1
|
Wang Y, Chang J, Qiao S, Yang Y, Yun C, Li Y, Wang F. Salvianolic acid B attenuates diabetic nephropathy through alleviating ADORA2B, NALP3 in flammasome, and NFκB activity. Can J Physiol Pharmacol 2024; 102:318-330. [PMID: 38070193 DOI: 10.1139/cjpp-2023-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Diabetic nephropathy is one of the microvascular complications of diabetes. This study is aimed at investigating the role and mechanisms of salvianolic acid B (Sal B) in diabetic nephropathy. High glucose (HG)-induced human renal tubular epithelial HK-2 cells were treated with Sal B, BAY-60-6583 (agonist of adenosine 2B receptor), or PSB-603 (antagonist of adenosine 2B receptor) for 24 h. Adenosine A2b receptor (ADORA2B), NACHT, leucine-rich repeat (LRR), and pyrin (PYD) domains-containing protein 3 (NALP3), and nuclear factor Kappa B (NFκB) expressions, mitochondrial membrane potential (MMP), and reactive oxygen species (ROS) levels were examined. Following 6 weeks of Sal B treatment, db/db mice blood and kidney tissue were harvested for biochemical detection with hematoxylin-eosin (H&E), Masson's, periodic acid schiff (PAS), and Sirius red staining and detection of ADORA2B, NALP3, NFκB, interleukin 1β (IL-1β), and toll-like receptor 4 (TLR4) activity. NFκB, NALP3, and ADORA2B were found to be downregulated in Sal B treated HK-2 cells exposed to high glucose (HG), accompanied by elevated levels of MMPs and reduced intracellular ROS production. Sal B-treated diabetic mice had the improvement in body weight, water intake, hyperglycemia, hyperlipidemia, and liver and kidney function. Altogether, Sal B attenuates HG-induced kidney tubule cell injury and diabetic nephropathy in diabetic mice, providing clues to other novel mechanisms by which Sal B is beneficial in diabetic nephropathy.
Collapse
Affiliation(s)
- Ying Wang
- Department of General Practice, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Jiang Chang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Shubin Qiao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
- Department of Pulmonary and Critical Care Medicine, Beijing 100071, China
| | - Ying Yang
- Department of Endocrinology, Tangshan Gongren Hospital, Tangshan 063000, Hebei, China
| | - Chuan Yun
- Department of Endocrinology, The First Affiliated Hospital of Hainan Medical University, Haikou 570102, Hainan, China
| | - Yongyan Li
- Department of Nephrology, Hainan Medical University, Haikou 570102, Hainan, China
| | - Fa Wang
- Department of Anesthesiology, Ningxia Medical University, Yinchuan 750004, Ningxia Hui Autonomous Region, China
| |
Collapse
|
2
|
Wang BB, Xue M. Early neonatal complications in pregnant women with gestational diabetes mellitus and the effects of glycemic control on neonatal infection. World J Diabetes 2023; 14:1393-1402. [PMID: 37771327 PMCID: PMC10523229 DOI: 10.4239/wjd.v14.i9.1393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 05/24/2023] [Accepted: 08/04/2023] [Indexed: 09/13/2023] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) has become increasingly prevalent globally. Glycemic control in pregnant women with GDM has a critical role in neonatal complications. AIM To analyze the early neonatal complications in GDM, and examine the effect of blood glucose control level on neonatal infection. METHODS The clinical data of 236 pregnant women with GDM and 240 healthy pregnant women and newborns during from March 2020 to December 2021 the same period were retrospectively analyzed, and the early complications in newborns in the two groups were compared. The patients were divided into the conforming glycemic control group (CGC group) and the non-conforming glycemic control group (NCGC group) based on whether glycemic control in the pregnant women with GDM conformed to standards. Baseline data, immune function, infection-related markers, and infection rates in neonates were compared between the two groups. RESULTS The incidence of neonatal complications in the 236 neonates in the GDM group was significantly higher than that in the control group (P < 0.05). Pregnant women with GDM in the NCGC group (n = 178) had significantly higher fasting plasma glucose, 2 h postprandial blood glucose and glycated hemoglobin A1C levels than those in the CGC group (n = 58) (P < 0.05). There were no differences in baseline data between the two groups (P > 0.05). Additionally, the NCGC group had significantly decreased peripheral blood CD3+, CD4+, CD8+ T cell ratios, CD4/CD8 ratios and immunoglobulin G in neonates compared with the CGC group (P < 0.05), while white blood cells, serum procalcitonin and C-reactive protein levels increased significantly. The neonatal infection rate was also significantly increased in the NCGC group (P < 0.05). CONCLUSION The risk of neonatal complications increased in pregnant women with GDM. Poor glycemic control decreased neonatal immune function, and increased the incidence of neonatal infections.
