1
|
González Á, López-Borrego S, Sandúa A, Vales-Gomez M, Alegre E. Extracellular vesicles in cancer: challenges and opportunities for clinical laboratories. Crit Rev Clin Lab Sci 2024; 61:435-457. [PMID: 38361287 DOI: 10.1080/10408363.2024.2309935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 01/03/2024] [Accepted: 01/22/2024] [Indexed: 02/17/2024]
Abstract
Extracellular vesicles (EVs) are nano-sized particles secreted by most cells. They transport different types of biomolecules (nucleic acids, proteins, and lipids) characteristic of their tissue or cellular origin that can mediate long-distance intercellular communication. In the case of cancer, EVs participate in tumor progression by modifying the tumor microenvironment, favoring immune tolerance and metastasis development. Consequently, EVs have great potential in liquid biopsy for cancer diagnosis, prognosis and follow-up. In addition, EVs could have a role in cancer treatment as a targeted drug delivery system. The intense research in the EV field has resulted in hundreds of patents and the creation of biomedical companies. However, methodological issues and heterogeneity in EV composition have hampered the advancement of EV validation trials and the development of EV-based diagnostic and therapeutic products. Consequently, only a few EV biomarkers have moved from research to clinical laboratories, such as the ExoDx Prostate IntelliScore (EPI) test, a CLIA/FDA-approved EV prostate cancer diagnostic test. In addition, the number of large-scale multicenter studies that would clearly define biomarker performance is limited. In this review, we will critically describe the different types of EVs, the methods for their enrichment and characterization, and their biological role in cancer. Then, we will specially focus on the parameters to be considered for the translation of EV biology to the clinic laboratory, the advances already made in the field of EVs related to cancer diagnosis and treatment, and the issues still pending to be solved before EVs could be used as a routine tool in oncology.
Collapse
Affiliation(s)
- Álvaro González
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Silvia López-Borrego
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Amaia Sandúa
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
| | - Mar Vales-Gomez
- Department of Immunology and Oncology, National Centre for Biotechnology, Spanish National Research Council, Madrid, Spain
| | - Estibaliz Alegre
- Service of Biochemistry, Clínica Universidad de Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| |
Collapse
|
2
|
Hong CS, Menshikova EV, Whiteside TL, Jackson EK. Assessment of ATP metabolism to adenosine by ecto-nucleotidases carried by tumor-derived small extracellular vesicles. Purinergic Signal 2024:10.1007/s11302-024-10038-7. [PMID: 39066830 DOI: 10.1007/s11302-024-10038-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 07/04/2024] [Indexed: 07/30/2024] Open
Abstract
Immunosuppression is a hallmark of cancer progression. Tumor-derived small extracellular vesicles (sEV), also known as TEX, produce adenosine (ADO) and can mediate tumor-induced immunosuppression.Here, the ATP pathway of ADO production (ATP → ADP → AMP → ADO) by ecto-nucleotidases carried on the sEV surface was evaluated by a method using N6-etheno-ATP (eATP) and N6-etheno-AMP (eAMP) as substrates for enzymatic activity. The "downstream" N6-etheno-purines (ePurines) were measured by high performance liquid chromatography with fluorescence detection (HPLC-FL).Human melanoma cell-derived TEX (MTEX) metabolized eATP to N6-etheno-ADP (eADP), eAMP and N6-etheno-Adenosine (eADO) more robustly than control keratinocyte cell-derived sEV (CEX); due to accelerated conversion of eATP to eADP and eADP to eAMP. MTEX and CEX similarly metabolized eAMP to eADO. Blocking of the ATP pathway with the selective CD39 inhibitor ARL67156 or pan ecto-nucleotidase inhibitor POM-1 normalized the ATP pathway but neither inhibitor completely abolished it. In contrast, inhibition of CD73 by PSB12379 or AMPCP abolished eADO formation by both MTEX and CEX, suggesting that targeting CD73 is the preferred approach to eliminating ADO produced by ecto-nucleotidases located on the sEV surface.The noninvasive, sensitive, and specific assay assessing ePurine metabolism ± ecto-nucleotidase inhibitors in TEX enables the personalized identification of ecto-nucleotidase activity primarily involved in ADO production in patients with cancer. The assay could guide precision medicine by determining which purine is the preferred target for inhibitory therapeutic interventions.
Collapse
Affiliation(s)
- Chang-Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, UPCI Research Pavilion, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Elizabeth V Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, UPCI Research Pavilion, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.
- Departments of Immunology and Otolaryngology, Pittsburgh, PA, 15213, USA.
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Nurrohman DT, Chiu NF, Hsiao YS, Lai YJ, Nanda HS. Advances in Nanoplasmonic Biosensors: Optimizing Performance for Exosome Detection Applications. BIOSENSORS 2024; 14:307. [PMID: 38920611 PMCID: PMC11201745 DOI: 10.3390/bios14060307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024]
Abstract
The development of sensitive and specific exosome detection tools is essential because they are believed to provide specific information that is important for early detection, screening, diagnosis, and monitoring of cancer. Among the many detection tools, surface-plasmon resonance (SPR) biosensors are analytical devices that offer advantages in sensitivity and detection speed, thereby making the sample-analysis process faster and more accurate. In addition, the penetration depth of the SPR biosensor, which is <300 nm, is comparable to the size of the exosome, making the SPR biosensor ideal for use in exosome research. On the other hand, another type of nanoplasmonic sensor, namely a localized surface-plasmon resonance (LSPR) biosensor, has a shorter penetration depth of around 6 nm. Structural optimization through the addition of supporting layers and gap control between particles is needed to strengthen the surface-plasmon field. This paper summarizes the progress of the development of SPR and LSPR biosensors for detecting exosomes. Techniques in signal amplification from two sensors will be discussed. There are three main parts to this paper. The first two parts will focus on reviewing the working principles of each sensor and introducing several methods that can be used to isolate exosomes. This article will close by explaining the various sensor systems that have been developed and the optimizations carried out to obtain sensors with better performance. To illustrate the performance improvements in each sensor system discussed, the parameters highlighted include the detection limit, dynamic range, and sensitivity.
Collapse
Affiliation(s)
- Devi Taufiq Nurrohman
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Nan-Fu Chiu
- Laboratory of Nano-Photonics and Biosensors, Institute of Electro-Optical Engineering, National Taiwan Normal University, Taipei 11677, Taiwan;
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Yu-Sheng Hsiao
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Road, Da-an District, Taipei 10607, Taiwan;
| | - Yun-Ju Lai
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan;
| | - Himansu Sekhar Nanda
- Biomedical Engineering and Technology Laboratory, Mechanical Engineering Discipline, PDPM Indian Institute of Information Technology, Design & Manufacturing, Jabalpur 482005, India;
| |
Collapse
|
4
|
Kosutova N, Lorencova L, Hires M, Jane E, Orovcik L, Kollar J, Kozics K, Gabelova A, Ukraintsev E, Rezek B, Kasak P, Cernocka H, Ostatna V, Blahutova J, Vikartovska A, Bertok T, Tkac J. Negative Charge-Carrying Glycans Attached to Exosomes as Novel Liquid Biopsy Marker. SENSORS (BASEL, SWITZERLAND) 2024; 24:1128. [PMID: 38400284 PMCID: PMC10892626 DOI: 10.3390/s24041128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/02/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer. In this paper, the isolation and properties of exosomes as potential novel liquid biopsy markers for early PCa liquid biopsy diagnosis are investigated using two prostate human cell lines, i.e., benign (control) cell line RWPE1 and carcinoma cell line 22Rv1. Exosomes produced by both cell lines are characterised by various methods including nanoparticle-tracking analysis, dynamic light scattering, scanning electron microscopy and atomic force microscopy. In addition, surface plasmon resonance (SPR) is used to study three different receptors on the exosomal surface (CD63, CD81 and prostate-specific membrane antigen-PMSA), implementing monoclonal antibodies and identifying the type of glycans present on the surface of exosomes using lectins (glycan-recognising proteins). Electrochemical analysis is used to understand the interfacial properties of exosomes. The results indicate that cancerous exosomes are smaller, are produced at higher concentrations, and exhibit more nega tive zeta potential than the control exosomes. The SPR experiments confirm that negatively charged α-2,3- and α-2,6-sialic acid-containing glycans are found in greater abundance on carcinoma exosomes, whereas bisecting and branched glycans are more abundant in the control exosomes. The SPR results also show that a sandwich antibody/exosomes/lectins configuration could be constructed for effective glycoprofiling of exosomes as a novel liquid biopsy marker.
Collapse
Affiliation(s)
- Natalia Kosutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Lubomir Orovcik
- Institute of Materials and Machine Mechanics, Slovak Academy of Sciences, Dubravska cesta 9/6319, 845 13 Bratislava, Slovakia
| | - Jozef Kollar
- Polymer Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Katarina Kozics
- Biomedical Research Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia (A.G.)
| | - Alena Gabelova
- Biomedical Research Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovakia (A.G.)
| | - Egor Ukraintsev
- Department of Physics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic; (E.U.); (B.R.)
| | - Bohuslav Rezek
- Department of Physics, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, 166 27 Prague, Czech Republic; (E.U.); (B.R.)
| | - Peter Kasak
- Centre for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Hana Cernocka
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic; (H.C.)
| | - Veronika Ostatna
- Institute of Biophysics, Czech Academy of Sciences, Kralovopolska 135, 61200 Brno, Czech Republic; (H.C.)
| | - Jana Blahutova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 5807/9, 845 38 Bratislava, Slovakia (L.L.); (E.J.)
| |
Collapse
|
5
|
Hong CS, Menshikova EV, Whiteside TL, Jackson EK. Assessment of ATP Metabolism to Adenosine by Ecto-Nucleotidases Carried by Tumor-Derived Small Extracellular Vesicles. RESEARCH SQUARE 2024:rs.3.rs-3876953. [PMID: 38343828 PMCID: PMC10854312 DOI: 10.21203/rs.3.rs-3876953/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Background Immunosuppression is a hallmark of cancer progression. Tumor-derived small extracellular vesicles (sEV), also known as TEX, produce adenosine (ADO) and can mediate tumor-induced immunosuppression. Methods Here, the ATP pathway of ADO production (ATP◊ADP◊AMP◊ADO) by ecto-nucleotidases carried in sEV was evaluated by a novel method using N6-etheno-ATP (eATP) and N6-etheno-AMP (eAMP) as substrates. The "downstream" N6-etheno-purines (ePurines) were measured by high performance liquid chromatography with fluorescence detection (HPLC-FL). Results Human melanoma cell-derived TEX (MTEX) metabolized eATP to N6-etheno-ADP (eADP), eAMP and N6-etheno-Adenosine (eADO) more robustly than control keratinocyte cell-derived sEV (CEX); due to accelerated conversion of eATP to eADP and eADP to eAMP MTEX and CEX similarly metabolized eAMP to eADO. Blocking of the ATP pathway with the selective CD39 inhibitor ARL67156 or pan ecto-nucleotidase inhibitor POM-1 normalized the ATP pathway but neither inhibitor completely abolished it. In contrast, inhibition of CD73 by PSB12379 or AMPCP abolished eADO formation in both MTEX and CEX, suggesting that targeting CD73 is the preferred approach to eliminating ADO produced by sEV. Conclusions The noninvasive, sensitive, and specific assay assessing ePurine metabolism ± ecto-nucleotidase inhibitors in TEX enables the personalized identification of the ecto-nucleotidase primarily involved in ADO production in patients with cancer. The assay could guide precision medicine by determining which purine is the preferred target for inhibitory therapeutic interventions.
Collapse
|
6
|
Łuczak MW, Dżaman K, Zaręba Ł, Czerwaty K, Siewiera J, Głuszko A, Olszewska E, Brzost J, Kantor I, Szczepański MJ, Ludwig N. HMGB1 Carried by Small Extracellular Vesicles Potentially Plays a Role in Promoting Acquired Middle Ear Cholesteatoma. Diagnostics (Basel) 2023; 13:3469. [PMID: 37998605 PMCID: PMC10669961 DOI: 10.3390/diagnostics13223469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/07/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023] Open
Abstract
Cholesteatoma is a specific medical condition involving the abnormal, non-cancerous growth of skin-like tissue in the middle ear, potentially leading to a collection of debris and even infections. The receptor for advanced glycation (RAGE) and its ligand, high-mobility box 1 (HMGB1), are both known to be overexpressed in cholesteatoma and play a potential role in the pathogenesis of the disease. In this study, we investigated the role of small extracellular vesicles (sEVs) in carrying HMGB1 and inducing disease-promoting effects in cholesteatoma. No significant differences in the concentration of isolated sEVs in the plasma of cholesteatoma patients (n = 17) and controls (n = 22) were found (p > 0.05); however, cholesteatoma-derived sEVs carried significantly higher levels of HMGB1 (p < 0.05). In comparison to sEVs isolated from the plasma of controls, cholesteatoma-derived sEVs significantly enhanced keratinocyte proliferation and IL-6 production (p < 0.05), potentially by engaging multiple activation pathways including MAPKp44/p42, STAT3, and the NF-κB pathway. Thus, HMGB1(+) sEVs emerge as a novel factor potentially promoting cholesteatoma progression.
