1
|
Cobb-Lewis D, George A, Hu S, Packard K, Song M, Nikitah I, Nguyen-Lopez O, Tesone E, Rowden J, Wang J, Opendak M. The lateral habenula integrates age and experience to promote social transitions in developing rats. Cell Rep 2024; 43:114556. [PMID: 39096491 PMCID: PMC11444650 DOI: 10.1016/j.celrep.2024.114556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/29/2024] [Accepted: 07/13/2024] [Indexed: 08/05/2024] Open
Abstract
Early caregiving adversity (ECA) is associated with social behavior deficits and later development of psychopathology. However, the infant neural substrates of ECA are poorly understood. The lateral habenula (LHb), a highly conserved brain region with consistent links to adult psychopathology, is understudied in development, when the brain is most vulnerable to environmental impacts. Here, we describe the structural and functional ontogeny of the LHb and its behavioral role in infant and juvenile rat pups. We show that the LHb promotes a developmental transition in social approach behavior under threat as typically reared infants mature. By contrast, we show that ECA disrupts habenular ontogeny, including volume, protein expression, firing properties, and corticohabenular connectivity. Furthermore, inhibiting a specific corticohabenular projection rescues infant social approach deficits following ECA. Together, these results identify immediate biomarkers of ECA in the LHb and highlight this region as a site of early social processing and behavior control.
Collapse
Affiliation(s)
- Dana Cobb-Lewis
- Kennedy Krieger Institute, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Anne George
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Shannon Hu
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | | | - Mingyuan Song
- Kennedy Krieger Institute, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | - Oliver Nguyen-Lopez
- Kennedy Krieger Institute, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Emily Tesone
- Kennedy Krieger Institute, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jhanay Rowden
- Kennedy Krieger Institute, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Julie Wang
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
| | - Maya Opendak
- Kennedy Krieger Institute, Baltimore, MD 21205, USA; Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
2
|
Cobb-Lewis D, George A, Hu S, Packard K, Song M, Nguyen-Lopez O, Tesone E, Rowden J, Wang J, Opendak M. The lateral habenula integrates age and experience to promote social transitions in developing rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575446. [PMID: 38260652 PMCID: PMC10802604 DOI: 10.1101/2024.01.12.575446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Social behavior deficits are an early-emerging marker of psychopathology and are linked with early caregiving quality. However, the infant neural substrates linking early care to social development are poorly understood. Here, we focused on the infant lateral habenula (LHb), a highly-conserved brain region at the nexus between forebrain and monoaminergic circuits. Despite its consistent links to adult psychopathology, this brain region has been understudied in development when the brain is most vulnerable to environmental impacts. In a task combining social and threat cues, suppressing LHb principal neurons had opposing effects in infants versus juveniles, suggesting the LHb promotes a developmental switch in social approach behavior under threat. We observed that early caregiving adversity (ECA) disrupts typical growth curves of LHb baseline structure and function, including volume, firing patterns, neuromodulatory receptor expression, and functional connectivity with cortical regions. Further, we observed that suppressing cortical projections to the LHb rescued social approach deficits following ECA, identifying this microcircuit as a substrate for disrupted social behavior. Together, these results identify immediate biomarkers of ECA in the LHb and highlight this region as a site of early social processing and behavior control.
Collapse
Affiliation(s)
- Dana Cobb-Lewis
- Kennedy Krieger Institute, Baltimore MD USA 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD USA 21205
| | - Anne George
- Kennedy Krieger Institute, Baltimore MD USA 21205
| | - Shannon Hu
- Kennedy Krieger Institute, Baltimore MD USA 21205
| | | | - Mingyuan Song
- Kennedy Krieger Institute, Baltimore MD USA 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD USA 21205
| | - Oliver Nguyen-Lopez
- Kennedy Krieger Institute, Baltimore MD USA 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD USA 21205
| | - Emily Tesone
- Kennedy Krieger Institute, Baltimore MD USA 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD USA 21205
| | - Jhanay Rowden
- Kennedy Krieger Institute, Baltimore MD USA 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD USA 21205
| | - Julie Wang
- Kennedy Krieger Institute, Baltimore MD USA 21205
| | - Maya Opendak
- Kennedy Krieger Institute, Baltimore MD USA 21205
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore MD USA 21205
| |
Collapse
|
3
|
Ding T, Magarinos AM, Kow LM, Milner TA, Pfaff DW. Kv2.1 expression in giant reticular neurons of the postnatal mouse brain. J Chem Neuroanat 2021; 117:102005. [PMID: 34280489 PMCID: PMC8464498 DOI: 10.1016/j.jchemneu.2021.102005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/03/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
Previous experiments charted the development of behavioral arousal in postnatal mice. From Postnatal Day 3 (P3) to Postnatal Day 6 (P6) mice (a) become significantly more active, "arousable"; and (b) in large reticular neurons, nucleus gigantocellularis (NGC), patch clamp recordings reveal a significantly increased ability to fire high frequency trains of action potentials as are associated with elevated cortical arousal. These action potential trains depend on delayed rectifiers such as Kv2.1. Here we report tracking the development of expression of a delayed rectifier, Kv2.1 in NGC neurons crucial for initiating CNS arousal. In tissue sections, light microscope immunohistochemistry revealed that expression of Kv2.1 in NGC neurons is greater at day P6 than at P3. Electron microscope immunohistochemistry revealed Kv2.1 labeling on the plasmalemmal surface of soma and dendrites, greater on P6 than P3. In brainstem reticular neuron cell culture, Kv2.1 immunocytochemistry increased monotonically from Days-In-Vitro 3-10, paralleling the ability of such neurons to fire action potential trains. The increase of Kv2.1 expression from P3 to P6, perhaps in conjunction with other delayed rectifier currents, could permit the ability to fire action potential trains in NGC neurons. Further work with genetically identified NGC neurons is indicated.
Collapse
Affiliation(s)
- Ting Ding
- Laboratory of Neurobiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States; Department of Obstetrics and Gynecology, National Clinical Research Center for Obstetrical and Gynecological Diseases, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ana Maria Magarinos
- Laboratory of Neurobiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States.
| | - Lee-Ming Kow
- Laboratory of Neurobiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States.
| | - Teresa A Milner
- Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, 407 East 61st Street, New York, NY, 10065, United States; Harold and Milliken Hatch Laboratory of Neuroendocrinology, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States.
| | - Donald W Pfaff
- Laboratory of Neurobiology and Behavior, The Rockefeller University, 1230 York Avenue, New York, NY, 10065, United States.