Collapse
Affiliation(s)
- Bei-Bei Wang
- Department of Neonatal Intensive Care Unit, Taizhou People’s Hospital of Jiangsu Province, Taizhou 225300, Jiangsu Province, China
| | - Mei Xue
- Department of Neonatal Intensive Care Unit, Taizhou People’s Hospital of Jiangsu Province, Taizhou 225300, Jiangsu Province, China
| |
Collapse
|
3
|
Sanni O, Terre'Blanche G. Dual A 1 and A 2A adenosine receptor antagonists, methoxy substituted 2-benzylidene-1-indanone, suppresses intestinal postprandial glucose and attenuates hyperglycaemia in fructose-streptozotocin diabetic rats. BMC Endocr Disord 2023; 23:97. [PMID: 37143025 PMCID: PMC10157944 DOI: 10.1186/s12902-023-01354-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 04/26/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND/AIM Recent research suggests that adenosine receptors (ARs) influence many of the metabolic abnormalities associated with diabetes. A non-xanthine benzylidene indanone derivative 2-(3,4-dihydroxybenzylidene)-4-methoxy-2,3-dihydro-1 H-inden-1-one (2-BI), has shown to exhibit higher affinity at A1/A2A ARs compared to caffeine. Due to its structural similarity to caffeine, and the established antidiabetic effects of caffeine, the current study was initiated to explore the possible antidiabetic effect of 2-BI. METHODS The study was designed to assess the antidiabetic effects of several A1 and/or A2A AR antagonists, via intestinal glucose absorption and glucose-lowering effects in fructose-streptozotocin (STZ) induced diabetic rats. Six-week-old male Sprague-Dawley rats were induced with diabetes via fructose and streptozotocin. Rats were treated for 4 weeks with AR antagonists, metformin and pioglitazone, respectively. Non-fasting blood glucose (NFBG) was determined weekly and the oral glucose tolerance test (OGTT) was conducted at the end of the intervention period. RESULTS Dual A1/A2A AR antagonists (caffeine and 2-BI) decreased glucose absorption in the intestinal membrane significantly (p < 0.01), while the selective A2A AR antagonist (Istradefylline), showed the highest significant (p < 0.001) reduction in intestinal glucose absorption. The selective A1 antagonist (DPCPX) had the least significant (p < 0.05) reduction in glucose absorption. Similarly, dual A1/A2A AR antagonists and selective A2A AR antagonists significantly reduced non-fast blood glucose and improved glucose tolerance in diabetic rats from the first week of the treatment. Conversely, the selective A1 AR antagonist did not reduce non-fast blood glucose significantly until the 4th week of treatment. 2-BI, caffeine and istradefylline compared well with standard antidiabetic treatments, metformin and pioglitazone, and in some cases performed even better. CONCLUSION 2-BI exhibited good antidiabetic activity by reducing intestinal postprandial glucose absorption and improving glucose tolerance in a diabetic animal model. The dual antagonism of A1/A2A ARs presents a positive synergism that could provide a new possibility for the treatment of diabetes.
Collapse
Affiliation(s)
- Olakunle Sanni
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), School of Health Sciences, North-West University (NWU), Potchefstroom, 2357, South Africa.
