1
|
Dai Y, Shen Y, Ke C, Luo X, Huang M, Huang H, You W. Carryover effects of embryonic hypoxia exposure on adult fitness of the Pacific abalone. ENVIRONMENTAL RESEARCH 2024; 260:119628. [PMID: 39048070 DOI: 10.1016/j.envres.2024.119628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/02/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
The widespread and severe drop in dissolved oxygen concentration in the open ocean and coastal waters has attracted much attention, but assessments of the impacts of environmental hypoxia on aquatic organisms have focused primarily on responses to current exposure. Past stress exposure might also affect the performance of aquatic organisms through carryover effects, and whether these effects scale from positive to negative based on exposure degree is unknown. We investigated the carryover effects of varying embryonic hypoxia levels (mediate hypoxia: 3.0-3.1 mg O2/L; severe hypoxia: 2.0-2.1 mg O2/L) on the fitness traits of adult Pacific abalone (Haliotis discus hannai), including growth, hypoxia tolerance, oxygen consumption, ammonia excretion rate, and biochemical responses to acute hypoxia. Moderate embryonic hypoxia exposure significantly improved the hypoxia tolerance of adult Pacific abalone without sacrificing growth and survival. Adult abalone exposed to embryonic hypoxia exhibited physiological plasticity, including decreased oxygen consumption rates under environmental stress, increased basal methylation levels, and a more active response to acute hypoxia, which might support their higher hypoxia tolerance. Thus, moderate oxygen declines in early life have persistent effects on the fitness of abalone even two years later, further affecting population dynamics. The results suggested that incorporating the carryover effects of embryonic hypoxia exposure into genetic breeding programs would be an important step toward rapidly improving the hypoxia tolerance of aquatic animals. The study also inspires the protection of endangered wild animals and other vulnerable species under global climate change.
Collapse
Affiliation(s)
- Yue Dai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Yawei Shen
- State Key Laboratory of Marine Environmental Science, College of the Environmental and Ecology, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China.
| | - Caihuan Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China
| | - Xuan Luo
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Miaoqin Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Huoqing Huang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Weiwei You
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State Key Laboratory of Mariculture Breeding, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; National Observation and Research Station for the Taiwan Strait Marine Ecosystem, Xiamen University, Zhangzhou, China.
| |
Collapse
|
2
|
Mojica EA, Petcu KA, Kültz D. Environmental conditions elicit a slow but enduring response of histone post-translational modifications in Mozambique tilapia. ENVIRONMENTAL EPIGENETICS 2024; 10:dvae013. [PMID: 39372708 PMCID: PMC11452309 DOI: 10.1093/eep/dvae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/08/2024] [Accepted: 08/28/2024] [Indexed: 10/08/2024]
Abstract
This study sheds new light on the timescale through which histone post-translational modifications (PTMs) respond to environmental stimuli, demonstrating that the histone PTM response does not necessarily precede the proteomic response or acclimation. After a variety of salinity treatments were administered to Mozambique tilapia (Oreochromis mossambicus) throughout their lifetimes, we quantified 343 histone PTMs in the gills of each fish. We show here that histone PTMs differ dramatically between fish exposed to distinct environmental conditions for 18 months, and that the majority of these histone PTM alterations persist for at least 4 weeks, irrespective of further salinity changes. However, histone PTMs respond minimally to 4-week-long periods of salinity acclimation during adulthood. The results of this study altogether signify that patterns of histone PTMs in individuals reflect their prolonged exposure to environmental conditions.
Collapse
Affiliation(s)
- Elizabeth A Mojica
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| | - Kathleen A Petcu
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| | - Dietmar Kültz
- Department of Animal Sciences and Genome Center, University of California—Davis, Davis, CA 95616, United States
| |
Collapse
|
3
|
Neylan IP, Swezey DS, Boles SE, Gross JA, Sih A, Stachowicz JJ. Within- and transgenerational stress legacy effects of ocean acidification on red abalone (Haliotis rufescens) growth and survival. GLOBAL CHANGE BIOLOGY 2024; 30:e17048. [PMID: 37988193 DOI: 10.1111/gcb.17048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 10/31/2023] [Accepted: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Understanding the mechanisms by which individual organisms respond and populations adapt to global climate change is a critical challenge. The role of plasticity and acclimation, within and across generations, may be essential given the pace of change. We investigated plasticity across generations and life stages in response to ocean acidification (OA), which poses a growing threat to both wild populations and the sustainable aquaculture of shellfish. Most studies of OA on shellfish focus on acute effects, and less is known regarding the longer term carryover effects that may manifest within or across generations. We assessed these longer term effects in red abalone (Haliotis rufescens) using a multi-generational split-brood experiment. We spawned adults raised in ambient conditions to create offspring that we then exposed to high pCO2 (1180 μatm; simulating OA) or low pCO2 (450 μatm; control or ambient conditions) during the first 3 months of life. We then allowed these animals to reach maturity in ambient common garden conditions for 4 years before returning the adults into high or low pCO2 treatments for 11 months and measuring growth and reproductive potential. Early-life exposure to OA in the F1 generation decreased adult growth rate even after 5 years especially when abalone were re-exposed to OA as adults. Adult but not early-life exposure to OA negatively impacted fecundity. We then exposed the F2 offspring to high or low pCO2 treatments for the first 3 months of life in a fully factorial, split-brood design. We found negative transgenerational effects of parental OA exposure on survival and growth of F2 offspring, in addition to significant direct effects of OA on F2 survival. These results show that the negative impacts of OA can last within and across generations, but that buffering against OA conditions at critical life-history windows can mitigate these effects.
Collapse
Affiliation(s)
- Isabelle P Neylan
- Department of Evolution & Ecology, UC Davis, Davis, California, USA
- Center for Population Biology, UC Davis, Davis, California, USA
- Bodega Marine Laboratory, UC Davis, Davis, California, USA
| | - Daniel S Swezey
- Bodega Marine Laboratory, UC Davis, Davis, California, USA
- Kashia Band of Pomo Indians of the Stewarts Point Rancheria, Santa Rosa, California, USA
| | - Sara E Boles
- Bodega Marine Laboratory, UC Davis, Davis, California, USA
- Department of Animal Sciences, UC Davis, Davis, California, USA
| | - Jackson A Gross
- Bodega Marine Laboratory, UC Davis, Davis, California, USA
- Department of Animal Sciences, UC Davis, Davis, California, USA
| | - Andrew Sih
- Department of Environmental Science & Policy, UC Davis, Davis, California, USA
| | - John J Stachowicz
- Department of Evolution & Ecology, UC Davis, Davis, California, USA
- Center for Population Biology, UC Davis, Davis, California, USA
| |
Collapse
|
4
|
Ortega LA, Aragon-Carvajal DM, Cortes-Corso KT, Forero-Castillo F. Early developmental risks for tobacco addiction: A probabilistic epigenesis framework. Neurosci Biobehav Rev 2024; 156:105499. [PMID: 38056543 DOI: 10.1016/j.neubiorev.2023.105499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/23/2023] [Accepted: 12/01/2023] [Indexed: 12/08/2023]
Abstract
Considerable progress has been made in elucidating the relationships between early life psychobiological and environmental risk factors and the development of tobacco addiction. However, a comprehensive understanding of the heterogeneity in tobacco addiction phenotypes requires integrating research findings. The probabilistic epigenesis meta-theory offers a valuable framework for this integration, considering systemic, multilevel, developmental, and evolutionary perspectives. In this paper, we critically review relevant research on early developmental risks associated with tobacco addiction and highlight the integrative heuristic value of the probabilistic epigenesis framework for this research. For this, we propose a four-level systems approach as an initial step towards integration, analyzing complex interactions among different levels of influence. Additionally, we explore a coaction approach to examine key interactions between early risk factors. Moreover, we introduce developmental pathways to understand interindividual differences in tobacco addiction risk during development. This integrative approach holds promise for advancing our understanding of tobacco addiction etiology and informing potentially effective intervention strategies.
Collapse
Affiliation(s)
- Leonardo A Ortega
- Facultad de Psicologia, Fundacion Universitaria Konrad Lorenz, Colombia.
| | | | | | | |
Collapse
|
5
|
Siller Wilks SJ, Westneat DF, Heidinger BJ, Solomon J, Rubenstein DR. Epigenetic modification of the hypothalamic-pituitary-adrenal (HPA) axis during development in the house sparrow (Passer domesticus). Gen Comp Endocrinol 2023; 341:114336. [PMID: 37328040 DOI: 10.1016/j.ygcen.2023.114336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/23/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Epigenetic modifications such as DNA methylation are important mechanisms for mediating developmental plasticity, where ontogenetic processes and their phenotypic outcomes are shaped by early environments. In particular, changes in DNA methylation of genes within the hypothalamic-pituitary-adrenal (HPA) axis can impact offspring growth and development. This relationship has been well documented in mammals but is less understood in other taxa. Here, we use target-enriched enzymatic methyl sequencing (TEEM-seq) to assess how DNA methylation in a suite of 25 genes changes over development, how these modifications relate to the early environment, and how they predict differential growth trajectories in the house sparrow (Passer domesticus). We found that DNA methylation changes dynamically over the postnatal developmental period: genes with initially low DNA methylation tended to decline in methylation over development, whereas genes with initially high DNA methylation tended to increase in methylation. However, sex-specific differentially methylated regions (DMRs) were maintained across the developmental period. We also found significant differences in post-hatching DNA methylation in relation to hatch date, with higher levels of DNA methylation in nestlings hatched earlier in the season. Although these differences were largely absent by the end of development, a number of DMRs in HPA-related genes (CRH, MC2R, NR3C1, NR3C2, POMC)-and to a lesser degree HPG-related genes (GNRHR2)-predicted nestling growth trajectories over development. These findings provide insight into the mechanisms by which the early environment shapes DNA methylation in the HPA axis, and how these changes subsequently influence growth and potentially mediate developmental plasticity.
