1
|
Albert-Lyons R, Desrochers SS, Fengler C, Nautiyal KM. Fractionating impulsivity and reward-related phenotypes in adolescent mice. Behav Brain Res 2025; 480:115396. [PMID: 39681176 DOI: 10.1016/j.bbr.2024.115396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 12/18/2024]
Abstract
Adolescence is a developmental period characterized by changes in the brain and behavior, including heightened reward seeking, increased impulsivity, and elevated risk-taking behavior. It is also a sensitive period for the development of a number of behavioral and psychiatric disorders associated with pathological phenotypes of reward processing and impulsivity. Landmark human studies are charting the development of impulsivity and other reward-related phenotypes to identify the facets and timecourse of the adolescent phenotype. Collecting similar data from mice is important to enable molecular, cellular, and circuit-level interrogation of adolescent maturation of reward, motivation, and impulsive behavior. These complex phenotypes have traditionally been difficult to assay in adolescent mice. Here, using a combination of approaches including homecage testing, we tested a number of facets of reward seeking, impulsivity, motivation, and incentive salience attribution during adolescent development. We found that adolescent mice show increased reward seeking, impulsive action, and motivation. Interestingly, we found no effect of adolescence on impulsive choice, sign-tracking, reward-learning, or conditioned reinforcement. Overall, our studies set the stage for approaches to study multi-faceted phenotypes related to impulsivity and other reward-related behaviors in adolescent mice to examine the developmental trajectories of brain and behavior.
Collapse
Affiliation(s)
- Ruth Albert-Lyons
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755 USA
| | - Stephanie S Desrochers
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755 USA
| | - Catherine Fengler
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755 USA
| | - Katherine M Nautiyal
- Dartmouth College, Department of Psychological and Brain Sciences, 6207 Moore Hall, Hanover, NH 03755 USA.
| |
Collapse
|
2
|
Hakus A, Foo JC, Casquero‐Veiga M, Gül AZ, Hintz F, Rivalan M, Winter Y, Priller J, Hadar R, Winter C. Sex-associated differences in incentive salience and drinking behaviour in a rodent model of alcohol relapse. Addict Biol 2025; 30:e70009. [PMID: 39764698 PMCID: PMC11705499 DOI: 10.1111/adb.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/19/2024] [Accepted: 10/25/2024] [Indexed: 01/11/2025]
Abstract
The ability of environmental cues to trigger alcohol-seeking behaviours is thought to facilitate problematic alcohol use. Individuals' tendency to attribute incentive salience to cues may increase the risk of addiction. We sought to study the relationship between incentive salience and alcohol addiction using non-preferring rats to model the heterogeneity of human alcohol consumption, investigating both males and females. Adult rats were subjected to the alcohol deprivation effect (ADE) paradigm, where they were given voluntary access to different alcohol solutions with repeated interruptions by deprivation and reintroduction phases over a protracted period (five Alcohol Deprivation Cycles). Before each Alcohol Deprivation Cycle, rats were tested in the Pavlovian Conditioned Approach (PCA) paradigm, which quantifies the individual salience toward a conditional cue and the reward, thus allowing us to trace the process of attributing incentive salience to reward cues. During the final Alcohol Deprivation Cycle (ADE5), animals were tested for compulsive-like behaviour using quinine taste adulteration. We investigated sex differences in drinking behaviour and PCA performance. We observed thatb females drank significantly more alcohol than males and displayed more sign-tracking (ST) behaviour in the PCA, whereas males showed goal-tracking (GT) behaviour. Furthermore, we found that high drinkers exhibited more ST behaviour. The initial PCA phenotype was correlated with later alcohol consumption. Our findings indicate a complex relationship between incentive salience and alcohol addiction and emphasize the importance of considering both sexes in preclinical research.
Collapse
Affiliation(s)
- Aileen Hakus
- Department of Psychiatry and PsychotherapyCharité ‐ Universitätsmedizin BerlinBerlinGermany
- Department of BiologyHumboldt UniversityBerlinGermany
| | - Jerome Clifford Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty MannheimUniversity of HeidelbergMannheimGermany
| | - Marta Casquero‐Veiga
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS‐FJD)MadridSpain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC)MadridSpain
| | - Asude Zülal Gül
- Department of Psychiatry and PsychotherapyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Franziska Hintz
- Department of Psychiatry and PsychotherapyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | | | - York Winter
- Department of BiologyHumboldt UniversityBerlinGermany
| | - Josef Priller
- Department of Psychiatry and PsychotherapyCharité ‐ Universitätsmedizin BerlinBerlinGermany
- Neuropsychiatry and Laboratory of Molecular PsychiatryCharité ‐ Universitätsmedizin Berlin, and DZNEBerlinGermany
- Department of Psychiatry and Psychotherapy, School of Medicine and HealthTechnical University of Munich and DZPGMunichGermany
- University of Edinburgh and UK DRIEdinburghUK
| | - Ravit Hadar
- Department of Psychiatry and PsychotherapyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| | - Christine Winter
- Department of Psychiatry and PsychotherapyCharité ‐ Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
3
|
Mahmoudi S, Madden GJ. Using sign tracking to experimentally increase self-control in rats. J Exp Anal Behav 2024; 122:270-281. [PMID: 39406694 PMCID: PMC11570336 DOI: 10.1002/jeab.4211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 08/27/2024] [Indexed: 11/19/2024]
Abstract
Impulsive choice describes a preference for a smaller-sooner reward (SSR) over a larger-later reward (LLR). A large body of research has examined different procedures for decreasing impulsive choice in nonhuman subjects. One limitation of these procedures is the extensive training duration required to achieve the desired results. To address this limitation, the current experiment examined the effects of a brief course of Pavlovian training, designed to establish a conditioned stimulus (CS) that could be strategically used to encourage LLR choices. Forty male Long-Evans rats were randomly assigned to appetitive Pavlovian or unpaired training. A lever insertion signaled an upcoming unconditioned stimulus (i.e., food presentation) for Pavlovian rats and it acquired CS properties. The lever was uncorrelated with the US in the unpaired group, and it did not acquire CS properties. In the subsequent impulsive-choice assessment, the lever from the training phase served as the lever rats pressed to choose the LLR. After an LLR choice, the lever remained in the chamber during the delay to the LLR, just as the SSR lever remained in the chamber until that reward was delivered. Pavlovian-trained rats sign tracked toward the lever CS and made significantly fewer impulsive choices than did rats in the unpaired group.
Collapse
|
4
|
Schettino M, Mauti M, Parrillo C, Ceccarelli I, Giove F, Napolitano A, Ottaviani C, Martelli M, Orsini C. Resting-state brain activation patterns and network topology distinguish human sign and goal trackers. Transl Psychiatry 2024; 14:446. [PMID: 39438457 PMCID: PMC11496639 DOI: 10.1038/s41398-024-03162-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
The "Sign-tracker/Goal-tracker" (ST/GT) is an animal model of individual differences in learning and motivational processes attributable to distinctive conditioned responses to environmental cues. While GT rats value the reward-predictive cue as a mere predictor, ST rats attribute it with incentive salience, engaging in aberrant reward-seeking behaviors that mirror those of impulse control disorders. Given its potential clinical value, the present study aimed to map such model onto humans and investigated resting state functional magnetic resonance imaging correlates of individuals categorized as more disposed to sign-tracking or goal-tracking behavior. To do so, eye-tracking was used during a translationally informed Pavlovian paradigm to classify humans as STs (n = 36) GTs (n = 35) or as Intermediates (n = 33), depending on their eye-gaze towards the reward-predictive cue or the reward location. Using connectivity and network-based approach, measures of resting state functional connectivity and centrality (role of a node as a hub) replicated preclinical findings, suggesting a major involvement of subcortical areas in STs, and dominant cortical involvement in GTs. Overall, the study strengthens the translational value of the ST/GT model, with important implications for the early identification of vulnerable phenotypes for psychopathological conditions such as substance use disorder.
Collapse
Affiliation(s)
- Martino Schettino
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Marika Mauti
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Area of Neuroscience, SISSA, Trieste, Italy
| | | | - Ilenia Ceccarelli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Federico Giove
- Museo storico della fisica e Centro studi e Ricerche Enrico Fermi, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Cristina Ottaviani
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- IRCCS Santa Lucia Foundation, Rome, Italy
| | | | - Cristina Orsini
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
- IRCCS Santa Lucia Foundation, Rome, Italy.
| |
Collapse
|
5
|
Nieves GM, Rahn RM, Baskoylu SN, Liston CM. Divergent reward cue representations in prefrontal cortex underlie differences in reward motivation between adolescents and adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.07.565069. [PMID: 37986789 PMCID: PMC10659319 DOI: 10.1101/2023.11.07.565069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
A prevailing view on postnatal brain development is that brain regions gradually acquire adult functions as they mature. The medial prefrontal cortex (mPFC) regulates reward learning, motivation, and behavioral inhibition, and undergoes a protracted postnatal maturation. During adolescence, reward-seeking behavior is heightened compared to adulthood - a developmental difference that may be driven by a hypoactive mPFC, with decreased top-down control of impulsive reward-seeking. However, this hypothesis has been difficult to test directly, due in part to technical challenges of recording neuronal activity in vivo across this developmental period. Here, using a novel 2-photon imaging-compatible platform for recording mPFC activity during an operant reward conditioning task beginning early in life, we show that the adolescent mPFC is hyper-responsive to reward cues. Distinct populations of mPFC neurons encode reward-predictive cues across development, but representations of no-reward cues and unrewarded outcomes are relatively muted in adolescence. Chemogenetic inhibition of GABAergic neurons decreased motivation in adolescence but not in adulthood. Together, our findings indicate that reward-related activity in the adolescent mPFC does not gradually increase across development. On the contrary, adolescent mPFC neurons are hyper-responsive to reward-related stimuli and encode reward-predictive cues and outcomes through qualitatively different mechanisms relative to the adult mPFC, opening avenues to developing distinct, developmentally informed strategies for modulating reward-seeking behavior in adolescence and adulthood.
Collapse
Affiliation(s)
- Gabriela Manzano Nieves
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Rachel M Rahn
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Saba N Baskoylu
- Picower Institute for Learning & Memory, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Conor M Liston
- Department of Psychiatry and Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
6
|
Stapf CA, Keefer SE, McInerney JM, Cheer JF, Calu DJ. Dorsomedial Striatum CB1R signaling is required for Pavlovian outcome devaluation in male Long Evans rats and reduces inhibitory synaptic transmission in both sexes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592059. [PMID: 38746352 PMCID: PMC11092566 DOI: 10.1101/2024.05.01.592059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Cannabinoid-1 receptor (CB1R) signaling in the dorsal striatum regulates the shift from flexible to habitual behavior in instrumental outcome devaluation. Based on prior work establishing individual, sex, and experience-dependent differences in Pavlovian behaviors, we predicted a role for dorsomedial striatum CB1R signaling in driving rigid responding in Pavlovian autoshaping and outcome devaluation. We trained male and female Long Evans rats in Pavlovian Lever Autoshaping (PLA). We gave intra-dorsomedial striatum (DMS) infusions of the CB1R inverse agonist, rimonabant, before satiety-induced outcome devaluation test sessions, where we sated rats on training pellets or home cage chow and tested them in brief nonreinforced Pavlovian Lever Autoshaping sessions. Overall, inhibition of DMS CB1R signaling prevented Pavlovian outcome devaluation but did not affect behavior in reinforced PLA sessions. Males were sensitive to devaluation while females were not and DMS CB1R inhibition impaired devaluation sensitivity in males. We then investigated how DMS CB1R signaling impacts local inhibitory synaptic transmission in male and female Long Evans rats. We recorded spontaneous inhibitory postsynaptic currents (sIPSC) from DMS neurons at baseline and before and after application of a CB1R agonist, WIN 55,212-2. We found that male rats showed decreased sIPSC frequency compared to females, and that CB1R activation reduced DMS inhibitory transmission independent of sex. Altogether our results demonstrate that DMS CB1Rs regulate Pavlovian devaluation sensitivity and inhibitory synaptic transmission and suggest that basal sex differences in inhibitory synaptic transmission may underly sex differences in DMS function and behavioral flexibility.