Collapse
Affiliation(s)
- Michał W. Łuczak
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02906, USA;
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (A.G.)
| | - Karolina Dżaman
- Department of Otolaryngology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (K.D.); (K.C.); (I.K.)
| | - Łukasz Zaręba
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (A.G.)
| | - Katarzyna Czerwaty
- Department of Otolaryngology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (K.D.); (K.C.); (I.K.)
| | - Jacek Siewiera
- Department of Hyperbaric Medicine, Military Institute of Medicine-National Research Institute, 00-902 Warsaw, Poland;
| | - Alicja Głuszko
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (A.G.)
| | - Ewa Olszewska
- Department of Otolaryngology, Medical University of Bialystok, 15-276 Bialystok, Poland;
| | - Jacek Brzost
- Department of Otolaryngology, The Children’s Memorial Health Institute, 00-328 Warsaw, Poland;
| | - Ireneusz Kantor
- Department of Otolaryngology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (K.D.); (K.C.); (I.K.)
| | - Mirosław J. Szczepański
- Department of Biochemistry, Medical University of Warsaw, 02-097 Warsaw, Poland; (Ł.Z.); (A.G.)
- Department of Otolaryngology, Centre of Postgraduate Medical Education, 02-097 Warsaw, Poland; (K.D.); (K.C.); (I.K.)
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
7
|
Siewiera J, Smoleński M, Jermakow N, Kot J, Reichert TE, Miśkiewicz P, Zaręba Ł, Cyran A, Szczepański MJ, Ludwig N. Levels of small extracellular vesicles in patients treated with hyperbaric oxygenation. Arch Med Sci 2023; 20:476-484. [PMID: 38757025 PMCID: PMC11094842 DOI: 10.5114/aoms/169382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/08/2023] [Indexed: 05/18/2024] Open
Abstract
Introduction Hyperbaric oxygen (HBO2) therapy involves the inhalation of pure oxygen in a pressure chamber under increased ambient pressure. Recent research indicates that circulating small extracellular vesicles (sEVs) play important roles in human physiology and pathology. Therefore, the objective of this pilot study was to monitor the impact of HBO2 therapy on the levels of circulating sEVs in the serum of patients with necrotizing soft-tissue infections (NSTI), aseptic bone necrosis (ABN) or idiopathic sudden sensory neural hearing loss (ISSNHL). Material and methods Serum-derived sEVs were isolated and quantified in 80 patients before and after HBO2 therapy applied for NSTI, ISSNHL and ABN patients as well as in normal controls who received neither HBO2 therapy nor steroids. Results We observed a significant increase of circulating sEVs in patients with ISSNHL after HBO2 therapy (p < 0.05), as well as significantly elevated levels of sEVs after HBO2 therapy compared to patients with NSTI (p < 0.05) and ABN (p < 0.01). Conclusions The increase in the levels of sEVs in ISSNHL may be evidence for both the intended reduction of inflammation as a result of steroid therapy and the inhibitory effect of oxidative stress induced by HBO2 therapy. Thus, sEVs released during HBO2 therapy might play an important biological role in mediating the response to therapy and might be a promising approach to gain further insights into the therapeutic efficacy of HBO2 therapy.
Collapse
Affiliation(s)
- Jacek Siewiera
- Department of Hyperbaric Medicine, Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Michał Smoleński
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Jermakow
- Department of Hyperbaric Medicine, Military Institute of Medicine – National Research Institute, Warsaw, Poland
| | - Jacek Kot
- National Centre for Hyperbaric Medicine, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdansk, Poland
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Piotr Miśkiewicz
- Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Warsaw, Poland
| | - Łukasz Zaręba
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | - Anna Cyran
- Department of Biochemistry, Medical University of Warsaw, Warsaw, Poland
| | | | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
8
|
Ludwig N, Yerneni SS, Harasymczuk M, Szczepański MJ, Głuszko A, Kukwa W, Jordan T, Spanier G, Taxis J, Spoerl S, Meier JK, Hinck CS, Campbell PG, Reichert TE, Hinck AP, Whiteside TL. TGFβ carrying exosomes in plasma: potential biomarkers of cancer progression in patients with head and neck squamous cell carcinoma. Br J Cancer 2023; 128:1733-1741. [PMID: 36810911 PMCID: PMC10133391 DOI: 10.1038/s41416-023-02184-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/24/2023] Open
Abstract
OBJECTIVES Contributions of TGFβ to cancer progression are well documented. However, plasma TGFβ levels often do not correlate with clinicopathological data. We examine the role of TGFβ carried in exosomes isolated from murine and human plasma as a contributor to disease progression in head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS The 4-nitroquinoline-1-oxide (4-NQO) mouse model was used to study changes in TGFβ expression levels during oral carcinogenesis. In human HNSCC, TGFβ and Smad3 protein expression levels and TGFB1 gene expression were determined. Soluble TGFβ levels were evaluated by ELISA and TGFβ bioassays. Exosomes were isolated from plasma using size exclusion chromatography, and TGFβ content was quantified using bioassays and bioprinted microarrays. RESULTS During 4-NQO carcinogenesis, TGFβ levels in tumour tissues and in serum increased as the tumour progressed. The TGFβ content of circulating exosomes also increased. In HNSCC patients, TGFβ, Smad3 and TGFB1 were overexpressed in tumour tissues and correlated with increased soluble TGFβ levels. Neither TGFβ expression in tumours nor levels of soluble TGFβ correlated with clinicopathological data or survival. Only exosome-associated TGFβ reflected tumour progression and correlated with tumour size. CONCLUSIONS Circulating TGFβ+ exosomes in the plasma of patients with HNSCC emerge as potential non-invasive biomarkers of disease progression in HNSCC.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | | | | | - Mirosław J Szczepański
- Chair and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Głuszko
- Chair and Department of Biochemistry, Faculty of Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Wojciech Kukwa
- Department of Otolaryngology, Faculty of Dental Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Theresa Jordan
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Gerrit Spanier
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Juergen Taxis
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Steffen Spoerl
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Johannes K Meier
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Cynthia S Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Phil G Campbell
- Department of Biomedical Engineering and Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Torsten E Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Andrew P Hinck
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15260, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
9
|
Sojka DR, Abramowicz A, Adamiec-Organiściok M, Karnas E, Mielańczyk Ł, Kania D, Blamek S, Telka E, Scieglinska D. Heat shock protein A2 is a novel extracellular vesicle-associated protein. Sci Rep 2023; 13:4734. [PMID: 36959387 PMCID: PMC10036471 DOI: 10.1038/s41598-023-31962-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/20/2023] [Indexed: 03/25/2023] Open
Abstract
70-kDa Heat Shock Proteins (HSPA/HSP70) are chaperones playing a central role in the proteostasis control mechanisms. Their basal expression can be highly elevated as an adaptive response to environmental and pathophysiological stress conditions. HSPA2, one of poorly characterised chaperones of the HSPA/HSP70 family, has recently emerged as epithelial cells differentiation-related factor. It is also commonly expressed in cancer cells, where its functional significance remains unclear. Previously, we have found that proteotoxic stress provokes a decrease in HSPA2 levels in cancer cells. In the present study we found that proteasome inhibition-related loss of HSPA2 from cancer cells neither is related to a block in the gene transcription nor does it relate to increased autophagy-mediated disposals of the protein. Proteotoxic stress stimulated extracellular release of HSPA2 in extracellular vesicles (EVs). Interestingly, EVs containing HSPA2 are also released by non-stressed cancer and normal cells. In human urinary EVs levels of HSPA2 were correlated with the levels of TSG101, one of the main EVs markers. We conclude that HSPA2 may constitute basic components of EVs. Nevertheless, its specific role in EVs and cell-to-cell communication requires further investigation.
Collapse
Affiliation(s)
- Damian Robert Sojka
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Agata Abramowicz
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Małgorzata Adamiec-Organiściok
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
- Department of Systems Biology and Engineering, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100, Gliwice, Poland
| | - Elżbieta Karnas
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7 St., 30-387, Kraków, Poland
| | - Łukasz Mielańczyk
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, Katowice, Poland
| | - Daria Kania
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Sławomir Blamek
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Ewa Telka
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Dorota Scieglinska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland.
| |
Collapse
|
10
|
Musatova OE, Rubtsov YP. Effects of glioblastoma-derived extracellular vesicles on the functions of immune cells. Front Cell Dev Biol 2023; 11:1060000. [PMID: 36960410 PMCID: PMC10028257 DOI: 10.3389/fcell.2023.1060000] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/22/2023] [Indexed: 03/09/2023] Open
Abstract
Glioblastoma is the most aggressive variant of glioma, the tumor of glial origin which accounts for 80% of brain tumors. Glioblastoma is characterized by astoundingly poor prognosis for patients; a combination of surgery, chemo- and radiotherapy used for clinical treatment of glioblastoma almost inevitably results in rapid relapse and development of more aggressive and therapy resistant tumor. Recently, it was demonstrated that extracellular vesicles produced by glioblastoma (GBM-EVs) during apoptotic cell death can bind to surrounding cells and change their phenotype to more aggressive. GBM-EVs participate also in establishment of immune suppressive microenvironment that protects glioblastoma from antigen-specific recognition and killing by T cells. In this review, we collected present data concerning characterization of GBM-EVs and study of their effects on different populations of the immune cells (T cells, macrophages, dendritic cells, myeloid-derived suppressor cells). We aimed at critical analysis of experimental evidence in order to conclude whether glioblastoma-derived extracellular vesicles are a major factor in immune evasion of this deadly tumor. We summarized data concerning potential use of GBM-EVs for non-invasive diagnostics of glioblastoma. Finally, the applicability of approaches aimed at blocking of GBM-EVs production or their fusion with target cells for treatment of glioblastoma was analyzed.
Collapse
Affiliation(s)
- Oxana E. Musatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
| | - Yury P. Rubtsov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, RAS, Moscow, Russia
- N.N.Blokhin Russian Cancer Research Center, Ministry of Health of the Russian Federation, Moscow, Russia
- *Correspondence: Yury P. Rubtsov,
| |
Collapse
|
11
|
Wróblewska JP, Lach MS, Rucinski M, Piotrowski I, Galus L, Suchorska WM, Kreis S, Marszałek A. MiRNAs from serum-derived extracellular vesicles as biomarkers for uveal melanoma progression. Front Cell Dev Biol 2022; 10:1008901. [PMID: 36619870 PMCID: PMC9814164 DOI: 10.3389/fcell.2022.1008901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Uveal melanoma (UM) is a rare type of malignancy that originates from melanocytes in the choroid, iris and the eye's ciliary body. Biomarkers for early detection and progression of UM, especially the molecular traits governing the development of metastasis, are still not available in clinical practice. One extensively studied components of liquid biopsies are extracellular vesicles. Due to their unique molecular cargo, they can contribute to early cancer development and at the same time carry markers for disease onset and progression. For characterisation of the miRNA profiles present in circulating serum-derived exosomes of patients with diagnosed primary and metastatic UM, we have analyzed the miRNA cargos using next-generation sequencing followed by RT-qPCR validation in a cohort of patients (control n = 20; primary n = 9; metastatic n = 11). Nine miRNAs differentiating these patient groups have been established. We show that hsa-miR-144-5p and hsa-miR-191-5p are the most promising biomarker candidates, allowing the categorization of patients into local and advanced UM. Additionally, the comparison of miRNA expression levels in exosomes derived from UM patients with those derived from healthy donors revealed that hsa-miR-191-5p, -223-3p, -483-5p, -203a has the potential to be used as an early marker for the presence of UM. This pilot study reveals that miRNAs extracted from circulating exosomes could be exploited as potential biomarkers in UM diagnosis and, more importantly, for indicating metastatic spread.