| |
Collapse
|
4
|
Oruro EM, Pardo GVE, Lucion AB, Calcagnotto ME, Idiart MAP. Maturation of pyramidal cells in anterior piriform cortex may be sufficient to explain the end of early olfactory learning in rats. ACTA ACUST UNITED AC 2019; 27:20-32. [PMID: 31843979 PMCID: PMC6919191 DOI: 10.1101/lm.050724.119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 11/12/2019] [Indexed: 01/09/2023]
Abstract
Studies have shown that neonate rodents exhibit high ability to learn a preference for novel odors associated with thermo-tactile stimuli that mimics maternal care. Artificial odors paired with vigorous strokes in rat pups younger than 10 postnatal days (P), but not older, rapidly induce an orientation-approximation behavior toward the conditioned odor in a two-choice preference test. The olfactory bulb (OB) and the anterior olfactory cortex (aPC), both modulated by norepinephrine (NE), have been identified as part of a neural circuit supporting this transitory olfactory learning. One possible explanation at the neuronal level for why the odor-stroke pairing induces consistent orientation-approximation behavior in <P10 pups, but not in >P10, is the coincident activation of prior existent neurons in the aPC mediating this behavior. Specifically, odor-stroke conditioning in <P10 pups may activate more mother/nest odor's responsive aPC neurons than in >P10 pups, promoting orientation-approximation behavior in the former but not in the latter. In order to test this hypothesis, we performed in vitro patch-clamp recordings of the aPC pyramidal neurons from rat pups from two age groups (P5–P8 and P14–P17) and built computational models for the OB-aPC neural circuit based on this physiological data. We conditioned the P5–P8 OB-aPC artificial circuit to an odor associated with NE activation (representing the process of maternal odor learning during mother–infant interactions inside the nest) and then evaluated the response of the OB-aPC circuit to the presentation of the conditioned odor. The results show that the number of responsive aPC neurons to the presentation of the conditioned odor in the P14–P17 OB-aPC circuit was lower than in the P5–P8 circuit, suggesting that at P14–P17, the reduced number of responsive neurons to the conditioned (maternal) odor might not be coincident with the responsive neurons for a second conditioned odor.
Collapse
Affiliation(s)
- Enver Miguel Oruro
- Neurocomputational and Language Processing Laboratory, Institute of Physics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970 Brazil.,Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003 Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil
| | - Grace V E Pardo
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003 Brazil.,Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil.,Centre for Interdisciplinary Science and Society Studies, Universidad de Ciencias y Humanidades, Los Olivos, Lima, 15314 Peru
| | - Aldo B Lucion
- Department of Physiology, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil
| | - Maria Elisa Calcagnotto
- Neurophysiology and Neurochemistry of Neuronal Excitability and Synaptic Plasticity Laboratory, Department of Biochemistry, Institute of Basic Health Sciences, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90035-003 Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil
| | - Marco A P Idiart
- Neurocomputational and Language Processing Laboratory, Institute of Physics, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 91501-970 Brazil.,Neuroscience Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90050-170 Brazil
| |
Collapse
|
5
|
Neurobiology of maternal regulation of infant fear: the role of mesolimbic dopamine and its disruption by maltreatment. Neuropsychopharmacology 2019; 44:1247-1257. [PMID: 30758321 PMCID: PMC6784970 DOI: 10.1038/s41386-019-0340-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/31/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023]
Abstract
Child development research highlights caregiver regulation of infant physiology and behavior as a key feature of early life attachment, although mechanisms for maternal control of infant neural circuits remain elusive. Here we explored the neurobiology of maternal regulation of infant fear using neural network and molecular levels of analysis in a rodent model. Previous research has shown maternal suppression of amygdala-dependent fear learning during a sensitive period. Here we characterize changes in neural networks engaged during maternal regulation and the transition to infant self-regulation. Metabolic mapping of 2-deoxyglucose uptake during odor-shock conditioning in postnatal day (PN)14 rat pups showed that maternal presence blocked fear learning, disengaged mesolimbic circuitry, basolateral amygdala (BLA), and plasticity-related AMPA receptor subunit trafficking. At PN18, when maternal presence only socially buffers threat learning (similar to social modulation in adults), maternal presence failed to disengage the mesolimbic dopaminergic system, and failed to disengage both the BLA and plasticity-related AMPA receptor subunit trafficking. Further, maternal presence failed to block threat learning at PN14 pups following abuse, and mesolimbic dopamine engagement and AMPA were not significantly altered by maternal presence-analogous to compromised maternal regulation of children in abusive relationships. Our results highlight three key features of maternal regulation: (1) maternal presence blocks fear learning and amygdala plasticity through age-dependent suppression of amygdala AMPA receptor subunit trafficking, (2) maternal presence suppresses engagement of brain regions within the mesolimbic dopamine circuit, and (3) early-life abuse compromises network and molecular biomarkers of maternal regulation, suggesting reduced social scaffolding of the brain.
Collapse
|
6
|
Perry RE, Finegood ED, Braren SH, DeJoseph ML, Putrino DF, Wilson DA, Sullivan RM, Raver CC, Blair C. Developing a neurobehavioral animal model of poverty: Drawing cross-species connections between environments of scarcity-adversity, parenting quality, and infant outcome. Dev Psychopathol 2019; 31:399-418. [PMID: 29606185 PMCID: PMC6168440 DOI: 10.1017/s095457941800007x] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Children reared in impoverished environments are at risk for enduring psychological and physical health problems. Mechanisms by which poverty affects development, however, remain unclear. To explore one potential mechanism of poverty's impact on social-emotional and cognitive development, an experimental examination of a rodent model of scarcity-adversity was conducted and compared to results from a longitudinal study of human infants and families followed from birth (N = 1,292) who faced high levels of poverty-related scarcity-adversity. Cross-species results supported the hypothesis that altered caregiving is one pathway by which poverty adversely impacts development. Rodent mothers assigned to the scarcity-adversity condition exhibited decreased sensitive parenting and increased negative parenting relative to mothers assigned to the control condition. Furthermore, scarcity-adversity reared pups exhibited decreased developmental competence as indicated by disrupted nipple attachment, distress vocalization when in physical contact with an anesthetized mother, and reduced preference for maternal odor with corresponding changes in brain activation. Human results indicated that scarcity-adversity was inversely correlated with sensitive parenting and positively correlated with negative parenting, and that parenting fully mediated the association of poverty-related risk with infant indicators of developmental competence. Findings are discussed from the perspective of the usefulness of bidirectional-translational research to inform interventions for at-risk families.