Collapse
Affiliation(s)
- Stefanie J Siller Wilks
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA.
| | - David F Westneat
- Department of Biology, University of Kentucky, Lexington, KY, USA
| | - Britt J Heidinger
- Biological Sciences Department, North Dakota State University, Fargo, ND, USA
| | - Joseph Solomon
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| | - Dustin R Rubenstein
- Department of Ecology Evolution and Environmental Biology, Columbia University, New York, NY, USA
| |
Collapse
|
6
|
Holdsworth EA, Schell LM, Appleton AA. Maternal-infant interaction quality is associated with child NR3C1 CpG site methylation at 7 years of age. Am J Hum Biol 2023; 35:e23876. [PMID: 36779373 PMCID: PMC10909417 DOI: 10.1002/ajhb.23876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 02/14/2023] Open
Abstract
OBJECTIVE Infancy is both a critical window for hypothalamic-pituitary-adrenal (HPA) axis development, and a sensitive period for social-emotional influences. We hypothesized that the social-emotional quality of maternal-infant interactions are associated with methylation of HPA-axis gene NR3C1 later in childhood. METHODS Using a subsample of 114 mother-infant pairs from the Avon Longitudinal Study of Parents and Children (ALSPAC), linear regression models were created to predict variance in methylation of seven selected CpG sites from NR3C1 in whole blood at age 7 years, including the main predictor variable of the first principal component score of observed maternal-infant interaction quality (derived from the Thorpe Interaction Measure at 12 months of age) and covariates of cell-type proportion, maternal financial difficulties and marital status at 8 months postnatal, child birthweight, and sex. RESULTS CpG site cg27122725 methylation was negatively associated with warmer, more positive maternal interaction with her infant (β = 0.19, p = .02, q = 0.13). In sensitivity analyses, the second highest quartile of maternal behavior (neutral, hesitant behavior) was positively associated with cg12466613 methylation. The other five CpG sites were not significantly associated with maternal-infant interaction quality. CONCLUSIONS Narrow individual variation of maternal interaction with her infant is associated with childhood methylation of two CpG sites on NR3C1 that may be particularly sensitive to environmental influences. Infancy may be a sensitive period for even small influences from the social-emotional environment on the epigenetic determinants of HPA-axis function.
Collapse
Affiliation(s)
- Elizabeth A. Holdsworth
- Department of AnthropologyWashington State UniversityPullmanWashingtonUSA
- Department of AnthropologyUniversity at Albany State University of New YorkAlbanyNew YorkUSA
| | - Lawrence M. Schell
- Department of AnthropologyUniversity at Albany State University of New YorkAlbanyNew YorkUSA
- Department of Epidemiology & BiostatisticsUniversity at Albany State University of New YorkRensselaerNew YorkUSA
| | - Allison A. Appleton
- Department of Epidemiology & BiostatisticsUniversity at Albany State University of New YorkRensselaerNew YorkUSA
| |
Collapse
|
7
|
Agrelius TC, Altman J, Dudycha JL. The maternal effects of dietary restriction on Dnmt expression and reproduction in two clones of Daphnia pulex. Heredity (Edinb) 2023; 130:73-81. [PMID: 36477021 PMCID: PMC9905607 DOI: 10.1038/s41437-022-00581-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/12/2022] Open
Abstract
The inheritance of epigenetic marks induced by environmental variation in a previous generation is broadly accepted as a mediator of phenotypic plasticity. Transgenerational effects linking maternal experiences to changes in morphology, gene expression, and life history of successive generations are known across many taxa. While the number of studies linking epigenetic variation to ecological maternal effects is increasing rapidly, few if any attempts have been made to investigate molecular mechanisms governing epigenetic functions in the context of ecologically relevant maternal effects. Daphnia make an ideal model for investigating molecular epigenetic mechanisms and ecological maternal effects because they will reproduce asexually in the lab. Daphnia are also known to have strong maternal effects, involving a variety of traits and environmental variables. Using two clones of Daphnia pulex, we investigated the plasticity of life history and DNA methyltransferase (Dnmt) gene expression with respect to food limitation within and across generations. We found strong evidence of genotypic variation of responses of life history and Dnmt expression to low food diets, both within and across generations. In general, effects of offspring diet were larger than either the direct maternal effect or offspring-maternal environment interactions, but the direction of the maternal effect was usually in the opposite direction of the within-generation effect. For both life history and Dnmt expression, we also found that when offspring had low food, effects of the maternal environment were stronger than when offspring had high food.
Collapse
Affiliation(s)
- Trenton C Agrelius
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA.
- Department of Biological Sciences, University of Notre Dame, Notre Dame, USA.
| | - Julia Altman
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
- Department of Biology, Virginia Commonwealth University, Richmond, VA, 23284, USA
| | - Jeffry L Dudycha
- Department of Biological Sciences, University of South Carolina, Columbia, SC, 29208, USA
| |
Collapse
|
8
|
Laricchiuta D, Panuccio A, Picerni E, Biondo D, Genovesi B, Petrosini L. The body keeps the score: The neurobiological profile of traumatized adolescents. Neurosci Biobehav Rev 2023; 145:105033. [PMID: 36610696 DOI: 10.1016/j.neubiorev.2023.105033] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
Trauma-related disorders are debilitating psychiatric conditions that affect people who have directly or indirectly witnessed adversities. Experiencing multiple types of traumas appears to be common during childhood, and even more so during adolescence. Dramatic brain/body transformations occurring during adolescence may provide a highly responsive substrate to external stimuli and lead to trauma-related vulnerability conditions, such as internalizing (anxiety, depression, anhedonia, withdrawal) and externalizing (aggression, delinquency, conduct disorders) problems. Analyzing relations among neuronal, endocrine, immune, and biochemical signatures of trauma and internalizing and externalizing behaviors, including the role of personality traits in shaping these conducts, this review highlights that the marked effects of traumatic experience on the brain/body involve changes at nearly every level of analysis, from brain structure, function and connectivity to endocrine and immune systems, from gene expression (including in the gut) to the development of personality.
Collapse
Affiliation(s)
- Daniela Laricchiuta
- Department of Philosophy, Social Sciences & Education, University of Perugia, Perugia, Italy.
| | - Anna Panuccio
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Psychology, University Sapienza of Rome, Rome, Italy
| | - Eleonora Picerni
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Neuroscience Imaging and Clinical Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | | | - Laura Petrosini
- Laboratory of Experimental and Behavioral Neurophysiology, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
9
|
Gutiérrez F, Valdesoiro F. The evolution of personality disorders: A review of proposals. Front Psychiatry 2023; 14:1110420. [PMID: 36793943 PMCID: PMC9922784 DOI: 10.3389/fpsyt.2023.1110420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/12/2023] [Indexed: 02/02/2023] Open
Abstract
Personality disorders (PDs) are currently considered dysfunctions. However, personality differences are older than humanity and are ubiquitous in nature, from insects to higher primates. This suggests that a number of evolutionary mechanisms-other than dysfunctions-may be able to maintain stable behavioral variation in the gene pool. First of all, apparently maladaptive traits may actually improve fitness by enabling better survival or successful mating or reproduction, as exemplified by neuroticism, psychopathy, and narcissism. Furthermore, some PDs may harm important biological goals while facilitating others, or may be globally beneficial or detrimental depending on environmental circumstances or body condition. Alternatively, certain traits may form part of life history strategies: Coordinated suites of morphological, physiological and behavioral characters that optimize fitness through alternative routes and respond to selection as a whole. Still others may be vestigial adaptations that are no longer beneficial in present times. Finally, variation may be adaptative in and by itself, as it reduces competition for finite resources. These and other evolutionary mechanisms are reviewed and illustrated through human and non-human examples. Evolutionary theory is the best-substantiated explanatory framework across the life sciences, and may shed light on the question of why harmful personalities exist at all.
Collapse
Affiliation(s)
- Fernando Gutiérrez
- Hospital Clínic de Barcelona, Institute of Neuroscience, Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | |
Collapse
|
10
|
Xu Y, Zhong L, Wei H, Li Y, Xie J, Xie L, Chen X, Guo X, Yin P, Li S, Zeng J, Li XJ, Lin L. Brain Region- and Age-Dependent 5-Hydroxymethylcytosine Activity in the Non-Human Primate. Front Aging Neurosci 2022; 14:934224. [PMID: 35912074 PMCID: PMC9326314 DOI: 10.3389/fnagi.2022.934224] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/15/2022] [Indexed: 11/24/2022] Open
Abstract
Because of the difficulty in collecting fresh brains of humans at different ages, it remains unknown how epigenetic regulation occurs in the primate brains during aging. In the present study, we examined the genomic distribution of 5hmC, an indicator of DNA methylation, in the brain regions of non-human primates (rhesus monkey) at the ages of 2 (juvenile), 8 (young adult), and 17 (old) years. We found that genomic 5hmC distribution was accumulated in the monkey brain as age increased and displayed unique patterns in the cerebellum and striatum in an age-dependent manner. We also observed a correlation between differentially hydroxymethylated regions (DhMRs) and genes that contribute to brain region-related functions and diseases. Our studies revealed, for the first time, the brain-region and age-dependent 5hmC modifications in the non-human primate and the association of these 5hmC modifications with brain region-specific function and potentially aging-related brain diseases.