Collapse
Affiliation(s)
- Joanna Patrycja Wróblewska
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Poznan, Poland,Department of Tumor Pathology, Greater Poland Cancer Centre, Poznan, Poland,Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg,*Correspondence: Joanna Patrycja Wróblewska,
| | - Michał Stefan Lach
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland,Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer, Poznan, Poland,Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Marcin Rucinski
- Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan, Poland
| | - Igor Piotrowski
- Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer, Poznan, Poland,Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Lukasz Galus
- Department of Medical and Experimental Oncology, Heliodor Swiecicki University Hospital, Poznan University of Medical Sciences, Poznan, Poland
| | - Wiktoria Maria Suchorska
- Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer, Poznan, Poland,Department of Electroradiology, Poznan University of Medical Sciences, Poznan, Poland
| | - Stephanie Kreis
- Department of Life Sciences and Medicine, University of Luxembourg, Belval, Luxembourg
| | - Andrzej Marszałek
- Department of Oncologic Pathology and Prophylaxis, Poznan University of Medical Sciences, Poznan, Poland,Department of Tumor Pathology, Greater Poland Cancer Centre, Poznan, Poland
| |
Collapse
|
12
|
Ludwig N, Yerneni SS, Azambuja JH, Pietrowska M, Widłak P, Hinck CS, Głuszko A, Szczepański MJ, Kärmer T, Kallinger I, Schulz D, Bauer RJ, Spanier G, Spoerl S, Meier JK, Ettl T, Razzo BM, Reichert TE, Hinck AP, Whiteside TL. TGFβ + small extracellular vesicles from head and neck squamous cell carcinoma cells reprogram macrophages towards a pro-angiogenic phenotype. J Extracell Vesicles 2022; 11:e12294. [PMID: 36537293 PMCID: PMC9764108 DOI: 10.1002/jev2.12294] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/03/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
Transforming growth factor β (TGFβ) is a major component of tumor-derived small extracellular vesicles (TEX) in cancer patients. Mechanisms utilized by TGFβ+ TEX to promote tumor growth and pro-tumor activities in the tumor microenvironment (TME) are largely unknown. TEX produced by head and neck squamous cell carcinoma (HNSCC) cell lines carried TGFβ and angiogenesis-promoting proteins. TGFβ+ TEX stimulated macrophage chemotaxis without a notable M1/M2 phenotype shift and reprogrammed primary human macrophages to a pro-angiogenic phenotype characterized by the upregulation of pro-angiogenic factors and functions. In a murine basement membrane extract plug model, TGFβ+ TEX promoted macrophage infiltration and vascularization (p < 0.001), which was blocked by using the TGFβ ligand trap mRER (p < 0.001). TGFβ+ TEX injected into mice undergoing the 4-nitroquinoline-1-oxide (4-NQO)-driven oral carcinogenesis promoted tumor angiogenesis (p < 0.05), infiltration of M2-like macrophages in the TME (p < 0.05) and ultimately tumor progression (p < 0.05). Inhibition of TGFβ signaling in TEX with mRER ameliorated these pro-tumor activities. Silencing of TGFβ emerges as a critical step in suppressing pro-angiogenic functions of TEX in HNSCC.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
| | | | - Juliana H. Azambuja
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
- Postgraduate Program in BiosciencesFederal University of Health Sciences of Porto Alegre (UFCSPA)Porto AlegreBrazil
| | - Monika Pietrowska
- Maria Sklodowska‐Curie National Research Institute of OncologyGliwice BranchGliwicePoland
| | | | - Cynthia S. Hinck
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Alicja Głuszko
- Chair and Department of BiochemistryMedical University of WarsawWarsawPoland
| | - Mirosław J. Szczepański
- Chair and Department of BiochemistryMedical University of WarsawWarsawPoland
- Department of OtolaryngologyCentre of Postgraduate Medical EducationWarsawPoland
| | - Teresa Kärmer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Isabella Kallinger
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Daniela Schulz
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Richard J. Bauer
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Gerrit Spanier
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Steffen Spoerl
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Johannes K. Meier
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Tobias Ettl
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | | | - Torsten E. Reichert
- Department of Oral and Maxillofacial SurgeryUniversity Hospital RegensburgRegensburgGermany
| | - Andrew P. Hinck
- Department of Structural BiologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Theresa L. Whiteside
- Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
- UPMC Hillman Cancer CenterPittsburghPennsylvaniaUSA
- Departments of Immunology and OtolaryngologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
13
|
Reale A, Khong T, Spencer A. Extracellular Vesicles and Their Roles in the Tumor Immune Microenvironment. J Clin Med 2022; 11:jcm11236892. [PMID: 36498469 PMCID: PMC9737553 DOI: 10.3390/jcm11236892] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor cells actively incorporate molecules (e.g., proteins, lipids, RNA) into particles named extracellular vesicles (EVs). Several groups have demonstrated that EVs can be transferred to target (recipient) cells, making EVs an important means of intercellular communication. Indeed, EVs are able to modulate the functions of target cells by reprogramming signaling pathways. In a cancer context, EVs promote the formation of a supportive tumor microenvironment (TME) and (pre)metastatic niches. Recent studies have revealed that immune cells, tumor cells and their secretome, including EVs, promote changes in the TME and immunosuppressive functions of immune cells (e.g., natural killer, dendritic cells, T and B cells, monocytes, macrophages) that allow tumor cells to establish and propagate. Despite the growing knowledge on EVs and on their roles in cancer and as modulators of the immune response/escape, the translation into clinical practice remains in its early stages, hence requiring improved translational research in the EVs field. Here, we comprehensively review the current knowledge and most recent research on the roles of EVs in tumor immune evasion and immunosuppression in both solid tumors and hematological malignancies. We also highlight the clinical utility of EV-mediated immunosuppression targeting and EV-engineering. Importantly, we discuss the controversial role of EVs in cancer biology, current limitations and future perspectives to further the EV knowledge into clinical practice.
Collapse
Affiliation(s)
- Antonia Reale
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
- Correspondence: (A.R.); (A.S.)
| | - Tiffany Khong
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
| | - Andrew Spencer
- Myeloma Research Group, Australian Centre for Blood Diseases, Central Clinical School, Monash University—Alfred Health, Melbourne, VIC 3004, Australia
- Malignant Haematology and Stem Cell Transplantation, Department of Haematology, Alfred Hospital, Melbourne, VIC 3004, Australia
- Department of Clinical Hematology, Monash University, Melbourne, VIC 3004, Australia
- Correspondence: (A.R.); (A.S.)
| |
Collapse
|
14
|
Pszczółkowska B, Olejarz W, Filipek M, Tartas A, Kubiak-Tomaszewska G, Żołnierzak A, Życieńska K, Ginter J, Lorenc T, Brzozowska B. Exosome secretion and cellular response of DU145 and PC3 after exposure to alpha radiation. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2022; 61:639-650. [PMID: 36098819 PMCID: PMC9630248 DOI: 10.1007/s00411-022-00991-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Exosomes are spherical membrane nanovesicles secreted from cells, and they play an important role in tumor immune response, metastasis, angiogenesis, and survival. Studies investigating exosomes isolated from cells exposed to photon radiation commonly used in conventional radiotherapy demonstrate the influence of this type of radiation on exosome characteristics and secretion. There is currently no research investigating the effects of densely ionizing particles such as protons and alpha radiation on exosomes. Thus we have evaluated the cellular response of human prostate cancer cells exposed to 0, 2, and 6 Gy of alpha radiation emitted from the Am-241 source. Irradiated PC3 and DU145 cell lines, characterized by differences in radiosensitivity, were studied using apoptosis, LDH, and IL-6 assays. Additionally, the corresponding concentration and size of isolated exosomes were measured using NTA. We found that exposure to ionizing radiation resulted in gross changes in viability and cell damage. There were increased amounts of apoptotic or necrotic cells as a function of radiation dose. We demonstrated that irradiated PC3 cells secrete higher quantities of exosomes compared to DU145 cells. Additionally, we also found no statistical difference in exosome size for control and irradiated cells.
Collapse
Affiliation(s)
- Beata Pszczółkowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
| | - Mateusz Filipek
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Adrianna Tartas
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Grażyna Kubiak-Tomaszewska
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
| | - Aleksandra Żołnierzak
- Department of Biochemistry and Pharmacogenomics, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, 1 Banacha Street, Warsaw, 02-097 Poland
| | - Katarzyna Życieńska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Józef Ginter
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| | - Tomasz Lorenc
- 1st Department of Clinical Radiology, Medical University of Warsaw, 5 Chałubińskiego Street, Warsaw, 02-004 Poland
| | - Beata Brzozowska
- Biomedical Physics Division, Faculty of Physics, University of Warsaw, 5 Pasteura Street, Warsaw, 02-093 Poland
| |
Collapse
|
15
|
Kholodenko IV, Kholodenko RV, Majouga AG, Yarygin KN. Apoptotic MSCs and MSC-Derived Apoptotic Bodies as New Therapeutic Tools. Curr Issues Mol Biol 2022; 44:5153-5172. [PMID: 36354663 PMCID: PMC9688732 DOI: 10.3390/cimb44110351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/03/2022] Open
Abstract
Over the past two decades, mesenchymal stem cells (MSCs) have shown promising therapeutic effects both in preclinical studies (in animal models of a wide range of diseases) and in clinical trials. However, the efficacy of MSC-based therapy is not always predictable. Moreover, despite the large number of studies, the mechanisms underlying the regenerative potential of MSCs are not fully elucidated. Recently, it has been reliably established that transplanted MSCs can undergo rapid apoptosis and clearance from the recipient's body, still exhibiting therapeutic effects, especially those associated with their immunosuppressive/immunomodulating properties. The mechanisms underlying these effects can be mediated by the efferocytosis of apoptotic MSCs by host phagocytic cells. In this concise review, we briefly describe three types of MSC-generated extracellular vesicles, through which their therapeutic functions can potentially be carried out; we focused on reviewing recent data on apoptotic MSCs and MSC-derived apoptotic bodies (MSC-ApoBDs), their functions, and the mechanisms of their therapeutic effects.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin–Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
16
|
Characteristics of Exosomes and the Vascular Landscape Regulate Exosome Sequestration by Peripheral Tissues and Brain. Int J Mol Sci 2022; 23:ijms232012513. [PMID: 36293369 PMCID: PMC9603979 DOI: 10.3390/ijms232012513] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 02/04/2023] Open
Abstract
Exosomes mediate intercellular communication, shuttling messages between cells and tissues. We explored whether exosome tissue sequestration is determined by the exosomes or the tissues using ten radiolabeled exosomes from human or murine, cancerous or noncancerous cell lines. We measured sequestration of these exosomes by the liver, kidney, spleen, and lung after intravenous injection into male CD-1 mice. Except for kidney sequestration of three exosomes, all exosomes were incorporated by all tissues, but sequestration levels varied greatly among exosomes and tissues. Species of origin (mouse vs. human) or source (cancerous vs. noncancerous cells) did not influence tissue sequestration. Sequestration of J774A.1 exosomes by liver involved the mannose-6 phosphate (M6P) receptor. Wheatgerm agglutinin (WGA) or lipopolysaccharide (LPS) treatments enhanced sequestration of exosomes by brain and lung but inhibited sequestration by liver and spleen. Response to LPS was not predictive of response to WGA. Path and heat map analyses included our published results for brain and found distinct clusters among the exosomes and the tissues. In conclusion, we found no evidence for a universal binding site controlling exosome-tissue interactions. Instead, sequestration of exosomes by tissues is differentially regulated by both exosomes and tissues and may be stimulated or inhibited by WGA and inflammation.
Collapse
|
17
|
Życieńska K, Pszczółkowska B, Brzozowska B, Kamiński M, Lorenc T, Olejarz W, Sęk S, Ginter J. Brownian Motion Influence on AFM Exosomes' Size Measurements. Int J Mol Sci 2022; 23:10074. [PMID: 36077470 PMCID: PMC9456267 DOI: 10.3390/ijms231710074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Extracellular vesicles are evaluated by nanoparticle tracking analysis (NTA), providing information on their hydrodynamic diameters, and by atomic force microscopy (AFM) to calculate their geometric diameters. The aim of this study is to explore the influence of Brownian movements in a sample drop and preparation time on imaging-based measurements and to determine the relationship between the geometric and hydrodynamic sizes of the extracellular vesicles measured by the AFM and the NTA, respectively. Exosomes derived from the human prostate cancer cell line PC3 were evaluated by NTA and AFM, and those results were compared with Monte Carlo simulations. The mean size, evaluated by AFM shortly after application on the mica substrate, is less than its real value. It obtains the correct value faster for a thinner sample drop. Fitting the log-normal distribution to the geometric and hydrodynamic diameters leads to the conclusion that the latter could arise from the former by linear scaling by a factor that could be used to characterize the analyzed extracellular vesicles. The size of the vesicles attached to the mica substrate depends on time. The effect of Brownian motion and stretch of the lipid bilayer should be considered in the context of exosome AFM studies.
Collapse
Affiliation(s)
- Katarzyna Życieńska
- Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura Street, 02-093 Warsaw, Poland
| | - Beata Pszczółkowska
- Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura Street, 02-093 Warsaw, Poland
| | - Beata Brzozowska
- Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura Street, 02-093 Warsaw, Poland
| | - Maciej Kamiński
- Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura Street, 02-093 Warsaw, Poland
| | - Tomasz Lorenc
- 1st Department of Clinical Radiology, Medical University of Warsaw, 5 Chałubińskiego Street, 02-004 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 1 Banacha Street, 02-097 Warsaw, Poland
- Centre for Preclinical Research, Medical University of Warsaw, 1b Banacha Street, 02-097 Warsaw, Poland
| | - Sławomir Sęk
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 101 Żwirki i Wigury Street, 02-089 Warsaw, Poland
| | - Józef Ginter
- Biomedical Physics Division, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 5 Pasteura Street, 02-093 Warsaw, Poland
| |
Collapse
|
18
|
Majood M, Rawat S, Mohanty S. Delineating the role of extracellular vesicles in cancer metastasis: A comprehensive review. Front Immunol 2022; 13:966661. [PMID: 36059497 PMCID: PMC9439583 DOI: 10.3389/fimmu.2022.966661] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 12/12/2022] Open
Abstract
Extracellular vesicles (EVs) are subcellular messengers that aid in the formation and spread of cancer by enabling tumor-stroma communication. EVs develop from the very porous structure of late endosomes and hold information on both the intrinsic “status” of the cell and the extracellular signals absorbed by the cells from their surroundings. These EVs contain physiologically useful components, including as nucleic acids, lipids, and proteins, which have been found to activate important signaling pathways in tumor and tumor microenvironment (TME) cells, aggravating tumor growth. We highlight critical cell biology mechanisms that link EVS formation to cargo sorting in cancer cells in this review.Sorting out the signals that control EVs creation, cargo, and delivery will aid our understanding of carcinogenesis. Furthermore, we reviewed how cancer development and spreading behaviors are affected by coordinated communication between malignant and non-malignant cells. Herein, we studied the reciprocal exchanges via EVs in various cancer types. Further research into the pathophysiological functions of various EVs in tumor growth is likely to lead to the discovery of new biomarkers in liquid biopsy and the development of tumor-specific therapies.