Collapse
Affiliation(s)
- Catherine A Stapf
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Sara E Keefer
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Jessica M McInerney
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Joseph F Cheer
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Donna J Calu
- Program in Neuroscience, University of Maryland Baltimore, Baltimore, MD, 21201
- Department of Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201
| |
Collapse
|
7
|
Ferland S, Wang F, De Koninck Y, Ferrini F. An improved conflict avoidance assay reveals modality-specific differences in pain hypersensitivity across sexes. Pain 2024; 165:1304-1316. [PMID: 38277178 PMCID: PMC11090034 DOI: 10.1097/j.pain.0000000000003132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 01/27/2024]
Abstract
ABSTRACT Abnormal encoding of somatosensory modalities (ie, mechanical, cold, and heat) are a critical part of pathological pain states. Detailed phenotyping of patients' responses to these modalities have raised hopes that analgesic treatments could one day be tailored to a patient's phenotype. Such precise treatment would require a profound understanding of the underlying mechanisms of specific pain phenotypes at molecular, cellular, and circuitry levels. Although preclinical pain models have helped in that regard, the lack of a unified assay quantifying detailed mechanical, cold, and heat pain responses on the same scale precludes comparing how analgesic compounds act on different sensory phenotypes. The conflict avoidance assay is promising in that regard, but testing conditions require validation for its use with multiple modalities. In this study, we improve upon the conflict avoidance assay to provide a validated and detailed assessment of all 3 modalities within the same animal, in mice. We first optimized testing conditions to minimize the necessary amount of training and to reduce sex differences in performances. We then tested what range of stimuli produce dynamic stimulus-response relationships for different outcome measures in naive mice. We finally used this assay to show that nerve injury produces modality-specific sex differences in pain behavior. Our improved assay opens new avenues to study the basis of modality-specific abnormalities in pain behavior.
Collapse
Affiliation(s)
| | - Feng Wang
- CERVO Brain Research Centre, Québec, QC, Canada
- Faculty of Dentistry, Université Laval, Québec, QC, Canada
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Francesco Ferrini
- CERVO Brain Research Centre, Québec, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| |
Collapse
|
8
|
McCane AM, Kronheim L, Torrado Pacheco A, Moghaddam B. Adolescents rats engage the orbitofrontal-striatal pathway differently than adults during impulsive actions. Sci Rep 2024; 14:8605. [PMID: 38615065 PMCID: PMC11016110 DOI: 10.1038/s41598-024-58648-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 04/02/2024] [Indexed: 04/15/2024] Open
Abstract
Adolescence is characterized by increased impulsive and risk-taking behaviors. To better understand the neural networks that subserves impulsivity in adolescents, we used a reward-guided behavioral model that quantifies age differences in impulsive actions in adult and adolescent rats of both sexes. Using chemogenetics, we identified orbitofrontal cortex (OFC) projections to the dorsomedial striatum (DMS) as a critical pathway for age-related execution of impulsive actions. Simultaneous recording of single units and local field potentials in the OFC and DMS during task performance revealed an overall muted response in adolescents during impulsive actions as well as age-specific differences in theta power and OFC-DMS functional connectivity. Collectively, these data reveal that the OFC-DMS pathway is critical for age-differences in reward-guided impulsive actions and provide a network mechanism to enhance our understanding of how adolescent and adult brains coordinate behavioral inhibition.
Collapse
Affiliation(s)
| | - Lo Kronheim
- Oregon Health and Science University, Portland, OR, USA
| | | | - Bita Moghaddam
- Oregon Health and Science University, Portland, OR, USA.
| |
Collapse
|
9
|
Klein SR, Blum K, Gold MS, Thanos PK. Chronic Methylphenidate Effects on Brain Gene Expression: An Exploratory Review. Psychol Res Behav Manag 2024; 17:577-592. [PMID: 38379637 PMCID: PMC10876479 DOI: 10.2147/prbm.s445719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/05/2024] [Indexed: 02/22/2024] Open
Abstract
Methylphenidate (MP) is a psychostimulant commonly prescribed for individuals with attention deficit hyperactivity disorder (ADHD) but it is also taken with and without a prescription for performance enhancement. Prior research has characterized the effects of MP on behavior, cognition, and neurochemistry. This exploratory review covers the uses of MP and examined the effects of MP on gene expression in the brain following exposure. Overall, MP causes a wide-spread potentiation of genes, in a region-specific manner; consequently, inducing neuronal alterations, such as synaptic plasticity and transmission, resulting in observed behaviors and affects. Monoamine neurotransmitters and post-synaptic density protein genes generally had a potentiating effect in gene expression after exposure to MP.
Collapse
Affiliation(s)
- Shannon Rae Klein
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
| | - Kenneth Blum
- Center for Sports, Exercise, & Mental Health, Western University Health Sciences, Pomona, CA, 91766, USA
| | - Mark S Gold
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Panayotis K Thanos
- Behavioral Neuropharmacology and Neuroimaging Laboratory on Addictions (BNNLA), Clinical Research Institute on Addictions, Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, USA
- Department of Psychology, University at Buffalo, Buffalo, NY, 14203, USA
| |
Collapse
|
10
|
Juraska JM. The last stage of development: The restructuring and plasticity of the cortex during adolescence especially at puberty. Dev Psychobiol 2024; 66:e22468. [PMID: 38351459 PMCID: PMC10868901 DOI: 10.1002/dev.22468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
There is considerable evidence of reorganization in the prefrontal cortex during adolescence in humans, as well as in rodents, where the cellular basis can be explored. Studies from my laboratory in the rat medial prefrontal cortex are reviewed here. In general, growth predominates before puberty. Pruning mainly occurs at puberty and after with decreases in the number of synapses, dendrites, and neurons. Perineuronal nets, extracellular structures that control plasticity, are pruned peripubertally only in female rats, which may further open the adolescent prefrontal cortex to environmental influences. This is supported by our recent evidence that exposure to mild stress early, but not late, in adolescence decreases prepulse inhibition. Additionally, exposure to methamphetamine in females early in adolescence increases the number of a major class of inhibitory interneurons, parvalbumin neurons, while the opposite occurs late in adolescence. In females, even estrogen receptor beta mRNA decreases at puberty in the prefrontal cortex. Interestingly, rats of both sexes perform better after puberty on a test of cognitive flexibility in the water maze. Thus, evidence is accruing that adolescence is not a single entity but rather an ongoing set of processes, and environmental effects will differ depending on timing and sex.
Collapse
Affiliation(s)
- Janice M. Juraska
- Department of Psychology & Neuroscience Program, University of Illinois at Urbana-Champaign
| |
Collapse
|
11
|
Hynes TJ, Chernoff CS, Hrelja KM, Tse MTL, Avramidis DK, Lysenko-Martin MR, Calderhead L, Kaur S, Floresco SB, Winstanley CA. Win-Paired Cues Modulate the Effect of Dopamine Neuron Sensitization on Decision Making and Cocaine Self-administration: Divergent Effects Across Sex. Biol Psychiatry 2024; 95:220-230. [PMID: 37673411 DOI: 10.1016/j.biopsych.2023.08.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/10/2023] [Accepted: 08/22/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Both psychostimulant use and engagement with probabilistic schedules of reward sensitize the mesocorticolimbic dopamine (DA) system. Such behaviors may act synergistically to explain the high comorbidity between stimulant use and gambling disorder. The salient audiovisual stimuli of modern electronic gambling may exacerbate the situation. METHODS To probe these interactions, we sensitized ventral tegmental area DA neurons via chronic chemogenetic stimulation while rats (n = 134) learned a rat gambling task in the presence or absence of casino-like cues. The same rats then learned to self-administer cocaine. In a separate cohort (n = 25), we confirmed that our chemogenetic methods sensitized the locomotor response to cocaine and potentiated phasic excitability of ventral tegmental area DA neurons through in vivo electrophysiological recordings. RESULTS In the absence of cues, sensitization promoted risk taking in both sexes. When rewards were cued, sensitization expedited the development of a risk-preferring phenotype in males while attenuating cue-induced risk taking in females. CONCLUSIONS While these results provide further confirmation that ventral tegmental area DA neurons critically modulate risky decision making, they also reveal stark sex differences in the decisional impact that dopaminergic signals exert when winning outcomes are cued. As previously observed, risky decision making on the cued rat gambling task increased as both males and females learned to self-administer cocaine. The combination of DA sensitization and win-paired cues while gambling led to significantly greater cocaine taking, but these rats did not show any increase in risky choice as a result. Therefore, cocaine and heavily cued gambles may partially substitute for each other once the DA system has been rendered labile through sensitization, thereby compounding addiction risk across modalities.
Collapse
Affiliation(s)
- Tristan J Hynes
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Chloe S Chernoff
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kelly M Hrelja
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Maric T L Tse
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Dimitrios K Avramidis
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Melanie R Lysenko-Martin
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lucas Calderhead
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sukhbir Kaur
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Stan B Floresco
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada
| | - Catharine A Winstanley
- Department of Psychology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
12
|
Bien E, Smith K. The role of sex on sign-tracking acquisition and outcome devaluation sensitivity in Long Evans rats. Behav Brain Res 2023; 455:114656. [PMID: 37683812 PMCID: PMC10591930 DOI: 10.1016/j.bbr.2023.114656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
Cues that predict rewards can trigger reward-seeking behaviors but also can, in some cases, become targets of motivation themselves. One behavioral phenomenon that captures this idea is sign-tracking in which animals, including humans, interact with reward-predictive cues even though it is not necessary to do so. Sign-tracking in rats has been studied in the domain of motivation and in how motivated behaviors can or cannot become excessive and habit-like over time. Many prior studies look at sign-tracking examine this behavior in male subjects, but there are few papers that look at this behavior in female subjects. Moreover, it is unknown where there might be sex-related variation in how flexible sign-tracking is when faced with changing reward values. Therefore, we asked if there were sex differences in the acquisition of sign-tracking behavior and if there were any sex differences in how sensitive animals were in their sign-tracking following reward devaluation. In contrast to previous reports, we found that males and females show no differences in how they acquire sign-tracking and in ultimate sign-tracking levels following training. Additionally, we found no difference in how quickly males and females learned to devalue the food reward, and we found no differences in sign-tracking levels by sex following outcome devaluation. We believe that this is primarily due to our experiment being performed in the Long Evans strain but also believe that there are many other factors contributing to differences between our study and previous work.
