorticoids and adrenal androgens which are essential for life, supporting balance, immune response and sexual maturation. Adrenocortical tumors and hyperplasias are a heterogenous group of adrenal disorders and they can be either sporadic or familial. Adrenocortical cancer is a rare and aggressive malignancy, and it is associated with poor prognosis. With the advance of next-generation sequencing technologies and improvement of genomic data analysis over the past decade, various genetic defects, either from germline or somatic origin, have been unraveled, improving diagnosis and treatment of numerous genetic disorders, including adrenocortical diseases. This review gives an overview of disorders associated with the adrenal cortex, the genetic factors of these disorders and their molecular implications.
Collapse
Affiliation(s)
- Georgia Pitsava
- Division of Intramural Research, Division of Population Health Research, Eunice Kennedy Shriver National Institutes of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
| | - Andrea G. Maria
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
| | - Fabio R. Faucz
- Section on Endocrinology and Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
- Molecular Genomics Core (MGC), Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD, United States
- *Correspondence: Fabio R. Faucz,
| |
Collapse
|
34
|
Turcu AF, Mallappa A, Nella AA, Chen X, Zhao L, Nanba AT, Byrd JB, Auchus RJ, Merke DP. 24-Hour Profiles of 11-Oxygenated C 19 Steroids and Δ 5-Steroid Sulfates during Oral and Continuous Subcutaneous Glucocorticoids in 21-Hydroxylase Deficiency. Front Endocrinol (Lausanne) 2021; 12:751191. [PMID: 34867794 PMCID: PMC8636728 DOI: 10.3389/fendo.2021.751191] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
Background Optimal management of androgen excess in 21-hydroxylase deficiency (21OHD) remains challenging. 11-oxygenated-C19 steroids (11-oxyandrogens) have emerged as promising biomarkers of disease control, but data regarding their response to treatment are lacking. Objective To compare the dynamic response of a broad set of steroids to both conventional oral glucocorticoids (OG) and circadian cortisol replacement via continuous subcutaneous hydrocortisone infusion (CSHI) in patients with 21OHD based on 24-hour serial sampling. Participants and Methods We studied 8 adults (5 women), ages 19-43 years, with poorly controlled classic 21OHD who participated in a single-center open-label phase I-II study comparing OG with CSHI. We used mass spectrometry to measure 15 steroids (including 11-oxyandrogens and Δ5 steroid sulfates) in serum samples obtained every 2 h for 24 h after 3 months of stable OG, and 6 months into ongoing CSHI. Results In response to OG therapy, androstenedione, testosterone (T), and their four 11-oxyandrogen metabolites:11β-hydroxyandrostenedione, 11-ketoandrostenedione, 11β-hydroxytestosterone and 11-ketotestosterone (11KT) demonstrated a delayed decline in serum concentrations, and they achieved a nadir between 0100-0300. Unlike DHEAS, which had little diurnal variation, pregnenolone sulfate (PregS) and 17-hydoxypregnenolone sulfate peaked in early morning and declined progressively throughout the day. CSHI dampened the early ACTH and androgen rise, allowing the ACTH-driven adrenal steroids to return closer to baseline before mid-day. 11KT concentrations displayed the most consistent difference between OG and CSHI across all time segments. While T was lowered by CSHI as compared with OG in women, T increased in men, suggesting an improvement of the testicular function in parallel with 21OHD control in men. Conclusion 11-oxyandrogens and PregS could serve as biomarkers of disease control in 21OHD. The development of normative data for these promising novel biomarkers must consider their diurnal variability.