Collapse
|
19
|
Kosibaty Z, Brustugun OT, Zwicky Eide IJ, Tsakonas G, Grundberg O, De Petris L, McGowan M, Hydbring P, Ekman S. Ras-Related Protein Rab-32 and Thrombospondin 1 Confer Resistance to the EGFR Tyrosine Kinase Inhibitor Osimertinib by Activating Focal Adhesion Kinase in Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:cancers14143430. [PMID: 35884490 PMCID: PMC9317954 DOI: 10.3390/cancers14143430] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/02/2022] [Accepted: 07/09/2022] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Osimertinib is a third-generation EGFR tyrosine kinase inhibitor and the standard of care therapy for non-small cell lung cancer patients harboring EGFR-activating mutations. However, even for patients treated with osimertinib, resistance inevitably occurs leading to disease progression. Here, we utilized two osimertinib-resistant cell lines and investigated their RNA profiles. We found that Ras-related protein Rab-32 (RAB32) and thrombospondin 1 (THBS1) were upregulated and associated with resistance in osimertinib-resistant cells as well as in liquid biopsies from patients with disease progression following osimertinib treatment. Moreover, we found RAB32 and THBS1 to be mechanistically linked to activation of the focal adhesion pathway where combination of osimertinib with a FAK inhibitor resulted in a synergistic suppression of viability of osimertinib-resistant cells. Our findings propose a potential therapeutic strategy for overcoming acquired resistance to osimertinib in non-small cell lung cancer. Abstract Treatment with the tyrosine kinase inhibitor (TKI) osimertinib is the standard of care for non-small cell lung cancer (NSCLC) patients with activating mutations in the epidermal growth factor receptor (EGFR). Osimertinib is also used in T790M-positive NSCLC that may occur de novo or be acquired following first-line treatment with other EGFR TKIs (i.e., gefitinib, erlotinib, afatinib, or dacomitinib). However, patients treated with osimertinib have a high risk of developing resistance to the treatment. A substantial fraction of the mechanisms for resistance is unknown and may involve RNA and/or protein alterations. In this study, we investigated the full transcriptome of parental and osimertinib-resistant cell lines, revealing 131 differentially expressed genes. Knockdown screening of the genes upregulated in resistant cell lines uncovered eight genes to partly confer resistance to osimertinib. Among them, we detected the expression of Ras-related protein Rab-32 (RAB32) and thrombospondin 1 (THBS1) in plasmas sampled at baseline and at disease progression from EGFR-positive NSCLC patients treated with osimertinib. Both genes were upregulated in progression samples. Moreover, we found that knockdown of RAB32 and THBS1 reduced the expression of phosphorylated focal adhesion kinase (FAK). Combination of osimertinib with a FAK inhibitor resulted in synergistic toxicity in osimertinib-resistant cells, suggesting a potential therapeutic drug combination for overcoming resistance to osimertinib in NSCLC patients.
Collapse
Affiliation(s)
- Zeinab Kosibaty
- Department of Oncology and Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (Z.K.); (G.T.); (L.D.P.); (P.H.)
| | - Odd Terje Brustugun
- Section of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway; (O.T.B.); (I.J.Z.E.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway;
| | - Inger Johanne Zwicky Eide
- Section of Oncology, Drammen Hospital, Vestre Viken Hospital Trust, 3004 Drammen, Norway; (O.T.B.); (I.J.Z.E.)
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway;
| | - Georgios Tsakonas
- Department of Oncology and Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (Z.K.); (G.T.); (L.D.P.); (P.H.)
- Thoracic Oncology Center, Karolinska University Hospital, 17164 Stockholm, Sweden;
| | - Oscar Grundberg
- Thoracic Oncology Center, Karolinska University Hospital, 17164 Stockholm, Sweden;
| | - Luigi De Petris
- Department of Oncology and Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (Z.K.); (G.T.); (L.D.P.); (P.H.)
- Thoracic Oncology Center, Karolinska University Hospital, 17164 Stockholm, Sweden;
| | - Marc McGowan
- Department of Cancer Genetics, Institute for Cancer Research, Norwegian Radium Hospital, Oslo University Hospital, 0424 Oslo, Norway;
| | - Per Hydbring
- Department of Oncology and Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (Z.K.); (G.T.); (L.D.P.); (P.H.)
| | - Simon Ekman
- Department of Oncology and Pathology, Karolinska Institutet, 17164 Stockholm, Sweden; (Z.K.); (G.T.); (L.D.P.); (P.H.)
- Thoracic Oncology Center, Karolinska University Hospital, 17164 Stockholm, Sweden;
- Akademiska Straket 1, BioClinicum J6:20, 17164 Solna, Sweden
- Correspondence: ; Tel.: +46-725721111
| |
Collapse
|
20
|
Bertokova A, Svecova N, Kozics K, Gabelova A, Vikartovska A, Jane E, Hires M, Bertok T, Tkac J. Exosomes from prostate cancer cell lines: Isolation optimisation and characterisation. Biomed Pharmacother 2022; 151:113093. [PMID: 35576661 DOI: 10.1016/j.biopha.2022.113093] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/24/2022] [Accepted: 05/04/2022] [Indexed: 11/02/2022] Open
Abstract
Exosomes are considered to be a rich source of biomarkers, hence in this article we examine the best procedure for their isolation. We examine several isolation procedures, exosome storage conditions and other conditions affecting exosome production by prostate cell lines. We selected four different commercially available kits based on different principles to achieve exosome isolation, the best being magnetic-based. In addition, we found storage at - 20 °C to be good for storing isolated exosomes and that exosomes were produced from the cancerous prostate cell line 22Rv1 in much greater amounts than the non-cancerous prostate cell line RWPE1. We also found differences in the response of both cell lines in the production of exosomes as a result of stress, i.e. exposure to hydrogen peroxide and starvation. The effect of Triton X-100 on exosome lysis was examined using two different surfactant concentrations by analysis of the exosome count and change in the exosome size. The final part of the article details the advantages of the use of a 2D biochip prepared in-house over a commercially available 3D biochip for monitoring the interaction of exosomes via its surface receptors (CD63) with an immobilised ligand (anti-CD63 antibodies) using surface plasmon resonance. The final experiment shows the potential of lectin fluorescent microarrays for the analysis of glycans present in lysed exosomes.
Collapse
Affiliation(s)
- Aniko Bertokova
- Glycanostics, Ltd., Kudlákova 7, Bratislava 841 01, Slovak Republic
| | - Natalia Svecova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Katarina Kozics
- Biomedical Research Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic
| | - Alena Gabelova
- Biomedical Research Centre, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak Republic
| | - Alica Vikartovska
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Eduard Jane
- Glycanostics, Ltd., Kudlákova 7, Bratislava 841 01, Slovak Republic; Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Tomas Bertok
- Glycanostics, Ltd., Kudlákova 7, Bratislava 841 01, Slovak Republic; Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic
| | - Jan Tkac
- Glycanostics, Ltd., Kudlákova 7, Bratislava 841 01, Slovak Republic; Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 845 38, Slovak Republic.
| |
Collapse
|
21
|
Fan Z, Jiang C, Wang Y, Wang K, Marsh J, Zhang D, Chen X, Nie L. Engineered extracellular vesicles as intelligent nanosystems for next-generation nanomedicine. NANOSCALE HORIZONS 2022; 7:682-714. [PMID: 35662310 DOI: 10.1039/d2nh00070a] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Extracellular vesicles (EVs), as natural carriers of bioactive cargo, have a unique micro/nanostructure, bioactive composition, and characteristic morphology, as well as fascinating physical, chemical and biochemical features, which have shown promising application in the treatment of a wide range of diseases. However, native EVs have limitations such as lack of or inefficient cell targeting, on-demand delivery, and therapeutic feedback. Recently, EVs have been engineered to contain an intelligent core, enabling them to (i) actively target sites of disease, (ii) respond to endogenous and/or exogenous signals, and (iii) provide treatment feedback for optimal function in the host. These advances pave the way for next-generation nanomedicine and offer promise for a revolution in drug delivery. Here, we summarise recent research on intelligent EVs and discuss the use of "intelligent core" based EV systems for the treatment of disease. We provide a critique about the construction and properties of intelligent EVs, and challenges in their commercialization. We compare the therapeutic potential of intelligent EVs to traditional nanomedicine and highlight key advantages for their clinical application. Collectively, this review aims to provide a new insight into the design of next-generation EV-based theranostic platforms for disease treatment.
Collapse
Affiliation(s)
- Zhijin Fan
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
| | - Cheng Jiang
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yichao Wang
- Department of Clinical Laboratory Medicine, Tai Zhou Central Hospital (Taizhou University Hospital), Taizhou 318000, P. R. China
| | - Kaiyuan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, P. R. China
| | - Jade Marsh
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, P. R. China.
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| | - Liming Nie
- Research Center of Medical Sciences, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
- School of Medicine, South China University of Technology, Guangzhou 510006, P. R. China.
| |
Collapse
|
22
|
Zebrowska A, Jelonek K, Mondal S, Gawin M, Mrowiec K, Widłak P, Whiteside T, Pietrowska M. Proteomic and Metabolomic Profiles of T Cell-Derived Exosomes Isolated from Human Plasma. Cells 2022; 11:1965. [PMID: 35741093 PMCID: PMC9222142 DOI: 10.3390/cells11121965] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 02/04/2023] Open
Abstract
Exosomes that are released by T cells are key messengers involved in immune regulation. However, the molecular profiling of these vesicles, which is necessary for understanding their functions, requires their isolation from a very heterogeneous mixture of extracellular vesicles that are present in the human plasma. It has been shown that exosomes that are produced by T cells could be isolated from plasma by immune capture using antibodies that target the CD3 antigen, which is a key component of the TCR complex that is present in all T lymphocytes. Here, we demonstrate that CD3(+) exosomes that are isolated from plasma can be used for high-throughput molecular profiling using proteomics and metabolomics tools. This profiling allowed for the identification of proteins and metabolites that differentiated the CD3(+) from the CD3(-) exosome fractions that were present in the plasma of healthy donors. Importantly, the proteins and metabolites that accumulated in the CD3(+) vesicles reflected the known molecular features of T lymphocytes. Hence, CD3(+) exosomes that are isolated from human plasma by immune capture could serve as a "T cell biopsy".
Collapse
Affiliation(s)
- Aneta Zebrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| | - Karol Jelonek
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| | - Sujan Mondal
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
| | - Marta Gawin
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| | - Katarzyna Mrowiec
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| | - Piotr Widłak
- Clinical Research Support Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland
| | - Theresa Whiteside
- UPMC Hillman Cancer Center, University of Pittsburgh Cancer Institute, Pittsburgh, PA 15232, USA;
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
- Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, 44-102 Gliwice, Poland; (A.Z.); (K.J.); (M.G.); (K.M.)
| |
Collapse
|
23
|
Wang T, Denman D, Bacot SM, Feldman GM. Challenges and the Evolving Landscape of Assessing Blood-Based PD-L1 Expression as a Biomarker for Anti-PD-(L)1 Immunotherapy. Biomedicines 2022; 10:1181. [PMID: 35625917 PMCID: PMC9138337 DOI: 10.3390/biomedicines10051181] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/16/2022] [Accepted: 05/17/2022] [Indexed: 02/05/2023] Open
Abstract
While promising, PD-L1 expression on tumor tissues as assessed by immunohistochemistry has been shown to be an imperfect biomarker that only applies to a limited number of cancers, whereas many patients with PD-L1-negative tumors still respond to anti-PD-(L)1 immunotherapy. Recent studies using patient blood samples to assess immunotherapeutic responsiveness suggests a promising approach to the identification of novel and/or improved biomarkers for anti-PD-(L)1 immunotherapy. In this review, we discuss the advances in our evolving understanding of the regulation and function of PD-L1 expression, which is the foundation for developing blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy. We further discuss current knowledge and clinical study results for biomarker identification using PD-L1 expression on tumor and immune cells, exosomes, and soluble forms of PD-L1 in the peripheral blood. Finally, we discuss key challenges for the successful development of the potential use of blood-based PD-L1 as a biomarker for anti-PD-(L)1 immunotherapy.
Collapse
Affiliation(s)
- Tao Wang
- Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, Food and Drug Administration, Silver Spring, MD 20993, USA; (D.D.); (S.M.B.); (G.M.F.)
| | | | | | | |
Collapse
|
24
|
Evaluation of Immunoregulatory Biomarkers on Plasma Small Extracellular Vesicles for Disease Progression and Early Therapeutic Response in Head and Neck Cancer. Cells 2022; 11:cells11050902. [PMID: 35269524 PMCID: PMC8909035 DOI: 10.3390/cells11050902] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/28/2022] [Accepted: 03/03/2022] [Indexed: 12/24/2022] Open
Abstract
Head and Neck Cancers (HNCs) have highly immunosuppressive properties. Small extracellular vesicles (sEVs), including exosomes, nanosized mediators of intercellular communication in the blood, carry immunosuppressive proteins and effectively inhibit anti-tumor immune responses in HNCs. This study evaluates immunosuppressive markers on sEVs from 40 HNC patients at different disease stages and 3- and 6-month follow-up after surgery and/or chemoradiotherapy. As controls, sEVs from normal donors (NDs) are examined. Immunoregulatory surface markers on sEVs were detected as relative fluorescence intensity (RFI) using on-bead flow cytometry, and their expression levels were monitored in the early and late stages of HNC and during follow-up. In parallel, the sEV-mediated apoptosis of CD8+ Jurkat cells was assessed. Together with TGF-β1 and PD-L1 abundance, total sEV proteins are elevated with disease progression. In contrast, total sEV protein, including TGF-β1, PD-1 and PD-L1, decrease upon therapy response during follow-up. Overall survival analysis implies that high sEV PD-1/PD-L1 content is an unfavorable prognostic marker in HNC. Consistently, the sEV-mediated induction of apoptosis in CD8+ T cells correlates with the disease activity and therapy response. These findings indicate that a combination of immunoregulatory marker profiles should be preferred over a single marker to monitor disease progression and therapy response in HNC.