| | - Gisella Terre'Blanche
- Centre of Excellence for Pharmaceutical Sciences (Pharmacen), School of Health Sciences, North-West University (NWU), Potchefstroom, 2357, South Africa
- Pharmaceutical Chemistry, School of Pharmacy, North-West University (NWU), Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
4
|
Burzynska-Pedziwiatr I, Dudzik D, Sansone A, Malachowska B, Zieleniak A, Zurawska-Klis M, Ferreri C, Chatgilialoglu C, Cypryk K, Wozniak LA, Markuszewski MJ, Bukowiecka-Matusiak M. Targeted and untargeted metabolomic approach for GDM diagnosis. Front Mol Biosci 2023; 9:997436. [PMID: 36685282 PMCID: PMC9849575 DOI: 10.3389/fmolb.2022.997436] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a disorder which manifests itself for the first time during pregnancy and is mainly connected with glucose metabolism. It is also known that fatty acid profile changes in erythrocyte membranes and plasma could be associated with obesity and insulin resistance. These factors can lead to the development of diabetes. In the reported study, we applied the untargeted analysis of plasma in GDM against standard glucose-tolerant (NGT) women to identify the differences in metabolomic profiles between those groups. We found higher levels of 2-hydroxybutyric and 3-hydroxybutyric acids. Both secondary metabolites are associated with impaired glucose metabolism. However, they are products of different metabolic pathways. Additionally, we applied lipidomic profiling using gas chromatography to examine the fatty acid composition of cholesteryl esters in the plasma of GDM patients. Among the 14 measured fatty acids characterizing the representative plasma lipidomic cluster, myristic, oleic, arachidonic, and α-linoleic acids revealed statistically significant changes. Concentrations of both myristic acid, one of the saturated fatty acids (SFAs), and oleic acid, which belong to monounsaturated fatty acids (MUFAs), tend to decrease in GDM patients. In the case of polyunsaturated fatty acids (PUFAs), some of them tend to increase (e.g., arachidonic), and some of them tend to decrease (e.g., α-linolenic). Based on our results, we postulate the importance of hydroxybutyric acid derivatives, cholesteryl ester composition, and the oleic acid diminution in the pathophysiology of GDM. There are some evidence suggests that the oleic acid can have the protective role in diabetes onset. However, metabolic alterations that lead to the onset of GDM are complex; therefore, further studies are needed to confirm our observations.
Collapse
Affiliation(s)
| | - Danuta Dudzik
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Anna Sansone
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | - Beata Malachowska
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland,Department of Nursing and Obstetrics, Medical University of Lodz, Lodz, Poland,Department of Clinic Nursing, Medical University of Lodz, Lodz, Poland,Department of Diabetology and Metabolic Diseases Lodz, Medical University of Lodz, Lodz, Poland
| | - Andrzej Zieleniak
- Laboratory of Metabolomic Studies, Department of Structural Biology, Medical University of Lodz, Lodz, Poland
| | - Monika Zurawska-Klis
- Department of Radiation Oncology, Einstein College of Medicine, Bronx, NY, United States
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | | | - Katarzyna Cypryk
- Department of Radiation Oncology, Einstein College of Medicine, Bronx, NY, United States
| | - Lucyna A. Wozniak
- Laboratory of Metabolomic Studies, Department of Structural Biology, Medical University of Lodz, Lodz, Poland
| | - Michal J. Markuszewski
- Department of Biopharmaceutics and Pharmacodynamics, Medical University of Gdansk, Gdansk, Poland
| | - Malgorzata Bukowiecka-Matusiak
- Laboratory of Metabolomic Studies, Department of Structural Biology, Medical University of Lodz, Lodz, Poland,*Correspondence: Malgorzata Bukowiecka-Matusiak,
| |
Collapse
|
5
|
Zieleniak A, Zurawska-Klis M, Cypryk K, Wozniak L, Wojcik M. Transcriptomic Dysregulation of Inflammation-Related Genes in Leukocytes of Patients with Gestational Diabetes Mellitus (GDM) during and after Pregnancy: Identifying Potential Biomarkers Relevant to Glycemic Abnormality. Int J Mol Sci 2022; 23:ijms232314677. [PMID: 36499008 PMCID: PMC9737950 DOI: 10.3390/ijms232314677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 11/26/2022] Open
Abstract
Although the immune system has been implicated in the pathophysiology of gestational diabetes mellitus (GDM) and postpartum abnormal glucose tolerance (AGT), little is known about the transcriptional response of inflammation-related genes linked to metabolic phenotypes of GDM women during and after pregnancy, which may be potential diagnostic classifiers for GDM and biomarkers for predicting AGT. To address these questions, gene expression of IL6, IL8, IL10, IL13, IL18, TNFA, and the nuclear factor κB (NFκB)/RELA transcription factor were quantified in leukocytes of 28 diabetic women at GDM diagnosis (GDM group) and 1-year postpartum (pGDM group: 10 women with AGT and 18 normoglycemic women), using a nested RT-PCR method. Control pregnancies with normal glucose tolerance (NGT group; n = 31) were closely matched for maternal age, gestational age, pre-pregnancy BMI, pregnancy weight, and gestational weight gain. Compared with the NGT group, IL8 was downregulated in the GDM group, and IL13 and RELA were upregulated in the pGDM group, whereas IL6, IL10, and IL18 were upregulated in the GDM and pGDM groups. The TNFA level did not change from pregnancy to postpartum. Associations of some cytokines with glycemic measures were detected in pregnancy (IL6 and RELA) and postpartum (IL10) (p < 0.05). Receiver operating characteristic (ROC) curves showed that IL6, IL8, and IL18, if employed alone, can discriminate GDM patients from NGT individuals at GDM diagnosis, with the area under the ROC curves (AUCs) of 0.844, (95% CI 0.736−0.953), 0.771 (95% CI 0.651−0.890), and 0.714 (95% CI 0.582−0.846), respectively. By the logistic regression method, we also identified a three-gene panel (IL8, IL13, and TNFA) for postpartum AGT prediction. This study demonstrates a different transcriptional response of the studied genes in clinically well-characterized women with GDM at GDM diagnosis and 1-year postpartum, and provides novel transcriptomic biomarkers for future efforts aimed at diagnosing GDM and identifying the high risk of postpartum AGT groups.