Collapse
Affiliation(s)
- Adina F Turcu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - Ashwini Mallappa
- Pediatric Service, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, United States
| | - Aikaterini A Nella
- Division of Pediatric Diabetes and Endocrinology, Baylor College of Medicine, Houston, TX, United States
| | - Xuan Chen
- School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Lili Zhao
- School of Public Health, University of Michigan, Ann Arbor, MI, United States
| | - Aya T Nanba
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
| | - James Brian Byrd
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, United States
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
| | - Deborah P Merke
- Pediatric Service, National Institutes of Health (NIH) Clinical Center, Bethesda, MD, United States
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, United States
| |
Collapse
|
35
|
Turcu AF, Zhao L, Chen X, Yang R, Rege J, Rainey WE, Veldhuis JD, Auchus RJ. Circadian rhythms of 11-oxygenated C19 steroids and ∆5-steroid sulfates in healthy men. Eur J Endocrinol 2021; 185:K1-K6. [PMID: 34324429 PMCID: PMC8826489 DOI: 10.1530/eje-21-0348] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/27/2021] [Indexed: 11/08/2022]
Abstract
BACKGROUND Many hormones display distinct circadian rhythms, driven by central regulators, hormonal bioavailability, and half-life. A set of 11-oxygenated C19 steroids (11-oxyandrogens) and pregnenolone sulfate (PregS) are elevated in congenital adrenal hyperplasia and other disorders, but their circadian patterns have not been characterized. PARTICIPANTS AND METHODS Peripheral blood was collected every 2 h over 24 h from healthy volunteer men (10 young, 18-30 years, and 10 older, 60-80 years). We used mass spectrometry to quantify 15 steroids, including androstenedione (A4), testosterone (T), 11β-hydroxy- and 11-ketotestosterone (11OHT, 11KT),11β-hydroxy- and 11-ketoandrostenedione (11OHA4, 11KA4), and 4 ∆5-steroid sulfates. Diurnal models including mesor (rhythm adjusted median), peak, and nadir concentrations, acrophase, and amplitude were computed. RESULTS 11OHA4 followed a rhythm similar to cortisol: acrophase 8:00 h, nadir 21:00 h and were similar in young and old men. 11KT had similar diurnal patterns, but the peak was lower in older than in young men, as was the case for A4. All four steroid sulfates were higher in young vs older men. PregS and 17-hydroxypregnenolone sulfate (17OHPregS) showed sustained elevations between 8:00 and 18:00 h, and nadirs around midnight, while DHEAS and AdiolS displayed minimal diurnal variations. All 4 11-oxyandrogens correlated tightly with cortisol (r from 0.54 for 11OHT to 0.81 for 11OHA4, P < 0.0001 for all), but very weakly with T, supporting their adrenal origin and ACTH governance. CONCLUSIONS 11-Oxyandrogens, PregS, and 17OHPregS display distinct circadian and age variations, which should be accounted for when used as clinical biomarkers.
Collapse
Affiliation(s)
- Adina F Turcu
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
| | - Lili Zhao
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Xuan Chen
- School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca Yang
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota, USA
| | - Juilee Rege
- Department of Physiology and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - William E Rainey
- Department of Physiology and Molecular Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Johannes D Veldhuis
- Endocrine Research Unit, Mayo School of Graduate Medical Education, Center for Translational Science Activities, Mayo Clinic, Rochester, Minnesota, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, Michigan, USA
- Department of Pharmacology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
36
|
Slominski RM, Raman C, Elmets C, Jetten AM, Slominski AT, Tuckey RC. The significance of CYP11A1 expression in skin physiology and pathology. Mol Cell Endocrinol 2021; 530:111238. [PMID: 33716049 PMCID: PMC8205265 DOI: 10.1016/j.mce.2021.111238] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/25/2021] [Accepted: 02/27/2021] [Indexed: 12/14/2022]
Abstract
CYP11A1, a member of the cytochrome P450 family, plays several key roles in the human body. It catalyzes the first and rate-limiting step in steroidogenesis, converting cholesterol to pregnenolone. Aside from the classical steroidogenic tissues such as the adrenals, gonads and placenta, CYP11A1 has also been found in the brain, gastrointestinal tract, immune systems, and finally the skin. CYP11A1 activity in the skin is regulated predominately by StAR protein and hence cholesterol levels in the mitochondria. However, UVB, UVC, CRH, ACTH, cAMP, and cytokines IL-1, IL-6 and TNFα can also regulate its expression and activity. Indeed, CYP11A1 plays several critical roles in the skin through its initiation of local steroidogenesis and specific metabolism of vitamin D, lumisterol, and 7-dehydrocholesterol. Products of these pathways regulate the protective barrier and skin immune functions in a context-dependent fashion through interactions with a number of receptors. Disturbances in CYP11A1 activity can lead to skin pathology.
Collapse
Affiliation(s)
- R M Slominski
- Department of Medicine, Division of Rheumatology, USA; Department of Dermatology, USA
| | - C Raman
- Department of Medicine, Division of Rheumatology, USA; Department of Dermatology, USA
| | - C Elmets
- Department of Dermatology, USA; Comprehensive Cancer Center, Cancer Chemoprevention Program, University of Alabama at Birmingham, USA
| | - A M Jetten
- Cell Biology Section, Immunity, Inflammation, Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, USA
| | - A T Slominski
- Department of Dermatology, USA; VA Medical Center, Birmingham, AL, USA.