Collapse
Affiliation(s)
| | | | | | | | - David F. Putrino
- Department of Telemedicine and Virtual Rehabilitation, Burke Medical Research Institute & Department of Rehabilitation Medicine, Weill Cornell Medicine
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute & Department of Child and Adolescent Psychiatry, New York University School of Medicine
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute & Department of Child and Adolescent Psychiatry, New York University School of Medicine
| | | | - Clancy Blair
- Department of Applied Psychology, New York University
| | | |
Collapse
|
7
|
Developmental transitions in amygdala PKC isoforms and AMPA receptor expression associated with threat memory in infant rats. Sci Rep 2018; 8:14679. [PMID: 30279521 PMCID: PMC6168531 DOI: 10.1038/s41598-018-32762-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
Although infants learn and remember, they rapidly forget, a phenomenon known as infantile amnesia. While myriad mechanisms impact this rapid forgetting, the molecular events supporting memory maintenance have yet to be explored. To explore memory mechanisms across development, we used amygdala-dependent odor-shock conditioning and focused on mechanisms important in adult memory, the AMPA receptor subunits GluA1/2 and upstream protein kinases important for trafficking AMPAR, protein kinase M zeta (PKMζ) and iota/lambda (PKCι/λ). We use odor-shock conditioning in infant rats because it is late-developing (postnatal day, PN10) and can be modulated by corticosterone during a sensitive period in early life. Our results show that memory-related molecules did not change in pups too young to learn threat (PN8) but were activated in pups old enough to learn (PN12), with increased PKMζ-PKCι/λ and GluA2 similar to that observed in adult memory, but with an uncharacteristic decrease in GluA1. This molecular signature and behavioral avoidance of the conditioned odor was recapitulated in PN8 pups injected with CORT before conditioning to precociously induce learning. Blocking learning via CORT inhibition in older pups (PN12) blocked the expression of these molecules. PN16 pups showed a more adult-like molecular cascade of increased PKMζ-PKCι/λ and GluA1–2. Finally, at all ages, zeta inhibitory peptide (ZIP) infusions into the amygdala 24 hr after conditioning blocked memory. Together, these results identify unique features of memory processes across early development: AMPAR subunits GluA1/2 and PKC isoform expression are differentially used, which may contribute to mechanisms of early life forgetting.
Collapse
|
8
|
Development of Odor Hedonics: Experience-Dependent Ontogeny of Circuits Supporting Maternal and Predator Odor Responses in Rats. J Neurosci 2017; 36:6634-50. [PMID: 27335397 DOI: 10.1523/jneurosci.0632-16.2016] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/09/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED A major component of perception is hedonic valence: perceiving stimuli as pleasant or unpleasant. Here, we used early olfactory experiences that shape odor preferences and aversions to explore developmental plasticity in circuits mediating odor hedonics. We used 2-deoxyglucose autoradiographic mapping of neural activity to identify circuits differentially activated by biologically relevant preferred and avoided odors across rat development. We then further probed this system by increasing or decreasing hedonic value. Using both region of interest and functional connectivity analyses, we identified regions within primary olfactory, amygdala/hippocampal, and prefrontal cortical networks that were activated differentially by maternal and male odors. Although some activated regions remained stable across development (postnatal days 7-23), there was a developmental emergence of others that resulted in an age-dependent elaboration of hedonic-response-specific circuitry despite stable behavioral responses (approach/avoidance) to the odors across age. Hedonic responses to these biologically important odors were modified through diet suppression of the maternal odor and co-rearing with a male. This allowed assessment of hedonic circuits in isolation of the specific odor quality and/or intensity. Early experience significantly modified odor-evoked circuitry in an age-dependent manner. For example, co-rearing with a male, which induced pup attraction to male odor, reduced activity in amygdala regions normally activated by the unfamiliar avoided male odor, making this region more consistent with maternal odor. Understanding the development of odor hedonics, particularly within the context of altered early life experience, provides insight into the development of sensory processes, food preferences, and the formation of social affiliations, among other behaviors. SIGNIFICANCE STATEMENT Odor hedonic valence controls approach-avoidance behaviors, but also modulates ongoing behaviors ranging from food preferences and social affiliation with the caregiver to avoidance of predator odors. Experiences can shape hedonic valence. This study explored brain circuitry involved in odor hedonic encoding throughout development using maternal and predator odors and assessed the effects of early life experience on odor hedonic encoding by increasing/decreasing the hedonic value of these odors. Understanding the role of changing brain circuitry during development and its impact on behavioral function is critical for understanding sensory processing across development. These data converge with exciting literature on the brain's hedonic network and highlight the significant role of early life experience in shaping the neural networks of highly biologically relevant stimuli.
Collapse
|
9
|
Al Aïn S, Perry RE, Nuñez B, Kayser K, Hochman C, Brehman E, LaComb M, Wilson DA, Sullivan RM. Neurobehavioral assessment of maternal odor in developing rat pups: implications for social buffering. Soc Neurosci 2017; 12:32-49. [PMID: 26934130 PMCID: PMC5033694 DOI: 10.1080/17470919.2016.1159605] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Social support can attenuate the behavioral and stress hormone response to threat, a phenomenon called social buffering. The mother's social buffering of the infant is one of the more robust examples; yet we understand little about the neurobiology. Using a rodent model, we explore the neurobiology of social buffering by assessing neural processing of the maternal odor, a major cue controlling social buffering in rat pups. We used pups before (postnatal day (PN) 7) and after (PN14, PN23) the functional emergence of social buffering. Pups were injected with 14C 2-deoxyglucose (2-DG) and presented with the maternal odor, a control preferred odor incapable of social buffering (acetophenone), or no odor. Brains were removed, processed for autoradiography and brain areas identified as important in adult social buffering were assessed, including the amygdala basolateral complex (Basolateral Amygdala [BLA]), medial prefrontal cortex (mPFC), and anterior cingulate cortex (ACC). Results suggest dramatic changes in the processing of maternal odor. PN7 pups show mPFC and ACC activation, although PN14 pups showed no activation of the mPFC, ACC, or BLA. All brain areas assessed were recruited by PN23. Additional analysis suggests substantial changes in functional connectivity across development. Together, these results imply complex nonlinear transitions in the neurobiology of social buffering in early life that may provide insight into the changing role of the mother in supporting social buffering.
Collapse
Affiliation(s)
- Syrina Al Aïn
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Rosemarie E. Perry
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
- Neuroscience and Physiology, NYU Sackler Institute, New York University School of Medicine, New York, NY, USA
| | - Bestina Nuñez
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
| | - Kassandra Kayser
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
| | - Chase Hochman
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Elizabeth Brehman
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Miranda LaComb
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Donald A. Wilson
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| | - Regina M. Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Orangeburg, New York, USA
- Child Study Center, Child & Adolescent Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
10
|
Boulanger Bertolus J, Mouly AM, Sullivan RM. Ecologically relevant neurobehavioral assessment of the development of threat learning. Learn Mem 2016; 23:556-66. [PMID: 27634146 PMCID: PMC5026204 DOI: 10.1101/lm.042218.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/02/2016] [Indexed: 11/24/2022]
Abstract
As altricial infants gradually transition to adults, their proximate environment changes. In three short weeks, pups transition from a small world with the caregiver and siblings to a complex milieu rich in dangers as their environment expands. Such contrasting environments require different learning abilities and lead to distinct responses throughout development. Here, we will review some of the learned fear conditioned responses to threats in rats during their ontogeny, including behavioral and physiological measures that permit the assessment of learning and its supporting neurobiology from infancy through adulthood. In adulthood, odor-shock conditioning produces robust fear learning to the odor that depends upon the amygdala and related circuitry. Paradoxically, this conditioning in young pups fails to support fear learning and supports approach learning to the odor previously paired with shock. This approach learning is mediated by the infant attachment network that does not include the amygdala. During the age range when pups transition from the infant to the adult circuit (10-15 d old), pups have access to both networks: odor-shock conditioning in maternal presence uses the attachment circuit but the adult amygdala-dependent circuit when alone. However, throughout development (as young as 5 d old) the attachment associated learning can be overridden and amygdala-dependent fear learning supported, if the mother expresses fear in the presence of the pup. This social modulation of the fear permits the expression of defense reactions in life threatening situations informed by the caregiver but prevents the learning of the caregiver itself as a threat.