Collapse
Affiliation(s)
- Yanru Xu
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Liying Zhong
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Huixian Wei
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Yuwei Li
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Jiaxiang Xie
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Leijie Xie
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiusheng Chen
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Xiangyu Guo
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Peng Yin
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Shihua Li
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Junwei Zeng
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Li Lin
- Guangdong Key Laboratory of Nonhuman Primate Models of Human Diseases, Key Laboratory of CNS Regeneration (Ministry of Education), Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, China
- *Correspondence: Li Lin
| |
Collapse
|
11
|
Understanding and Reducing Persistent Racial Disparities in Preterm Birth: a Model of Stress-Induced Developmental Plasticity. Reprod Sci 2022; 29:2051-2059. [PMID: 35298790 DOI: 10.1007/s43032-022-00903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/27/2022] [Indexed: 10/18/2022]
Abstract
Preterm birth is a leading cause of neonatal mortality and is characterized by substantial racial disparities in the US. Despite efforts to reduce preterm birth, rates have risen and racial disparities persist. Maternal stress is a risk factor for preterm birth; however, often, it is treated as a secondary variable rather than a primary target for intervention. Stress is known to affect several biological processes leading to downstream sequelae. Here, we present a model of stress-induced developmental plasticity where maternal stress is a key environmental cue impacting the length of gestation and therefore a primary target for intervention. Black women experience disproportionate and unique maternal stressors related to perceived racism and discrimination. It is therefore not surprising that Black women have disproportionate rates of preterm birth. The downstream effects of racism on preterm birth pathophysiology may reflect an appropriate response to stressors through the highly conserved maternal-fetal-placental neuroendocrine stress axis. This environmentally sensitive system mediates both maternal stress and the timing of birth and is a mechanism by which developmental plasticity occurs. Fortunately, stress does not appear to be an all-or-none variable. Evidence suggests that developmental plasticity is dynamic, functioning on a continuum. Therefore, simple, stress-reducing interventions that support pregnant women may tangibly reduce rates of preterm birth and improve birth outcomes for all women, particularly Black women.
Collapse
|
12
|
Relationship between infantile mother preference and neural regions activated by maternal contact in C57BL/6 mice. Neurosci Res 2022; 178:69-77. [DOI: 10.1016/j.neures.2022.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 11/19/2022]
|
13
|
Ho TC, King LS. Mechanisms of neuroplasticity linking early adversity to depression: developmental considerations. Transl Psychiatry 2021; 11:517. [PMID: 34628465 PMCID: PMC8501358 DOI: 10.1038/s41398-021-01639-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/11/2021] [Accepted: 09/23/2021] [Indexed: 12/17/2022] Open
Abstract
Early exposure to psychosocial adversity is among the most potent predictors of depression. Because depression commonly emerges prior to adulthood, we must consider the fundamental principles of developmental neuroscience when examining how experiences of childhood adversity, including abuse and neglect, can lead to depression. Considering that both the environment and the brain are highly dynamic across the period spanning gestation through adolescence, the purpose of this review is to discuss and integrate stress-based models of depression that center developmental processes. We offer a general framework for understanding how psychosocial adversity in early life disrupts or calibrates the biobehavioral systems implicated in depression. Specifically, we propose that the sources and nature of the environmental input shaping the brain, and the mechanisms of neuroplasticity involved, change across development. We contend that the effects of adversity largely depend on the developmental stage of the organism. First, we summarize leading neurobiological models that focus on the effects of adversity on risk for mental disorders, including depression. In particular, we highlight models of allostatic load, acceleration maturation, dimensions of adversity, and sensitive or critical periods. Second, we expound on and review evidence for the formulation that distinct mechanisms of neuroplasticity are implicated depending on the timing of adverse experiences, and that inherent within certain windows of development are constraints on the sources and nature of these experiences. Finally, we consider other important facets of adverse experiences (e.g., environmental unpredictability, perceptions of one's experiences) before discussing promising research directions for the future of the field.
Collapse
Affiliation(s)
- Tiffany C Ho
- Department of Psychiatry and Behavioral Sciences and Weill Institute for Neurosciences, University of California, San Francisco, CA, USA.
| | - Lucy S King
- Department of Psychiatry and Behavioral Sciences, Tulane University School of Medicine, New Orleans, LA, USA
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
14
|
Engdahl E, Alavian-Ghavanini A, Forsell Y, Lavebratt C, Rüegg J. Childhood adversity increases methylation in the GRIN2B gene. J Psychiatr Res 2021; 132:38-43. [PMID: 33038564 DOI: 10.1016/j.jpsychires.2020.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 09/14/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Childhood adversity is an early life stressor associated with increased risk of several psychiatric disorders such as depression. Epigenetic changes, primarily DNA methylation, can be affected by early life stress, which in turn might contribute to altered disease susceptibility later in life. One plausible biomarker of early life stress is methylation of the ionotropic glutamate receptor NMDA type subunit 2B (GRIN2B) gene, which has been previously shown to be epigenetically affected by prenatal environmental stressors. Here, we set out to investigate if stress-inducing adversity during childhood is associated with changes in methylation of GRIN2B in adulthood. We studied 186 individuals from a Swedish naturalistic population-based cohort who had provided saliva samples (DNA) as well as information regarding both childhood adversity (CA) and depressive symptoms (dep) (nCA,dep = 41, nCA,no-dep = 56, nno-CA,dep = 40, Nno-CA,no-dep = 49). Methylation at four CpG sites in a regulatory region of GRIN2B was analysed using bisulfite pyrosequencing. Associations for methylation status to childhood adversity and to depression status were investigated using linear regression models. Our study shows that childhood adversity is associated with increased methylation levels of GRIN2B in adulthood, for three of the measured CpGs (p = 0.007, 0.006 and 5 × 10-14). This indicates that GRIN2B methylation is susceptible to early life stress, and that methylation at this gene is persistent over time. No association was found between GRIN2B methylation and depression status. Yet, this does not rule out a role for alterations in GRIN2B methylation for other neuropsychological outcomes not studied here.
Collapse
Affiliation(s)
- Elin Engdahl
- Karolinska Institutet, Institute of Environmental Medicine (IMM), Unit of Integrative Toxicology, Stockholm, Sweden.
| | | | - Yvonne Forsell
- Karolinska Institutet, Department of Global Public Health, Stockholm, Sweden
| | - Catharina Lavebratt
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden; Center for Molecular Medicine (CMM), Karolinska University Hospital, Stockholm, Sweden
| | - Joëlle Rüegg
- Uppsala University, Department of Organismal Biology, Uppsala, Sweden
| |
Collapse
|
15
|
Fonseca R, Madeira N, Simoes C. Resilience to fear: The role of individual factors in amygdala response to stressors. Mol Cell Neurosci 2020; 110:103582. [PMID: 33346000 DOI: 10.1016/j.mcn.2020.103582] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 11/13/2020] [Accepted: 12/02/2020] [Indexed: 10/22/2022] Open
Abstract
Resilience to stress is an adaptive process that varies individually. Resilience refers to the adaptation, or the ability to maintain or regain mental health, despite being subject to adverse situation. Resilience is a dynamic concept that reflects a combination of internal individual factors, including age and gender interacting with external factors such as social, cultural and environmental factors. In the last decade, we have witnessed an increase in the prevalence of anxiety disorders, including post-traumatic stress disorder. Given that stress in unavoidable, it is of great interest to understand the neurophysiological mechanisms of resilience, the individual factors that may contribute to susceptibility and promote efficacious approaches to improve resilience. Here, we address this complex question, attempting at defining clear and operational definitions that may allow us to improve our analysis of behavior incorporating individuality. We examine how individual perception of the stressor can alter the outcome of an adverse situation using as an example, the fear-conditioning paradigm and discuss how individual differences in the reward system can contribute to resilience. Given the central role of the endocannabinoid system in regulating fear responses and anxiety, we discuss the evidence that polymorphisms in several molecules of this signaling system contribute to different anxiety phenotypes. The endocannabinoid system is highly interconnected with the serotoninergic and dopaminergic modulatory systems, contributing to individual differences in stress perception and coping mechanisms. We review how the individual variability in these modulatory systems can be used towards a multivariable assessment of stress risk. Incorporating individuality in our research will allow us to define biomarkers of anxiety disorders as well as assess prognosis, towards a personalized clinical approach to mental health.
Collapse
Affiliation(s)
- Rosalina Fonseca
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal.
| | - Natália Madeira
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal
| | - Carla Simoes
- Cellular and Systems Neurobiology, Chronic Diseases Research Center (CEDOC), NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria, 130 1169-056 Lisboa, Portugal
| |
Collapse
|
16
|
Deichmann U. The social construction of the social epigenome and the larger biological context. Epigenetics Chromatin 2020; 13:37. [PMID: 32967714 PMCID: PMC7510271 DOI: 10.1186/s13072-020-00360-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022] Open
Abstract
Epigenetics researchers in developmental, cell, and molecular biology greatly diverge in their understanding and definitions of epigenetics. In contrast, social epigeneticists, e.g., sociologists, scholars of STS, and behavioural scientists, share a focus and definition of epigenetics that is environmentally caused and trans-generationally inherited. This article demonstrates that this emphasis on the environment and on so-called Lamarckian inheritance, in addition to other factors, reflects an interdisciplinary power struggle with genetics, in which epigenetics appears to grant the social sciences a higher epistemic status. Social scientists' understanding of epigenetics, thus, appears in part to be socially constructed, i.e., the result of extra-scientific factors, such as social processes and the self-interest of the discipline. This article argues that social epigeneticists make far-reaching claims by selecting elements from research labelled epigenetics in biology while ignoring widely confirmed scientific facts in genetics and cell biology, such as the dependence of epigenetic marks on DNA sequence-specific events, or the lack of evidence for the lasting influence of the environment on epigenetic marks or the epigenome. Moreover, they treat as a given crucial questions that are far from resolved, such as what role, if any, DNA methylation plays in the complex biochemical system of regulating gene activity. The article also points out incorrect perceptions and media hypes among biological epigeneticists and calls attention to an apparent bias among scientific journals that prefer papers that promote transgenerational epigenetic inheritance over articles that critique it. The article concludes that while research labelled epigenetics contributes significantly to our knowledge about chromatin and the genome, it does not, as is often claimed, rehabilitate Lamarck or overthrow the fundamental biological principles of gene regulation, which are based on specific regulatory sequences of the genome.