| | - R C Tuckey
- School of Molecular Sciences, The University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
37
|
Yazawa T, Sato T, Nemoto T, Nagata S, Imamichi Y, Kitano T, Sekiguchi T, Uwada J, Islam MS, Mikami D, Nakajima I, Takahashi S, Khan MRI, Suzuki N, Umezawa A, Ida T. 11-Ketotestosterone is a major androgen produced in porcine adrenal glands and testes. J Steroid Biochem Mol Biol 2021; 210:105847. [PMID: 33609691 DOI: 10.1016/j.jsbmb.2021.105847] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022]
Abstract
Porcine steroid hormone profiles have some unique characteristics. We previously studied human and murine steroidogenesis using steroidogenic cells-derived from mesenchymal stem cells (MSCs). To investigate porcine steroidogenesis, we induced steroidogenic cells from porcine subcutaneous preadipocytes (PSPA cells), which originate from MSCs. Using cAMP, adenovirus-mediated introduction of steroidogenic factor-1 (SF-1)/adrenal 4-binding protein (Ad4BP) induced the differentiation of PSPA cells into sex steroid-producing cells. Introducing SF-1/Ad4BP also induced the aldo-keto reductase 1C1 (AKR1C1) gene. Porcine AKR1C1 had 17β-hydroxysteroid dehydrogenase activity, which converts androstenedione and 11-ketoandrostenedione into testosterone (T) and 11-ketotestosteorne (11KT). Furthermore, differentiated cells expressed hydroxysteroid 11β-dehydrogenase 2 (HSD11B2) and produced 11KT. HSD11B2 was expressed in testicular Leydig cells and the adrenal cortex. 11KT was present in the plasma of both immature male and female pigs, with slightly higher levels in the male pigs. T levels were much higher in the male pigs. It is noteworthy that in the female pigs, the 11KT levels were >10-fold higher than the T levels. However, castration altered the 11KT and T plasma profiles in the male pigs to near those of the females. 11KT induced endothelial nitric oxide synthase (eNOS) in porcine vascular endothelial cells. These results indicate that 11KT is produced in porcine adrenal glands and testes, and may regulate cardiovascular functions through eNOS expression.
Collapse
Affiliation(s)
- Takashi Yazawa
- Department of Biochemistry, Asahikawa Medical University, Hokkaido 078-8510, Japan.
| | - Takahiro Sato
- Division of Molecular Genetics, Institute of Life Sciences, Kurume University, Fukuoka 830-0011, Japan
| | - Takahiro Nemoto
- Department of Physiology, Nippon Medical School, Tokyo 113-8602, Japan
| | - Sayaka Nagata
- Circulatory and Body Fluid Regulation, Faculty of Medicine, University of Miyazaki, Miyazaki 889-1692, Japan
| | - Yoshitaka Imamichi
- Department of Pharmacology, Asahikawa Medical University, Hokkaido 078-8510, Japan
| | - Takeshi Kitano
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| | - Toshio Sekiguchi
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Junsuke Uwada
- Department of Biochemistry, Asahikawa Medical University, Hokkaido 078-8510, Japan
| | | | - Daisuke Mikami
- Department of Nephrology, University of Fukui, Fukui 910-1193, Japan
| | - Ikuyo Nakajima
- Institute of Livestock and Grassland Science, NARO, Tsukuba, Ibaraki 305-0901, Japan
| | - Satoru Takahashi
- Department of Pediatrics, Asahikawa Medical University, Hokkaido 078-8510, Japan
| | - Md Rafiqul Islam Khan
- Department of Biochemistry, Asahikawa Medical University, Hokkaido 078-8510, Japan; Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Nobuo Suzuki
- Noto Marine Laboratory, Division of Marine Environmental Studies, Institute of Nature and Environmental Technology, Kanazawa University, Ishikawa 927-0553, Japan
| | - Akihiro Umezawa
- Department of Reproduction, National Research Institute for Child Health and Development, Tokyo 157-8535, Japan
| | - Takanori Ida
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-1692, Japan
| |
Collapse
|
38
|
Burris-Hiday SD, Scott EE. Steroidogenic cytochrome P450 17A1 structure and function. Mol Cell Endocrinol 2021; 528:111261. [PMID: 33781841 PMCID: PMC8087655 DOI: 10.1016/j.mce.2021.111261] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/01/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022]
Abstract
Cytochrome P450 17A1 (CYP17A1) is a critical steroidogenic enzyme, essential for producing glucocorticoids and sex hormones. This review discusses the complex activity of CYP17A1, looking at its role in both the classical and backdoor steroidogenic pathways and the complex chemistry it carries out to perform both a hydroxylation reaction and a carbon-carbon cleavage, or lyase reaction. Functional and structural investigations have informed our knowledge of these two reactions. This review focuses on a few specific aspects of this discussion: the identities of reaction intermediates, the coordination of hydroxylation and lyase reactions, the effects of cytochrome b5, and conformational selection. These discussions improve understanding of CYP17A1 in a physiological setting, where CYP17A1 is implicated in a variety of steroidogenic diseases. This information can be used to improve ways in which CYP17A1 can be effectively modulated to treat diseases such as prostate and breast cancer, Cushing's syndrome, and glioblastoma.