Collapse
Affiliation(s)
| | - Anne-Marie Mouly
- Lyon Neuroscience Research Center, INSERM U1028; CNRS UMR5292; University Lyon1, Lyon, France
| | - Regina M Sullivan
- Emotional Brain Institute, Nathan Kline Institute, Child and Adolescent Psychiatry, New York University School of Medicine, New York, New York 10010, USA
| |
Collapse
|
11
|
Homberg JR, Kyzar EJ, Nguyen M, Norton WH, Pittman J, Poudel MK, Gaikwad S, Nakamura S, Koshiba M, Yamanouchi H, Scattoni ML, Ullman JF, Diamond DM, Kaluyeva AA, Parker MO, Klimenko VM, Apryatin SA, Brown RE, Song C, Gainetdinov RR, Gottesman II, Kalueff AV. Understanding autism and other neurodevelopmental disorders through experimental translational neurobehavioral models. Neurosci Biobehav Rev 2016; 65:292-312. [DOI: 10.1016/j.neubiorev.2016.03.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 03/11/2016] [Accepted: 03/21/2016] [Indexed: 12/11/2022]
|
12
|
Roth TL, Raineki C, Salstein L, Perry R, Sullivan-Wilson TA, Sloan A, Lalji B, Hammock E, Wilson DA, Levitt P, Okutani F, Kaba H, Sullivan RM. Neurobiology of secure infant attachment and attachment despite adversity: a mouse model. GENES BRAIN AND BEHAVIOR 2013; 12:673-80. [PMID: 23927771 DOI: 10.1111/gbb.12067] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/19/2013] [Accepted: 07/31/2013] [Indexed: 01/05/2023]
Abstract
Attachment to an abusive caregiver has wide phylogenetic representation, suggesting that animal models are useful in understanding the neural basis underlying this phenomenon and subsequent behavioral outcomes. We previously developed a rat model, in which we use classical conditioning to parallel learning processes evoked during secure attachment (odor-stroke, with stroke mimicking tactile stimulation from the caregiver) or attachment despite adversity (odor-shock, with shock mimicking maltreatment). Here we extend this model to mice. We conditioned infant mice (postnatal day (PN) 7-9 or 13-14) with presentations of peppermint odor and either stroking or shock. We used (14) C 2-deoxyglucose (2-DG) to assess olfactory bulb and amygdala metabolic changes following learning. PN7-9 mice learned to prefer an odor following either odor-stroke or shock conditioning, whereas odor-shock conditioning at PN13-14 resulted in aversion/fear learning. 2-DG data indicated enhanced bulbar activity in PN7-9 preference learning, whereas significant amygdala activity was present following aversion learning at PN13-14. Overall, the mouse results parallel behavioral and neural results in the rat model of attachment, and provide the foundation for the use of transgenic and knockout models to assess the impact of both genetic (biological vulnerabilities) and environmental factors (abusive) on attachment-related behaviors and behavioral development.
Collapse
Affiliation(s)
- T L Roth
- Department of Psychology, University of Delaware, Newark, DE, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Coureaud G, Tourat A, Ferreira G. Sensory preconditioning in newborn rabbits: from common to distinct odor memories. Learn Mem 2013; 20:453-8. [PMID: 23950192 DOI: 10.1101/lm.030965.113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This study evaluated whether olfactory preconditioning is functional in newborn rabbits and based on joined or independent memory of odorants. First, after exposure to odorants A+B, the conditioning of A led to high responsiveness to odorant B. Second, responsiveness to B persisted after amnesia of A. Third, preconditioning was also functional with two overlapping pairs of odorants (A+B and B+C) and amnesia of one odorant did not affect memory of the others. Thus, incidental pairing of odorants allows reinforcement of one odorant to implicitly reinforce the others, the bond then vanishes, and the memory of each element becomes independent.
Collapse
Affiliation(s)
- Gérard Coureaud
- Developmental Ethology and Cognitive Psychology Group, Research Center for Taste and Feeding Behaviour, UMR 6265 CNRS, 1324 INRA, Université de Bourgogne, 21000 Dijon, France.
| | | | | |
Collapse
|
14
|
Hellier JL, Arevalo NL, Smith L, Xiong KN, Restrepo D. α7-Nicotinic acetylcholine receptor: role in early odor learning preference in mice. PLoS One 2012; 7:e35251. [PMID: 22514723 PMCID: PMC3325997 DOI: 10.1371/journal.pone.0035251] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 03/14/2012] [Indexed: 11/19/2022] Open
Abstract
Recently, we have shown that mice with decreased expression of α7-nicotinic acetylcholine receptors (α7) in the olfactory bulb were associated with a deficit in odor discrimination compared to wild-type mice. However, it is unknown if mice with decreased α7-receptor expression also show a deficit in early odor learning preference (ELP), an enhanced behavioral response to odors with attractive value observed in rats. In this study, we modified ELP methods performed in rats and implemented similar conditions in mice. From post-natal days 5–18, wild-type mice were stroked simultaneously with an odor presentation (conditioned odor) for 90 s daily. Control mice were only stroked, exposed to odor, or neither. On the day of testing (P21), mice that were stroked in concert with a conditioned odor significantly investigated the conditioned odor compared to a novel odor, as observed similarly in rats. However, mice with a decrease in α7-receptor expression that were stroked during a conditioned odor did not show a behavioral response to that odorant. These results suggest that decreased α7-receptor expression has a role in associative learning, olfactory preference, and/or sensory processing deficits.
Collapse
Affiliation(s)
- Jennifer L Hellier
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America.
| | | | | | | | | |
Collapse
|
15
|
Abstract
The stimulus complexity of naturally occurring odours presents unique challenges for central nervous systems that are aiming to internalize the external olfactory landscape. One mechanism by which the brain encodes perceptual representations of behaviourally relevant smells is through the synthesis of different olfactory inputs into a unified perceptual experience--an odour object. Recent evidence indicates that the identification, categorization and discrimination of olfactory stimuli rely on the formation and modulation of odour objects in the piriform cortex. Convergent findings from human and rodent models suggest that distributed piriform ensemble patterns of olfactory qualities and categories are crucial for maintaining the perceptual constancy of ecologically inconstant stimuli.