Collapse
Affiliation(s)
- Ute Deichmann
- Jacques Loeb Centre for the History and Philosophy of the Life Sciences, Ben-Gurion University of the Negev, P.O. Box 653, Beer Sheva, 8410500, Israel.
| |
Collapse
|
17
|
Siller SJ, Rubenstein DR. A Tissue Comparison of DNA Methylation of the Glucocorticoid Receptor Gene (Nr3c1) in European Starlings. Integr Comp Biol 2019; 59:264-272. [PMID: 31076777 DOI: 10.1093/icb/icz034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Negative feedback of the vertebrate stress response via the hypothalamic-pituitary-adrenal (HPA) axis is regulated by glucocorticoid receptors in the brain. Epigenetic modification of the glucocorticoid receptor gene (Nr3c1), including DNA methylation of the promoter region, can influence expression of these receptors, impacting behavior, physiology, and fitness. However, we still know little about the long-term effects of these modifications on fitness. To better understand these fitness effects, we must first develop a non-lethal method to assess DNA methylation in the brain that allows for multiple measurements throughout an organism's lifetime. In this study, we aimed to determine if blood is a viable biomarker for Nr3c1 DNA methylation in two brain regions (hippocampus and hypothalamus) in adult European starlings (Sturnus vulgaris). We found that DNA methylation of CpG sites in the complete Nr3c1 putative promoter varied among tissue types and was lowest in blood. Although we identified a similar cluster of correlated Nr3c1 putative promoter CpG sites within each tissue, this cluster did not show any correlation in DNA methylation among tissues. Additional studies should consider the role of the developmental environment in producing epigenetic modifications in different tissues.
Collapse
Affiliation(s)
- Stefanie J Siller
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 10th Floor Schermerhorn Extension, 1200 Amsterdam Avenue, New York, NY, USA
| | - Dustin R Rubenstein
- Department of Ecology, Evolution and Environmental Biology, Columbia University, 10th Floor Schermerhorn Extension, 1200 Amsterdam Avenue, New York, NY, USA
| |
Collapse
|
18
|
Buglione M, Petrelli S, Maselli V, Trapanese M, Salvemini M, Aceto S, Di Cosmo A, Fulgione D. Fixation of genetic variation and optimization of gene expression: The speed of evolution in isolated lizard populations undergoing Reverse Island Syndrome. PLoS One 2019; 14:e0224607. [PMID: 31711071 PMCID: PMC6846358 DOI: 10.1371/journal.pone.0224607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 10/18/2019] [Indexed: 11/19/2022] Open
Abstract
The ecological theory of island biogeography suggests that mainland populations should be more genetically divergent from those on large and distant islands rather than from those on small and close islets. Some island populations do not evolve in a linear way, but the process of divergence occurs more rapidly because they undergo a series of phenotypic changes, jointly known as the Island Syndrome. A special case is Reversed Island Syndrome (RIS), in which populations show drastic phenotypic changes both in body shape, skin colouration, age of sexual maturity, aggressiveness, and food intake rates. The populations showing the RIS were observed on islets nearby mainland and recently raised, and for this they are useful models to study the occurrence of rapid evolutionary change. We investigated the timing and mode of evolution of lizard populations adapted through selection on small islets. For our analyses, we used an ad hoc model system of three populations: wild-type lizards from the mainland and insular lizards from a big island (Capri, Italy), both Podarcis siculus siculus not affected by the syndrome, and a lizard population from islet (Scopolo) undergoing the RIS (called P. s. coerulea because of their melanism). The split time of the big (Capri) and small (Scopolo) islands was determined using geological events, like sea-level rises. To infer molecular evolution, we compared five complete mitochondrial genomes for each population to reconstruct the phylogeography and estimate the divergence time between island and mainland lizards. We found a lower mitochondrial mutation rate in Scopolo lizards despite the phenotypic changes achieved in approximately 8,000 years. Furthermore, transcriptome analyses showed significant differential gene expression between islet and mainland lizard populations, suggesting the key role of plasticity in these unpredictable environments.
Collapse
Affiliation(s)
- Maria Buglione
- Department of Biology, University of Naples Federico II Naples, Naples, Italy
| | - Simona Petrelli
- Department of Biology, University of Naples Federico II Naples, Naples, Italy
| | - Valeria Maselli
- Department of Biology, University of Naples Federico II Naples, Naples, Italy
| | - Martina Trapanese
- Department of Biology, University of Naples Federico II Naples, Naples, Italy
| | - Marco Salvemini
- Department of Biology, University of Naples Federico II Naples, Naples, Italy
| | - Serena Aceto
- Department of Biology, University of Naples Federico II Naples, Naples, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II Naples, Naples, Italy
| | - Domenico Fulgione
- Department of Biology, University of Naples Federico II Naples, Naples, Italy
| |
Collapse
|
19
|
Imeh-Nathaniel A, Orfanakos V, Wormack L, Huber R, Nathaniel TI. The crayfish model (Orconectes rusticus), epigenetics and drug addiction research. Pharmacol Biochem Behav 2019; 183:38-45. [PMID: 31202808 DOI: 10.1016/j.pbb.2019.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 05/16/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
Abstract
Fundamental signs of epigenetic effects are variations in the expression of genes or phenotypic traits among isogenic mates. Therefore, genetically identical animals are in high demand for epigenetic research. There are many genetically identical animals, including natural parthenogens and inbred laboratory lineages or clones. However, most parthenogenetic animal taxa are very small in combined epigenetic and drug addiction research. Orconectes rusticus has a unique phylogenetic position, with 2-3 years of life span, which undergoes metamorphosis that creates developmental stages with distinctly different morphologies, unique lifestyles, and broad behavioral traits, even among isogenic mates reared in the same environment offer novel inroads for epigenetics studies. Moreover, the establishment of crayfish as a novel system for drug addiction with evidence of an automated, operant self-administration and conditioned-reward, withdrawal, reinstatement of the conditioned drug-induced reward sets the stage to investigate epigenetic mechanisms of drug addiction. We discuss behavioral, pharmacological and molecular findings from laboratory studies that document a broad spectrum of molecular and, behavioral evidence including potential hypotheses that can be tested with the crayfish model for epigenetic study in drug addiction research.
Collapse
Affiliation(s)
| | | | - Leah Wormack
- University of South Carolina School of Medicine, SC, USA
| | - Robert Huber
- J.P Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH, USA
| | | |
Collapse
|
20
|
De Francesco PN, Cornejo MP, Barrile F, García Romero G, Valdivia S, Andreoli MF, Perello M. Inter-individual Variability for High Fat Diet Consumption in Inbred C57BL/6 Mice. Front Nutr 2019; 6:67. [PMID: 31143766 PMCID: PMC6520645 DOI: 10.3389/fnut.2019.00067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 04/24/2019] [Indexed: 12/20/2022] Open
Abstract
Since inbred C57BL/6 mice are known to show inter-individual phenotypic variability for some traits, we tested the hypothesis that inbred C57BL/6 mice display a different tendency to consume a high fat (HF) diet. For this purpose, we used a compilation of HF intake data from an experimental protocol in which satiated mice were exposed to a HF pellet every morning for 2-h over 4 consecutive days. We found that mice displayed a large degree of variability in HF intake. Since day 1 HF intake significantly correlated with HF intake in successive days, we applied a hierarchical clustering algorithm on HF intake measurements in days 2, 3, and 4 in order to classify mice into “low” or “high” HF intake groups. “Low” HF intake group showed a day 1 HF intake similar to that seen in mice exposed to regular chow, while “high” HF intake group showed a higher day 1 HF intake as compared to “low” HF intake group. Both groups of mice increased HF consumption over the successive days, but “high” HF intake group always displayed a higher HF consumption than the “low” HF intake group. As compared to “low” HF intake group, “high” HF intake group showed a higher number of dopamine neurons positive for c-Fos in the VTA after the last event of HF intake. Thus, inbred C57BL/6 mice show inter-individual variability for HF intake and such feature may be linked to a different response to the rewarding properties of the HF diet.
Collapse
Affiliation(s)
- Pablo N De Francesco
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - María P Cornejo
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Franco Barrile
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Guadalupe García Romero
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - Spring Valdivia
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| | - María F Andreoli
- Laboratory of Experimental Neurodevelopment, Institute of Development and Pediatric Research (IDIP), La Plata Children's Hospital and Scientific Research Commission, Province of Buenos Aires (CIC-PBA), La Plata, Argentina
| | - Mario Perello
- Laboratory of Neurophysiology, Multidisciplinary Institute of Cell Biology [Argentine Research Council (CONICET), Scientific Research Commission, Province of Buenos Aires (CIC-PBA) and National University of La Plata (UNLP)], La Plata, Argentina
| |
Collapse
|
21
|
Alfano R, Guida F, Galobardes B, Chadeau-Hyam M, Delpierre C, Ghantous A, Henderson J, Herceg Z, Jain P, Nawrot TS, Relton C, Vineis P, Castagné R, Plusquin M. Socioeconomic position during pregnancy and DNA methylation signatures at three stages across early life: epigenome-wide association studies in the ALSPAC birth cohort. Int J Epidemiol 2019; 48:30-44. [PMID: 30590607 PMCID: PMC6443021 DOI: 10.1093/ije/dyy259] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/06/2018] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Socioeconomic experiences are recognized determinants of health, and recent work has shown that social disadvantages in early life may induce sustained biological changes at molecular level that are detectable later in life. However, the dynamics and persistence of biological embedding of socioeconomic position (SEP) remains vastly unexplored. METHODS Using the data from the ALSPAC birth cohort, we performed epigenome-wide association studies of DNA methylation changes at three life stages (birth, n = 914; childhood at mean age 7.5 years, n = 973; and adolescence at mean age 15.5 years, n = 974), measured using the Illumina HumanMethylation450 Beadchip, in relation to pregnancy SEP indicators (maternal and paternal education and occupation). RESULTS Across the four early life SEP metrics investigated, only maternal education was associated with methylation levels at birth, and four CpGs mapped to SULF1, GLB1L2 and RPUSD1 genes were identified [false discovery rate (FDR)-corrected P-value <0.05]. No epigenetic signature was found associated with maternal education in child samples, but methylation levels at 20 CpG loci were found significantly associated with maternal education in adolescence. Although no overlap was found between the differentially methylated CpG sites at different ages, we identified two CpG sites at birth and during adolescence which are 219 bp apart in the SULF1 gene that encodes an heparan sulphatase involved in modulation of signalling pathways. Using data from an independent birth cohort, the ENVIRONAGE cohort, we were not able to replicate these findings. CONCLUSIONS Taken together, our results suggest that parental SEP, and particularly maternal education, may influence the offspring's methylome at birth and adolescence.