Collapse
Affiliation(s)
| | - Emily E Scott
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
39
|
Tremblay Y, Morin-Labbé A. Neonatal Lung Diseases: A Clinical Potential for Sex Steroids and a Novel Intracrine Organ. Front Med (Lausanne) 2021; 8:664969. [PMID: 34026792 PMCID: PMC8131950 DOI: 10.3389/fmed.2021.664969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/06/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yves Tremblay
- Reproduction Axis, Perinatal and Child Health, CRCHU de Québec, Québec, QC, Canada.,Department of Obstetric, Gynecology & Reproduction, Faculty of Medicine, Laval University, Québec, QC, Canada.,Centre de Recherche en Reproduction, Développement et Santé Intergénérationnelle, Laval University, Québec, QC, Canada
| | - Alexia Morin-Labbé
- Reproduction Axis, Perinatal and Child Health, CRCHU de Québec, Québec, QC, Canada
| |
Collapse
|
40
|
Gündoğan Gİ, Kıg C, Karacan M, Doğruman H. Investigation of Physiological Effects Induced by Dehydroepiandrosterone in Human Endothelial Cells and Ovarian Cancer Cell Line. Turk J Pharm Sci 2021; 18:185-191. [PMID: 33902257 DOI: 10.4274/tjps.galenos.2020.58827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives Dehydroepiandrosterone (DHEA) is an endogenous hormone that acts as a ligand for several cellular receptors. An age-dependent decline in circulating levels of DHEA is linked to changes in various physiological functions. In gynecological clinical practice, DHEA is commonly prescribed to induce ovulation. Some clinical studies report a positive association between high serum concentrations of DHEA and an increased risk of developing ovarian cancer. However, the in vitro physiological effects of DHEA on ovarian cancerous cells have not been explored thus far. In this study, we aimed to investigate the physiological effects of DHEA treatment (0-200 μM, 24-72 hours) on MDAH-2774 human ovarian cancer cell line and primary HuVeC human endothelial cells. Materials and Methods The physiological effects of DHEA treatment (0-200 μM, 24-72 hours) on MDAH-2774 human ovarian cancer cell line and primary HuVeC human endothelial cells were investigated with the (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) test, acridine orange/ethidium bromide staining, and scratch assay. Results DHEA treatment promoted proliferation of the MDAH-2774 cancer cell line in a dose-dependent manner (r=0.6906, p<0.0001, for 24 hours) (r=0.6802, p<0.0001, for 48 hours) (r=0.7969, p<0.0001, for 72 hours). In contrast, DHEA inhibited proliferation of the primary HuVeC cells (r=0.9490, p<0.0001, for 24 hours) (r=0.9533, p<0.0001, for 48 hours) (r=0.9584, p<0.0001, for 72 hours). In agreement with these observations, DHEA treatment resulted in a dose-dependent increase in the number of necrotic cells in the primary HuVeC cells (r=0.97, p<0.0001). However, the number of necrotic or apoptotic cells did not change significantly when the MDAH-2774 cells was exposed to DHEA. Moreover, we found that DHEA treatment reduced the migration rate of HuVeC cells in a dose-dependent manner (r=0.9868, p<0.0001), whereas only a slight increase was observed in the MDAH-2774 ovarian cancer cell line (r=0.8938, p<0.05). Conclusion Our findings suggest that DHEA promotes the proliferation of ovarian cancer cells in a dose-dependent manner in vitro. Moreover, DHEA induced necrosis and inhibited proliferation in endothelial cells. Although mechanistic evidence is required, our preliminary findings imply that exposure to high doses of DHEA may be associated with an increased risk of developing ovarian cancer.
Collapse
Affiliation(s)
- Gül İpek Gündoğan
- Istanbul Yeni Yuzyil University Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| | - Cenk Kıg
- Istanbul Yeni Yuzyil University Faculty of Medicine, Department of Medical Biology and Genetics, Istanbul, Turkey
| | - Meriç Karacan
- Istanbul Yeni Yuzyil University Faculty of Medicine, Department of Gynecology and Obstetrics, Istanbul, Turkey
| | - Hüsniye Doğruman
- Istanbul Yeni Yuzyil University Faculty of Medicine, Department of Histology and Embryology, Istanbul, Turkey
| |
Collapse
|
41
|
Louw C, van Schalkwyk EJ, Conradie R, Louw R, Engelbrecht Y, Storbeck KH, Swart AC, van Niekerk DD, Snoep JL, Swart P. Computational modelling of the Δ4 and Δ5 adrenal steroidogenic pathways provides insight into hypocortisolism. Mol Cell Endocrinol 2021; 526:111194. [PMID: 33592286 DOI: 10.1016/j.mce.2021.111194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/20/2021] [Accepted: 01/29/2021] [Indexed: 11/25/2022]
Abstract
This study demonstrates the application of a mathematical steroidogenic model, constructed with individual in vitro enzyme characterisations, to simulate in vivo steroidogenesis in a diseased state. This modelling approach was applied to the South African Angora goat, that suffers from hypocortisolism caused by altered adrenal function. These animals are extremely vulnerable to cold stress, leading to substantial monetary loss in the mohair industry. The Angora goat has increased CYP17A1 17,20-lyase enzyme activity in comparison with hardy livestock species. Determining the effect of this altered adrenal function on adrenal steroidogenesis during a cold stress response is difficult. We developed a model describing adrenal steroidogenesis under control conditions, and under altered steroidogenic conditions where the animal suffers from hypocortisolism. The model is parameterised with experimental data from in vitro enzyme characterisations of a hardy control species. The increased 17,20-lyase activity of the Angora goat CYP17A1 enzyme was subsequently incorporated into the model and the response to physiological stress is simulated under both control and altered adrenal steroidogenic conditions.