Collapse
|
25
|
Strybel U, Marczak L, Zeman M, Polanski K, Mielańczyk Ł, Klymenko O, Samelak-Czajka A, Jackowiak P, Smolarz M, Chekan M, Zembala-Nożyńska E, Widlak P, Pietrowska M, Wojakowska A. Molecular Composition of Serum Exosomes Could Discriminate Rectal Cancer Patients with Different Responses to Neoadjuvant Radiotherapy. Cancers (Basel) 2022; 14:993. [PMID: 35205741 PMCID: PMC8870712 DOI: 10.3390/cancers14040993] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022] Open
Abstract
Identification of biomarkers that could be used for the prediction of the response to neoadjuvant radiotherapy (neo-RT) in locally advanced rectal cancer remains a challenge addressed by different experimental approaches. Exosomes and other classes of extracellular vesicles circulating in patients' blood represent a novel type of liquid biopsy and a source of cancer biomarkers. Here, we used a combined proteomic and metabolomic approach based on mass spectrometry techniques for studying the molecular components of exosomes isolated from the serum of rectal cancer patients with different responses to neo-RT. This allowed revealing several proteins and metabolites associated with common pathways relevant for the response of rectal cancer patients to neo-RT, including immune system response, complement activation cascade, platelet functions, metabolism of lipids, metabolism of glucose, and cancer-related signaling pathways. Moreover, the composition of serum-derived exosomes and a whole serum was analyzed in parallel to compare the biomarker potential of both specimens. Among proteins that the most properly discriminated good and poor responders were GPLD1 (AUC = 0.85, accuracy of 74%) identified in plasma as well as C8G (AUC = 0.91, accuracy 81%), SERPINF2 (AUC = 0.91, accuracy 79%) and CFHR3 (AUC = 0.90, accuracy 81%) identified in exosomes. We found that the proteome component of serum-derived exosomes has the highest capacity to discriminate samples of patients with different responses to neo-RT when compared to the whole plasma proteome and metabolome. We concluded that the molecular components of exosomes are associated with the response of rectal cancer patients to neo-RT and could be used for the prediction of such response.
Collapse
Affiliation(s)
- Urszula Strybel
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Lukasz Marczak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Marcin Zeman
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Krzysztof Polanski
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge CB10 1SA, UK;
| | - Łukasz Mielańczyk
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Ł.M.); (O.K.)
| | - Olesya Klymenko
- Department of Histology and Cell Pathology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 40-055 Katowice, Poland; (Ł.M.); (O.K.)
| | - Anna Samelak-Czajka
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Paulina Jackowiak
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| | - Mateusz Smolarz
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Mykola Chekan
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Ewa Zembala-Nożyńska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Piotr Widlak
- Clinical Research Support Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland;
| | - Monika Pietrowska
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.Z.); (M.S.); (M.C.); (E.Z.-N.); (M.P.)
| | - Anna Wojakowska
- Department of Biomedical Proteomics, Institute of Bioorganic Chemistry Polish Academy of Sciences, 61-704 Poznan, Poland; (U.S.); (L.M.); (A.S.-C.); (P.J.)
| |
Collapse
|
26
|
Yan F, Liu X, Ding H, Zhang W. Paracrine mechanisms of endothelial progenitor cells in vascular repair. Acta Histochem 2022; 124:151833. [PMID: 34929523 DOI: 10.1016/j.acthis.2021.151833] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 12/20/2022]
Abstract
Endothelial progenitor cells (EPCs) play an important role in repairing damaged blood vessels and promoting neovascularization. However, the specific mechanism of EPCs promoting vascular repair is still unclear. Currently, there are two different views on the repair of damaged vessels by EPCs, one is that EPCs can directly differentiate into endothelial cells (ECs) and integrate into injured vessels, the other is that EPCs act on cells and blood vessels by releasing paracrine substances. But more evidence now supports the latter. Therefore, the paracrine mechanisms of EPCs are worth further study. This review describes the substances secreted by EPCs, some applications based on paracrine effects of EPCs, and the studies of paracrine mechanisms in cardiovascular diseases--all of these are to support the view that EPCs repair blood vessels through paracrine effects rather than integrating directly into damaged vessels.
Collapse
Affiliation(s)
- Fanchen Yan
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaodan Liu
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Huang Ding
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Wei Zhang
- The Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
27
|
Dlugolecka M, Szymanski J, Zareba L, Homoncik Z, Domagala-Kulawik J, Polubiec-Kownacka M, Czystowska-Kuzmicz M. Characterization of Extracellular Vesicles from Bronchoalveolar Lavage Fluid and Plasma of Patients with Lung Lesions Using Fluorescence Nanoparticle Tracking Analysis. Cells 2021; 10:3473. [PMID: 34943982 PMCID: PMC8699990 DOI: 10.3390/cells10123473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
The current lack of reliable methods for quantifying extracellular vesicles (EVs) isolated from complex biofluids significantly hinders translational applications in EV research. The recently developed fluorescence nanoparticle tracking analysis (FL-NTA) allows for the detection of EV-associated proteins, enabling EV content determination. In this study, we present the first comprehensive phenotyping of bronchopulmonary lavage fluid (BALF)-derived EVs from non-small cell lung cancer (NSCLC) patients using classical EV-characterization methods as well as the FL-NTA method. We found that EV immunolabeling for the specific EV marker combined with the use of the fluorescent mode NTA analysis can provide the concentration, size, distribution, and surface phenotype of EVs in a heterogeneous solution. However, by performing FL-NTA analysis of BALF-derived EVs in comparison to plasma-derived EVs, we reveal the limitations of this method, which is suitable only for relatively pure EV isolates. For more complex fluids such as plasma, this method appears to not be sensitive enough and the measurements can be compromised. Our parallel presentation of NTA-based phenotyping of plasma and BALF EVs emphasizes the great impact of sample composition and purity on FL-NTA analysis that has to be taken into account in the further development of FL-NTA toward the detection of EV-associated cancer biomarkers.
Collapse
Affiliation(s)
- Magdalena Dlugolecka
- Chair and Department of Biochemistry, Doctoral School, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland;
| | - Jacek Szymanski
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland;
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (L.Z.); (Z.H.)
| | - Lukasz Zareba
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (L.Z.); (Z.H.)
| | - Zuzanna Homoncik
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (L.Z.); (Z.H.)
| | - Joanna Domagala-Kulawik
- Department of Internal Medicine, Pulmonary Diseases and Allergy, Medical University of Warsaw, Banacha 1a, 02-097 Warsaw, Poland;
| | | | - Malgorzata Czystowska-Kuzmicz
- Chair and Department of Biochemistry, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland; (L.Z.); (Z.H.)
| |
Collapse
|
28
|
Aneesh A, Liu A, Moss HE, Feinstein D, Ravindran S, Mathew B, Roth S. Emerging concepts in the treatment of optic neuritis: mesenchymal stem cell-derived extracellular vesicles. Stem Cell Res Ther 2021; 12:594. [PMID: 34863294 PMCID: PMC8642862 DOI: 10.1186/s13287-021-02645-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/31/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Optic neuritis (ON) is frequently encountered in multiple sclerosis, neuromyelitis optica spectrum disorder, anti-myelin oligodendrocyte glycoprotein associated disease, and other systemic autoimmune disorders. The hallmarks are an abnormal optic nerve and inflammatory demyelination; episodes of optic neuritis tend to be recurrent, and particularly for neuromyelitis optica spectrum disorder, may result in permanent vision loss. MAIN BODY Mesenchymal stem cell (MSC) therapy is a promising approach that results in remyelination, neuroprotection of axons, and has demonstrated success in clinical studies in other neuro-degenerative diseases and in animal models of ON. However, cell transplantation has significant disadvantages and complications. Cell-free approaches utilizing extracellular vesicles (EVs) produced by MSCs exhibit anti-inflammatory and neuroprotective effects in multiple animal models of neuro-degenerative diseases and in rodent models of multiple sclerosis (MS). EVs have potential to be an effective cell-free therapy in optic neuritis because of their anti-inflammatory and remyelination stimulating properties, ability to cross the blood brain barrier, and ability to be safely administered without immunosuppression. CONCLUSION We review the potential application of MSC EVs as an emerging treatment strategy for optic neuritis by reviewing studies in multiple sclerosis and related disorders, and in neurodegeneration, and discuss the challenges and potential rewards of clinical translation of EVs including cell targeting, carrying of therapeutic microRNAs, and prolonging delivery for treatment of optic neuritis.
Collapse
Affiliation(s)
- Anagha Aneesh
- Department of Anesthesiology, College of Medicine, University of Illinois, 835 South Wolcott Avenue, Room E714, Chicago, IL, 60612, USA
| | - Alice Liu
- Department of Anesthesiology, College of Medicine, University of Illinois, 835 South Wolcott Avenue, Room E714, Chicago, IL, 60612, USA
| | - Heather E Moss
- Departments of Ophthalmology and Neurology & Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Douglas Feinstein
- Department of Anesthesiology, College of Medicine, University of Illinois, 835 South Wolcott Avenue, Room E714, Chicago, IL, 60612, USA
| | - Sriram Ravindran
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - Biji Mathew
- Department of Anesthesiology, College of Medicine, University of Illinois, 835 South Wolcott Avenue, Room E714, Chicago, IL, 60612, USA.
| | - Steven Roth
- Department of Anesthesiology, College of Medicine, University of Illinois, 835 South Wolcott Avenue, Room E714, Chicago, IL, 60612, USA.
| |
Collapse
|
29
|
Amundson DE, Shah US, de Necochea-Campion R, Jacobs M, LaRosa SP, Fisher CJ. Removal of COVID-19 Spike Protein, Whole Virus, Exosomes, and Exosomal MicroRNAs by the Hemopurifier® Lectin-Affinity Cartridge in Critically Ill Patients With COVID-19 Infection. Front Med (Lausanne) 2021; 8:744141. [PMID: 34692735 PMCID: PMC8531584 DOI: 10.3389/fmed.2021.744141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/08/2021] [Indexed: 12/23/2022] Open
Abstract
Coronavirus−19 (COVID-19) has rapidly spread throughout the world resulting in a significant amount of morbidity and mortality. Despite advances in therapy, social distancing, masks, and vaccination many places in the world continue to see an increase in the number of cases and deaths. Viremia is commonly present in severely ill patients with COVID-19 infections and is associated with organ dysfunction and poor outcomes. Exosomes released by activated cells have been implicated in the pathogenesis of COVID-19 infection. We report the experience of two cases of critically ill COVID-19 patients treated with the Hemopurifier; a lectin affinity cartridge designed to remove mannosylated viruses and exosomes. Both patients tolerated the Hemopurifier sessions without adverse effects. In the first patient removal of exosomes and exosomal microRNAs was associated with improved coagulopathy, oxygenation, and clinical recovery, while in a second patient removal of COVID-19 by the Hemopurifier cartridge was observed. The Hemopurifier is currently under further investigation in up to 40-patients in a safety and feasibility study in ICU patients with COVID-19 infection.
Collapse
Affiliation(s)
- Dennis E Amundson
- Department of Critical Care, Scripps Mercy Hospital Chula Vista, Chula Vista, CA, United States
| | - Usman S Shah
- Department of Critical Care, Hoag Hospital Newport Beach, Newport Beach, CA, United States
| | | | | | | | | |
Collapse
|
30
|
Głuszko A, Szczepański MJ, Whiteside TL, Reichert TE, Siewiera J, Ludwig N. Small Extracellular Vesicles from Head and Neck Squamous Cell Carcinoma Cells Carry a Proteomic Signature for Tumor Hypoxia. Cancers (Basel) 2021; 13:cancers13164176. [PMID: 34439329 PMCID: PMC8393921 DOI: 10.3390/cancers13164176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Tissue hypoxia is commonly observed in head and neck squamous cell carcinomas (HNSCCs), resulting in molecular and functional alterations of the tumor cells. The aim of this study was to characterize tumor-derived small extracellular vesicles (sEVs) released under hypoxic vs. normoxic conditions and analyze their proteomic content. HNSCC cells (FaDu, PCI-30, SCC-25) and HaCaT keratinocytes were cultured in 21, 10, 5, and 1% O2. sEVs were isolated from supernatants using size exclusion chromatography (SEC) and characterized by nanoparticle tracking analysis, electron microscopy, immunoblotting, and high-resolution mass spectrometry. Isolated sEVs ranged in size from 125-135 nm and contained CD63 and CD9 but not Grp94. sEVs reflected the hypoxic profile of HNSCC parent cells: about 15% of the total detected proteins were unique for hypoxic cells. Hypoxic sEVs expressed a common signature of seven hypoxia-related proteins (KT33B, DYSF, STON2, MLX, LIPA3, NEK5, P12L1) and were enriched in pro-angiogenic proteins. Protein profiles of sEVs reflected the degree of tumor hypoxia and could serve as potential sEV-based biomarkers for hypoxic conditions. Adaptation of HNSCC cells to hypoxia is associated with increased release of sEVs, which are enriched in a unique protein profile. Thus, tumor-derived sEVs can potentially be useful for evaluating levels of hypoxia in HNSCC.