Collapse
Affiliation(s)
- Rossella Alfano
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Florence Guida
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
| | - Bruna Galobardes
- Department of Population Health Sciences, University of Bristol, Bristol, UK
| | - Marc Chadeau-Hyam
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
- Division of Environmental Epidemiology, Institute for Risk Assessment Sciences (IRAS), Utrecht University, Utrecht, The Netherlands
| | - Cyrille Delpierre
- INSERM, UMR1027, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Akram Ghantous
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - John Henderson
- Department of Population Health Sciences, University of Bristol, Bristol, UK
| | - Zdenko Herceg
- Epigenetics Group, International Agency for Research on Cancer (IARC), Lyon, France
| | - Pooja Jain
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- NIHR-Health Protection Research Unit, Respiratory Infections and Immunity, Imperial College London, London, UK
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Caroline Relton
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Paolo Vineis
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
- IIGM, Italian Institute for Genomic Medicine, Turin, Italy
| | - Raphaële Castagné
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- INSERM, UMR1027, Université Toulouse III-Paul Sabatier, Toulouse, France
| | - Michelle Plusquin
- Department of Epidemiology and Biostatistics, Imperial College London, London, UK
- Medical Research Council-Health Protection Agency Centre for Environment and Health, Imperial College London, London, UK
- Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
22
|
Musicaro RM, Spinazzola J, Arvidson J, Swaroop SR, Goldblatt Grace L, Yarrow A, Suvak MK, Ford JD. The Complexity of Adaptation to Childhood Polyvictimization in Youth and Young Adults: Recommendations for Multidisciplinary Responders. TRAUMA, VIOLENCE & ABUSE 2019; 20:81-98. [PMID: 29333968 DOI: 10.1177/1524838017692365] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Exposure to violence is pervasive in our society. An abundance of research has demonstrated that individuals who experience polyvictimization (PV)-prolonged or multiple forms of traumatic victimizations-are at heightened risk for continuing to experience repeated victimizations throughout their lifetimes. The current article reviews several overlapping constructs of traumatic victimizations with the ultimate goal of providing a unifying framework for conceptualizing prolonged and multiple victimization (defined in this article as PV) as a precursor to complex post-traumatic biopsychosocial adaptations, revictimization, and in some instances reenactment as a perpetrator (defined as complex trauma [CT]). This model is then applied to three socially disadvantaged victim populations-lesbian, gay, bisexual, transgender, queer, or questioning; commercially sexually exploited individuals; and urban communities of color-who are at heightened risk for PV and for exhibiting complex clinical presentations to demonstrate how the PV-CT framework can destigmatize, reframe, and ultimately reduce health disparities experienced by these populations. Trauma-informed recommendations are provided to aid researchers and multidisciplinary providers working to reduce harm and improve the quality of life for polyvictims.
Collapse
Affiliation(s)
- Regina Marie Musicaro
- 1 Clinical Psychology Doctoral Program, Suffolk University, Boston, MA, USA
- 2 Trauma Center at Justice Resource Institute, Brookline, MA, USA
| | - Joseph Spinazzola
- 1 Clinical Psychology Doctoral Program, Suffolk University, Boston, MA, USA
- 2 Trauma Center at Justice Resource Institute, Brookline, MA, USA
| | - Joshua Arvidson
- 3 Alaska Child Trauma Center, Anchorage Community Mental Health Services, Anchorage, AK, USA
- 4 Early Childhood Services, Anchorage Community Mental Health Services, Anchorage, AK, USA
| | | | | | - Aliza Yarrow
- 2 Trauma Center at Justice Resource Institute, Brookline, MA, USA
| | - Michael K Suvak
- 1 Clinical Psychology Doctoral Program, Suffolk University, Boston, MA, USA
- 2 Trauma Center at Justice Resource Institute, Brookline, MA, USA
| | - Julian D Ford
- 6 University of Connecticut Health Center, Farmington, CT, USA
| |
Collapse
|
23
|
Gunduz-Cinar O, Brockway E, Lederle L, Wilcox T, Halladay LR, Ding Y, Oh H, Busch EF, Kaugars K, Flynn S, Limoges A, Bukalo O, MacPherson KP, Masneuf S, Pinard C, Sibille E, Chesler EJ, Holmes A. Identification of a novel gene regulating amygdala-mediated fear extinction. Mol Psychiatry 2019; 24:601-612. [PMID: 29311651 PMCID: PMC6035889 DOI: 10.1038/s41380-017-0003-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 10/08/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
Abstract
Recent years have seen advances in our understanding of the neural circuits associated with trauma-related disorders, and the development of relevant assays for these behaviors in rodents. Although inherited factors are known to influence individual differences in risk for these disorders, it has been difficult to identify specific genes that moderate circuit functions to affect trauma-related behaviors. Here, we exploited robust inbred mouse strain differences in Pavlovian fear extinction to uncover quantitative trait loci (QTL) associated with this trait. We found these strain differences to be resistant to developmental cross-fostering and associated with anatomical variation in basolateral amygdala (BLA) perineuronal nets, which are developmentally implicated in extinction. Next, by profiling extinction-driven BLA expression of QTL-linked genes, we nominated Ppid (peptidylprolyl isomerase D, a member of the tetratricopeptide repeat (TPR) protein family) as an extinction-related candidate gene. We then showed that Ppid was enriched in excitatory and inhibitory BLA neuronal populations, but at lower levels in the extinction-impaired mouse strain. Using a virus-based approach to directly regulate Ppid function, we demonstrated that downregulating BLA-Ppid impaired extinction, while upregulating BLA-Ppid facilitated extinction and altered in vivo neuronal extinction encoding. Next, we showed that Ppid colocalized with the glucocorticoid receptor (GR) in BLA neurons and found that the extinction-facilitating effects of Ppid upregulation were blocked by a GR antagonist. Collectively, our results identify Ppid as a novel gene involved in regulating extinction via functional actions in the BLA, with possible implications for understanding genetic and pathophysiological mechanisms underlying risk for trauma-related disorders.
Collapse
Affiliation(s)
- Ozge Gunduz-Cinar
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| | - Emma Brockway
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Lauren Lederle
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Troy Wilcox
- 0000 0004 0374 0039grid.249880.fThe Jackson Laboratory, Bar Harbor, ME USA
| | - Lindsay R. Halladay
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Ying Ding
- Joint Carnegie Mellon University–University of Pittsburgh Ph.D. Program in Computational Biology, Pittsburgh, PA USA
| | - Hyunjung Oh
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA ,0000 0001 2157 2938grid.17063.33Departments of Psychiatry and Pharmacology & Toxicology, Campbell Family Mental Health Research Institute of CAMH, University of Toronto, Toronto, Canada
| | - Erica F. Busch
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Katie Kaugars
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Shaun Flynn
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Aaron Limoges
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Olena Bukalo
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Kathryn P. MacPherson
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Sophie Masneuf
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Courtney Pinard
- 0000 0004 0481 4802grid.420085.bLaboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD USA
| | - Etienne Sibille
- 0000 0004 1936 9000grid.21925.3dDepartment of Psychiatry, University of Pittsburgh, Pittsburgh, PA USA ,0000 0001 2157 2938grid.17063.33Departments of Psychiatry and Pharmacology & Toxicology, Campbell Family Mental Health Research Institute of CAMH, University of Toronto, Toronto, Canada
| | - Elissa J. Chesler
- 0000 0004 0374 0039grid.249880.fThe Jackson Laboratory, Bar Harbor, ME USA
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA.
| |
Collapse
|
24
|
Liu X, Jiao B, Shen L. The Epigenetics of Alzheimer's Disease: Factors and Therapeutic Implications. Front Genet 2018; 9:579. [PMID: 30555513 PMCID: PMC6283895 DOI: 10.3389/fgene.2018.00579] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 11/08/2018] [Indexed: 02/05/2023] Open
Abstract
Alzheimer’s disease (AD) is a well-known neurodegenerative disorder that imposes a great burden on the world. The mechanisms of AD are not yet fully understood. Current insight into the role of epigenetics in the mechanism of AD focuses on DNA methylation, remodeling of chromatin, histone modifications and non-coding RNA regulation. This review summarizes the current state of knowledge regarding the role of epigenetics in AD and the possibilities for epigenetically based therapeutics. The general conclusion is that epigenetic mechanisms play a variety of crucial roles in the development of AD, and there are a number of viable possibilities for treatments based on modulating these effects, but significant advances in knowledge and technology will be needed to move these treatments from the bench to the bedside.
Collapse
Affiliation(s)
- Xiaolei Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,The Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Jiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Lu Shen
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Central South University, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, China
| |
Collapse
|
25
|
Crocker KC, Hunter MD. Environmental causes and transgenerational consequences of ecdysteroid hormone provisioning in Acheta domesticus. JOURNAL OF INSECT PHYSIOLOGY 2018; 109:69-78. [PMID: 29890170 DOI: 10.1016/j.jinsphys.2018.06.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 06/08/2023]
Abstract
An animal's phenotype may be shaped by its genes, but also reflects its own environment and often that of its parents. Nongenetic parental effects are often mediated by steroid hormones, and operate between parents and offspring through mechanisms that are well described in vertebrate and model systems. However, less is understood about the strength and frequency of hormone mediated nongenetic parental effects across more than one generation of descendants, and in nonmodel systems. Here we show that the concentration of active ecdysteroid hormones provided by a female house cricket (Acheta domesticus) affects the growth rate of her offspring. We also reveal that variation in the active ecdysteroid hormones provided by a female house cricket to her eggs derives primarily from the quality of nutrition available to her maternal grandmother, regardless of genetic background. This finding is in stark contrast to most previous work that documents a decline in the strength of environmentally based parental effects with each passing generation. Strong grandparental effects may be adaptive under predictable, cyclical changes in the environment. Our results also suggest that hormone-mediated grand-maternal effects represent an important potential mechanism by which organisms can respond to environmental variability, and that further study of hormone-mediated carryover effects in this context could be profitable.