Collapse
Affiliation(s)
- Carla Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Erick J van Schalkwyk
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa; LCMS Central Analytical Facility, Stellenbosch University, Stellenbosch, South Africa
| | - Riaan Conradie
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Ralie Louw
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Yolanda Engelbrecht
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Amanda C Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa; Department of Chemistry and Polymer Science, Stellenbosch University, Stellenbosch, South Africa
| | - David D van Niekerk
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Jacky L Snoep
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa; Department of Molecular Cell Physiology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; MIB, University of Manchester, Manchester, UK.
| | - Pieter Swart
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|
42
|
Microbial Hydroxysteroid Dehydrogenases: From Alpha to Omega. Microorganisms 2021; 9:microorganisms9030469. [PMID: 33668351 PMCID: PMC7996314 DOI: 10.3390/microorganisms9030469] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/08/2021] [Accepted: 02/18/2021] [Indexed: 12/23/2022] Open
Abstract
Bile acids (BAs) and glucocorticoids are steroid hormones derived from cholesterol that are important signaling molecules in humans and other vertebrates. Hydroxysteroid dehydrogenases (HSDHs) are encoded both by the host and by their resident gut microbiota, and they reversibly convert steroid hydroxyl groups to keto groups. Pairs of HSDHs can reversibly epimerize steroids from α-hydroxy conformations to β-hydroxy, or β-hydroxy to ω-hydroxy in the case of ω-muricholic acid. These reactions often result in products with drastically different physicochemical properties than their precursors, which can result in steroids being activators or inhibitors of host receptors, can affect solubility in fecal water, and can modulate toxicity. Microbial HSDHs modulate sterols associated with diseases such as colorectal cancer, liver cancer, prostate cancer, and polycystic ovary syndrome. Although the role of microbial HSDHs is not yet fully elucidated, they may have therapeutic potential as steroid pool modulators or druggable targets in the future. In this review, we explore metabolism of BAs and glucocorticoids with a focus on biotransformation by microbial HSDHs.
Collapse
|
43
|
Chen F, Chen M, Zhang W, Yin H, Chen G, Huang Q, Yang X, Chen L, Lin C, Yin G. Comparison of the efficacy of different androgens measured by LC-MS/MS in representing hyperandrogenemia and an evaluation of adrenal-origin androgens with a dexamethasone suppression test in patients with PCOS. J Ovarian Res 2021; 14:32. [PMID: 33583431 PMCID: PMC7883427 DOI: 10.1186/s13048-021-00781-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 02/02/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The aims of this study were to compare the efficacy of different androgens measured by liquid chromatography-mass spectrometry (LC-MS/MS) in representing hyperandrogenemia and to evaluate adrenal-origin androgens with a dexamethasone suppression test in patients with polycystic ovary syndrome (PCOS). METHODS One hundred and two patients with PCOS and 41 healthy volunteers were recruited and total serum testosterone (TT), androstenedione (AD), dehydroepiandrosterone (DHEA) and dehydroepiandrosterone sulfate (DHEA-S) were measured by LC-MS/MS. ROC analysis was performed to compare the efficacy of different androgens in representing hyperandrogenemia. Dexamethasone suppression test was performed in 51 patients with PCOS and above indicators were measured after dexamethasone administration. The prediction efficacy of DHEA and DHEA-S at baseline in the dexamethasone suppression test was evaluated with ROC analysis. RESULTS The AUCs of TT, AD, free androgen index (FAI) and DHEA-S in ROC analysis for representing hyperandrogenemia were 0.816, 0.842, 0.937 and 0.678, respectively. The optimal cutoff value of TT was 0.337 ng/ml, with a sensitivity of 72.0% and specificity of 82.93%. The optimal cutoff value for AD was 1.309 ng/ml, with a sensitivity of 81.0% and specificity of 73.17%. The optimal cutoff value of the FAI was 2.50, with a sensitivity of 87.0% and specificity of 92.68%. Alternatively, AD or FAI more than the optimal cutoff values as evidence of hyperandrogenemia had the highest sensitivity of 91.18%. The levels of cortisol, DHEA and DHEA-S were all suppressed to narrow ranges after dexamethasone administration. Nine and 8 of 51 patients with PCOS had significant decreases in TT and AD, respectively. DHEA can be used as a indicator for predicting significant decrease of TT in dexamethasone suppression test with cutoff value of 13.28 ng/ml. A total of 27.5% (14/51) of patients had DHEA-S excess, but only 1 of 9 patients who had a significant decrease in TT had elevated level of DHEA-S at baseline. CONCLUSIONS AD measured by LC-MS/MS can represent hyperandrogenemia in PCOS patients and, combined with TT or FAI, can improve the screening efficiency of hyperandrogenemia. Seventeen percent of PCOS patients had adrenal-origin androgen dominance, with TT significantly decreasing after 2 days of dexamethasone administration. Adrenal-origin androgen dominance was not parallel with DHEA-S excess in patients with PCOS.