Collapse
Affiliation(s)
- Elizabeth Bien
- Department of Psychological and Brain Sciences, 6207 Moore Hall, Dartmouth College, Hanover, NH 03755, USA.
| | - Kyle Smith
- Department of Psychological and Brain Sciences, 6207 Moore Hall, Dartmouth College, Hanover, NH 03755, USA
| |
Collapse
|
13
|
Sood A, Richard JM. Sex-biased effects of outcome devaluation by sensory-specific satiety on Pavlovian-conditioned behavior. Front Behav Neurosci 2023; 17:1259003. [PMID: 37860163 PMCID: PMC10582633 DOI: 10.3389/fnbeh.2023.1259003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/12/2023] [Indexed: 10/21/2023] Open
Abstract
Goal-directed behavior relies on accurate mental representations of the value of expected outcomes. Disruptions to this process are a central feature of several neuropsychiatric disorders, including addiction. Goal-directed behavior is most frequently studied using instrumental paradigms paired with outcome devaluation, but cue-evoked behaviors in Pavlovian settings can also be goal-directed and therefore sensitive to changes in outcome value. Emerging literature suggests that male and female rats may differ in the degree to which their Pavlovian-conditioned responses are goal-directed, but interpretation of these findings is complicated by the tendency of female and male rats to engage in distinct types of Pavlovian responses when trained with localizable cues. Here, we used outcome devaluation via sensory-specific satiety to assess the behavioral responses in male and female Long Evans rats trained to respond to an auditory CS (conditioned stimulus) in a Pavlovian-conditioning paradigm. We found that satiety-induced devaluation led to a decrease in behavioral responding to the reward-predictive CS, with males showing an effect on both port entry latency and probability and females showing an effect only on port entry probability. Overall, our results suggest that outcome devaluation affects Pavlovian-conditioned responses in both male and female rats, but that females may be less sensitive to outcome devaluation.
Collapse
Affiliation(s)
- Ankit Sood
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
| | - Jocelyn M. Richard
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
14
|
Sood A, Richard JM. Outcome devaluation by sensory-specific satiety alters Pavlovian-conditioned behavior in male and female rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547810. [PMID: 37461584 PMCID: PMC10349988 DOI: 10.1101/2023.07.05.547810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Goal-directed behavior relies on accurate mental representations of the value of expected outcomes. Disruptions to this process are a central feature of several neuropsychiatric disorders, including addiction. Goal-directed behavior is most frequently studied using instrumental paradigms paired with outcome devaluation, but cue-evoked behaviors in Pavlovian settings can also be goal-directed and therefore sensitive to changes in outcome value. Emerging literature suggests that male and female rats may differ in the degree to which their Pavlovian-conditioned responses are goal-directed, but interpretation of these findings is complicated by the tendency of female and male rats to engage in distinct types of Pavlovian responses when trained with localizable cues. Here, we used outcome devaluation via sensory-specific satiety to assess the behavioral responses in male and female Long Evans rats trained to respond to an auditory CS (conditioned stimulus) in a Pavlovian-conditioning paradigm. We found that satiety-induced devaluation led to a decrease in behavioral responding to the reward-predictive CS, with males showing an effect on both port entry latency and probability and females showing an effect only on port entry probability. Overall, our results suggest that outcome devaluation affects Pavlovian-conditioned responses in both male and female rats, but that females may be less sensitive to outcome devaluation.
Collapse
Affiliation(s)
- Ankit Sood
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, 55455
| | - Jocelyn M. Richard
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, 55455
- Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, 55455
| |
Collapse
|
15
|
Agee LA, Ortega ME, Lee HJ, Monfils MH. Observing a trained demonstrator influences associative appetitive learning in rats. ROYAL SOCIETY OPEN SCIENCE 2023; 10:221224. [PMID: 37063993 PMCID: PMC10090881 DOI: 10.1098/rsos.221224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 03/22/2023] [Indexed: 06/19/2023]
Abstract
The ability to acquire information about the environment through social observation or instruction is an essential form of learning in humans and other animals. Here, we assessed the ability of rats to acquire an association between a light stimulus and the presentation of a reward that is either hidden (sucrose solution) or visible (food pellet) via observation of a trained demonstrator. Subsequent training of observers on the light-reward association indicated that while observation alone was not sufficient for observers to acquire the association, contact with the reward location was higher in observers that were paired with a demonstrator. However, this was only true when the light cue predicted a sucrose reward. Additionally, we found that in the visible reward condition, levels of demonstrator orienting and food cup contact during the observation period tended to be positively correlated with the corresponding behaviour of their observer. This relationship was only seen during later sessions of observer training. Together, these results suggest that while our models were not sufficient to induce associative learning through observation alone, demonstrator behaviour during observation did influence how their paired observer's behavioural response to the cue evolved over the course of direct individual training.
Collapse
Affiliation(s)
- Laura A. Agee
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX 78712-1043, USA
| | - Miriam E. Ortega
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX 78712-1043, USA
| | - Hongjoo J. Lee
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX 78712-1043, USA
| | - Marie-H. Monfils
- Department of Psychology, The University of Texas at Austin, 108 E. Dean Keeton Stop A8000, Austin, TX 78712-1043, USA
| |
Collapse
|
16
|
Granata L, Gildawie KR, Ismail N, Brenhouse HC, Kopec AM. Immune signaling as a node of interaction between systems that sex-specifically develop during puberty and adolescence. Dev Cogn Neurosci 2022; 57:101143. [PMID: 35933922 PMCID: PMC9357835 DOI: 10.1016/j.dcn.2022.101143] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/08/2022] [Accepted: 08/01/2022] [Indexed: 01/18/2023] Open
Abstract
Adolescence is pivotal for neural and behavioral development across species. During this period, maturation occurs in several biological systems, the most well-recognized being activation of the hypothalamic-pituitary-gonadal axis marking pubertal onset. Increasing comparative studies of sex differences have enriched our understanding of systems integration during neurodevelopment. In recent years, immune signaling has emerged as a key node of interaction between a variety of biological signaling processes. Herein, we review the age- and sex-specific changes that occur in neural, hypothalamic-pituitary, and microbiome systems during adolescence. We then describe how immune signaling interacts with these systems, and review recent preclinical evidence indicating that immune signaling may play a central role in integrating changes in their typical and atypical development during adolescence. Finally, we discuss the translational relevance of these preclinical studies to human health and wellness.
Collapse
Affiliation(s)
- Lauren Granata
- Northeastern University, 125 Nightingale Hall, Boston, MA 02115, USA.
| | - Kelsea R Gildawie
- Tufts University Cummings School of Veterinary Medicine, 200 Westboro Rd. North Grafton, MA 01536, USA.
| | - Nafissa Ismail
- University of Ottawa, 136 Jean-Jacques Lussier, Vanier Hall 2076A, Ottawa, ON K1N 6N5 Canada.
| | | | - Ashley M Kopec
- Albany Medical College, 43 New Scotland Ave., Albany, NY 12208, USA.
| |
Collapse
|
17
|
Grimm JW, North K, Hopkins M, Jiganti K, McCoy A, Šulc J, MacDougall D, Sauter F. Sex differences in sucrose reinforcement in Long-Evans rats. Biol Sex Differ 2022; 13:3. [PMID: 35016712 PMCID: PMC8753819 DOI: 10.1186/s13293-022-00412-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 01/02/2022] [Indexed: 12/21/2022] Open
Abstract
Background There are sex differences in addiction behaviors. To develop a pre-clinical animal model to investigate this, the present study examined sex differences in sucrose taking and seeking using Long-Evans rats. Methods Five experiments were conducted using separate groups of subjects. The first two examined sucrose or saccharin preference in two-bottle home cage choice tests. Experiment three assessed sucrose intake in a binge model with sucrose available in home cage bottles. Experiments four and five utilized operant-based procedures. In experiment four rats responded for sucrose on fixed and progressive ratio (FR, PR) schedules of reinforcement over a range of concentrations of sucrose. A final component of experiment four was measuring seeking in the absence of sucrose challenged with the dopamine D1 receptor antagonist SCH23390. Experiment five assessed responding for water on FR and PR schedules of reinforcement. Results When accounting for body weight, female rats consumed more sucrose than water; but there was no sex difference in saccharin preference over a range of saccharin concentrations. When accounting for body weight, females consumed more sucrose than males in the binge model, and only females increased binge intake over 14 days of the study. Females responded at higher rates for sucrose under both FR and PR schedules of reinforcement. Females responded at higher rates in extinction (seeking); SCH23390 reduced sucrose seeking of both females and males. Females responded at higher rates for water on FR and PR schedules than males, although rates of responding were low and decreased over sessions. Conclusions Across bottle-choice, binge intake, and operant procedures, female Long-Evans rats consumed more sucrose and responded at higher rates for sucrose. Although females also responded more for water, the vigor of responding did not explain the consistent sex difference in sucrose taking and seeking. The sex difference in sucrose taking was also not explained by sweet preference, as there was no sex difference in saccharin preference. These data provide a pre-clinical model to further evaluate sex differences in addiction behaviors and manipulations designed to reduce them. Supplementary Information The online version contains supplementary material available at 10.1186/s13293-022-00412-8.
Collapse
|
18
|
Dopamine sensitization by methamphetamine treatment prior to instrumental training delays the transition into habit in female rats. Behav Brain Res 2021; 418:113636. [PMID: 34687828 DOI: 10.1016/j.bbr.2021.113636] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/17/2021] [Accepted: 10/18/2021] [Indexed: 11/23/2022]
Abstract
Early in instrumental learning, behavior is goal-directed and sensitive to changes in the value of the instrumental outcome. With sufficient repetition, responding becomes insensitive to changes in outcome value, or habitual. We have previously found that females transition into habit over a distinct range of training from 120 to 160 reinforced responses. This low level of instrumental training is markedly less than what has been shown to support habitual responding in male rats. To begin to investigate the early development of habit in females, we conducted a series of experiments in which we pretreated female rats with methamphetamine (METH) with the aim of sensitizing central dopamine, a major modulator of striatal function, prior to instrumental nose-poke training at the beginning and at the endpoint of the transition range in females. Following training, we tested for sensitivity to reinforcer devaluation (RD), which was conducted by repeatedly pairing reinforcers previously earned during training with lithium chloride (LiCl)-induced illness. As a counterpoint, a series of similar experiments was conducted separately in male rats. Additionally, in order to ascertain the validity of using nose-poke as an instrumental response, we compared sensitivity to devaluation between the Pavlovian approach towards the food magazine and the nose-poke response. In females, Vehicle groups responded in a habitual manner at both training levels (120 and 160 reinforced responses), whereas METH groups remained sensitive to devaluation. This suggests that increasing central dopamine delays habit formation in female rats. In male rats, Vehicle groups demonstrated goal-directed responding following training with 120 and 320 reinforced responses, and marginally goal-directed responding,with 160. METH-pretreated males were sensitive to devaluation at the 120 and 160 training levels, however, following more extended training to 320 reinforced responses, METH-pretreated males responded in a habitual manner, indicating that increasing central dopamine can advance habit formation in male rats. Overall, these results suggest that METH pretreatment maintains goal-directed responding in female rats when they are typically transitioning to habitual control of instrumental behavior and can advance habit formation in male rats given sufficient instrumental training. In addition, we found differential RD sensitivity of the nose-poke response used during instrumental training compared to Pavlovian approach towards the food magazine, confirming that there is a distinction between these two behaviors and that nose-poking is a valid instrumental response.
Collapse
|
19
|
Joue G, Chakroun K, Bayer J, Gläscher J, Zhang L, Fuss J, Hennies N, Sommer T. Sex Differences and Exogenous Estrogen Influence Learning and Brain Responses to Prediction Errors. Cereb Cortex 2021; 32:2022-2036. [PMID: 34649284 DOI: 10.1093/cercor/bhab334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 11/14/2022] Open
Abstract
Animal studies show marked sex differences as well as effects of estrogen (E2) in the mesocorticolimbic dopaminergic (DA) pathways, which play a critical role in reward processing and reinforcement learning and are also implicated in drug addiction. In this computational pharmacological fMRI study, we investigate the effects of both factors, sex and estrogen, on reinforcement learning and the dopaminergic system in humans; 67 male and 64 naturally cycling female volunteers, the latter in their low-hormone phase, were randomly assigned, double-blind, to take E2 or placebo. They completed a reinforcement learning task in the MRI scanner for which we have previously shown reward prediction error (RPE)-related activity to be dopaminergic. We found RPE-related brain activity to be enhanced in women compared with men and to a greater extent when E2 levels were elevated in both sexes. However, both factors, female sex and E2, slowed adaptation to RPEs (smaller learning rate). This discrepancy of larger RPE-related activity yet smaller learning rates can be explained by organizational sex differences and activational effects of circulating E2, which both affect DA release differently to DA receptor binding capacities.