Collapse
Affiliation(s)
- Katherine C Crocker
- 1105 North University Ave, Kraus Natural Sciences Building, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA.
| | - Mark D Hunter
- 1105 North University Ave, Kraus Natural Sciences Building, Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109-1085, USA
| |
Collapse
|
26
|
Lea AJ, Tung J, Archie EA, Alberts SC. Developmental plasticity: Bridging research in evolution and human health. Evol Med Public Health 2018; 2017:162-175. [PMID: 29424834 PMCID: PMC5798083 DOI: 10.1093/emph/eox019] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/19/2017] [Indexed: 02/06/2023] Open
Abstract
Early life experiences can have profound and persistent effects on traits expressed throughout the life course, with consequences for later life behavior, disease risk, and mortality rates. The shaping of later life traits by early life environments, known as 'developmental plasticity', has been well-documented in humans and non-human animals, and has consequently captured the attention of both evolutionary biologists and researchers studying human health. Importantly, the parallel significance of developmental plasticity across multiple fields presents a timely opportunity to build a comprehensive understanding of this phenomenon. We aim to facilitate this goal by highlighting key outstanding questions shared by both evolutionary and health researchers, and by identifying theory and empirical work from both research traditions that is designed to address these questions. Specifically, we focus on: (i) evolutionary explanations for developmental plasticity, (ii) the genetics of developmental plasticity and (iii) the molecular mechanisms that mediate developmental plasticity. In each section, we emphasize the conceptual gains in human health and evolutionary biology that would follow from filling current knowledge gaps using interdisciplinary approaches. We encourage researchers interested in developmental plasticity to evaluate their own work in light of research from diverse fields, with the ultimate goal of establishing a cross-disciplinary understanding of developmental plasticity.
Collapse
Affiliation(s)
- Amanda J Lea
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Jenny Tung
- Department of Biology, Duke University, Durham, NC 27708, USA
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
- Duke University Population Research Institute, Duke University, Durham, NC 27708, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| | - Elizabeth A Archie
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Susan C Alberts
- Department of Biology, Duke University, Durham, NC 27708, USA
- Institute of Primate Research, National Museums of Kenya, Karen, Nairobi, Kenya
- Duke University Population Research Institute, Duke University, Durham, NC 27708, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
27
|
Rymer TL, Pillay N, Schradin C. RESILIENCE TO DROUGHTS IN MAMMALS: A CONCEPTUAL FRAMEWORK FOR ESTIMATING VULNERABILITY OF A SINGLE SPECIES. QUARTERLY REVIEW OF BIOLOGY 2016; 91:133-76. [PMID: 27405222 DOI: 10.1086/686810] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
ABSTRACT The frequency and severity of droughts in certain areas is increasing as a consequence of climate change. The associated environmental challenges, including high temperatures, low food, and water availability, have affected, and will affect, many populations. Our aims are to review the behavioral, physiological, and morphological adaptations of mammals to arid environments, and to aid research- ers and nature conservationists about which traits they should study to assess whether or not their study species will be able to cope with droughts. We provide a suite of traits that should be considered when making predictions about species resilience to drought. We define and differentiate between general adaptations, specialized adaptations, and exaptations, and argue that specialized adaptations are of little interest in establishing how nondesert specialists will cope with droughts. Attention should be placed on general adaptations of semidesert species and assess whether these exist as exaptations in nondesert species. We conclude that phenotypic flexibility is the most important general adaptation that may promote species resilience. Thus, to assess whether a species will be able to cope with increasing aridity, it is important to establish the degree offlexibility of traits identified in semidesert species that confer afitness advantage under drying conditions.
Collapse
|
28
|
Exposure to early adversity: Points of cross-species translation that can lead to improved understanding of depression. Dev Psychopathol 2016; 27:477-91. [PMID: 25997766 DOI: 10.1017/s0954579415000103] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The relationship between developmental exposure to adversity and affective disorders is reviewed. Adversity discussed herein includes physical and sexual abuse, neglect, or loss of a caregiver in humans. While these stressors can occur at any point during development, the unique temporal relationship to specific depressive symptoms was the focus of discussion. Further influences of stress exposure during sensitive periods can vary by gender and duration of abuse as well. Data from animal studies are presented to provide greater translational and causal understanding of how sensitive periods, different types of psychosocial stressors, and sex interact to produce depressive-like behaviors. Findings from maternal separation, isolation rearing, chronic variable stress, and peer-peer rearing paradigms clarify interpretation about how various depressive behaviors are influenced by age of exposure. Depressive behaviors are broken down into the following categories: mood and affect, anhedonia, energy, working memory, sleep-wake, appetite changes, suicide, and general malaise. Cross-species evidence from humans, nonhuman primates, rats, and mice within each of these categories is discussed. In conclusion, sensitive periods for affective-related behaviors (anxiety, mood, and controllability) occur earlier in life, while other aspects of depression are associated with adversity later during adolescence.
Collapse
|
29
|
Suderman M, Pappas JJ, Borghol N, Buxton JL, McArdle WL, Ring SM, Hertzman C, Power C, Szyf M, Pembrey M. Lymphoblastoid cell lines reveal associations of adult DNA methylation with childhood and current adversity that are distinct from whole blood associations. Int J Epidemiol 2015; 44:1331-40. [PMID: 26351305 DOI: 10.1093/ije/dyv168] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/14/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Some cohort studies bank lymphoblastoid cell lines (LCLs) as a renewable source of participant DNA. However, although LCL DNA has proved valuable for genetic studies, its utility in epigenetic epidemiology research is unknown. METHODS To assess whether LCL DNA can be used for life-course environmental epigenomics, we carried out a pilot methylomic study (using the Illumina Infinium Human Methylation 450 BeadChip) of nil-passage, Epstein-Barr virus (EBV)-transformed LCLs (n = 42) and 28 matched whole-blood (WB) samples. These were from adult male participants of the British 1958 birth cohort, selected for extremes of social economic position (SEP) in childhood and adulthood, with additional information available on childhood abuse and prenatal tobacco exposure. RESULTS We identified a small number of weak associations between these exposures and methylation levels of both individual CpG sites and genomic regions in WB and LCLs. However, only one of the regional, and none of the individual CpG site associations were common to both sample types. The lack of overlap between the associations detected in LCL compared with those found in WB could either be due to the EBV-transformation process, or to the fact that, unlike WB, LCLs are essentially a single (CD19+) cell type. We provide evidence that the latter is the more potent explanation, by showing that CpG sites known to be differentially methylated between different types of blood cell have significantly lower correlations (R = 0.11) than average (R = 0.2) between WB and LCLs in our datasets, whereas sites known to be affected by EBV-transformation have significantly higher correlations (R = 0.3). CONCLUSIONS This small pilot study suggests that the DNA methylation profile of LCLs is more closely related to that of B cells than WB and, additionally, that LCLs may nevertheless be useful for life-course environmental epigenomics.
Collapse
Affiliation(s)
- Matthew Suderman
- MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of Bristol, Bristol, UK,
| | - Jane J Pappas
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada, Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nada Borghol
- Department of Biochemistry, Faculty of Sciences I, Lebanese University, Beirut, Lebanon
| | - Jessica L Buxton
- Centre for Cardiovascular Genetics, Institute of Cardiovascular Science, University College London, London, UK
| | - Wendy L McArdle
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Susan M Ring
- MRC Integrative Epidemiology Unit (IEU), School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Clyde Hertzman
- Human Early Learning Partnership, University of British Columbia, British Columbia, Canada
| | - Chris Power
- Population, Policy and Practice, UCL Institute of Child Health, London, UK
| | - Moshe Szyf
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada, Sackler Program for Epigenetics & Developmental Psychobiology, McGill University, Montreal, Quebec, Canada and
| | - Marcus Pembrey
- Genetics and Epigenetics in Health and Disease Section, UCL Institute of Child Health, UK
| |
Collapse
|
30
|
Gunnar MR, Hostinar CE, Sanchez MM, Tottenham N, Sullivan RM. Parental buffering of fear and stress neurobiology: Reviewing parallels across rodent, monkey, and human models. Soc Neurosci 2015; 10:474-8. [PMID: 26234160 DOI: 10.1080/17470919.2015.1070198] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
It has been long recognized that parents exert profound influences on child development. Dating back to at least the seventeenth-century Enlightenment, the ability for parents to shape child behavior in an enduring way has been noted. Twentieth-century scholars developed theories to explain how parenting histories influence psychological development, and since that time, the number of scientific publications on parenting influences in both human and nonhuman animal fields has grown at an exponential rate, reaching numbers in the thousands by 2015. This special issue describes a symposium delivered by Megan Gunnar, Regina Sullivan, Mar Sanchez, and Nim Tottenham in the Fall of 2014 at the Society for Social Neuroscience. The goal of the symposium was to describe the emerging knowledge on neurobiological mechanisms that mediate parent-offspring interactions across three different species: rodent, monkey, and human. The talks were aimed at designing testable models of parenting effects on the development of emotional and stress regulation. Specifically, the symposium aimed at characterizing the special modulatory (buffering) effects of parental cues on fear- and stress-relevant neurobiology and behaviors of the offspring and to discuss examples of impaired buffering when the parent-infant relationship is disrupted.