Collapse
Affiliation(s)
- Fu Chen
- Department of Clinical Nutrition, The 1st Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Minjie Chen
- Department of Endocrinology, The 1st Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
- Laboratory of Molecular Cardiology and Laboratory of Molecular Imaging, The 1st Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Weichun Zhang
- Department of Endocrinology, The 1st Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Huihuang Yin
- Department of Endocrinology, The 1st Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Guishan Chen
- Department of Endocrinology, The 1st Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Qingxia Huang
- Department of Endocrinology, The 1st Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Xiaoping Yang
- Department of Endocrinology, The 1st Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Lan Chen
- Department of Endocrinology, The 1st Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Chujia Lin
- Department of Endocrinology, The 1st Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China
| | - Guoshu Yin
- Department of Endocrinology, The 1st Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, 515041, Guangdong, China.
| |
Collapse
|
44
|
So SY, Savidge TC. Sex-Bias in Irritable Bowel Syndrome: Linking Steroids to the Gut-Brain Axis. Front Endocrinol (Lausanne) 2021; 12:684096. [PMID: 34093447 PMCID: PMC8170482 DOI: 10.3389/fendo.2021.684096] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder that is more common in females. Despite its high global incidence, the disease mechanism is still unclear and therapeutic options remain limited. The sexual dimorphism in IBS incidence suggests that sex steroids play a role in disease onset and symptoms severity. This review considers sex steroids and their involvement in IBS symptoms and the underlying disease mechanisms. Estrogens and androgens play important regulatory roles in IBS symptomology, including visceral sensitivity, gut motility and psychological conditions, possibly through modulating the gut-brain axis. Steroids are regulators of hypothalamic-pituitary-adrenal activity and autonomic nervous system function. They also modulate gut microbiota and enteric nervous systems, impacting serotonin and mast cell signaling. Sex steroids also facilitate bidirectional cross-talk between the microbiota and host following bacterial transformation and recycling of steroids by the intestine. The sex-specific interplay between sex steroids and the host provides neuroendocrinology insight into the pathophysiology, epigenetics and treatment of IBS patients.
Collapse
Affiliation(s)
- Sik Yu So
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
| | - Tor C. Savidge
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Texas Children’s Microbiome Center, Department of Pathology, Texas Children’s Hospital, Houston, TX, United States
- *Correspondence: Tor C. Savidge,
| |
Collapse
|
45
|
Gasser BA, Kurz J, Senn W, Escher G, Mohaupt MG. Stress-induced alterations of social behavior are reversible by antagonism of steroid hormones in C57/BL6 mice. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:127-135. [PMID: 32894324 PMCID: PMC7778626 DOI: 10.1007/s00210-020-01970-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/26/2020] [Indexed: 12/26/2022]
Abstract
Various disturbances of social behavior, such as autism, depression, or posttraumatic stress disorder, have been associated with an altered steroid hormone homeostasis and a dysregulation of the hypothalamus-pituitary-adrenal axis. A link between steroid hormone antagonists and the treatment of stress-related conditions has been suggested. We evaluated the effects of stress induction on social behavior in the three chambers and its potential reversibility upon specific steroid hormone antagonism in mice. C57BL/6 mice were stressed twice daily for 8 days by chronic swim testing. Social behavior was evaluated by measuring, first, the preference for sociability and, second, the preference for social novelty in the three-chamber approach before and after the chronic swim test. The reversibility of behavior upon stress induction was analyzed after applying steroid hormone antagonists targeting glucocorticoids with etomidate, mineralocorticoids with potassium canrenoate, and androgens with cyproterone acetate and metformin. In the chronic swim test, increased floating time from 0.8 ± 0.2 min up to 4.8 ± 0.25 min was detected (p < 0.01). In the three-chamber approach, increased preference for sociability and decreased preference for social novelty was detected pre- versus post-stress induction. These alterations of social behavior were barely affected by etomidate and potassium canrenoate, whereas the two androgen antagonists metformin and cyproterone acetate restored social behavior even beyond baseline conditions. The alteration of social behavior was better reversed by the androgen as compared with the glucocorticoid and mineralocorticoid antagonists. This suggests that social behavior is primarily controlled by androgen rather than by glucocorticoid or mineralocorticoid action. The stress-induced changes in preference for sociability are incompletely explained by steroid hormone action alone. As the best response was related to metformin, an effect via glucose levels might confound the results and should be subject to future research.