Collapse
Affiliation(s)
- Gina Joue
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Karima Chakroun
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Janine Bayer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jan Gläscher
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Lei Zhang
- Social, Cognitive and Affective Neuroscience Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, 1010 Vienna, Austria
| | - Johannes Fuss
- Institute for Sex Research, Sexual Medicine and Forensic Psychiatry, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nora Hennies
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tobias Sommer
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
20
|
Taheri M, Afarinesh MR, Meftahi GH, Karimi A, Haghpanah T. Levothyroxine therapy attenuates anxiety-like states induced by mild chronically of neonatal hypothyroidism in both male and female rats. TOXIN REV 2021. [DOI: 10.1080/15569543.2020.1741642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Mahdieh Taheri
- Student Research Committee, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
- Department of biology, Payame Noor University, Tehran, Iran
| | - Mohammad Reza Afarinesh
- Kerman Neuroscience Research Center, Institute of Neuropharmachology, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Akbar Karimi
- Department of biology, Payame Noor University, Tehran, Iran
| | - Tahereh Haghpanah
- Department of anatomy, School of medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
21
|
Female mice are more prone to develop an addictive-like phenotype for sugar consumption. Sci Rep 2021; 11:7364. [PMID: 33795734 PMCID: PMC8016940 DOI: 10.1038/s41598-021-86797-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
The concept of “sugar addiction” is gaining increasing attention in both the lay media and scientific literature. However, the concept of sugar addiction is controversial and only a few studies to date have attempted to determine the “addictive” properties of sugar using rigorous scientific criteria. Here we set out to systematically test the addictive properties of sugar in male and female mice using established paradigms and models from the drug addiction field. Male and female C57BL/6N (8–10 weeks old) were evaluated in 4 experimental procedures to study the addictive properties of sugar: (i) a drinking in the dark (DID) procedure to model sugar binging; (ii) a long-term free choice home cage drinking procedure measuring the sugar deprivation effect (SDE) following an abstinence phase; (iii) a long-term operant sugar self-administration with persistence, motivation and compulsivity measures and (iv) intracranial self-stimulation (ICSS). Female mice were more vulnerable to the addictive properties of sugar than male mice, showing higher binge and long-term, excessive drinking, a more pronounced relapse-like drinking following deprivation, and higher persistence and motivation for sugar. No sex differences were seen in a compulsivity test or reward sensitivity measured using ICSS following extended sugar consumption. This study demonstrates the occurrence of an addictive-like phenotype for sugar in male and female mice, similar to drugs of abuse, and suggests sex-dependent differences in the development of sugar addiction.
Collapse
|
22
|
Margetts-Smith G, Macnaghten AI, Brebner LS, Ziminski JJ, Sieburg MC, Grimm JW, Crombag HS, Koya E. Acute, but not longer-term, exposure to environmental enrichment attenuates Pavlovian cue-evoked conditioned approach and Fos expression in the prefrontal cortex in mice. Eur J Neurosci 2021; 53:2580-2591. [PMID: 33565633 PMCID: PMC8085094 DOI: 10.1111/ejn.15146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/03/2021] [Accepted: 02/02/2021] [Indexed: 12/04/2022]
Abstract
Exposure to environmental enrichment can modify the impact of motivationally relevant stimuli. For instance, previous studies in rats have found that even a brief, acute (~1 day), but not chronic, exposure to environmentally enriched (EE) housing attenuates instrumental lever pressing for sucrose-associated cues in a conditioned reinforcement setup. Moreover, acute EE reduces corticoaccumbens activity, as measured by decreases in expression of the neuronal activity marker "Fos." Currently, it is not known whether acute EE also reduces sucrose seeking and corticoaccumbens activity elicited by non-contingent or "forced" exposure to sucrose cues, which more closely resembles cue exposure encountered in daily life. We therefore measured the effects of acute/intermittent (1 day or 6 day of EE prior to test day) versus chronic (EE throughout conditioning lasting until test day) EE on the ability of a Pavlovian sucrose cue to elicit sucrose seeking (conditioned approach) and Fos expression in the medial prefrontal cortex (mPFC), orbitofrontal cortex (OFC), and nucleus accumbens (NAc) in mice. One day, but not 6 day or chronic EE , reduced sucrose seeking and Fos in the deep layers of the dorsal mPFC. By contrast, 1 day, 6 day, and chronic EE all reduced Fos in the shallow layers of the OFC. None of the EE manipulations modulated NAc Fos expression. We reveal how EE reduces behavioral reactivity to sucrose cues by reducing activity in select prefrontal cortical brain areas. Our work further demonstrates the robustness of EE in its ability to modulate various forms of reward-seeking across species.
Collapse
Affiliation(s)
- Gabriella Margetts-Smith
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
- University of Exeter College of Medicine and Health, Hatherly Laboratories, Exeter, UK
| | | | - Leonie S. Brebner
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
- Department of Neurochemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Joseph J. Ziminski
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Meike C. Sieburg
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
- Department of Biomedicine/DANDRITE, Aarhus University, Aarhus C, Denmark
| | - Jeffrey W. Grimm
- Department of Psychology and Program in Behavioral Neuroscience, Western Washington University, Bellingham, WA, USA
| | - Hans S. Crombag
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
| | - Eisuke Koya
- Sussex Neuroscience, School of Psychology, University of Sussex, Falmer, UK
| |
Collapse
|
23
|
White EJ, Kuplicki R, Stewart JL, Kirlic N, Yeh HW, Paulus MP, Aupperle RL. Latent variables for region of interest activation during the monetary incentive delay task. Neuroimage 2021; 230:117796. [PMID: 33503481 DOI: 10.1016/j.neuroimage.2021.117796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/27/2020] [Accepted: 01/19/2021] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND The Monetary Incentive Delay task (MID) has been used extensively to probe anticipatory reward processes. However, individual differences evident during this task may relate to other constructs such as general arousal or valence processing (i.e., anticipation of negative versus positive outcomes). This investigation used a latent variable approach to parse activation patterns during the MID within a transdiagnostic clinical sample. METHODS Participants were drawn from the first 500 individuals recruited for the Tulsa-1000 (T1000), a naturalistic longitudinal study of 1000 participants aged 18-55 (n = 476 with MID data). We employed a multiview latent analysis method, group factor analysis, to characterize factors within and across variable sets consisting of: (1) region of interest (ROI)-based blood oxygenation level-dependent (BOLD) contrasts during reward and loss anticipation; and (2) self-report measures of positive and negative valence and related constructs. RESULTS Three factors comprised of ROI indicators emerged to accounted for >43% of variance and loaded on variables representing: (1) general arousal or general activation; (2) valence, with dissociable responses to anticipation of win versus loss; and (3) region-specific activation, with dissociable activation in salience versus perceptual brain networks. Two additional factors were comprised of self-report variables, which appeared to represent arousal and valence. CONCLUSIONS Results indicate that multiview techniques to identify latent variables offer a novel approach for differentiating brain activation patterns during task engagement. Such approaches may offer insight into neural processing patterns through dimension reduction, be useful for probing individual differences, and aid in the development of optimal explanatory or predictive frameworks.
Collapse
Affiliation(s)
- Evan J White
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA.
| | - Rayus Kuplicki
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA
| | - Jennifer L Stewart
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA; Department of Community Medicine, Oxley Health Sciences, University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Namik Kirlic
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA
| | - Hung-Wen Yeh
- Pediatrics Department, Children's Mercy Kansas City, 2401 Gilham Road, Kansas City, MO 64108, USA
| | -
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA; Department of Community Medicine, Oxley Health Sciences, University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| | - Robin L Aupperle
- Laureate Institute for Brain Research, 6655 South Yale Avenue, Tulsa, OK 74136, USA; Department of Community Medicine, Oxley Health Sciences, University of Tulsa, 800 South Tucker Drive, Tulsa, OK 74104, USA
| |
Collapse
|
24
|
Thompson JB, Daniel AM, Rushing BG, Papini MR. Recovery profiles from reward downshift are correlated with operant licking maintained by alcohol, but not with genetic variation in the mu opioid receptor. Physiol Behav 2021; 228:113192. [PMID: 33011231 DOI: 10.1016/j.physbeh.2020.113192] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/17/2020] [Accepted: 09/29/2020] [Indexed: 01/30/2023]
Abstract
After ten 5-min sessions of access to 32% sucrose, a reward downshift (RD) to 2% sucrose induces a transient rejection of the reward. Animals were segregated according to the speed of recovery from RD into Fast-recovery and Slow-recovery subgroups. Animals were subsequently trained in an operant licking (OL) task in which licking at an empty tube provided 10 s of access to a second tube containing 66% alcohol. Licking on the first tube was subjected to a progressive ratio (PR) schedule with a step of 4 licks. Fast-recovery animals (both males and females) licked to a higher ratio than Slow-recovery animals. Animals were also exposed to a well-lit open field (OF) for 20 min. Fast- and Slow-recovery males and females exhibited equal levels of activity in the OF. Tissue samples from tails were assessed for two well-known allelic variations of the human opioid receptor gene, OPRM1, known to affect mu opioid sensitivity: The C17T and A118G single nucleotide polymorphisms. There was no evidence of a relationship between genotype and behavior, suggesting that these genetic mechanisms in humans do not account for the individual differences in recovery from RD and OL for alcohol in rats.
Collapse
Affiliation(s)
| | - Alan M Daniel
- Department of Science and Math, Texas A&M University-San Antonio, United States
| | - Brenda G Rushing
- Department of Science and Math, Texas A&M University-San Antonio, United States
| | - Mauricio R Papini
- Department of Psychology, Texas Christian University, United States.
| |
Collapse
|
25
|
Westbrook SR, Carrica LK, Banks A, Gulley JM. AMPed-up adolescents: The role of age in the abuse of amphetamines and its consequences on cognition and prefrontal cortex development. Pharmacol Biochem Behav 2020; 198:173016. [PMID: 32828971 DOI: 10.1016/j.pbb.2020.173016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 01/24/2023]
Abstract
Adolescent use of amphetamine and its closely related, methylated version methamphetamine, is alarmingly high in those who use drugs for nonmedical purposes. This raises serious concerns about the potential for this drug use to have a long-lasting, detrimental impact on the normal development of the brain and behavior that is ongoing during adolescence. In this review, we explore recent findings from both human and laboratory animal studies that investigate the consequences of amphetamine and methamphetamine exposure during this stage of life. We highlight studies that assess sex differences in adolescence, as well as those that are designed specifically to address the potential unique effects of adolescent exposure by including groups at other life stages (typically young adulthood). We consider epidemiological studies on age and sex as vulnerability factors for developing problems with the use of amphetamines, as well as human and animal laboratory studies that tap into age differences in use, its short-term effects on behavior, and the long-lasting consequences of this exposure on cognition. We also focus on studies of drug effects in the prefrontal cortex, which is known to be critically important for cognition and is among the later maturing brain regions. Finally, we discuss important issues that should be addressed in future studies so that the field can further our understanding of the mechanisms underlying adolescent use of amphetamines and its outcomes on the developing brain and behavior.