Collapse
Affiliation(s)
- Megan R Gunnar
- a Institute of Child Development , University of Minnesota , Minneapolis , MN , USA
| | - Camelia E Hostinar
- b Institute for Policy Research , Northwestern University , Evanston , IL , USA
| | - Mar M Sanchez
- c Department of Psychiatry and Yerkes National Primate Research Center , Emory University , Atlanta , GA , USA
| | - Nim Tottenham
- d Department of Psychology , Columbia University , New York , NY , USA
| | - Regina M Sullivan
- e Emotional Brain Institute, Nathan S. Kline Institute for Psychiatric Research , Orangeburg , SC , USA.,f Child and Adolescent Psychiatry, The Child Study Center, New York University Langone School of Medicine , New York , NY , USA
| |
Collapse
|
31
|
Baerwald MR, Meek MH, Stephens MR, Nagarajan RP, Goodbla AM, Tomalty KMH, Thorgaard GH, May B, Nichols KM. Migration-related phenotypic divergence is associated with epigenetic modifications in rainbow trout. Mol Ecol 2015; 25:1785-1800. [PMID: 25958780 DOI: 10.1111/mec.13231] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 04/30/2015] [Accepted: 05/01/2015] [Indexed: 12/11/2022]
Abstract
Migration is essential for the reproduction and survival of many animals, yet little is understood about its underlying molecular mechanisms. We used the salmonid Oncorhynchus mykiss to gain mechanistic insight into smoltification, which is a morphological, physiological and behavioural transition undertaken by juveniles in preparation for seaward migration. O. mykiss is experimentally tractable and displays intra- and interpopulation variation in migration propensity. Migratory individuals can produce nonmigratory progeny and vice versa, indicating a high degree of phenotypic plasticity. One potential way that phenotypic plasticity might be linked to variation in migration-related life history tactics is through epigenetic regulation of gene expression. To explore this, we quantitatively measured genome-scale DNA methylation in fin tissue using reduced representation bisulphite sequencing of F2 siblings produced from a cross between steelhead (migratory) and rainbow trout (nonmigratory) lines. We identified 57 differentially methylated regions (DMRs) between smolt and resident O. mykiss juveniles. DMRs were high in magnitude, with up to 62% differential methylation between life history types, and over half of the gene-associated DMRs were in transcriptional regulatory regions. Many of the DMRs encode proteins with activity relevant to migration-related transitions (e.g. circadian rhythm pathway, nervous system development, protein kinase activity). This study provides the first evidence of a relationship between epigenetic variation and life history divergence associated with migration-related traits in any species.
Collapse
Affiliation(s)
- Melinda R Baerwald
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Mariah H Meek
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Molly R Stephens
- School of Natural Sciences, University of California - Merced, Merced, CA, 95343
| | - Raman P Nagarajan
- GlaxoSmithKline, Cancer Epigenetics Discovery Performance Unit, Collegeville, PA 19426
| | - Alisha M Goodbla
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | | | - Gary H Thorgaard
- School of Biological Sciences and Center for Reproductive Biology, Washington State University, Pullman, WA, 99164
| | - Bernie May
- Department of Animal Science, University of California - Davis, Davis, CA, 95616
| | - Krista M Nichols
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd E, Seattle, WA 98112
| |
Collapse
|
32
|
Stamps JA. Individual differences in behavioural plasticities. Biol Rev Camb Philos Soc 2015; 91:534-67. [PMID: 25865135 DOI: 10.1111/brv.12186] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 03/14/2015] [Accepted: 03/18/2015] [Indexed: 01/06/2023]
Abstract
Interest in individual differences in animal behavioural plasticities has surged in recent years, but research in this area has been hampered by semantic confusion as different investigators use the same terms (e.g. plasticity, flexibility, responsiveness) to refer to different phenomena. The first goal of this review is to suggest a framework for categorizing the many different types of behavioural plasticities, describe examples of each, and indicate why using reversibility as a criterion for categorizing behavioural plasticities is problematic. This framework is then used to address a number of timely questions about individual differences in behavioural plasticities. One set of questions concerns the experimental designs that can be used to study individual differences in various types of behavioural plasticities. Although within-individual designs are the default option for empirical studies of many types of behavioural plasticities, in some situations (e.g. when experience at an early age affects the behaviour expressed at subsequent ages), 'replicate individual' designs can provide useful insights into individual differences in behavioural plasticities. To date, researchers using within-individual and replicate individual designs have documented individual differences in all of the major categories of behavioural plasticities described herein. Another important question is whether and how different types of behavioural plasticities are related to one another. Currently there is empirical evidence that many behavioural plasticities [e.g. contextual plasticity, learning rates, IIV (intra-individual variability), endogenous plasticities, ontogenetic plasticities) can themselves vary as a function of experiences earlier in life, that is, many types of behavioural plasticity are themselves developmentally plastic. These findings support the assumption that differences among individuals in prior experiences may contribute to individual differences in behavioural plasticities observed at a given age. Several authors have predicted correlations across individuals between different types of behavioural plasticities, i.e. that some individuals will be generally more plastic than others. However, empirical support for most of these predictions, including indirect evidence from studies of relationships between personality traits and plasticities, is currently sparse and equivocal. The final section of this review suggests how an appreciation of the similarities and differences between different types of behavioural plasticities may help theoreticians formulate testable models to explain the evolution of individual differences in behavioural plasticities and the evolutionary and ecological consequences of individual differences in behavioural plasticities.
Collapse
Affiliation(s)
- Judy A Stamps
- Department of Ecology and Evolution, University of California Davis, Davis, CA 95616, U.S.A
| |
Collapse
|
33
|
Beaumont J, Montgomery J, Buckberry J, Jay M. Infant mortality and isotopic complexity: New approaches to stress, maternal health, and weaning. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 157:441-57. [PMID: 25773670 DOI: 10.1002/ajpa.22736] [Citation(s) in RCA: 168] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 02/19/2015] [Accepted: 02/21/2015] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Studies of the carbon and nitrogen stable isotope ratios (δ(13) C and δ(15) N) of modern tissues with a fast turnover, such as hair and fingernails, have established the relationship between these values in mothers and their infants during breastfeeding and weaning. Using collagen from high-resolution dentine sections of teeth, which form in the perinatal period we investigate the relationship between diet and physiology in this pivotal stage of life. MATERIALS AND METHODS Childhood dentine collagen δ(13) C and δ(15) N profiles were produced from horizontal sections of permanent and deciduous teeth following the direction of development. These were from two 19th-century sites (n = 24) and a small number (n = 5) of prehistoric samples from Great Britain and Ireland. RESULTS These high-resolution data exhibit marked differences between those who survived childhood and those who did not, the former varying little and the latter fluctuating widely. DISCUSSION Breastfeeding and weaning behavior have a significant impact on the morbidity and mortality of infants and the adults they become. In the absence of documentary evidence, archaeological studies of bone collagen of adults and juveniles have been used to infer the prevalence and duration of breastfeeding. These interpretations rely on certain assumptions about the relationship between isotope ratios in the bone collagen of the adult females and the infants who have died. The data from this study suggest a more complex situation than previously proposed and the potential for a new approach to the study of maternal and infant health in past populations.
Collapse
Affiliation(s)
- Julia Beaumont
- School of Archaeological Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | | | - Jo Buckberry
- School of Archaeological Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Mandy Jay
- Department of Archaeology, Durham University, UK
| |
Collapse
|
34
|
Hager T, Jansen RF, Pieneman AW, Manivannan SN, Golani I, van der Sluis S, Smit AB, Verhage M, Stiedl O. Display of individuality in avoidance behavior and risk assessment of inbred mice. Front Behav Neurosci 2014; 8:314. [PMID: 25278853 PMCID: PMC4165351 DOI: 10.3389/fnbeh.2014.00314] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 08/26/2014] [Indexed: 11/23/2022] Open
Abstract
Factors determining individuality are still poorly understood. Rodents are excellent model organisms to study individuality, due to a rich behavioral repertoire and the availability of well-characterized isogenic populations. However, most current behavioral assays for rodents have short test duration in novel test environments and require human interference, which introduce coercion, thereby limiting the assessment of naturally occurring individuality. Thus, we developed an automated behavior system to longitudinally monitor conditioned fear for assessing PTSD-like behavior in individual mice. The system consists of a safe home compartment connected to a risk-prone test compartment (TC). Entry and exploration of the TC is solely based on deliberate choice determined by individual fear responsiveness and fear extinction. In this novel ethological assay, C57BL/6J mice show homogeneous responses after shock exposure (innate fear), but striking variation in long-lasting fear responses based on avoidance and risk assessment (learned fear), including automated stretch-attend posture quantification. TC entry (retention) latencies after foot shock differed >24 h and the re-explored TC area differed >50% among inbred mice. Next, we compared two closely related C57BL/6 substrains. Despite substantial individual differences, previously observed higher fear of C57BL/6N vs. C57BL/6J mice was reconfirmed, whereas fear extinction was fast and did not differ. The observed variation in fear expression in isogenic mice suggests individual differences in coping style with PTSD-like avoidance. Investigating the assumed epigenetic mechanisms, with reduced interpretational ambiguity and enhanced translational value in this assay, may help improve understanding of personality type-dependent susceptibility and resilience to neuropsychiatric disorders such as PTSD.
Collapse
Affiliation(s)
- Torben Hager
- Sylics BV Amsterdam, Netherlands ; Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam Amsterdam, Netherlands ; Department of Clinical Genetics, VU University Medical Center Amsterdam, Netherlands
| | - René F Jansen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam Amsterdam, Netherlands ; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam Amsterdam, Netherlands
| | - Anton W Pieneman
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam Amsterdam, Netherlands ; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam Amsterdam, Netherlands
| | | | - Ilan Golani
- Department of Zoology, Faculty of Life Sciences and Sagol School for Neuroscience, Tel Aviv University Tel Aviv, Israel
| | - Sophie van der Sluis
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam Amsterdam, Netherlands ; Department of Clinical Genetics, VU University Medical Center Amsterdam, Netherlands
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam Amsterdam, Netherlands
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam Amsterdam, Netherlands ; Department of Clinical Genetics, VU University Medical Center Amsterdam, Netherlands
| | - Oliver Stiedl
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University Amsterdam Amsterdam, Netherlands ; Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam Amsterdam, Netherlands
| |
Collapse
|
35
|
Nash A. Are stone-age genes created out of whole cloth? Evaluating claims about the evolution of behavior. DIALECTICAL ANTHROPOLOGY 2014. [DOI: 10.1007/s10624-014-9354-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Meloni M. The social brain meets the reactive genome: neuroscience, epigenetics and the new social biology. Front Hum Neurosci 2014; 8:309. [PMID: 24904353 PMCID: PMC4033168 DOI: 10.3389/fnhum.2014.00309] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/27/2014] [Indexed: 11/13/2022] Open
Abstract
The rise of molecular epigenetics over the last few years promises to bring the discourse about the sociality and susceptibility to environmental influences of the brain to an entirely new level. Epigenetics deals with molecular mechanisms such as gene expression, which may embed in the organism "memories" of social experiences and environmental exposures. These changes in gene expression may be transmitted across generations without changes in the DNA sequence. Epigenetics is the most advanced example of the new postgenomic and context-dependent view of the gene that is making its way into contemporary biology. In my article I will use the current emergence of epigenetics and its link with neuroscience research as an example of the new, and in a way unprecedented, sociality of contemporary biology. After a review of the most important developments of epigenetic research, and some of its links with neuroscience, in the second part I reflect on the novel challenges that epigenetics presents for the social sciences for a re-conceptualization of the link between the biological and the social in a postgenomic age. Although epigenetics remains a contested, hyped, and often uncritical terrain, I claim that especially when conceptualized in broader non-genecentric frameworks, it has a genuine potential to reformulate the ossified biology/society debate.