Collapse
Affiliation(s)
| | - Johann Kurz
- Intersci Research Association, Karl Morre Gasse 10, 8430 Leibnitz, Austria
| | - Walter Senn
- Department of Physiology, University of Bern, 3012 Berne, Switzerland
| | - Genevieve Escher
- Department of Clinical Research, University of Bern, 3010 Berne, Switzerland
- Division of Nephrology/Hypertension, University of Bern, 3010 Berne, Switzerland
| | - Markus Georg Mohaupt
- Department of Clinical Research, University of Bern, 3010 Berne, Switzerland
- Teaching Hospital Internal Medicine, Lindenhofgruppe, 3006 Berne, Switzerland
| |
Collapse
|
46
|
Hammer GD, Basham KJ. Stem cell function and plasticity in the normal physiology of the adrenal cortex. Mol Cell Endocrinol 2021; 519:111043. [PMID: 33058950 PMCID: PMC7736543 DOI: 10.1016/j.mce.2020.111043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 09/07/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023]
Abstract
The adrenal cortex functions to produce steroid hormones necessary for life. To maintain its functional capacity throughout life, the adrenal cortex must be continually replenished and rapidly repaired following injury. Moreover, the adrenal responds to endocrine-mediated organismal needs, which are highly dynamic and necessitate a precise steroidogenic response. To meet these diverse needs, the adrenal employs multiple cell populations with stem cell function. Here, we discuss the literature on adrenocortical stem cells using hematopoietic stem cells as a benchmark to examine the functional capacity of particular cell populations, including those located in the capsule and peripheral cortex. These populations are coordinately regulated by paracrine and endocrine signaling mechanisms, and display remarkable plasticity to adapt to different physiological and pathological conditions. Some populations also exhibit sex-specific activity, which contributes to highly divergent proliferation rates between sexes. Understanding mechanisms that govern adrenocortical renewal has broad implications for both regenerative medicine and cancer.
Collapse
Affiliation(s)
- Gary D Hammer
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA; Endocrine Oncology Program, Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Kaitlin J Basham
- Department of Internal Medicine, Division of Metabolism, Endocrinology, and Diabetes, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
47
|
Liew SY, Akker SA, Guasti L, Pittaway JFH. Glucocorticoid replacement therapies: past, present and future. ACTA ACUST UNITED AC 2020; 8:152-159. [PMID: 33073054 DOI: 10.1016/j.coemr.2019.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Since the original description of adrenal insufficiency by Thomas Addison in 1855, there has been an exponential growth in the understanding of adrenal gland biology and its role in the hypothalamic-pituitary-adrenal axis. Despite this, the mainstay of therapeutic glucocorticoid replacement for most clinicians has remained unchanged for nearly 50 years. More recently, there has been better recognition of the morbidity and mortality associated with current approaches and the challenges to tackle in reducing this and improving clinical outcomes. In this review, we have summarised the history of glucocorticoid replacement therapy from its nascence in the 1930s, through common practice and culminating in more recent glucocorticoid replacement strategies plus the potential of stem cell therapy in the future.
Collapse
Affiliation(s)
- Su-Yi Liew
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Scott A Akker
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Leonardo Guasti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - James F H Pittaway
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, Charterhouse Square, London, EC1M 6BQ, UK
| |
Collapse
|
48
|
Wawrzkiewicz-Jałowiecka A, Kowalczyk K, Trybek P, Jarosz T, Radosz P, Setlak M, Madej P. In Search of New Therapeutics-Molecular Aspects of the PCOS Pathophysiology: Genetics, Hormones, Metabolism and Beyond. Int J Mol Sci 2020; 21:ijms21197054. [PMID: 32992734 PMCID: PMC7582580 DOI: 10.3390/ijms21197054] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/20/2020] [Accepted: 09/22/2020] [Indexed: 12/11/2022] Open
Abstract
In a healthy female reproductive system, a subtle hormonal and metabolic dance leads to repetitive cyclic changes in the ovaries and uterus, which make an effective ovulation and potential implantation of an embryo possible. However, that is not so in the case of polycystic ovary syndrome (PCOS), in which case the central mechanism responsible for entraining hormonal and metabolic rhythms during the menstrual cycle is notably disrupted. In this review we provide a detailed description of the possible scenario of PCOS pathogenesis. We begin from the analysis of how a set of genetic disorders related to PCOS leads to particular malfunctions at a molecular level (e.g., increased enzyme activities of cytochrome P450 (CYP) type 17A1 (17α-hydroxylase), 3β-HSD type II and CYP type 11A1 (side-chain cleavage enzyme) in theca cells, or changes in the expression of aquaporins in granulosa cells) and discuss further cellular- and tissue-level consequences (e.g., anovulation, elevated levels of the advanced glycation end products in ovaries), which in turn lead to the observed subsequent systemic symptoms. Since gene-editing therapy is currently out of reach, herein special emphasis is placed on discussing what kinds of drug targets and which potentially active substances seem promising for an effective medication, acting on the primary causes of PCOS on a molecular level.