Collapse
Affiliation(s)
- Alicja Głuszko
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland;
| | - Mirosław J. Szczepański
- Chair and Department of Biochemistry, Medical University of Warsaw, 1 Banacha St., 02-097 Warsaw, Poland;
- Department of Otolaryngology, Centre of Postgraduate Medical Education, 03-242 Warsaw, Poland
- Correspondence:
| | - Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- Department of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- Department of Pathology, UPMC Hillman Cancer Centre, Pittsburgh, PA 15213, USA
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (T.E.R.); (N.L.)
| | - Jacek Siewiera
- Department of Hyperbaric Medicine, Military Institute of Medicine, 04-141 Warsaw, Poland;
| | - Nils Ludwig
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (T.E.R.); (N.L.)
| |
Collapse
|
31
|
Rimmer MP, Gregory CD, Mitchell RT. Extracellular vesicles in urological malignancies. Biochim Biophys Acta Rev Cancer 2021; 1876:188570. [PMID: 34019971 PMCID: PMC8351753 DOI: 10.1016/j.bbcan.2021.188570] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/10/2021] [Accepted: 05/13/2021] [Indexed: 12/11/2022]
Abstract
Extracellular vesicles (EVs) are small lipid bound structures released from cells containing bioactive cargoes. Both the type of cargo and amount loaded varies compared to that of the parent cell. The characterisation of EVs in cancers of the male urogenital tract has identified several cargoes with promising diagnostic and disease monitoring potential. EVs released by cancers of the male urogenital tract promote cell-to-cell communication, migration, cancer progression and manipulate the immune system promoting metastasis by evading the immune response. Their use as diagnostic biomarkers represents a new area of screening and disease detection, potentially reducing the need for invasive biopsies. Many validated EV cargoes have been found to have superior sensitivity and specificity than current diagnostic tools currently in use. The use of EVs to improve disease monitoring and develop novel therapeutics will enable clinicians to individualise patient management in the exciting era of personalised medicine.
Collapse
Affiliation(s)
- Michael P Rimmer
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, UK.
| | - Christopher D Gregory
- Centre for Inflammation Research, Queens Medical Research Institute, University of Edinburgh, UK
| | - Rod T Mitchell
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, UK.
| |
Collapse
|
32
|
Ludwig N, Rao A, Sandlesh P, Yerneni SS, Swain AD, Bullock KM, Hansen KM, Zhang X, Jaman E, Allen J, Krueger K, Hong CS, Banks WA, Whiteside TL, Amankulor NM. Characterization of systemic immunosuppression by IDH mutant glioma small extracellular vesicles. Neuro Oncol 2021; 24:197-209. [PMID: 34254643 DOI: 10.1093/neuonc/noab153] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Gliomas are the most common primary brain tumors and are universally fatal. Mutations in the isocitrate dehydrogenase genes (IDH1 and IDH2) define a distinct glioma subtype associated with an immunosuppressive tumor microenvironment. Mechanisms underlying systemic immunosuppression in IDH mutant (mutIDH) gliomas are largely unknown. Here, we define genotype-specific local and systemic tumor immunomodulatory functions of tumor-derived glioma exosomes (TEX). METHODS TEX produced by human and murine wildtype and mutant IDH glioma cells (wtIDH and mutIDH, respectively) were isolated by size exclusion chromatography (SEC). TEX morphology, size, quantity, molecular profiles and biodistribution were characterized. TEX were injected into naive and tumor-bearing mice, and the local and systemic immune microenvironment composition was characterized. RESULTS Using in vitro and in vivo glioma models, we show that mutIDH TEX are more numerous, possess distinct morphological features and are more immunosuppressive than wtIDH TEX. mutIDH TEX cargo mimics their parental cells, and induces systemic immune suppression in naive and tumor-bearing mice. TEX derived from mutIDH gliomas and injected into wtIDH tumor-bearing mice reduce tumor-infiltrating effector lymphocytes, dendritic cells and macrophages, and increase circulating monocytes. Astonishingly, mutIDH TEX injected into brain tumor-bearing syngeneic mice accelerate tumor growth and increase mortality compared with wtIDH TEX. CONCLUSIONS Targeting of mutIDH TEX represents a novel therapeutic approach in gliomas.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Aparna Rao
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Poorva Sandlesh
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - Alexander D Swain
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA
| | - Kristin M Bullock
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Kim M Hansen
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Xiaoran Zhang
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Emade Jaman
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jordan Allen
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Katharine Krueger
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Chang-Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - William A Banks
- Division of Gerontology and Geriatric Medicine, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.,Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Nduka M Amankulor
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA.,Departments of Immunology and Otolaryngology, Pittsburgh, USA
| |
Collapse
|
33
|
Ma J, Tang K, Zhang H, Wei K, Huang B. Characterization and Functional Analysis of Tumor-Derived Microparticles. Curr Protoc 2021; 1:e144. [PMID: 34101382 DOI: 10.1002/cpz1.144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Microparticles (MPs) are heterogeneous populations of cell-derived vesicles that play an important role in intercellular communications. The release of MPs by tumor cells is a very common event in tumor microenvironments (TMEs). Tumor cell-derived MPs (T-MPs) contain a variety of bioactive molecules, thus modulating various biological processes, including the regulation of immune cell phenotype and function, as well as immune responses. Moreover, T-MPs can be used as natural carriers to deliver therapeutic drugs into tumor cells and immune cells, thus remodeling TMEs and modifying anti-tumor immune responses. These features allow T-MPs to function as potential biomaterials to be applied in tumor immunotherapies and vaccines. This article describes protocols for the isolation of T-MPs from supernatants of cultured tumor cells by multi-step centrifugations. Tools and protocols are also provided in order to characterize and validate the isolated MPs and to analyze the interaction between T-MPs and different target cells. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Isolation of tumor cell-derived microparticles by multi-step centrifugations Basic Protocol 2: Characterization and validation of tumor cell-derived microparticles Basic Protocol 3: Functional analysis of the uptake of tumor cell-derived microparticles by different cell types.
Collapse
Affiliation(s)
- Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Ke Tang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Keke Wei
- Department of Immunology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Bo Huang
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.,Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences (CAMS) and Peking Union Medical College, Beijing, China.,Clinical Immunology Center, CAMS, Beijing, China
| |
Collapse
|
34
|
Small Extracellular Vesicles in Pre-Therapy Plasma Predict Clinical Outcome in Non-Small-Cell Lung Cancer Patients. Cancers (Basel) 2021; 13:cancers13092041. [PMID: 33922569 PMCID: PMC8122966 DOI: 10.3390/cancers13092041] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/13/2021] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
The potential use of plasma-derived small extracellular vesicles (sEV) as predictors of response to therapy and clinical outcome in chemotherapy-naïve patients with non-small-cell lung cancer (NSCLC) was explored. sEV were isolated by size-exclusion chromatography from the plasma of 79 chemotherapy-naïve NSCLC patients and 12 healthy donors (HD). sEV were characterized with regard to protein content, particle size, counts by qNano, morphology by transmission electron microscopy, and molecular profiles by Western blots. PD-1 and PD-L1 expression on circulating immune cells was analysed by flow cytometry. Pre-treatment levels of total sEV protein (TEP) were correlated with overall (OS) and progression-free survival (PFS). The sEV numbers and protein levels were significantly elevated in the plasma of NSCLC patients compared to HD (p = 0.009 and 0.0001, respectively). Baseline TEP levels were higher in patients who developed progressive disease compared to patients with stable disease (p = 0.007 and 0.001, stage III and IV, respectively). Patient-derived sEV were enriched in immunosuppressive proteins as compared to proteins carried by sEV from HD. TEP levels were positively correlated with CD8+PD-1+ and CD8+PD-L1+ circulating T cell percentages and were independently associated with poorer PFS (p < 0.00001) and OS (p < 0.00001). Pre-therapy sEV could be useful as non-invasive biomarkers of response to therapy and clinical outcome in NSCLC.
Collapse
|
35
|
The Emerging Role of Small Extracellular Vesicles in Inflammatory Airway Diseases. Diagnostics (Basel) 2021; 11:diagnostics11020222. [PMID: 33540806 PMCID: PMC7913078 DOI: 10.3390/diagnostics11020222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/23/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are produced and released by all cells and are present in all body fluids. They exist in a variety of sizes, however, small extracellular vesicles (sEVs), the EV subset with a size range from 30 to 150 nm, are of current interest. By transporting a complex cargo that includes genetic material, proteins, lipids, and signaling molecules, sEVs can alter the state of recipient cells. The role of sEVs in mediating inflammatory processes and responses of the immune system is well-documented, and adds another layer of complexity to our understanding of frequent diseases, including chronic rhinosinusitis (CRS), asthma, chronic obstructive pulmonary disease (COPD), and upper airway infections. In these diseases, two aspects of sEV biology are of particular interest: (1) sEVs might be involved in the etiopathogenesis of inflammatory airway diseases, and might emerge as attractive therapeutic targets, and (2) sEVs might be of diagnostic or prognostic relevance. The purpose of this review is to outline the biological functions of sEVs and their capacity to both augment and attenuate inflammation and immune response in the context of pathogen invasion, CRS, asthma, and COPD.
Collapse
|
36
|
Pietrowska M, Zebrowska A, Gawin M, Marczak L, Sharma P, Mondal S, Mika J, Polańska J, Ferrone S, Kirkwood JM, Widlak P, Whiteside TL. Proteomic profile of melanoma cell-derived small extracellular vesicles in patients' plasma: a potential correlate of melanoma progression. J Extracell Vesicles 2021; 10:e12063. [PMID: 33613873 PMCID: PMC7876545 DOI: 10.1002/jev2.12063] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/07/2020] [Accepted: 01/12/2021] [Indexed: 02/04/2023] Open
Abstract
Molecular profiling of small extracellular vesicles (sEV) isolated from plasma of cancer patients emerges as promising strategy for biomarkers discovery. We investigated the proteomic profiles of sEV immunoselected using anti-CSPG4 antibodies from 15 melanoma patients' plasma. The proteomes of sEV separated into melanoma cell-derived (MTEX) and non-malignant cell-derived (NMTEX) were compared using high-resolution mass spectrometry. Paired analysis identified the MTEX-associated profile of 16 proteins that discriminated MTEX from NMETEX. We also identified the MTEX profile that discriminated between seven patients with no evidence of melanoma (NED) after therapy and eight with progressive disease (PD). Among 75 MTEX proteins overexpressed in PD patients, PDCD6IP (ALIX) had the highest discriminating value, while CNTN1 (contactin-1) was upregulated only in MTEX of NED patients. This is the first report documenting that proteomes of tumour-derived sEV in patients' plasma discriminate cancer from non-cancer and identify proteins with potential to serve as prognostic biomarkers in melanoma.
Collapse
Affiliation(s)
- Monika Pietrowska
- Maria Sklodowska‐Curie National Research Institute of OncologyGliwicePoland
| | - Aneta Zebrowska
- Maria Sklodowska‐Curie National Research Institute of OncologyGliwicePoland
| | - Marta Gawin
- Maria Sklodowska‐Curie National Research Institute of OncologyGliwicePoland
| | - Lukasz Marczak
- European Center for Bioinformatics and GenomicsInstitute of Bioorganic Chemistry PASPoznanPoland
| | - Priyanka Sharma
- UPMC Hillman Cancer CenterUniversity of Pittsburgh Cancer InstitutePittsburghPennsylvaniaUSA
| | - Sujan Mondal
- UPMC Hillman Cancer CenterUniversity of Pittsburgh Cancer InstitutePittsburghPennsylvaniaUSA
| | - Justyna Mika
- Department of Data Science and Engineering, Silesian University of TechnologyGliwicePoland
| | - Joanna Polańska
- Department of Data Science and Engineering, Silesian University of TechnologyGliwicePoland
| | - Soldano Ferrone
- Department of SurgeryHarvard Medical School, Massachusetts General HospitalBostonMassachusettsUSA
| | - John M. Kirkwood
- UPMC Hillman Cancer CenterUniversity of Pittsburgh Cancer InstitutePittsburghPennsylvaniaUSA,Department of MedicineUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| | - Piotr Widlak
- Maria Sklodowska‐Curie National Research Institute of OncologyGliwicePoland
| | - Theresa L. Whiteside
- UPMC Hillman Cancer CenterUniversity of Pittsburgh Cancer InstitutePittsburghPennsylvaniaUSA,Department of PathologyUniversity of Pittsburgh School of MedicinePittsburghPennsylvaniaUSA
| |
Collapse
|
37
|
Immunoaffinity-Based Isolation of Melanoma Cell-Derived and T Cell-Derived Exosomes from Plasma of Melanoma Patients. Methods Mol Biol 2021; 2265:305-321. [PMID: 33704724 DOI: 10.1007/978-1-0716-1205-7_23] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tumor-derived exosomes (TEX), a subset of small extracellular vesicles (EVs) which originate from the endocytic compartment of tumor cells, are emerging as key players in cancer progression. TEX circulate freely in patients' body fluids and transfer bioactive cargos from tumor to various recipient cells. The molecular cargo of melanoma cell-derived exosomes (MTEX) mimics that of the tumor, and MTEX serve as a liquid biopsy that provides potentially useful information for cancer diagnosis, prognosis, or responses to therapy. Plasma of melanoma patients contains a mix of MTEX and exosomes produced by nonmalignant cells (NMTEX). Isolation of these exosome subtypes from the bulk of plasma exosomes is necessary to evaluate contributions of each as potential biomarkers of melanoma progression and outcome. Here, methods for separation of MTEX from T cell-derived exosomes from a single small volume of plasma and their subsequent molecular and functional characterization are described. Following size exclusion chromatography (SEC) to isolate total plasma exosomes, immune affinity-based capture of MTEX with anti-CSPG4 antibody and then of exosomes produced by T cells with anti-CD3 antibody is used to sequentially isolate the two subsets. This immune capture method enables the recovery of MTEX and CD3+ exosomes in quantities sufficient both for molecular profiling by flow cytometry or western blotting and for functional analyses.