Collapse
Affiliation(s)
- Sara R Westbrook
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Lauren K Carrica
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Asia Banks
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Joshua M Gulley
- Department of Psychology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
26
|
Nicotine Pretreatment Increases Sensitivity to Reward Devaluation in Extinction. PSYCHOLOGICAL RECORD 2020. [DOI: 10.1007/s40732-020-00422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Westbrook SR, Dwyer MR, Cortes LR, Gulley JM. Extended access self-administration of methamphetamine is associated with age- and sex-dependent differences in drug taking behavior and recognition memory in rats. Behav Brain Res 2020; 390:112659. [PMID: 32437887 PMCID: PMC7307427 DOI: 10.1016/j.bbr.2020.112659] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/31/2020] [Accepted: 04/17/2020] [Indexed: 12/24/2022]
Abstract
Individuals who begin drug use during early adolescence experience more adverse consequences compared to those initiating later, especially if they are female. The mechanisms for these age and gender differences remain obscure, but studies in rodents suggest that psychostimulants may disrupt the normal ontogeny of dopamine and glutamate systems in the prefrontal cortex (PFC). Here, we studied Sprague-Dawley rats of both sexes who began methamphetamine (METH, i.v.) self-administration in adolescence (postnatal [P] day 41) or adulthood (P91). Rats received seven daily 2-h self-administration sessions with METH or saccharin as the reinforcer, followed by 14 daily long access (LgA; 6 h) sessions. After 7 and 14 days of abstinence, novel object (NOR) or object-in-place (OiP) recognition was assessed. PFC and nucleus accumbens were collected 7 days after the final cognitive test and NMDA receptor subunits and dopamine D1 receptor expression was measured. We found that during LgA sessions, adolescent-onset rats escalated METH intake more rapidly than adult-onset rats, with adolescent-onset females earning the most infusions. Adolescent-onset rats with a history of METH self-administration exhibited modest deficits in OiP compared to their adult-onset counterparts, but there was no sex difference and self-administration groups did not differ from naïve control rats. All rats displayed intact novel object recognition memory. We found no group differences in D1 and NMDA receptor expression, suggesting no long-lasting alteration of ontogenetic expression profiles. Our findings suggest that adolescent-onset drug use is more likely to lead to compulsive-like patterns of drug-taking and modest dysfunction in PFC-dependent cognition.
Collapse
Affiliation(s)
- Sara R Westbrook
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Megan R Dwyer
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Laura R Cortes
- Department of Psychology, University of Illinois at Urbana-Champaign, USA
| | - Joshua M Gulley
- Department of Psychology, University of Illinois at Urbana-Champaign, USA; Neuroscience Program, University of Illinois at Urbana-Champaign, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA.
| |
Collapse
|
28
|
Assari S, Boyce S, Akhlaghipour G, Bazargan M, Caldwell CH. Reward Responsiveness in the Adolescent Brain Cognitive Development (ABCD) Study: African Americans' Diminished Returns of Parental Education. Brain Sci 2020; 10:E391. [PMID: 32575523 PMCID: PMC7349244 DOI: 10.3390/brainsci10060391] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 02/08/2023] Open
Abstract
(1) Background: Reward responsiveness (RR) is a risk factor for high-risk behaviors such as aggressive behaviors and early sexual initiation, which are all reported to be higher in African American and low socioeconomic status adolescents. At the same time, parental education is one of the main drivers of reward responsiveness among adolescents. It is still unknown if some of this racial and economic gap is attributed to weaker effects of parental education for African Americans, a pattern also called minorities' diminished returns (MDRs). (2) Aim: We compared non-Hispanic White and African American adolescents for the effects of parent education on adolescents RR, a psychological and cognitive construct that is closely associated with high-risk behaviors such as the use of drugs, alcohol, and tobacco. (3) Methods: This was a cross-sectional analysis that included 7072 adolescents from the adolescent brain cognitive development (ABCD) study. The independent variable was parent education. The main outcome as adolescents' RR measured by the behavioral inhibition system (BIS) and behavioral activation system (BAS) measure. (4) Results: In the overall sample, high parent education was associated with lower levels of RR. In the overall sample, we found a statistically significant interaction between race and parent education on adolescents' RR. The observed statistical interaction term suggested that high parent education is associated with a weaker effect on RR for African American than non-Hispanic White adolescents. In race-stratified models, high parent education was only associated with lower RR for non-Hispanic White but not African American adolescents. (5) Conclusion: Parent education reduces RR for non-Hispanic White but not African American adolescents. To minimize the racial gap in brain development and risk-taking behaviors, we need to address societal barriers that diminish the returns of parent education and resources in African American families. We need public and social policies that target structural and societal barriers, such as the unequal distribution of opportunities and resources. To meet such an aim, we need to reduce the negative effects of social stratification, segregation, racism, and discrimination in the daily lives of African American parents and families. Through an approach like this, African American families and parents can effectively mobilize their resources and utilize their human capital to secure the best possible tangible outcomes for their adolescents.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Family Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA;
| | - Shanika Boyce
- Department of Pediatrics, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA;
| | - Golnoush Akhlaghipour
- Department of Neurology, University of California Los Angeles, Los Angeles, CA 90095, USA;
| | - Mohsen Bazargan
- Department of Family Medicine, Charles R Drew University of Medicine and Science, Los Angeles, CA 90059, USA;
- Department of Family Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Cleopatra H. Caldwell
- Center for Research on Ethnicity, Culture, and Health (CRECH), School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA;
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI 48104, USA
| |
Collapse
|
29
|
Delevich K, Okada NJ, Rahane A, Zhang Z, Hall CD, Wilbrecht L. Sex and Pubertal Status Influence Dendritic Spine Density on Frontal Corticostriatal Projection Neurons in Mice. Cereb Cortex 2020; 30:3543-3557. [PMID: 32037445 DOI: 10.1093/cercor/bhz325] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
In humans, nonhuman primates, and rodents, the frontal cortices exhibit grey matter thinning and dendritic spine pruning that extends into adolescence. This maturation is believed to support higher cognition but may also confer psychiatric vulnerability during adolescence. Currently, little is known about how specific cell types in the frontal cortex mature or whether puberty plays a role in the maturation of some cell types but not others. Here, we used mice to characterize the spatial topography and adolescent development of cross-corticostriatal (cSTR) neurons that project through the corpus collosum to the dorsomedial striatum. We found that apical spine density on cSTR neurons in the medial prefrontal cortex decreased significantly between late juvenile (P29) and young adult time points (P60), with females exhibiting higher spine density than males at both ages. Adult males castrated prior to puberty onset had higher spine density compared to sham controls. Adult females ovariectomized before puberty onset showed greater variance in spine density measures on cSTR cells compared to controls, but their mean spine density did not significantly differ from sham controls. Our findings reveal that these cSTR neurons, a subtype of the broader class of intratelencephalic-type neurons, exhibit significant sex differences and suggest that spine pruning on cSTR neurons is regulated by puberty in male mice.
Collapse
Affiliation(s)
- Kristen Delevich
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Nana J Okada
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Ameet Rahane
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Zicheng Zhang
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Christopher D Hall
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| | - Linda Wilbrecht
- Department of Psychology, University of California, Berkeley, CA 94720, USA and.,Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
30
|
Rode AN, Moghaddam B, Morrison SE. Increased Goal Tracking in Adolescent Rats Is Goal-Directed and Not Habit-Like. Front Behav Neurosci 2020; 13:291. [PMID: 31992975 PMCID: PMC6971099 DOI: 10.3389/fnbeh.2019.00291] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 12/23/2019] [Indexed: 12/14/2022] Open
Abstract
When a cue is paired with reward in a different location, some animals will approach the site of reward during the cue, a behavior called goal tracking, while other animals will approach and interact with the cue itself: a behavior called sign tracking. Sign tracking is thought to reflect a tendency to transfer incentive salience from the reward to the cue. Adolescence is a time of heightened sensitivity to rewards, including environmental cues that have been associated with rewards, which may account for increased impulsivity and vulnerability to drug abuse. Surprisingly, however, studies have shown that adolescents are actually less likely to interact with the cue (i.e., sign track) than adult animals. We reasoned that adolescents might show decreased sign tracking, accompanied by increased apparent goal tracking, because they tend to attribute incentive salience to a more reward-proximal "cue": the food magazine. On the other hand, adolescence is also a time of enhanced exploratory behavior, novelty-seeking, and behavioral flexibility. Therefore, adolescents might truly express more goal-directed reward-seeking and less inflexible habit-like approach to a reward-associated cue. Using a reward devaluation procedure to distinguish between these two hypotheses, we found that adolescents indeed exhibit more goal tracking, and less sign tracking, than a comparable group of adults. Moreover, adolescents' goal tracking behavior is highly sensitive to reward devaluation and therefore goal-directed and not habit-like.
Collapse
Affiliation(s)
| | | | - Sara E. Morrison
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
31
|
Towner TT, Fager M, Spear LP. Adolescent but not adult Sprague-Dawley rats display goal-directed responding after reward devaluation. Dev Psychobiol 2019; 62:368-379. [PMID: 31493315 DOI: 10.1002/dev.21912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 11/07/2022]
Abstract
Alcohol drinking is typically initiated in adolescence, with use sometimes escalating to problematic levels. Escalation of drinking is often associated with a shift in drinking motives, with goal-directed initial use later transitioning to more habitual behavior. This study assessed whether adolescents are more sensitive than adults to habit formation when indexed via insensitivity to reward devaluation in an operant task for food reward. Adolescent and adult Sprague-Dawley rats were trained on either a random ratio (RR) or random interval (RI) schedule before undergoing devaluation. Adolescent animals on both schedules increased the number of lever presses across all training days. In contrast, adults in the RR group increased the number of lever presses across days whereas RI adults remained relatively stable. In response to pellet devaluation, only adolescents exhibited reduced responding, suggestive of goal-directed behavior, whereas no age differences were evident following control (home cage chow) devaluation. Contrary to our hypothesis, adolescents (but not adults) displayed goal-directed responding indexed via sensitivity to reward devaluation. These findings suggest that adolescents are not necessarily more likely to develop habits than adults, and hence other factors may contribute to the greater propensity of adolescents to engage in and escalate alcohol use.