Collapse
|
16
|
Early-life stress disrupts attachment learning: the role of amygdala corticosterone, locus ceruleus corticotropin releasing hormone, and olfactory bulb norepinephrine. J Neurosci 2010; 29:15745-55. [PMID: 20016090 DOI: 10.1523/jneurosci.4106-09.2009] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Infant rats require maternal odor learning to guide pups' proximity-seeking of the mother and nursing. Maternal odor learning occurs using a simple learning circuit including robust olfactory bulb norepinephrine (NE), release from the locus ceruleus (LC), and amygdala suppression by low corticosterone (CORT). Early-life stress increases NE but also CORT, and we questioned whether early-life stress disrupted attachment learning and its neural correlates [2-deoxyglucose (2-DG) autoradiography]. Neonatal rats were normally reared or stressed-reared during the first 6 d of life by providing the mother with insufficient bedding for nest building and were odor-0.5 mA shock conditioned at 7 d old. Normally reared paired pups exhibited typical odor approach learning and associated olfactory bulb enhanced 2-DG uptake. However, stressed-reared pups showed odor avoidance learning and both olfactory bulb and amygdala 2-DG uptake enhancement. Furthermore, stressed-reared pups had elevated CORT levels, and systemic CORT antagonist injection reestablished the age-appropriate odor-preference learning, enhanced olfactory bulb, and attenuated amygdala 2-DG. We also assessed the neural mechanism for stressed-reared pups' abnormal behavior in a more controlled environment by injecting normally reared pups with CORT. This was sufficient to produce odor aversion, as well as dual amygdala and olfactory bulb enhanced 2-DG uptake. Moreover, we assessed a unique cascade of neural events for the aberrant effects of stress rearing: the amygdala-LC-olfactory bulb pathway. Intra-amygdala CORT or intra-LC corticotropin releasing hormone (CRH) infusion supported aversion learning with intra-LC CRH infusion associated with increased olfactory bulb NE (microdialysis). These results suggest that early-life stress disturbs attachment behavior via a unique cascade of events (amygdala-LC-olfactory bulb).
Collapse
|
17
|
Function follows form: ecological constraints on odor codes and olfactory percepts. Curr Opin Neurobiol 2009; 19:422-9. [PMID: 19671493 DOI: 10.1016/j.conb.2009.07.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/07/2009] [Accepted: 07/13/2009] [Indexed: 11/23/2022]
Abstract
Sensory system function has evolved to meet the biological needs of organisms, but it is less often regarded that sensory system form has by necessity evolved to contend with the stimulus. For an olfactory system extracting meaningful information from natural scents, the ecological milieu presents unique problems. Recent studies provide new insights into the perceptual and neural mechanisms underlying how odorant elements are assembled into odor wholes, how odor percepts are reconstructed from degraded inputs, and how learning and experience sculpt olfactory categorical perception. These data show that spatial ensemble activity patterns in piriform cortex are closely linked to the perceptual meaning and identity of odor objects, substantiating theoretical models that emphasize the importance of distributed templates for the perception, discrimination, and recall of olfactory quality.
Collapse
|
18
|
Abstract
A key function of the sense of smell is to guide organisms towards rewards and away from dangers. However, because relatively few volatile chemicals in the environment carry intrinsic biological value, the meaning of an odor often needs to be acquired through learning and experience. The tremendous perceptual and neural plasticity of the olfactory system provides a design that is ideal for the establishment of links between odor cues and behaviorally relevant events, promoting appropriate adaptive responses to foods, friends, foes, and mates. This article describes recent human neuroimaging data showing the dynamic effects of olfactory perceptual learning and aversive conditioning on the behavioral discrimination of odor objects, with parallel plasticity and reorganization in the posterior piriform and orbitofrontal cortices. The findings presented here highlight the important role of experience in shaping odor object perception and in ensuring the human sense of smell achieves its full perceptual potential.
Collapse
Affiliation(s)
- Jay A Gottfried
- Department of Neurology, Cognitive Neurology & Alzheimer's Disease Center, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
19
|
Languille S, Richer P, Hars B. Approach memory turns to avoidance memory with age. Behav Brain Res 2009; 202:278-84. [PMID: 19463713 DOI: 10.1016/j.bbr.2009.04.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/01/2009] [Accepted: 04/02/2009] [Indexed: 12/31/2022]
Abstract
Ontogenetic modification of an early memory is relatively poorly understood. And an important question is whether the memory output is more determined by the age at acquisition or at retention? Here we explore the expression of odor-shock conditioning in the rat pup. Acquisition at post-natal day 6 (P6) leads to an approach response and at post-natal day 12 (P12) to an avoidance response when the retention test is 24h later. In both cases, anisomycin injected immediately post-acquisition induced a retrograde amnesia. Controls show that, in either case, short-term memory measured 4h after acquisition is not impaired and that anisomycin given after a 4h delay has no effect. Thus, at the two ages, memory involves a consolidation process. The main result is the spontaneous reversal of the conditioned response from approach acquired at P6 to avoidance when tested at P13. This phenomenon is robust as it is observed in three conditions. Moreover, amnesia induced at P6 is maintained at P13. Results are discussed in terms of maturation and/or competition of the memory traces.
Collapse
|
20
|
Raineki C, Shionoya K, Sander K, Sullivan RM. Ontogeny of odor-LiCl vs. odor-shock learning: similar behaviors but divergent ages of functional amygdala emergence. Learn Mem 2009; 16:114-21. [PMID: 19181617 DOI: 10.1101/lm.977909] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Both odor-preference and odor-aversion learning occur in perinatal pups before the maturation of brain structures that support this learning in adults. To characterize the development of odor learning, we compared three learning paradigms: (1) odor-LiCl (0.3M; 1% body weight, ip) and (2) odor-1.2-mA shock (hindlimb, 1 sec)--both of which consistently produce odor-aversion learning throughout life and (3) odor-0.5-mA shock, which produces an odor preference in early life but an odor avoidance as pups mature. Pups were trained at postnatal day (PN) 7-8, 12-13, or 23-24, using odor-LiCl and two odor-shock conditioning paradigms of odor-0.5-mA shock and odor-1.2-mA shock. Here we show that in the youngest pups (PN7-8), odor-preference learning was associated with activity in the anterior piriform (olfactory) cortex, while odor-aversion learning was associated with activity in the posterior piriform cortex. At PN12-13, when all conditioning paradigms produced an odor aversion, the odor-0.5-mA shock, odor-1.2-mA shock, and odor-LiCl all continued producing learning-associated changes in the posterior piriform cortex. However, only odor-0.5-mA shock induced learning-associated changes within the basolateral amygdala. At weaning (PN23-24), all learning paradigms produced learning-associated changes in the posterior piriform cortex and basolateral amygdala complex. These results suggest at least two basic principles of the development of the neurobiology of learning: (1) Learning that appears similar throughout development can be supported by neural systems showing very robust developmental changes, and (2) the emergence of amygdala function depends on the learning protocol and reinforcement condition being assessed.