Collapse
|
38
|
Lorenc T, Chrzanowski J, Olejarz W. Current Perspectives on Clinical Use of Exosomes as a Personalized Contrast Media and Theranostics. Cancers (Basel) 2020; 12:E3386. [PMID: 33207614 PMCID: PMC7698051 DOI: 10.3390/cancers12113386] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/08/2020] [Accepted: 11/14/2020] [Indexed: 02/07/2023] Open
Abstract
An appropriate combination of biomarkers and imaging technologies will become standard practice in the future. Because the incidence of and mortality from cancers is rising, the further study of new approaches for the early detection and precise characterization of tumors is essential. Extracellular vesicles (EVs), including exosomes, prove to have great potential when it comes to diagnosis and targeted therapy. Due to their natural ability to pass through biological barriers, depending on their origin, EVs can accumulate at defined sites, including tumors, preferentially. This manuscript discusses the difficulties and simplicities of processing cell-derived materials, packaging diverse groups of agents in EVs, and activating the biological complex. Developing exosome-based diagnostic techniques to detect disease precisely and early as well as treat disease marks a new era of personalized radiology and nuclear medicine. As circulating drug delivery vehicles for novel therapeutic modalities, EVs offer a new platform for cancer theranostic.
Collapse
Affiliation(s)
- Tomasz Lorenc
- Ist Department of Clinical Radiology, Medical University of Warsaw, 5 Chalubinskiego Street, 02-004 Warsaw, Poland
| | - Julian Chrzanowski
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.C.); (W.O.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland; (J.C.); (W.O.)
- Centre for Preclinical Research, Medical University of Warsaw, 02-097 Warsaw, Poland
| |
Collapse
|
39
|
Tumor-derived exosomes promote angiogenesis via adenosine A 2B receptor signaling. Angiogenesis 2020; 23:599-610. [PMID: 32419057 PMCID: PMC7529853 DOI: 10.1007/s10456-020-09728-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/11/2020] [Indexed: 02/02/2023]
Abstract
RATIONALE One hallmark of tumor-derived exosomes (TEX) is the promotion of cancer progression by stimulating angiogenesis. This study was performed to evaluate the role of adenosine receptors in TEX-induced angiogenesis. METHODS TEX produced by UMSCC47 head and neck cancer cell line were isolated by mini size exclusion chromatography (mini-SEC). Enzymatic activity of ectonucleotidases CD39/CD73 carried by TEX was measured by HPLC. Adenosine content of TEX was measured by UPLC-MS/MS. Primary human macrophages were co-incubated with TEX or exosomes derived from the plasma of head and neck cancer patients and their marker expression profile was analyzed by flow cytometry. The macrophage secretome was analyzed by angiogenesis arrays. The in vitro angiogenic potential of TEX was evaluated in endothelial growth studies. Results were validated in vivo using basement membrane extract plug assays in A1R-/-, A2AR-/- and A2BR-/- rats. Vascularization was analyzed by hemoglobin quantification and immunohistology with vessel and macrophage markers. RESULTS TEX carried enzymatically active CD39/CD73 and adenosine. TEX promoted A2BR-mediated polarization of macrophages toward an M2-like phenotype (p < 0.05) and enhanced their secretion of angiogenic factors. Growth of endothelial cells was stimulated directly by TEX and indirectly via macrophage-reprogramming dependent on A2BR signaling (p < 0.01). In vivo, TEX stimulated the formation of defined vascular structures and macrophage infiltration. This response was absent in A2BR-/- rats (p < 0.05). CONCLUSION This report provides the first evidence for adenosine production by TEX to promote angiogenesis via A2BR. A2BR antagonism emerges as a potential strategy to block TEX-induced angiogenesis.
Collapse
|
40
|
Recent Advances in Extracellular Vesicles as Drug Delivery Systems and Their Potential in Precision Medicine. Pharmaceutics 2020; 12:pharmaceutics12111006. [PMID: 33105857 PMCID: PMC7690579 DOI: 10.3390/pharmaceutics12111006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bilayered nanoparticles released by most cell types. Recently, an enormous number of studies have been published on the potential of EVs as carriers of therapeutic agents. In contrast to systems such as liposomes, EVs exhibit less immunogenicity and higher engineering potential. Here, we review the most relevant publications addressing the potential and use of EVs as a drug delivery system (DDS). The information is divided based on the key steps for designing an EV-mediated delivery strategy. We discuss possible sources and isolation methods of EVs. We address the administration routes that have been tested in vivo and the tissue distribution observed. We describe the current knowledge on EV clearance, a significant challenge towards enhancing bioavailability. Also, EV-engineering approaches are described as alternatives to improve tissue and cell-specificity. Finally, a summary of the ongoing clinical trials is performed. Although the application of EVs in the clinical practice is still at an early stage, a high number of studies in animals support their potential as DDS. Thus, better treatment options could be designed to precisely increase target specificity and therapeutic efficacy while reducing off-target effects and toxicity according to the individual requirements of each patient.
Collapse
|
41
|
Czystowska-Kuzmicz M, Whiteside TL. The potential role of tumor-derived exosomes in diagnosis, prognosis, and response to therapy in cancer. Expert Opin Biol Ther 2020; 21:241-258. [PMID: 32813990 DOI: 10.1080/14712598.2020.1813276] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Small extracellular vesicles (sEV) produced by tumors and called TEX mediate communication and regulate the tumor microenvironment. As a 'liquid tumor biopsy' and with the ability to induce pro-tumor reprogramming, TEX offer a promising approach to monitoring cancer progression or response to therapy. AREAS COVERED TEX isolation from body fluids and separation by immunoaffinity capture from other EVs enables TEX molecular and functional characterization in vitro and in vivo. TEX carry membrane-bound PD-L1 and a rich cargo of other proteins and nucleic acids that reflect the tumor content and activity. TEX transfer this cargo to recipient cells, activating various molecular pathways and inducing pro-tumor transcriptional changes. TEX may interfere with immune therapies, and TEX plasma levels correlate with patients' responses to therapy. TEX induce local and systemic alterations in immune cells which may have a prognostic value. EXPERT OPINION TEX have a special advantage as potential cancer biomarkers. Their cargo emerges as a correlate of developing or progressing malignant disease; their phenotype mimics that of the tumor; and their functional reprogramming of immune cells provides a reading of the patients' immune status prior and post immunotherapy. Validation of TEX and T-cell-derived sEV as cancer biomarkers is an impending future task.
Collapse
Affiliation(s)
| | - Theresa L Whiteside
- Departments of Pathology, Immunology and Otolaryngology, University of Pittsburgh School of Medicine and UPMC Hillman Cancer Center , Pittsburgh, PA, USA
| |
Collapse
|
42
|
Theodoraki MN, Hong CS, Donnenberg VS, Donnenberg AD, Whiteside TL. Evaluation of Exosome Proteins by on-Bead Flow Cytometry. Cytometry A 2020; 99:372-381. [PMID: 33448645 DOI: 10.1002/cyto.a.24193] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 12/22/2022]
Abstract
Exosomes, recently re-named "small extracellular vesicles" or "sEV," are emerging as an intercellular communication system. Quantification of the molecular cargo exosomes carry by on-bead flow cytometry is needed for defining their role in information transfer and in human disease. Exosomes (sEV) isolated from cell supernatants or plasma of cancer patients by size-exclusion chromatography were captured by biotinylated antibodies specific for antigens in the exosome cargo (e.g., tetraspanins) and placed on streptavidin-labeled beads. Detection was performed with pretitered fluorochrome-labeled antibodies of desired specificity. The data were acquired in a conventional cytometer, and molecules of equivalent soluble fluorochrome (MESF) beads were used to quantify the number of fluorescent molecules bound per bead. Isotype antibody controls were obligatory. The mean fluorescence intensity (MFI) value of each sample was converted into MESF units, and the separation index (SI), which quantifies separation of stained and isotype control beads, was determined. Various proteins identified by labeled antibodies were quantified on the surface of tumor cell-derived exosomes. To identify intravesicular cargo, such as cytokines or chemokines, exosomes were lysed with 0.3% Triton-100, and the proteins in lysates were loaded on aldehyde/sulfate latex beads for flow cytometry. Examples of quantitative surface and/or intravesicular on-bead flow cytometry for exosomes produced by various cells or present in body fluids of cancer patients are provided. On-bead flow cytometry standardized for use with conventional cytometers is a useful method for protein detection and quantitation in exosomes isolated from supernatants of cell lines or plasma of patients with cancer. © 2020 International Society for Advancement of Cytometry.
Collapse
Affiliation(s)
- Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Ulm, Germany.,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Chang-Sook Hong
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Vera S Donnenberg
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Albert D Donnenberg
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA.,Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
43
|
Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation. Int J Mol Sci 2020; 21:ijms21124407. [PMID: 32575812 PMCID: PMC7352415 DOI: 10.3390/ijms21124407] [Citation(s) in RCA: 270] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 01/08/2023] Open
Abstract
Extracellular vesicles can cross the blood–brain barrier (BBB), but little is known about passage. Here, we used multiple-time regression analysis to examine the ability of 10 exosome populations derived from mouse, human, cancerous, and non-cancerous cell lines to cross the BBB. All crossed the BBB, but rates varied over 10-fold. Lipopolysaccharide (LPS), an activator of the innate immune system, enhanced uptake independently of BBB disruption for six exosomes and decreased uptake for one. Wheatgerm agglutinin (WGA) modulated transport of five exosome populations, suggesting passage by adsorptive transcytosis. Mannose 6-phosphate inhibited uptake of J774A.1, demonstrating that its BBB transporter is the mannose 6-phosphate receptor. Uptake rates, patterns, and effects of LPS or WGA were not predicted by exosome source (mouse vs. human) or cancer status of the cell lines. The cell surface proteins CD46, AVβ6, AVβ3, and ICAM-1 were variably expressed but not predictive of transport rate nor responses to LPS or WGA. A brain-to-blood efflux mechanism variably affected CNS retention and explains how CNS-derived exosomes enter blood. In summary, all exosomes tested here readily crossed the BBB, but at varying rates and by a variety of vesicular-mediated mechanisms involving specific transporters, adsorptive transcytosis, and a brain-to-blood efflux system.
Collapse
|
44
|
Ludwig N, Gillespie DG, Reichert TE, Jackson EK, Whiteside TL. Purine Metabolites in Tumor-Derived Exosomes May Facilitate Immune Escape of Head and Neck Squamous Cell Carcinoma. Cancers (Basel) 2020; 12:cancers12061602. [PMID: 32560461 PMCID: PMC7352909 DOI: 10.3390/cancers12061602] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 02/06/2023] Open
Abstract
Body fluids of patients with head and neck squamous cell carcinoma (HNSCC) are enriched in exosomes that reflect properties of the tumor. The aim of this study was to determine whether purine metabolites are carried by exosomes and evaluate their role as potential contributors to tumor immune escape. The gene expression levels of the purine synthesis pathway were studied using the Cancer Genome Atlas (TCGA) Head and Neck Cancer database. Exosomes were isolated from supernatants of UMSCC47 cells and from the plasma of HNSCC patients (n = 26) or normal donors (NDs; n = 5) using size exclusion chromatography. Ultraperformance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) was used to assess levels of 19 purine metabolites carried by exosomes. In HNSCC tissues, expression levels of genes involved in the purinergic pathway were upregulated indicating an accelerated purine metabolism compared to normal tissues. Exosomes from supernatants of UMSCC47 cells contained several purine metabolites, predominantly adenosine and inosine. Purine metabolite levels were enriched in exosomes isolated from the plasma of HNSCC patients compared to those isolated from NDs and carried elevated levels of adenosine (p = 0.0223). Exosomes of patients with early-stage disease and no lymph node metastasis contained significantly elevated levels of adenosine and 5'-GMP (p = 0.0247 and p = 0.0229, respectively). The purine metabolite levels in exosomes decreased in patients with advanced cancer and nodal involvement. This report provides the first evidence that HNSCC cells shuttle purine metabolites in exosomes, with immunosuppressive adenosine being the most prominent purine. Changes in the content and levels of purine metabolites in circulating exosomes reflect disease progression in HNSCC patients.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Delbert G. Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (D.G.G.); (E.K.J.)
| | - Torsten E. Reichert
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, 93053 Regensburg, Germany;
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA; (D.G.G.); (E.K.J.)
| | - Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA;
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Departments of Immunology and Otolaryngology, Pittsburgh, PA 15213, USA
- Correspondence: ; Tel.: +412-624-0096; Fax: +412-624-0264
| |
Collapse
|
45
|
Azambuja JH, Ludwig N, Yerneni SS, Braganhol E, Whiteside TL. Arginase-1+ Exosomes from Reprogrammed Macrophages Promote Glioblastoma Progression. Int J Mol Sci 2020; 21:E3990. [PMID: 32498400 PMCID: PMC7312363 DOI: 10.3390/ijms21113990] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/13/2022] Open
Abstract
Interactions between tumor cells and tumor-associated macrophages (TAMs) are critical for glioblastoma progression. The TAMs represent up to 30% of the glioblastoma mass. The role of TAMs in tumor progression and in the mechanisms underlying tumor growth remain unclear. Using an in vitro model resembling the crosstalk between macrophages and glioblastoma cells, we show that glioblastoma-derived exosomes (GBex) reprogram M1 (mediate pro-inflammatory function) and M2 (mediate anti-inflammatory function) macrophages, converting M1 into TAMs and augmenting pro-tumor functions of M2 macrophages. In turn, these GBex-reprogrammed TAMs, produce exosomes decorated by immunosuppressive and tumor-growth promoting proteins. TAM-derived exosomes disseminate these proteins in the tumor microenvironment (TME) promoting tumor cell migration and proliferation. Mechanisms underlying the promotion of glioblastoma growth involved Arginase-1+ exosomes produced by the reprogrammed TAMs. A selective Arginase-1 inhibitor, nor-NOHA reversed growth-promoting effects of Arginase-1 carried by TAM-derived exosomes. The data suggest that GBex-reprogrammed Arginase-1+ TAMs emerge as a major source of exosomes promoting tumor growth and as a potential therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Juliana H. Azambuja
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (J.H.A.); (N.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil;
| | - Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (J.H.A.); (N.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | | | - Elizandra Braganhol
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre 90050-170, Brazil;
| | - Theresa L. Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (J.H.A.); (N.L.)