Collapse
|
32
|
Sex Differences in Adolescent Neurobiological Risk for Substance Use and Substance Use Disorders. CURRENT ADDICTION REPORTS 2019. [DOI: 10.1007/s40429-019-00276-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
Stringfield SJ, Madayag AC, Boettiger CA, Robinson DL. Sex differences in nicotine-enhanced Pavlovian conditioned approach in rats. Biol Sex Differ 2019; 10:37. [PMID: 31315660 PMCID: PMC6637589 DOI: 10.1186/s13293-019-0244-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/28/2019] [Indexed: 01/01/2023] Open
Abstract
Background Nicotine exposure enhances Pavlovian conditioned approach (PCA), or the learned approach to reward-predictive cues. While females show elevated approach to conditioned stimuli compared to males, potentially indicating heightened addiction vulnerability, it is unknown how sex may interact with nicotine to influence approach behavior. Additionally, brain-derived neurotrophic factor (BDNF) levels can be altered significantly after repeated nicotine exposure, suggesting a potential mechanism contributing to nicotine-induced behavioral phenotypes. The present study investigated the role of sex on nicotine-induced changes to stimulus-response behavior and associated BDNF protein levels. Methods Male and female rats were exposed to nicotine (0.4 mg/kg, subcutaneously) or saline 15 min prior to each PCA session. PCA training consisted of 29 sessions of 15 trials, in which a 30-s cue presentation ended concurrently with a sucrose reward (20% w/v in water, 100 μL), and a 120-s variable intertrial interval occurred between trials. Approach behavior to the cue and reward receptacle was recorded. Preference toward the reward receptacle indicated a goal-tracking phenotype, and preference toward the cue indicated a sign-tracking phenotype, demonstrating that the cue had gained incentive salience. Twenty-four hours after the last PCA session, brain tissue was collected and BDNF levels were measured in the basolateral amygdala, orbitofrontal cortex, and nucleus accumbens using Western blot analysis. Results Nicotine exposure enhanced both sign- and goal-tracking conditioned approach, and females showed elevated sign-tracking compared to males. There were no sex-by-drug interactions on conditioned approach. Day-to-day variability in conditioned approach was similar between sexes. In contrast to prior studies, neither repeated exposure to nicotine nor sex significantly affected BDNF expression. Conclusions Drug-naïve females exhibited heightened sign-tracking compared to males, and nicotine enhanced conditioned approach similarly in males and females. Further, non-significant changes to BDNF expression in brain regions highly associated with PCA indicate that BDNF is unlikely to drive nicotine-enhanced conditioned behavior.
Collapse
Affiliation(s)
- Sierra J Stringfield
- Bowles Center for Alcohol Studies, University of North Carolina, CB #7178, Chapel Hill, NC, 27599-7178, USA.,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | - Aric C Madayag
- Bowles Center for Alcohol Studies, University of North Carolina, CB #7178, Chapel Hill, NC, 27599-7178, USA
| | - Charlotte A Boettiger
- Bowles Center for Alcohol Studies, University of North Carolina, CB #7178, Chapel Hill, NC, 27599-7178, USA.,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA.,Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, CB #7178, Chapel Hill, NC, 27599-7178, USA. .,Neuroscience Curriculum, University of North Carolina, Chapel Hill, NC, USA. .,Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
34
|
LeMon JV, Sisk CL, Klump KL, Johnson AW. Reduced sensitivity to devaluation for instrumental but not consummatory behaviors in binge eating prone rats. Physiol Behav 2019; 206:13-21. [PMID: 30858100 DOI: 10.1016/j.physbeh.2019.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/18/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022]
Abstract
Binge eating is characterized by the consumption of a large amount of palatable food in a short period of time and is a core feature of many eating disorders. Patients with eating disorders are also known to display impairments in inhibitory control, cognition and decision-making, which may promote and maintain binge eating symptomology. In the current study, we examined whether rats that were subsequently characterized as displaying a higher propensity to binge eat would show pre-existing deficits in reinforcer devaluation-a paradigm used to examine decision-making following reductions in the value of a food reinforcer. Female rats were first trained to respond on two levers for the delivery of two food reinforcers (sucrose and maltodextrin solutions). At the test stage, rats were provided 1 h access to one of the two reinforcers to allow for devaluation via sensory specific satiety, immediately followed by an extinction test with both levers. Normal rats typically show reductions in responding on the lever associated with the devalued reinforcer (i.e., intact goal-directed responding). Subsequently, we used intermittent access to palatable food to identify high (BE prone [BEP]; n = 14), intermediate (BE neutral [BEN]; n = 48), and low (BE resistant [BER]; n = 13) phenotypes of binge eating. Prior reinforcer devaluation performance showed BEN and BER rats suppressed responding on the lever associated with the devalued reinforcer while BEP rats did not. This insensitivity to instrumental reinforcer devaluation in BEP rats did not reflect impaired sensory-specific satiety as during a food choice test, BEP rats showed a more robust alteration in food preferences following devaluation. Additionally, across all rats sensory specific satiety was correlated with subsequent intake of palatable food. Collectively, these findings suggest dissociable effects of devaluation procedures on instrumental actions and consummatory behaviors in BEP rats, and may indicate that pre-existing differences in goal-directed behavior and sensory-specific satiety contribute to the propensity to overeat palatable food.
Collapse
Affiliation(s)
- Janelle V LeMon
- Department of Psychology, Michigan State University, 316 Physics Road, East Lansing, MI 48824, USA
| | - Cheryl L Sisk
- Neuroscience Program, Michigan State University, 293 Farm Lane, East Lansing, MI 48824, USA
| | - Kelly L Klump
- Department of Psychology, Michigan State University, 316 Physics Road, East Lansing, MI 48824, USA
| | - Alexander W Johnson
- Department of Psychology, Michigan State University, 316 Physics Road, East Lansing, MI 48824, USA; Neuroscience Program, Michigan State University, 293 Farm Lane, East Lansing, MI 48824, USA.
| |
Collapse
|
35
|
Soares AR, Esteves M, Moreira PS, Cunha AM, Guimarães MR, Carvalho MM, Raposo-Lima C, Morgado P, Carvalho AF, Coimbra B, Melo A, Rodrigues AJ, Salgado AJ, Pêgo JM, Cerqueira JJ, Costa P, Sousa N, Almeida A, Leite-Almeida H. Trait determinants of impulsive behavior: a comprehensive analysis of 188 rats. Sci Rep 2018; 8:17666. [PMID: 30518850 PMCID: PMC6281674 DOI: 10.1038/s41598-018-35537-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 10/02/2018] [Indexed: 11/09/2022] Open
Abstract
Impulsivity is a naturally occurring behavior that, when accentuated, can be found in a variety of neuropsychiatric disorders. The expression of trait impulsivity has been shown to change with a variety of factors, such as age and sex, but the existing literature does not reflect widespread consensus regarding the influence of modulating effects. We designed the present study to investigate, in a cohort of significant size (188 rats), the impact of four specific parameters, namely sex, age, strain and phase of estrous cycle, using the variable delay-to-signal (VDS) task. This cohort included (i) control animals from previous experiments; (ii) animals specifically raised for this study; and (iii) animals previously used for breeding purposes. Aging was associated with a general decrease in action impulsivity and an increase in delay tolerance. Females generally performed more impulsive actions than males but no differences were observed regarding delay intolerance. In terms of estrous cycle, no differences in impulsive behavior were observed and regarding strain, Wistar Han animals were, in general, more impulsive than Sprague-Dawley. In addition to further confirming, in a substantial study cohort, the decrease in impulsivity with age, we have demonstrated that both the strain and sex influences modulate different aspects of impulsive behavior manifestations.
Collapse
Affiliation(s)
- Ana Rosa Soares
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Madalena Esteves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro Silva Moreira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Margarida Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marco Rafael Guimarães
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Miguel Murteira Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Kavli Institute for Systems Neuroscience and Centre for Neural Computation, Norwegian University of Science and Technology, Trondheim, Norway
| | - Catarina Raposo-Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Pedro Morgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Franky Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.,Department of General Surgery, Hospital of Braga, Braga, Portugal
| | - Bárbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António Melo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana João Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - José Miguel Pêgo
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - João José Cerqueira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrício Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Armando Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Hugo Leite-Almeida
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal. .,ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
36
|
Binti Mohd Yusuf Yeo NA, Muthuraju S, Wong JH, Mohammed FR, Senik MH, Zhang J, Yusof SR, Jaafar H, Adenan ML, Mohamad H, Tengku Muhammad TS, Abdullah JM. Hippocampal amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid GluA1 (AMPA GluA1) receptor subunit involves in learning and memory improvement following treatment with Centella asiatica extract in adolescent rats. Brain Behav 2018; 8:e01093. [PMID: 30105867 PMCID: PMC6160644 DOI: 10.1002/brb3.1093] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 07/02/2018] [Accepted: 07/06/2018] [Indexed: 12/21/2022] Open
Abstract
INTRODUCTION Centella asiatica is an herbal plant that contains phytochemicals that are widely believed to have positive effects on cognitive function. The adolescent stage is a critical development period for the maturation of brain processes that encompass changes in physical and psychological systems. However, the effect of C. asiatica has not been extensively studied in adolescents. The aim of this study was therefore to investigate the effects of a C. asiatica extract on the enhancement of learning and memory in adolescent rats. METHODS The locomotor activity, learning, and memory were assessed by using open field test and water T-maze test. This study also examined changes in neuronal cell morphology using cresyl violet and apoptosis staining. We also performed immunohistochemical study to analyse the expression of the glutamate AMPA receptor (α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid) GluA1 subunit and the GABA receptor (γ-Aminobutyric Acid) subtype GABAA α1 subunit in the hippocampus of the same animals. RESULTS We found no significant changes in locomotor activity (p > 0.05). The water T-maze data showed that 30 mg/kg dose significantly (p < 0.05) improved learning, memory, and the memory consolidation phase but had no effect on reversal learning (p > 0.05). Histological data revealed no neuronal morphological changes. Immunohistochemical analysis revealed increased expression of the AMPA GluA1 receptor subunit but there was no effect on GABAA receptor α1 subunit expression in the CA1 and CA2 subregions of the hippocampus. CONCLUSIONS The C. asiatica extract therefore improved hippocampus-dependent spatial learning and memory in a dose-dependent manner in rats through the GluA1-containing AMPA receptor in the CA1 and CA2 sub regions of the hippocampus.
Collapse
Affiliation(s)
- Nor Aqilah Binti Mohd Yusuf Yeo
- Center for Neuroscience Services and Research(P3Neuro), Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Jalan Hospital USM, Kota Bharu, Kelantan, Malaysia
| | - Sangu Muthuraju
- Center for Neuroscience Services and Research(P3Neuro), Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Jalan Hospital USM, Kota Bharu, Kelantan, Malaysia
| | - Jia Hui Wong
- Center for Neuroscience Services and Research(P3Neuro), Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Jalan Hospital USM, Kota Bharu, Kelantan, Malaysia
| | - Faruque Reza Mohammed
- Center for Neuroscience Services and Research(P3Neuro), Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Jalan Hospital USM, Kota Bharu, Kelantan, Malaysia
| | - Mohd Harizal Senik
- Center for Neuroscience Services and Research(P3Neuro), Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Jalan Hospital USM, Kota Bharu, Kelantan, Malaysia
| | - Jingli Zhang
- Center for Neuroscience Services and Research(P3Neuro), Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Jalan Hospital USM, Kota Bharu, Kelantan, Malaysia
| | | | - Hasnan Jaafar
- Department of Pathology, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Mohd Llham Adenan
- Faculty of Applied Sciences, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Habsah Mohamad
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Terengganu, Malaysia
| | | | - Jafri Malin Abdullah
- Center for Neuroscience Services and Research(P3Neuro), Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Jalan Hospital Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia.,Department of Neurosciences, Hospital Universiti Sains Malaysia, Jalan Hospital USM, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
37
|
Ishii H, Onodera M, Ohara S, Tsutsui KI, Iijima T. Sex Differences in Risk Preference and c-Fos Expression in Paraventricular Thalamic Nucleus of Rats During Gambling Task. Front Behav Neurosci 2018; 12:68. [PMID: 29692713 PMCID: PMC5902494 DOI: 10.3389/fnbeh.2018.00068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/23/2018] [Indexed: 11/13/2022] Open
Abstract
Different biological requirements between males and females may cause sex differences in decision preference when choosing between taking a risk to get a higher gain or taking a lower but sure gain. Several studies have tested this assumption in rats, however the conclusion remains controversial because the previous real-world like gambling tasks contained a learning component to track a global payoff of probabilistic outcome in addition to risk preference. Therefore, we modified a simple gambling task allowing us to exclude such learning effect, and investigated the sex difference in risk preference of rats and its neural basis. The task required water deprived rats to choose between a risky option which provided four drops of water or no reward at a 50% random chance vs. a sure option which provided predictable amount x (x = 1, 2, 3, 4). The amount and the risk were explicitly instructed so that different choice conditions could be tested trial by trial without re-learning of reward contingency. Although both sexes correctly chose the sure option with the same level of accuracy when the sure option provided the best offer (x = 4), they exhibited different choice performances when two options had the same expected value (x = 2). Males and females both preferred to take risky choices than sure choices (risk seeking), but males were more risk seeking than females. Outcome-history analysis of their choice pattern revealed that females reduced their risk preference after losing risky choices, whereas males did not. Rather, as losses continued, reaction time for subsequent risky choices got shorter in males. Given that significant sex difference features mainly emerged after negative experiences, male and female rats may evaluate an unsuccessful outcome of their decision in different manners. Furthermore, c-Fos expression in the paraventricular nucleus of the thalamus (PV) was higher in the gambling task than for the control task in males while c-fos levels did not differ in females. The present study provides a clear evidence of sex differences in risk preference in rats and suggests that the PV is a candidate region contributing to sex differences in risky decision making.