Collapse
Affiliation(s)
- Maurizio Meloni
- School of Sociology and Social Policy, Institute for Science and Society, University of Nottingham Nottingham, UK
| |
Collapse
|
37
|
Ho DH. Transgenerational epigenetics: the role of maternal effects in cardiovascular development. Integr Comp Biol 2014; 54:43-51. [PMID: 24813463 DOI: 10.1093/icb/icu031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transgenerational epigenetics, the study of non-genetic transfer of information from one generation to the next, has gained much attention in the past few decades due to the fact that, in many instances, epigenetic processes outweigh direct genetic processes in the manifestation of aberrant phenotypes across several generations. Maternal effects, or the influences of maternal environment, phenotype, and/or genotype on offsprings' phenotypes, independently of the offsprings' genotypes, are a subcategory of transgenerational epigenetics. Due to the intimate role of the mother during early development in animals, there is much interest in investigating the means by which maternal effects can shape the individual. Maternal effects are responsible for cellular organization, determination of the body axis, initiation and maturation of organ systems, and physiological performance of a wide variety of species and biological systems. The cardiovascular system is the first to become functional and can significantly influence the development of other organ systems. Thus, it is important to elucidate the role of maternal effects in cardiovascular development, and to understand its impact on adult cardiovascular health. Topics to be addressed include: (1) how and when do maternal effects change the developmental trajectory of the cardiovascular system to permanently alter the adult's cardiovascular phenotype, (2) what molecular mechanisms have been associated with maternally induced cardiovascular phenotypes, and (3) what are the evolutionary implications of maternally mediated changes in cardiovascular phenotype?
Collapse
Affiliation(s)
- Dao H Ho
- Section of Cardio-Renal Physiology and Medicine, Division of Nephrology, Birmingham, University of Alabama at Birmingham, AL 35294, USA
| |
Collapse
|
38
|
Krubitzer L, Stolzenberg DS. The evolutionary masquerade: genetic and epigenetic contributions to the neocortex. Curr Opin Neurobiol 2014; 24:157-65. [DOI: 10.1016/j.conb.2013.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/30/2013] [Accepted: 11/22/2013] [Indexed: 01/25/2023]
|
39
|
Meyer JS, Hamel AF. Models of stress in nonhuman primates and their relevance for human psychopathology and endocrine dysfunction. ILAR J 2014; 55:347-60. [PMID: 25225311 PMCID: PMC4240440 DOI: 10.1093/ilar/ilu023] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Stressful life events have been linked to the onset of severe psychopathology and endocrine dysfunction in many patients. Moreover, vulnerability to the later development of such disorders can be increased by stress or adversity during development (e.g., childhood neglect, abuse, or trauma). This review discusses the methodological features and results of various models of stress in nonhuman primates in the context of their potential relevance for human psychopathology and endocrine dysfunction, particularly mood disorders and dysregulation of the hypothalamic-pituitary-adrenocortical (HPA) system. Such models have typically examined the effects of stress on the animals' behavior, endocrine function (primarily the HPA and hypothalamic-pituitary-gonadal systems), and, in some cases, immune status. Manipulations such as relocation and/or removal of an animal from its current social group or, alternatively, formation of a new social group can have adverse effects on all of these outcome measures that may be either transient or more persistent depending on the species, sex, and other experimental conditions. Social primates may also experience significant stress associated with their rank in the group's dominance hierarchy. Finally, stress during prenatal development or during the early postnatal period may have long-lasting neurobiological and endocrine effects that manifest in an altered ability to cope behaviorally and physiologically with later challenges. Whereas early exposure to severe stress usually results in deficient coping abilities, certain kinds of milder stressors can promote subsequent resilience in the animal. We conclude that studies of stress in nonhuman primates can model many features of stress exposure in human populations and that such studies can play a valuable role in helping to elucidate the mechanisms underlying the role of stress in human psychopathology and endocrine dysfunction.
Collapse
|
40
|
Barrett KC, Ashley R, Strait DL, Kraus N. Art and science: how musical training shapes the brain. Front Psychol 2013; 4:713. [PMID: 24137142 PMCID: PMC3797461 DOI: 10.3389/fpsyg.2013.00713] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/18/2013] [Indexed: 11/13/2022] Open
Abstract
What makes a musician? In this review, we discuss innate and experience-dependent factors that mold the musician brain in addition to presenting new data in children that indicate that some neural enhancements in musicians unfold with continued training over development. We begin by addressing effects of training on musical expertise, presenting neural, perceptual, and cognitive evidence to support the claim that musicians are shaped by their musical training regimes. For example, many musician-advantages in the neural encoding of sound, auditory perception, and auditory-cognitive skills correlate with their extent of musical training, are not observed in young children just initiating musical training, and differ based on the type of training pursued. Even amidst innate characteristics that contribute to the biological building blocks that make up the musician, musicians demonstrate further training-related enhancements through extensive education and practice. We conclude by reviewing evidence from neurobiological and epigenetic approaches to frame biological markers of musicianship in the context of interactions between genetic and experience-related factors.
Collapse
Affiliation(s)
- Karen Chan Barrett
- Auditory Neuroscience Laboratory, Department of Communication Science and Disorders, Northwestern University Evanston, IL, USA ; Program in Music Theory and Cognition, Bienen School of Music, Northwestern University Evanston, IL, USA ; Music Cognition Laboratory, Program in Music Theory and Cognition, Bienen School of Music, Northwestern University Evanston, IL USA
| | | | | | | |
Collapse
|
41
|
Veerappan CS, Sleiman S, Coppola G. Epigenetics of Alzheimer's disease and frontotemporal dementia. Neurotherapeutics 2013; 10:709-21. [PMID: 24150812 PMCID: PMC3805876 DOI: 10.1007/s13311-013-0219-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This article will review the recent advances in the understanding of the role of epigenetic modifications and the promise of future epigenetic therapy in neurodegenerative dementias, including Alzheimer's disease and frontotemporal dementia.
Collapse
Affiliation(s)
- Chendhore S Veerappan
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA,
| | | | | |
Collapse
|
42
|
Schradin C. Intraspecific variation in social organization by genetic variation, developmental plasticity, social flexibility or entirely extrinsic factors. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120346. [PMID: 23569294 DOI: 10.1098/rstb.2012.0346] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Previously, it was widely believed that each species has a specific social organization, but we know now that many species show intraspecific variation in their social organization. Four different processes can lead to intraspecific variation in social organization: (i) genetic variation between individuals owing to local adaptation (between populations) or evolutionarily stable strategies within populations; (ii) developmental plasticity evolved in long-term (more than one generation) unpredictable and short-term (one generation) predictable environments, which is mediated by organizational physiological effects during early ontogeny; (iii) social flexibility evolved in highly unpredictable environments, which is mediated by activational physiological effects in adults; (iv) entirely extrinsic factors such as the death of a dominant breeder. Variation in social behaviour occurs between individuals in the case of genetic variation and developmental plasticity, but within individuals in the case of social flexibility. It is important to study intraspecific variation in social organization to understand the social systems of species because it reveals the mechanisms by which species can adapt to changing environments, offers a useful tool to study the ultimate and proximate causes of sociality, and is an interesting phenomenon by itself that needs scientific explanation.
Collapse
Affiliation(s)
- Carsten Schradin
- Université de Strasbourg, IPHC-DEPE, 23 rue Becquerel, Strasbourg 67087, France.
| |
Collapse
|
43
|
Holekamp KE, Swanson EM, Van Meter PE. Developmental constraints on behavioural flexibility. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120350. [PMID: 23569298 DOI: 10.1098/rstb.2012.0350] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We suggest that variation in mammalian behavioural flexibility not accounted for by current socioecological models may be explained in part by developmental constraints. From our own work, we provide examples of constraints affecting variation in behavioural flexibility, not only among individuals, but also among species and higher taxonomic units. We first implicate organizational maternal effects of androgens in shaping individual differences in aggressive behaviour emitted by female spotted hyaenas throughout the lifespan. We then compare carnivores and primates with respect to their locomotor and craniofacial adaptations. We inquire whether antagonistic selection pressures on the skull might impose differential functional constraints on evolvability of skulls and brains in these two orders, thus ultimately affecting behavioural flexibility in each group. We suggest that, even when carnivores and primates would theoretically benefit from the same adaptations with respect to behavioural flexibility, carnivores may nevertheless exhibit less behavioural flexibility than primates because of constraints imposed by past adaptations in the morphology of the limbs and skull. Phylogenetic analysis consistent with this idea suggests greater evolutionary lability in relative brain size within families of primates than carnivores. Thus, consideration of developmental constraints may help elucidate variation in mammalian behavioural flexibility.
Collapse
Affiliation(s)
- Kay E Holekamp
- Department of Zoology, Michigan State University, 203 Natural Sciences, MI 48824, USA.
| | | | | |
Collapse
|