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
46
|
Ludwig N, Azambuja JH, Rao A, Gillespie DG, Jackson EK, Whiteside TL. Adenosine receptors regulate exosome production. Purinergic Signal 2020; 16:231-240. [PMID: 32440820 PMCID: PMC7367962 DOI: 10.1007/s11302-020-09700-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Accepted: 04/22/2020] [Indexed: 02/03/2023] Open
Abstract
Exosomes, small-sized extracellular vesicles, carry components of the purinergic pathway. The production by cells of exosomes carrying this pathway remains poorly understood. Here, we asked whether type 1, 2A, or 2B adenosine receptors (A1Rs, A2ARs, and A2BRs, respectively) expressed by producer cells are involved in regulating exosome production. Preglomerular vascular smooth muscle cells (PGVSMCs) were isolated from wildtype, A1R-/-, A2AR-/-, and A2BR-/- rats, and exosome production was quantified under normal or metabolic stress conditions. Exosome production was also measured in various cancer cells treated with pharmacologic agonists/antagonists of A1Rs, A2ARs, and A2BRs in the presence or absence of metabolic stress or cisplatin. Functional activity of exosomes was determined in Jurkat cell apoptosis assays. In PGVSMCs, A1R and A2AR constrained exosome production under normal conditions (p = 0.0297; p = 0.0409, respectively), and A1R, A2AR, and A2BR constrained exosome production under metabolic stress conditions. Exosome production from cancer cells was reduced (p = 0.0028) by the selective A2AR agonist CGS 21680. These exosomes induced higher levels of Jurkat apoptosis than exosomes from untreated cells or cells treated with A1R and A2BR agonists (p = 0.0474). The selective A2AR antagonist SCH 442416 stimulated exosome production under metabolic stress or cisplatin treatment, whereas the selective A2BR antagonist MRS 1754 reduced exosome production. Our findings indicate that A2ARs suppress exosome release in all cell types examined, whereas effects of A1Rs and A2BRs are dependent on cell type and conditions. Pharmacologic targeting of cancer with A2AR antagonists may inadvertently increase exosome production from tumor cells.
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, UPCI Research Pavilion, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
| | - Juliana H Azambuja
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, UPCI Research Pavilion, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
- Programa de Pós-Graduação em Biociências, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Aparna Rao
- UPMC Hillman Cancer Center, UPCI Research Pavilion, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, UPCI Research Pavilion, Suite 1.27, 5117 Centre Avenue, Pittsburgh, PA, 15213, USA.
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
47
|
Hofmann L, Ludwig S, Schuler PJ, Hoffmann TK, Brunner C, Theodoraki MN. The Potential of CD16 on Plasma-Derived Exosomes as a Liquid Biomarker in Head and Neck Cancer. Int J Mol Sci 2020; 21:ijms21113739. [PMID: 32466374 PMCID: PMC7312379 DOI: 10.3390/ijms21113739] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/23/2020] [Accepted: 05/25/2020] [Indexed: 12/21/2022] Open
Abstract
Head and neck squamous cell carcinomas (HNSCC) are highly immune suppressive and aggressive malignancies. As part of the tumor microenvironment, exosomes contribute to this immune suppression. The Fc receptor CD16 is widely expressed on monocytes, neutrophils, and natural killer (NK) cells and is involved in antibody-dependent cell-mediated cytotoxicity (ADCC). Here, surface levels of CD16 on total exosomes and tumor-derived exosomes (TEX) from plasma of HNSCC patients were analyzed regarding their potential as liquid biomarkers for disease stage. Exosomes were isolated from plasma using mini size exclusion chromatography. TEX were enriched by immune affinity capture with CD44v3 antibodies. On-bead flow cytometry was used to measure CD16 levels on total exosomes and TEX. The results were correlated with clinicopathological parameters. Total exosomes from HNSCC patients had significantly higher CD16 levels compared to TEX. Further, CD16 surface levels of total exosomes, but not TEX, correlated with clinicopathological parameters. Patients with advanced tumor stages T3/4 and Union for International Cancer Control (UICC) stages III/IV had significantly higher CD16 levels on total exosomes compared to patients with early tumor stages T1/2 and UICC stages I/II, respectively. Overall, CD16 positive exosomes have the potential as liquid biomarkers for HNSCC tumor stage and aggressiveness.
Collapse
Affiliation(s)
- Linda Hofmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany; (L.H.); (P.J.S.); (T.K.H.); (C.B.)
| | - Sonja Ludwig
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Mannheim, 68167 Mannheim, Germany;
| | - Patrick J. Schuler
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany; (L.H.); (P.J.S.); (T.K.H.); (C.B.)
| | - Thomas K. Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany; (L.H.); (P.J.S.); (T.K.H.); (C.B.)
| | - Cornelia Brunner
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany; (L.H.); (P.J.S.); (T.K.H.); (C.B.)
| | - Marie-Nicole Theodoraki
- Department of Otorhinolaryngology, Head and Neck Surgery, Ulm University Medical Center, 89075 Ulm, Germany; (L.H.); (P.J.S.); (T.K.H.); (C.B.)
- Correspondence:
| |
Collapse
|
48
|
Ludwig N, Yerneni SS, Menshikova EV, Gillespie DG, Jackson EK, Whiteside TL. Simultaneous Inhibition of Glycolysis and Oxidative Phosphorylation Triggers a Multi-Fold Increase in Secretion of Exosomes: Possible Role of 2'3'-cAMP. Sci Rep 2020; 10:6948. [PMID: 32332778 PMCID: PMC7181876 DOI: 10.1038/s41598-020-63658-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/31/2020] [Indexed: 12/19/2022] Open
Abstract
Exosome secretion by cells is a complex, poorly understood process. Studies of exosomes would be facilitated by a method for increasing their production and release. Here, we present a method for stimulating the secretion of exosomes. Cultured cells were treated or not with sodium iodoacetate (IAA; glycolysis inhibitor) plus 2,4-dinitrophenol (DNP; oxidative phosphorylation inhibitor). Exosomes were isolated by size-exclusion chromatography and their morphology, size, concentration, cargo components and functional activity were compared. IAA/DNP treatment (up to 10 µM each) was non-toxic and resulted in a 3 to 16-fold increase in exosome secretion. Exosomes from IAA/DNP-treated or untreated cells had similar biological properties and functional effects on endothelial cells (SVEC4-10). IAA/DNP increased exosome secretion from mouse organ cultures, and in vivo injections enhanced the levels of circulating exosomes. IAA/DNP decreased ATP levels (p < 0.05) in cells. A cell membrane-permeable form of 2',3'-cAMP and 3'-AMP mimicked the potentiating effects of IAA/DNP on exosome secretion. In cells lacking 2',3'-cyclic nucleotide 3'-phosphodiesterase (CNPase; an enzyme that metabolizes 2',3'-cAMP into 2'- and 3'-AMP), effects of IAA/DNP on exosome secretion were enhanced. The IAA/DNP combination is a powerful stimulator of exosome secretion, and these stimulatory effects are, in part, mediated by intracellular 2',3'-cAMP.
Collapse
MESH Headings
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/deficiency
- 2',3'-Cyclic-Nucleotide Phosphodiesterases/genetics
- 2,4-Dinitrophenol/pharmacology
- Animals
- Animals, Genetically Modified
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Cell Line, Tumor
- Cyclic AMP/metabolism
- Exosomes/metabolism
- Female
- Glycolysis/drug effects
- Glycolysis/genetics
- Humans
- Iodoacetic Acid/pharmacology
- Mice
- Mice, Inbred C57BL
- Microscopy, Electron, Transmission
- Oxidative Phosphorylation/drug effects
- Rats
Collapse
Affiliation(s)
- Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA
| | | | - Elizabeth V Menshikova
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Delbert G Gillespie
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Edwin K Jackson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA.
- UPMC Hillman Cancer Center, Pittsburgh, PA, 15213, USA.
- Departments of Immunology and Otolaryngology, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
49
|
Theodoraki MN, Matsumoto A, Beccard I, Hoffmann TK, Whiteside TL. CD44v3 protein-carrying tumor-derived exosomes in HNSCC patients' plasma as potential noninvasive biomarkers of disease activity. Oncoimmunology 2020; 9:1747732. [PMID: 32313730 PMCID: PMC7153843 DOI: 10.1080/2162402x.2020.1747732] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 01/13/2020] [Accepted: 02/03/2020] [Indexed: 12/25/2022] Open
Abstract
The molecular cargo of tumor-cell-derived exosomes (TEX) mimics that of parental tumor cells. Thus, TEX could potentially serve as noninvasive biomarkers of cancer progression. However, separation of TEX from non-TEX in patients’ plasma requires tumor antigen-specific detection reagents. CD44v3 has been of interest as a potential biomarker of disease progression in HNSCC, because its overexpression in tumor cells associates with poor outcome. Here, CD44v3+ TEX immunocaptured from plasma of 44 HNSCC patients and 7 healthy donors (HDs) were evaluated as potential biomarkers of disease activity and stage. Exosomes were isolated from plasma of by size exclusion chromatography. Using anti-CD44v3 or anti-CD3 mAbs on beads, CD44v3+ TEX CD3(-)TEX-enriched exosomes were immunocaptured from supernatants of nonmalignant or HNSCC cell lines and from patients’ plasma. On-bead flow cytometry was used for the detection of FAS-L, PD-L1, TGFF-β. CSPG4 or EGFR on exosomes. The TEX expression profiles were correlated to clinicopathological parameters. Relative florescence intensity (RFI) values for CD44v3 were higher (p < .01) on TEX from HNSCC cell lines or on CD44v3+ CD3(-) plasma-derived exosomes. RFI values of CD44v3 on CD3(-) exosomes were higher (p < .005) in patients than in HDs and correlated (p < .05) with the UICC stage and lymph node metastasis. In HNSCC patients, CD44v3+ exosomes higher levels of immunosuppressive proteins compared to CD44v3(-) exosomes (p < .05-p < .005), and RFI values for these markers correlated with higher disease stages and lymph node metastasis. Isolation of CD44v3+ exosomes by immunocapture allowed for enrichment of TEX which are potentially promising liquid biomarkers of the tumor burden and disease stage in HNSCC.
Collapse
Affiliation(s)
- Marie-Nicole Theodoraki
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Germany
| | - Akihiro Matsumoto
- Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Inga Beccard
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Germany
| | - Thomas K Hoffmann
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Ulm, Germany
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Azambuja JH, Ludwig N, Yerneni S, Rao A, Braganhol E, Whiteside TL. Molecular profiles and immunomodulatory activities of glioblastoma-derived exosomes. Neurooncol Adv 2020; 2:vdaa056. [PMID: 32642708 PMCID: PMC7262743 DOI: 10.1093/noajnl/vdaa056] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glioblastoma is one of the most immunosuppressive human tumors. Emerging data suggest that glioblastoma-derived exosomes (GBex) reprogram the tumor microenvironment into a tumor-promoting milieu by mechanisms that not yet understood. METHODS Exosomes were isolated from supernatants of glioblastoma cell lines by size exclusion chromatography. The GBex endosomal origin, size, protein cargos, and ex vivo effects on immune cell functions were determined. GBex were injected intravenously into mice to evaluate their ability to in vivo modulate normal immune cell subsets. RESULTS GBex carried immunosuppressive proteins, including FasL, TRAIL, CTLA-4, CD39, and CD73, but contained few immunostimulatory proteins. GBex co-incubated with primary human immune cells induced simultaneous activation of multiple molecular pathways. In CD8+ T cells, GBex suppressed TNF-α and INF-γ release and mediated apoptosis. GBex suppressed natural killer (NK) and CD4+ T-cell activation. GBex activated the NF-κB pathway in macrophages and promoted their differentiation into M2 cells. Inhibition of the NF-κB pathway in macrophages reversed the GBex-mediated effects. GBex-driven reprogramming of macrophages involved the release of soluble factors that promoted tumor proliferation in vitro. In mice injected with GBex, the frequency of splenic CD8+ T cells, NK cells, and M1-like macrophages was reduced, while that of naïve and M2-like macrophages increased (P < .05). CONCLUSIONS GBex reprogrammed functions of all types of immune cells in vitro and altered their frequency in vivo. By creating and sustaining a highly immunosuppressive environment, GBex play a key role in promoting tumor progression.
Collapse
Affiliation(s)
- Juliana Hofstatter Azambuja
- Postgraduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | - Nils Ludwig
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | - Aparna Rao
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Elizandra Braganhol
- Postgraduate Program in Biosciences, Federal University of Health Sciences of Porto Alegre (UFCSPA), Porto Alegre, Brazil
| | - Theresa L Whiteside
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
- Departments of Immunology and Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|