Collapse
Affiliation(s)
- Hironori Ishii
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan.,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Mariko Onodera
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Shinya Ohara
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Ken-Ichiro Tsutsui
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| | - Toshio Iijima
- Division of Systems Neuroscience, Tohoku University Graduate School of Life Sciences, Sendai, Japan
| |
Collapse
|
38
|
Donovan CH, Wong SA, Randolph SH, Stark RA, Gibb RL, Gruber AJ. Sex differences in rat decision-making: The confounding role of extraneous feeder sampling between trials. Behav Brain Res 2018; 342:62-69. [PMID: 29355674 DOI: 10.1016/j.bbr.2018.01.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/08/2018] [Accepted: 01/16/2018] [Indexed: 01/19/2023]
Abstract
Although male and female rats appear to perform differently in some tasks, a clear picture of sex differences in decision-making has yet to develop. This is in part due to significant variability arising from differences in strains and tasks. The aim of this study was to characterize the effects of sex on specific response elements in a reinforcement learning task so as to help identify potential explanations for this variability. We found that the primary difference between sexes was the propensity to approach feeders out of the task context. This extraneous feeder sampling affects choice on subsequent trials in both sexes by promoting a lose-shift response away from the last feeder sampled. Female rats, however, were more likely to engage in this extraneous feeder sampling, and therefore exhibited a greater rate of this effect. Once trials following extraneous sampling were removed, there were no significant sex differences in any of the tested measures. These data suggest that feeder approach outside of the task context, which is often not recorded, could produce a confound in sex-based differences of reinforcement sensitivity in some tasks.
Collapse
Affiliation(s)
- Clifford H Donovan
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 6T5, Canada
| | - Scott A Wong
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 6T5, Canada
| | - Sienna H Randolph
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 6T5, Canada
| | - Rachel A Stark
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 6T5, Canada
| | - Robbin L Gibb
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 6T5, Canada
| | - Aaron J Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, 4401 University Drive West, Lethbridge, AB, T1K 6T5, Canada.
| |
Collapse
|
39
|
Heimann PM, Konrad K, Vloet TD. [Anorexia nervosa in males]. ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE 2018; 46:478-487. [PMID: 29651909 DOI: 10.1024/1422-4917/a000579] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Anorexia nervosa in males Abstract. Anorexia nervosa (AN) is a rare disorder in boys and men with limited data and studies available. The recent update of the Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) will in all likelihood lead to an increase in the prevalence of AN in boys and men. This study aims to give an overview of the existing data in regards to gender differences in epidemiology, etiology, and symptoms of AN. We aim to highlight the differences in AN between the sexes, from a clinical point of view, and underline the need for further research on AN in boys.
Collapse
Affiliation(s)
- Pola Maria Heimann
- 1 Universitätsklinikum, Klinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie, RWTH Aachen
| | - Kerstin Konrad
- 2 Lehr- und Forschungsgebiet für klinische Neuropsychologie des Kindes und Jugendalters, Universitätsklinikum der RWTH Aachen
| | - Timo D Vloet
- 3 Universitätsklinikum, Zentrum für psychische Gesundheit (ZEP), Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie, Würzburg
| |
Collapse
|
40
|
Espinosa-Carrasco J, Burokas A, Fructuoso M, Erb I, Martín-García E, Gutiérrez-Martos M, Notredame C, Maldonado R, Dierssen M. Time-course and dynamics of obesity-related behavioral changes induced by energy-dense foods in mice. Addict Biol 2018; 23:531-543. [PMID: 29318700 DOI: 10.1111/adb.12595] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 10/10/2017] [Accepted: 12/04/2017] [Indexed: 02/02/2023]
Abstract
Obesity represents an important risk factor contributing to the global burden of disease. The current obesogenic environment with easy access to calorie-dense foods is fueling this obesity epidemic. However, how these foods contribute to the progression of feeding behavior changes that lead to overeating is not well understood and needs systematic assessment. Using novel automated methods for the high-throughput screening of behavior, we here examine mice meal pattern upon long-term exposure to a free-choice chocolate-mixture diet and a high-fat diet with face validity for a rapid development of obesity induced by unhealthy food regularly consumed in our societies. We identified rapid diet-specific behavioral changes after exposure to those high-caloric diets. Mice fed with high-fat chow, showed long-lasting meal pattern disturbances, which initiate with a stable loss of circadian feeding rhythmicity. Mice receiving a chocolate-mixture showed qualitatively similar changes, though less marked, consisting in a transient disruption of the feeding behavior and the circadian feeding rhytmicity. Strikingly, compulsive-like eating behavior is triggered immediately after exposure to both high-fat food and chocolate-mixture diet, well before any changes in body weight could be observed. We propose these changes as behavioral biomarkers of prodromal states of obesity that could allow early intervention.
Collapse
Affiliation(s)
- Jose Espinosa-Carrasco
- Cellular and Systems Neurobiology, Systems Biology Program; The Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG); Spain
- Comparative Bioinformatics, Bioinformatics and Genomics Program; Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG); Spain
- Universitat Pompeu Fabra (UPF); Spain
| | - Aurelijus Burokas
- Laboratori de Neurofarmacologia, Departament de Ciencies Experimentals i de la Salut; Universitat Pompeu Fabra, PRBB; Spain
| | - Marta Fructuoso
- Cellular and Systems Neurobiology, Systems Biology Program; The Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG); Spain
- Universitat Pompeu Fabra (UPF); Spain
| | - Ionas Erb
- Comparative Bioinformatics, Bioinformatics and Genomics Program; Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG); Spain
- Universitat Pompeu Fabra (UPF); Spain
| | - Elena Martín-García
- Laboratori de Neurofarmacologia, Departament de Ciencies Experimentals i de la Salut; Universitat Pompeu Fabra, PRBB; Spain
| | - Miriam Gutiérrez-Martos
- Laboratori de Neurofarmacologia, Departament de Ciencies Experimentals i de la Salut; Universitat Pompeu Fabra, PRBB; Spain
| | - Cedric Notredame
- Comparative Bioinformatics, Bioinformatics and Genomics Program; Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG); Spain
- Universitat Pompeu Fabra (UPF); Spain
| | - Rafael Maldonado
- Laboratori de Neurofarmacologia, Departament de Ciencies Experimentals i de la Salut; Universitat Pompeu Fabra, PRBB; Spain
| | - Mara Dierssen
- Cellular and Systems Neurobiology, Systems Biology Program; The Barcelona Institute of Science and Technology, Centre for Genomic Regulation (CRG); Spain
- Universitat Pompeu Fabra (UPF); Spain
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER); Spain
| |
Collapse
|
41
|
Westbrook SR, Hankosky ER, Dwyer MR, Gulley JM. Age and sex differences in behavioral flexibility, sensitivity to reward value, and risky decision-making. Behav Neurosci 2018; 132:75-87. [PMID: 29481101 DOI: 10.1037/bne0000235] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Compared with adults, adolescent behavior is often characterized by reduced behavioral flexibility, increased sensitivity to reward, and increased likelihood to take risks. These traits, which have been hypothesized to confer heightened vulnerability to psychopathologies such as substance use disorders (SUDs), have been the focus of studies in laboratory animal models that seek to understand their neural underpinnings. However, rodent studies to date have typically used only males and have adopted standard methodological practices (e.g., weight loss inducing food restriction) that are likely to have a disparate impact on adolescents compared with adults. Here, we used adolescent and adult Sprague-Dawley rats of both sexes to study instrumental behavior tasks that assess behavioral flexibility (strategy shifting and reversal learning; Experiment 1), sensitivity to reward value (outcome devaluation; Experiment 2), and risky decision making (probability discounting; Experiment 3). In Experiment 1, we found that adolescents were faster to acquire reversal learning than adults but there were no differences in strategy shifting. In Experiments 2 and 3, adolescents and adults were equally sensitive to changes in reward value and exhibited similar reductions in preference for a large reward when reinforcement probability was decreased. However, adolescents responded more efficiently and earned reinforcers at a higher rate than their same-sex, adult counterparts. Together, these findings provide only limited support for the existence of an "adolescent-typical" phenotype in Sprague-Dawley rats and instead suggest that age differences in the expression of these behaviors may depend on conditions such as pubertal status and motivational state. (PsycINFO Database Record
Collapse
Affiliation(s)
- Sara R Westbrook
- Department of Psychology, University of Illinois, Urbana-Champaign
| | - Emily R Hankosky
- Department of Psychology, University of Illinois, Urbana-Champaign
| | - Megan R Dwyer
- Department of Psychology, University of Illinois, Urbana-Champaign
| | - Joshua M Gulley
- Department of Psychology, University of Illinois, Urbana-Champaign
| |
Collapse
|
42
|
Sex-dependent impact of early-life stress and adult immobilization in the attribution of incentive salience in rats. PLoS One 2018; 13:e0190044. [PMID: 29324797 PMCID: PMC5764258 DOI: 10.1371/journal.pone.0190044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 12/07/2017] [Indexed: 01/17/2023] Open
Abstract
Early life stress (ELS) induces long-term effects in later functioning and interacts with further exposure to other stressors in adulthood to shape our responsiveness to reward-related cues. The attribution of incentive salience to food-related cues may be modulated by previous and current exposures to stressors in a sex-dependent manner. We hypothesized from human data that exposure to a traumatic (severe) adult stressor will decrease the attribution of incentive salience to reward-associated cues, especially in females, because these effects are modulated by previous ELS. To study these factors in Long-Evans rats, we used as an ELS model of restriction of nesting material and concurrently evaluated maternal care. In adulthood, the offspring of both sexes were exposed to acute immobilization (IMO), and several days after, a Pavlovian conditioning procedure was used to assess the incentive salience of food-related cues. Some rats developed more attraction to the cue predictive of reward (sign-tracking) and others were attracted to the location of the reward itself, the food-magazine (goal-tracking). Several dopaminergic markers were evaluated by in situ hybridization. The results showed that ELS increased maternal care and decreased body weight gain (only in females). Regarding incentive salience, in absolute control animals, females presented slightly greater sign-tracking behavior than males. Non-ELS male rats exposed to IMO showed a bias towards goal-tracking, whereas in females, IMO produced a bias towards sign-tracking. Animals of both sexes not exposed to IMO displayed an intermediate phenotype. ELS in IMO-treated females was able to reduce sign-tracking and decrease tyrosine hydroxylase expression in the ventral tegmental area and dopamine D1 receptor expression in the accumbens shell. Although the predicted greater decrease in females in sign-tracking after IMO exposure was not corroborated by the data, the results highlight the idea that sex is an important factor in the study of the long-term impact of early and adult stressors.