Collapse
Affiliation(s)
- Charlis Raineki
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Child and Adolescent Psychiatry, Child Study Center, New York University Langone Medical Center, Orangeburg, New York 10962, USA
| | | | | | | |
Collapse
|
21
|
Sevelinges Y, Sullivan RM, Messaoudi B, Mouly AM. Neonatal odor-shock conditioning alters the neural network involved in odor fear learning at adulthood. Learn Mem 2008; 15:649-56. [PMID: 18772252 DOI: 10.1101/lm.998508] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Adult learning and memory functions are strongly dependent on neonatal experiences. We recently showed that neonatal odor-shock learning attenuates later life odor fear conditioning and amygdala activity. In the present work we investigated whether changes observed in adults can also be observed in other structures normally involved, namely olfactory cortical areas. For this, pups were trained daily from postnatal (PN) 8 to 12 in an odor-shock paradigm, and retrained at adulthood in the same task. (14)C 2-DG autoradiographic brain mapping was used to measure training-related activation in amygdala cortical nucleus (CoA), anterior (aPCx), and posterior (pPCx) piriform cortex. In addition, field potentials induced in the three sites in response to paired-pulse stimulation of the olfactory bulb were recorded in order to assess short-term inhibition and facilitation in these structures. Attenuated adult fear learning was accompanied by a deficit in 2-DG activation in CoA and pPCx. Moreover, electrophysiological recordings revealed that, in these sites, the level of inhibition was lower than in control animals. These data indicate that early life odor-shock learning produces changes throughout structures of the adult learning circuit that are independent, at least in part, from those involved in infant learning. Moreover, these enduring effects were influenced by the contingency of the infant experience since paired odor-shock produced greater disruption of adult learning and its supporting neural pathway than unpaired presentations. These results suggest that some enduring effects of early life experience are potentiated by contingency and extend beyond brain areas involved in infant learning.
Collapse
Affiliation(s)
- Yannick Sevelinges
- Neurosciences Sensorielles, Comportement, Cognition, CNRS-Université de Lyon, Lyon IFR 19, France.
| | | | | | | |
Collapse
|
22
|
Sevelinges Y, Moriceau S, Holman P, Miner C, Muzny K, Gervais R, Mouly AM, Sullivan RM. Enduring effects of infant memories: infant odor-shock conditioning attenuates amygdala activity and adult fear conditioning. Biol Psychiatry 2007; 62:1070-9. [PMID: 17826749 DOI: 10.1016/j.biopsych.2007.04.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 04/11/2007] [Accepted: 04/16/2007] [Indexed: 11/24/2022]
Abstract
BACKGROUND Early life adverse experience alters adult emotional and cognitive development. Here we assess early life learning about adverse experience and its consequences on adult fear conditioning and amygdala activity. METHODS Neonatal rats were conditioned daily from 8-12 days-old with paired odor (conditioned stimulus, CS) .5mA shock, unpaired, odor-only, or naive (no infant conditioning). In adulthood, each infant training group was divided into three adult training groups: paired, unpaired or odor-only, using either the same infant CS odor, or a novel adult CS odor without or with the infant CS present as context. Adults were cue tested for freezing (odor in novel environment), with amygdala (14)C 2-DG autoradiography and electrophysiology assessment. RESULTS Infant paired odor-shock conditioning attenuated adult fear conditioning, but only if the same infant CS odor was used. The (14)C 2-DG activity correlated with infant paired odor-shock conditioning produced attenuated amygdala but heightened olfactory bulb activity. Electrophysiological amygdala assessment further suggests early experience causes changes in amygdala processing as revealed by increased paired-pulse facilitation in adulthood. CONCLUSIONS This suggests some enduring effects of early life adversity (shock) are under CS control and dependent upon learning for their impact on later adult fear learning.
Collapse
Affiliation(s)
- Yannick Sevelinges
- Institut des Sciences Cognitives, Université Claude Bernard Lyon 1, France
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Shionoya K, Moriceau S, Bradstock P, Sullivan RM. Maternal attenuation of hypothalamic paraventricular nucleus norepinephrine switches avoidance learning to preference learning in preweanling rat pups. Horm Behav 2007; 52:391-400. [PMID: 17675020 PMCID: PMC2659450 DOI: 10.1016/j.yhbeh.2007.06.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 06/01/2007] [Accepted: 06/09/2007] [Indexed: 02/05/2023]
Abstract
Infant rats learn to prefer stimuli paired with pain, presumably due to the importance of learning to prefer the caregiver to receive protection and food. With maturity, a more 'adult-like' learning system emerges that includes the amygdala and avoidance/fear learning. The attachment and 'adult-like' systems appear to co-exist in older pups with maternal presence engaging the attachment system by lowering corticosterone (CORT). Specifically, odor-shock conditioning (11 odor-0.5 mA shock trials) in 12-day-old pups results in an odor aversion, although an odor preference is learned if the mother is present during conditioning. Here, we propose a mechanism to explain pups ability to 'switch' between the dual learning systems by exploring the effect of maternal presence on hypothalamic paraventricular nucleus (PVN) neural activity, norepinephrine (NE) levels and learning. Maternal presence attenuates both PVN neural activity and PVN NE levels during odor-shock conditioning. Intra-PVN NE receptor antagonist infusion blocked the odor aversion learning with maternal absence, while intra-PVN NE receptor agonist infusion permitted odor aversion learning with maternal presence. These data suggest maternal control over pup learning acts through attenuation of PVN NE to reduce the CORT required for pup odor aversion learning. Moreover, these data also represent pups' continued maternal dependence for nursing, while enabling aversion learning outside the nest to prepare for pups future independent living.
Collapse
Affiliation(s)
- Kiseko Shionoya
- Neurobehavioral Institute and Department of Zoology, University of Oklahoma, 730 Van Vleet Oval, Norman, OK 73019, USA
| | | | | | | |
Collapse
|
24
|
Shionoya K, Moriceau S, Lunday L, Miner C, Roth TL, Sullivan RM. Development switch in neural circuitry underlying odor-malaise learning. Learn Mem 2006; 13:801-8. [PMID: 17101877 PMCID: PMC1783635 DOI: 10.1101/lm.316006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Fetal and infant rats can learn to avoid odors paired with illness before development of brain areas supporting this learning in adults, suggesting an alternate learning circuit. Here we begin to document the transition from the infant to adult neural circuit underlying odor-malaise avoidance learning using LiCl (0.3 M; 1% of body weight, ip) and a 30-min peppermint-odor exposure. Conditioning groups included: Paired odor-LiCl, Paired odor-LiCl-Nursing, LiCl, and odor-saline. Results showed that Paired LiCl-odor conditioning induced a learned odor aversion in postnatal day (PN) 7, 12, and 23 pups. Odor-LiCl Paired Nursing induced a learned odor preference in PN7 and PN12 pups but blocked learning in PN23 pups. 14C 2-deoxyglucose (2-DG) autoradiography indicated enhanced olfactory bulb activity in PN7 and PN12 pups with odor preference and avoidance learning. The odor aversion in weanling aged (PN23) pups resulted in enhanced amygdala activity in Paired odor-LiCl pups, but not if they were nursing. Thus, the neural circuit supporting malaise-induced aversions changes over development, indicating that similar infant and adult-learned behaviors may have distinct neural circuits.