Collapse
Affiliation(s)
- Agata Wawrzkiewicz-Jałowiecka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
- Correspondence: ; Tel.: +48-32-237-12-85
| | - Karolina Kowalczyk
- Department of Obstetrics and Gynecology, Medical University of Silesia in Katowice, 40-752 Katowice, Poland; (K.K.); (P.R.); (P.M.)
| | - Paulina Trybek
- Faculty of Science and Technology, University of Silesia in Katowice, 41-500 Chorzow, Poland;
| | - Tomasz Jarosz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 44-100 Gliwice, Poland;
| | - Patrycja Radosz
- Department of Obstetrics and Gynecology, Medical University of Silesia in Katowice, 40-752 Katowice, Poland; (K.K.); (P.R.); (P.M.)
| | - Marcin Setlak
- Department of Neurosurgery, Medical University of Silesia, 40-752 Katowice, Poland;
| | - Paweł Madej
- Department of Obstetrics and Gynecology, Medical University of Silesia in Katowice, 40-752 Katowice, Poland; (K.K.); (P.R.); (P.M.)
| |
Collapse
|
49
|
Handelsman DJ, Gibson E, Davis S, Golebiowski B, Walters KA, Desai R. Ultrasensitive Serum Estradiol Measurement by Liquid Chromatography-Mass Spectrometry in Postmenopausal Women and Mice. J Endocr Soc 2020; 4:bvaa086. [PMID: 33154982 DOI: 10.1210/jendso/bvaa086] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/09/2020] [Indexed: 11/19/2022] Open
Abstract
Accurate measurement of very low circulating estradiol (E2) (<5 pg/ml) in postmenopausal women and in mice is essential to investigating sex steroid action in target tissues. However, direct immunoassays are too inaccurate and conventional mass spectrometry-based measurement too insensitive at these serum E2 levels. We report application of an ultrasensitive method using a novel estrogen-selective derivatization in liquid chromatography-mass spectrometry to measure serum E2, with a detection limit of 0.25 pg/ml in small (0.2 ml) serum volumes that can quantify serum E2 in 98% and serum E1 in 100% of healthy postmenopausal women. Aromatase inhibitor (AI) treatment of postmenopausal women with breast cancer further reduces serum E2 by 85% and serum estrone (E1) by 80%. The wide scatter of circulating E2 in AI-treated women suggests that the degree of sustained E2 depletion, now quantifiable, may be an efficacy or safety biomarker of adjuvant AI treatment. This ultrasensitive method can also measure serum E2 in most (65%) female but not in any male mice. Further studies are warranted using this and comparable ultrasensitive liquid chromatography-mass spectrometry estrogen measurements to investigate the relationship of circulating E2 (and E1) in male, postmenopausal female, and childhood health where accurate quantification of serum estrogens was not previously feasible. This will focus on the direct impact of estrogens as well as the indirect effects of androgen aromatization on reproductive, bone, and brain tissues and, notably, the efficacy and safety of AIs in adjuvant breast cancer treatment.
Collapse
Affiliation(s)
- David J Handelsman
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, Australia
| | - Emma Gibson
- Faculty of Health and Applied Sciences, University of the West of England, Bristol, UK.,School of Optometry and Vision Science, University of New South Wales, NSW, Australia
| | - Susan Davis
- Women's Health Research Program, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
| | - Blanka Golebiowski
- School of Optometry and Vision Science, University of New South Wales, NSW, Australia
| | - Kirsty A Walters
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, Australia.,Fertility and Research Centre, School of Women's & Children's Health, University of New South Wales Sydney, NSW, Australia
| | - Reena Desai
- Andrology Laboratory, ANZAC Research Institute, University of Sydney, Sydney, Australia
| |
Collapse
|
50
|
Barnard M, Mostaghel EA, Auchus RJ, Storbeck KH. The role of adrenal derived androgens in castration resistant prostate cancer. J Steroid Biochem Mol Biol 2020; 197:105506. [PMID: 31672619 PMCID: PMC7883395 DOI: 10.1016/j.jsbmb.2019.105506] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/17/2019] [Accepted: 10/22/2019] [Indexed: 01/02/2023]
Abstract
Castration resistant prostate cancer (CRPC) remains androgen dependant despite castrate levels of circulating testosterone following androgen deprivation therapy, the first line of treatment for advanced metstatic prostate cancer. CRPC is characterized by alterations in the expression levels of steroidgenic enzymes that enable the tumour to derive potent androgens from circulating adrenal androgen precursors. Intratumoral androgen biosynthesis leads to the localized production of both canonical androgens such as 5α-dihydrotestosterone (DHT) as well as less well characterized 11-oxygenated androgens, which until recently have been overlooked in the context of CRPC. In this review we discuss the contribution of both canonical and 11-oxygenated androgen precursors to the intratumoral androgen pool in CRPC. We present evidence that CRPC remains androgen dependent and discuss the alterations in steroidogenic enzyme expression and how these affect the various pathways to intratumoral androgen biosynthesis. Finally we summarize the current treatment strategies for targeting adrenal derived androgen biosynthesis.
Collapse
Affiliation(s)
- Monique Barnard
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | - Elahe A Mostaghel
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Medicine, University of Washington, Seattle, WA, USA; Geriatric Research, Education and Clinical Center, VA Puget Sound Health Care System, Seattle, WA, USA
| | - Richard J Auchus
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, Ann Arbor, MI, USA; Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Karl-Heinz Storbeck
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa.
| |
Collapse
|