Collapse
|
43
|
Reichelt AC, Rank MM. The impact of junk foods on the adolescent brain. Birth Defects Res 2017; 109:1649-1658. [DOI: 10.1002/bdr2.1173] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/31/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Amy C. Reichelt
- Discipline of Psychology, School of Health and Biomedical Sciences; RMIT University; Melbourne VIC 3083 Australia
| | - Michelle M. Rank
- Discipline of Psychology, School of Health and Biomedical Sciences; RMIT University; Melbourne VIC 3083 Australia
| |
Collapse
|
44
|
Sample CH, Davidson TL. Considering sex differences in the cognitive controls of feeding. Physiol Behav 2017; 187:97-107. [PMID: 29174819 DOI: 10.1016/j.physbeh.2017.11.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/17/2017] [Accepted: 11/20/2017] [Indexed: 01/24/2023]
Abstract
Women are disproportionately affected by obesity, and obesity increases women's risk of developing dementia more so than men. Remarkably little is known about how females make decisions about when and how much to eat. Research in animal models with males supports a framework in which previous experiences with external food cues and internal physiological energy states, and the ability to retrieve memories of the consequences of eating, determines subsequent food intake. Additional evidence indicates that consumption of a high-fat, high-sugar diet interferes with hippocampal-dependent mnemonic processes that operate to suppress eating, such as in situations of satiety. Recent findings also indicate that weakening this form of hippocampal-dependent inhibitory control may also extend to other forms of learning and memory, perpetuating a vicious cycle of increased Western diet intake, hippocampal dysfunction, and further impairments in the suppression of appetitive behavior that may ultimately disrupt other types of memorial interference resolution. How these basic learning and memory processes operate in females to guide food intake has received little attention. Ovarian hormones appear to protect females from obesity and metabolic impairments, as well as modulate learning and memory processes, but little is known about how these hormones modulate learned appetitive behavior. Even less is known about how a sex-specific environmental factor - widespread hormonal contraceptive use - affects associative learning and the regulation of food intake. Extending learned models of food intake to females will require considerably investigation at many levels (e.g., reproductive status, hormonal compound, parity). This work could yield critical insights into the etiology of obesity, and its concomitant cognitive impairment, for both sexes.
Collapse
Affiliation(s)
- Camille H Sample
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States.
| | - Terry L Davidson
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States
| |
Collapse
|
45
|
Adolescence and Reward: Making Sense of Neural and Behavioral Changes Amid the Chaos. J Neurosci 2017; 37:10855-10866. [PMID: 29118215 DOI: 10.1523/jneurosci.1834-17.2017] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 09/28/2017] [Accepted: 09/28/2017] [Indexed: 11/21/2022] Open
Abstract
Adolescence is a time of significant neural and behavioral change with remarkable development in social, emotional, and cognitive skills. It is also a time of increased exploration and risk-taking (e.g., drug use). Many of these changes are thought to be the result of increased reward-value coupled with an underdeveloped inhibitory control, and thus a hypersensitivity to reward. Perturbations during adolescence can alter the developmental trajectory of the brain, resulting in long-term alterations in reward-associated behaviors. This review highlights recent developments in our understanding of how neural circuits, pubertal hormones, and environmental factors contribute to adolescent-typical reward-associated behaviors with a particular focus on sex differences, the medial prefrontal cortex, social reward, social isolation, and drug use. We then introduce a new approach that makes use of natural adaptations of seasonally breeding species to investigate the role of pubertal hormones in adolescent development. This research has only begun to parse out contributions of the many neural, endocrine, and environmental changes to the heightened reward sensitivity and increased vulnerability to mental health disorders that characterize this life stage.
Collapse
|
46
|
Mokler DJ, Miller CE, McGaughy JA. Evidence for a role of corticopetal, noradrenergic systems in the development of executive function. Neurobiol Learn Mem 2017; 143:94-100. [DOI: 10.1016/j.nlm.2017.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2016] [Revised: 02/06/2017] [Accepted: 02/15/2017] [Indexed: 12/24/2022]
|
47
|
Sample CH, Jones S, Dwider F, Davidson TL. Discriminative control by deprivation states and external cues in male and female rats. Physiol Behav 2017; 184:91-99. [PMID: 28847483 DOI: 10.1016/j.physbeh.2017.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 08/24/2017] [Accepted: 08/24/2017] [Indexed: 12/11/2022]
Abstract
Previous research indicates that decisions about when to eat in response to food cues in the environment are based on interoceptive energy states (i.e., hunger and fullness) and learning about and remembering prior eating experiences. However, this animal model has exclusively been tested on male rodents. Despite evidence that women are more susceptible to obesity and cognitive disorders associated with excess weight (e.g., Alzheimer's disease) than men, the generality of these findings with males to females remains unknown. To address this gap, the current research investigated associative learning mechanisms involved in food intake control in females by training both males and females in a Pavlovian deprivation discrimination in which varying levels of food deprivation are trained with competitive external cues to signal reward. In Experiment 1, male and female rats showed similar performance in discriminating between 0 and 24h deprivation state/external cue compounds and in subsequent tests, confirming stimulus control by deprivation states. Experiment 2 assessed learning about more ecologically valid 0 and 4h deprivation states in competition with external cues in both males and females. With the low-level deprivation state parameters, females outperformed males in discriminative control by deprivation states, particularly on the contingency rewarded under satiation and not deprivation. While females showed an enhanced degree of energy state processing under some deprivation conditions, overall, these findings suggest similar mechanisms of learned appetitive control in both sexes.
Collapse
Affiliation(s)
- Camille H Sample
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States.
| | - Sabrina Jones
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States
| | - Farris Dwider
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States
| | - Terry L Davidson
- Center for Behavioral Neuroscience, Department of Psychology, American University, Washington, DC, United States
| |
Collapse
|
48
|
McCormick CM, Green MR, Simone JJ. Translational relevance of rodent models of hypothalamic-pituitary-adrenal function and stressors in adolescence. Neurobiol Stress 2017; 6:31-43. [PMID: 28229107 PMCID: PMC5314422 DOI: 10.1016/j.ynstr.2016.08.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/18/2016] [Accepted: 08/20/2016] [Indexed: 12/27/2022] Open
Abstract
Elevations in glucocorticoids that result from environmental stressors can have programming effects on brain structure and function when the exposure occurs during sensitive periods that involve heightened neural development. In recent years, adolescence has gained increasing attention as another sensitive period of development, a period in which pubertal transitions may increase the vulnerability to stressors. There are similarities in physical and behavioural development between humans and rats, and rats have been used effectively as an animal model of adolescence and the unique plasticity of this period of ontogeny. This review focuses on benefits and challenges of rats as a model for translational research on hypothalamic-pituitary-adrenal (HPA) function and stressors in adolescence, highlighting important parallels and contrasts between adolescent rats and humans, and we review the main stress procedures that are used in investigating HPA stress responses and their consequences in adolescence in rats. We conclude that a greater focus on timing of puberty as a factor in research in adolescent rats may increase the translational relevance of the findings.
Collapse
Affiliation(s)
- Cheryl M. McCormick
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Matthew R. Green
- Department of Psychology, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| | - Jonathan J. Simone
- Department of Biological Sciences, Brock University, 1812 Sir Isaac Brock Way, St. Catharines, ON, L2S 3A1, Canada
| |
Collapse
|
49
|
Dir AL, Bell RL, Adams ZW, Hulvershorn LA. Gender Differences in Risk Factors for Adolescent Binge Drinking and Implications for Intervention and Prevention. Front Psychiatry 2017; 8:289. [PMID: 29312017 PMCID: PMC5743668 DOI: 10.3389/fpsyt.2017.00289] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 12/04/2017] [Indexed: 11/26/2022] Open
Abstract
Alcohol use, particularly binge drinking (BD), is a major public health concern among adolescents. Recent national data show that the gender gap in alcohol use is lessening, and BD among girls is rising. Considering the increase in BD among adolescent girls, as well as females' increased risk of experiencing more severe biopsychosocial negative effects and consequences from BD, the current review sought to examine gender differences in risk factors for BD. The review highlights gender differences in (1) developmental-related neurobiological vulnerability to BD, (2) psychiatric comorbidity and risk phenotypes for BD, and (3) social-related risk factors for BD among adolescents, as well as considerations for BD prevention and intervention. Most of the information gleaned thus far has come from preclinical research. However, it is expected that, with recent advances in clinical imaging technology, neurobiological effects observed in lower mammals will be confirmed in humans and vice versa. A synthesis of the literature highlights that males and females experience unique neurobiological paths of development, and although there is debate regarding the specific nature of these differences, literature suggests that these differences in turn influence gender differences in psychiatric comorbidity and risk for BD. For one, girls are more susceptible to stress, depression, and other internalizing behaviors and, in turn, these symptoms contribute to their risk for BD. On the other hand, males, given gender differences across the lifespan as well as gender differences in development, are driven by an externalizing phenotype for risk of BD, in part, due to unique paths of neurobiological development that occur across adolescence. With respect to social domains, although social and peer influences are important for both adolescent males and females, there are gender differences. For example, girls may be more sensitive to pressure from peers to fit in and impress others, while male gender role stereotypes regarding BD may be more of a risk factor for boys. Given these unique differences in male and female risk for BD, further research exploring risk factors, as well as tailoring intervention and prevention, is necessary. Although recent research has tailored substance use intervention to target males and females, more literature on gender considerations in treatment for prevention and intervention of BD in particular is warranted.
Collapse
Affiliation(s)
- Allyson L Dir
- Department of Pediatric Adolescent Medicine, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Richard L Bell
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Zachary W Adams
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Leslie A Hulvershorn
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
50
|
Doremus-Fitzwater TL, Spear LP. Reward-centricity and attenuated aversions: An adolescent phenotype emerging from studies in laboratory animals. Neurosci Biobehav Rev 2016; 70:121-134. [PMID: 27524639 PMCID: PMC5612441 DOI: 10.1016/j.neubiorev.2016.08.015] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 08/10/2016] [Accepted: 08/10/2016] [Indexed: 12/21/2022]
Abstract
Adolescence is an evolutionarily conserved developmental period, with neural circuits and behaviors contributing to the detection, procurement, and receipt of rewards bearing similarity across species. Studies with laboratory animals suggest that adolescence is typified by a "reward-centric" phenotype-an increased sensitivity to rewards relative to adults. In contrast, adolescent rodents are reportedly less sensitive to the aversive properties of many drugs and naturally aversive stimuli. Alterations within the mesocorticolimbic dopamine and endocannabinoid systems likely contribute to an adolescent reward-sensitive, yet aversion-resistant, phenotype. Although early hypotheses postulated that developmental changes in dopaminergic circuitry would result in a "reward deficiency" syndrome, evidence now suggests the opposite: that adolescents are uniquely poised to seek out hedonic stimuli, experience greater "pleasure" from rewards, and consume rewarding stimuli in excess. Future studies that more clearly define the role of specific brain regions and neurotransmitter systems in the expression of behaviors toward reward- and aversive-related cues and stimuli are necessary to more fully understand an adolescent-proclivity for and vulnerability to rewards and drugs of potential abuse.
Collapse
Affiliation(s)
- Tamara L Doremus-Fitzwater
- Developmental Alcohol Exposure Research Center, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA.
| | - Linda P Spear
- Developmental Alcohol Exposure Research Center, Center for Development and Behavioral Neuroscience, Department of Psychology, Binghamton University, Binghamton, New York 13902-6000, USA
| |
Collapse
|