Collapse
Affiliation(s)
- Kiseko Shionoya
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Stephanie Moriceau
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Lauren Lunday
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Cathrine Miner
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Tania L. Roth
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
| | - Regina M. Sullivan
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA
- Corresponding author.E-mail ; fax (405) 325-2699
| |
Collapse
|
25
|
Peele P, Ditzen M, Menzel R, Galizia CG. Appetitive odor learning does not change olfactory coding in a subpopulation of honeybee antennal lobe neurons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2006; 192:1083-103. [PMID: 16865372 DOI: 10.1007/s00359-006-0152-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2006] [Revised: 06/13/2006] [Accepted: 06/16/2006] [Indexed: 10/24/2022]
Abstract
Odors elicit spatio-temporal patterns of activity in the olfactory bulb of vertebrates and the antennal lobe of insects. There have been several reports of changes in these patterns following olfactory learning. These studies pose a conundrum: how can an animal learn to efficiently respond to a particular odor with an adequate response, if its primary representation already changes during this process? In this study, we offer a possible solution for this problem. We measured odor-evoked calcium responses in a subpopulation of uniglomerular AL output neurons in honeybees. We show that their responses to odors are remarkably resistant to plasticity following a variety of appetitive olfactory learning paradigms. There was no significant difference in the changes of odor-evoked activity between single and multiple trial forward or backward conditioning, differential conditioning, or unrewarded successive odor stimulation. In a behavioral learning experiment we show that these neurons are necessary for conditioned odor responses. We conclude that these uniglomerular projection neurons are necessary for reliable odor coding and are not modified by learning in this paradigm. The role that other projection neurons play in olfactory learning remains to be investigated.
Collapse
Affiliation(s)
- P Peele
- Institute of Neurobiology, Freie Universität Berlin, 14195, Berlin, Germany
| | | | | | | |
Collapse
|
26
|
Moriceau S, Wilson DA, Levine S, Sullivan RM. Dual circuitry for odor-shock conditioning during infancy: corticosterone switches between fear and attraction via amygdala. J Neurosci 2006; 26:6737-48. [PMID: 16793881 PMCID: PMC1574366 DOI: 10.1523/jneurosci.0499-06.2006] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rat pups must learn maternal odor to support attachment behaviors, including nursing and orientation toward the mother. Neonates have a sensitive period for rapid, robust odor learning characterized by increased ability to learn odor preferences and decreased ability to learn odor aversions. Specifically, odor-0.5 mA shock association paradoxically causes an odor preference and coincident failure of amygdala activation in pups until postnatal day 10 (P10). Because sensitive-period termination coincides with a declining "stress hyporesponsive period" when corticosterone release is attenuated, we explored the role of corticosterone in sensitive-period termination. Odor was paired with 0.5 mA shock in either sensitive-period (P8) or postsensitive-period (P12) pups while manipulating corticosterone. We then assessed preference/aversion learning and the olfactory neural circuitry underlying its acquisition. Although sensitive-period control paired odor-shock pups learned an odor preference without amygdala participation, systemic (3 mg/kg, i.p.; 24 h and 30 min before training) or intra-amygdala corticosterone (50 or 100 ng; during training) permitted precocious odor-aversion learning and evoked amygdala neural activity similar to that expressed by older pups. In postsensitive-period (P12) pups, control paired odor-shock pups showed an odor aversion and amygdala activation, whereas corticosterone-depleted (adrenalectomized) paired odor-shock pups showed odor-preference learning and activation of an odor learning circuit characteristic of the sensitive period. Intra-amygdala corticosterone receptor antagonist (0.3 ng; during training) infused into postsensitive-period (P12) paired odor-shock pups also showed odor-preference learning. These results suggest corticosterone is important in sensitive-period termination and developmental emergence of olfactory fear conditioning, acting via the amygdala as a switch between fear and attraction. Because maternal stimulation of pups modulates the pups' endogenous corticosterone, this suggests maternal care quality may alter sensitive-period duration.
Collapse
Affiliation(s)
- Stephanie Moriceau
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | | | | | |
Collapse
|
27
|
|
28
|
Roth TL, Sullivan RM. Memory of early maltreatment: neonatal behavioral and neural correlates of maternal maltreatment within the context of classical conditioning. Biol Psychiatry 2005; 57:823-31. [PMID: 15820702 DOI: 10.1016/j.biopsych.2005.01.032] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 12/15/2004] [Accepted: 01/13/2005] [Indexed: 01/20/2023]
Abstract
BACKGROUND While children form an attachment to their abusive caregiver, they are susceptible to mental illness and brain abnormalities. To understand this important clinical issue, we have developed a rat animal model of abusive attachment where odor paired with shock paradoxically produces an odor preference. Here, we extend this model to a seminaturalistic paradigm using a stressed, "abusive" mother during an odor presentation and assess the underlying learning neural circuit. METHODS We used a classical conditioning paradigm pairing a novel odor with a stressed mother that predominantly abused pups to assess olfactory learning in a seminaturalistic environment. Additionally, we used Fos protein immunohistochemistry to assess brain areas involved in learning this pain-induced odor preference within a more controlled maltreatment environment (odor-shock conditioning). RESULTS Odor-maternal maltreatment pairings within a seminatural setting and odor-shock pairings both resulted in paradoxical odor preferences. Learning-induced gene expression was altered in the olfactory bulb and anterior piriform cortex (part of olfactory cortex) but not the amygdala. CONCLUSIONS Infants appear to use a unique brain circuit that optimizes learned odor preferences necessary for attachment. A fuller understanding of infant brain function may provide insight into why early maltreatment affects psychiatric well-being.
Collapse
Affiliation(s)
- Tania L Roth
- Department of Zoology, University of Oklahoma, Norman, Oklahoma 73019, USA.
| | | |
Collapse
|
29
|
Abstract
Infant rats exhibit sensitive-period odor learning characterized by olfactory bulb neural changes and odor preference acquisitions critical for survival. This sensitive period is coincident with low endogenous corticosterone (CORT) levels and stress hyporesponsivity. The authors hypothesized that low corticosterone levels modulate sensitive-period learning. They assessed the effects of manipulating CORT levels by increasing and removing CORT during (Postnatal Day 8) and after (Postnatal Day 12) the sensitive period. Results show that (a) exogenous CORT prematurely ends sensitive-period odor-shock-induced preferences; (b) adrenalectomy developmentally extends the sensitive period as indicated by odor-shock-induced odor-preference learning in older pups, whereas CORT replacement can reinstate fear learning; and (c) CORT manipulation modulates olfactory bulb correlates of sensitive-period odor learning in a manner consistent with behavior.
Collapse
|
30
|
Pongrácz P, Altbäcker V. Arousal, but not nursing, is necessary to elicit a decreased fear reaction toward humans in rabbit (Oryctolagus cuniculus) pups. Dev Psychobiol 2003; 43:192-9. [PMID: 14558041 DOI: 10.1002/dev.10132] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rabbits that are handled at the time of feeding during the first week postpartum show reduced fear of humans later in their lives as compared to unhandled controls. Effective handling has been shown to be confined to a sensitive period. Our study aimed to investigate if feeding itself (provided by a second doe, 6 hr after the standard nursing time) affects the levels of fear of humans later in life. Our results showed that (a) the prenursing state of excitement is only characteristic of the standard nursing and is not elicited by a second feeding 6 hr past the usual nursing time, repeated daily across the first week postpartum; and (b) handling linked to a second feeding 6 hr after the standard nursing does not reduce fear responses toward humans at weaning. We conclude that the aroused state, per se, is essential for the reduction of a rabbit's fear response toward humans provoked by early handling.
Collapse
Affiliation(s)
- Péter Pongrácz
- Department of Ethology, Eötvös Loránd University, Budapest, Pázmány Péter sétány 1/c, H-1117, Hungary.
| | | |
Collapse
|
31
|
Sullivan RM. Unique Characteristics of Neonatal Classical Conditioning: The Role of the Amygdala and Locus Coeruleus. ACTA ACUST UNITED AC 2001; 36:293-307. [PMID: 17476313 PMCID: PMC1863212 DOI: 10.1007/bf02688797] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The central nervous system of altricial infants is specialized for optimizing attachments to their caregiver. During the first postnatal days, infant rats show a sensitive period for learning and are particularly susceptible to learning an attraction to their mother's odor. Classical conditioning appears to underlie this learning that is expressed behaviorally as an increased ability to acquire odor preferences and a decreased ability to acquire odor aversions. Specifically, in neonatal rats, pairing an odor with moderately painful shock (0.5mA) or milk produces a subsequent relative preference for that odor. The neural circuitry supporting the increased ability to acquire odor preferences appears to be the heightened functioning of the noradrenergic pontine nucleus locus coeruleus. Indeed, norepinephrine from the locus coeruleus appears to be both necessary and sufficient for learning during the sensitive period. On the other hand, the decreased ability to acquire odor aversions seems to be due to the lack of participation of the amygdala in at least some aversive learning situations. The site of plasticity in the pup's brain appears to be limited to the olfactory bulb. This neonatal sensitive period for learning ends around postnatal day 9-10, at which time pups make the transition from crawling to walking and classical conditioning becomes "adultlike." The neonatal behavioral and neural induced changes are retained into adulthood where it modifies sexual behavior.
Collapse
|
32
|
Sullivan RM, Stackenwalt G, Nasr F, Lemon C, Wilson DA. Association of an odor with activation of olfactory bulb noradrenergic beta-receptors or locus coeruleus stimulation is sufficient to produce learned approach responses to that odor in neonatal rats. Behav Neurosci 2000; 114:957-62. [PMID: 11085610 PMCID: PMC1885991 DOI: 10.1037/0735-7044.114.5.957] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
These experiments examined the sufficiency of pairing an odor with either intrabulbar activation of noradrenergic beta-receptors or pharmacological stimulation of the locus coeruleus to support learned odor preferences in Postnatal Day 6-7 rat pups. The results showed that pups exposed to odor paired with beta-receptor activation limited to the olfactory bulb (isoproterenol, 50 microM) displayed a conditioned approach response on subsequent exposure to that odor. Furthermore, putative stimulation of the locus coeruleus (2 microM idazoxan or 2 mM acetylcholine) paired with odor produced a subsequent preference for that odor. The effects of locus coeruleus stimulation could be blocked by a pretraining injection of the beta-receptor antagonist propranolol (20 mg/kg). Together these results suggest that convergence of odor input with norepinephrine release from the locus coeruleus terminals within the olfactory bulb is sufficient to support olfactory learning.
Collapse
Affiliation(s)
- R M Sullivan
- Department of Zoology, University of Oklahoma, Norman 73019, USA.
| | | | | | | | | |
Collapse
|
33
|
Funk D, Amir S. Enhanced fos expression within the primary olfactory and limbic pathways induced by an aversive conditioned odor stimulus. Neuroscience 2000; 98:403-6. [PMID: 10869835 DOI: 10.1016/s0306-4522(00)00217-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A central question in olfactory learning is how animals become tuned to odor stimuli that gain significance through conditioning. A leading view is that tuning to conditioned odor stimuli involves functional modifications within the primary olfactory pathways, themselves.(7) Here we studied this idea further by investigating responses within the olfactory system to an odor that had previously been paired with footshock in classical fear-conditioning trials in adult rats. Using the transcription factor Fos as a marker of odor-induced neuronal activation,(1,14) we found that in rats that had received forward pairings of odor and footshock during training, presentation of the conditioned odor stimulus, alone, produced an enhanced increase in levels of Fos in the main and accessory olfactory bulbs and anterior olfactory nucleus compared with that found in animals that had received backward presentations of the stimuli or of odor alone. These results demonstrate that Fos responses to an odor within the primary olfactory pathways can be modified through aversive conditioning, and are consistent with other evidence that olfactory conditioning can lead to functional changes within these pathways.(7)
Collapse
Affiliation(s)
- D Funk
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, 1455 de Maisonneuve Boulevard West, Quebec, H3G 1M8, Montreal, Canada
| | | |
Collapse
|
34
|
Pongrácz P, Altbäcker V. The effect of early handling is dependent upon the state of the rabbit (Oryctolagus cuniculus) pups around nursing. Dev Psychobiol 1999; 35:241-51. [PMID: 10531536 DOI: 10.1002/(sici)1098-2302(199911)35:3<241::aid-dev8>3.0.co;2-r] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We investigated the behavior toward humans in 4-week-old pups and adult rabbits handled daily at different times around the nursing visits during their 1st week of life. The timing of handling significantly influenced its efficiency in altering the subsequent behavior of rabbits. Animals handled around nursing readily approached a human hand when tested at weaning. Other pups, handled either 6, 12, or 18 hr after nursing, avoided the human hand. Our results show that there is a narrow sensitive period for successful stimulation, because only those rabbits that were handled within the interval starting 15 min before and ending 30 min after nursing became tame. The effect of early handling proved to be long-lasting because nonhandled rabbits tested as adults were afraid of humans and showed behavioral elements of avoidance, while the handled ones behaved fearlessly in the open field. The effect of handling proved to be specific toward humans because both handled and nonhandled animals showed avoidance toward a stuffed fox.
Collapse
Affiliation(s)
- P Pongrácz
- Department of Ethology, Eötvös Loránd University, Göd, Jávorka S. u. 14., H-2131, Hungary
| | | |
Collapse
|
35
|
Abstract
Infants' preferences for a novel or familiar nursery rhyme were examined as an index of long-term memory. One-to 2-month-old infants' preference were tested, using a nonnutritive sucking, discrimination-learning procedure, at 1, 2, or 3 days after the last of multiple familiarization sessions. A consistent novelty preference was observed at the 1-day retention interval, no consistent preference occurred at the 2-day interval, and familiarity preference was found following the 3-day interval. This pattern of results is consistent with attentional preference models which interpret novelty and familiarity preferences as reflecting the discrepancy between an external stimulus and the infants' representation of the stimulus. The findings also reveal that infants as young as 1 month of age encoded and subsequently recognized a repeatedly experienced nursery rhyme after a 3-day retention interval.
Collapse
Affiliation(s)
- M J Spence
- School of Human Development, University of Texas at Dallas, Richardson, 75083-0688, USA.
| |
Collapse
|