Collapse
Affiliation(s)
- Andrzej Zieleniak
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Monika Zurawska-Klis
- Department of Internal Diseases and Diabetology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Diseases and Diabetology, Medical University of Lodz, 92-213 Lodz, Poland
| | - Lucyna Wozniak
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
| | - Marzena Wojcik
- Department of Structural Biology, Faculty of Biomedical Sciences, Medical University of Lodz, 90-752 Lodz, Poland
- Correspondence: ; Tel.: +48-426-393-238
| |
Collapse
|
6
|
Kotańska M, Dziubina A, Szafarz M, Mika K, Bednarski M, Nicosia N, Temirak A, Müller CE, Kieć-Kononowicz K. Preliminary Evidence of the Potent and Selective Adenosine A2B Receptor Antagonist PSB-603 in Reducing Obesity and Some of Its Associated Metabolic Disorders in Mice. Int J Mol Sci 2022; 23:13439. [PMID: 36362227 PMCID: PMC9656786 DOI: 10.3390/ijms232113439] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 08/26/2023] Open
Abstract
The adenosine A2A and A2B receptors are promising therapeutic targets in the treatment of obesity and diabetes since the agonists and antagonists of these receptors have the potential to positively affect metabolic disorders. The present study investigated the link between body weight reduction, glucose homeostasis, and anti-inflammatory activity induced by a highly potent and specific adenosine A2B receptor antagonist, compound PSB-603. Mice were fed a high-fat diet for 14 weeks, and after 12 weeks, they were treated for 14 days intraperitoneally with the test compound. The A1/A2A/A2B receptor antagonist theophylline was used as a reference. Following two weeks of treatment, different biochemical parameters were determined, including total cholesterol, triglycerides, glucose, TNF-α, and IL-6 blood levels, as well as glucose and insulin tolerance. To avoid false positive results, mouse locomotor and spontaneous activities were assessed. Both theophylline and PSB-603 significantly reduced body weight in obese mice. Both compounds had no effects on glucose levels in the obese state; however, PSB-603, contrary to theophylline, significantly reduced triglycerides and total cholesterol blood levels. Thus, our observations showed that selective A2B adenosine receptor blockade has a more favourable effect on the lipid profile than nonselective inhibition.
Collapse
Affiliation(s)
- Magdalena Kotańska
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, PL 30-688 Krakow, Poland
| | - Anna Dziubina
- Department of Pharmacodynamics, Jagiellonian University Medical College, 9 Medyczna Street, PL 30-688 Krakow, Poland
| | - Małgorzata Szafarz
- Department of Pharmacokinetics and Physical Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland
| | - Kamil Mika
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, PL 30-688 Krakow, Poland
| | - Marek Bednarski
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, PL 30-688 Krakow, Poland
| | - Noemi Nicosia
- Department of Pharmacological Screening, Jagiellonian University Medical College, 9 Medyczna Street, PL 30-688 Krakow, Poland
- Division of Neuroscience, Vita Salute San Raffaele University, 20132 Milan, Italy
| | - Ahmed Temirak
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, D-53121 Bonn, Germany
| | - Christa E. Müller
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, An der Immenburg 4, D-53121 Bonn, Germany
| | - Katarzyna Kieć-Kononowicz
- Chair of Technology and Biotechnology of Drugs, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, PL 30-688 Cracow, Poland
| |
Collapse
|
7
|
Basilio E, Chen R, Fernandez AC, Padula AM, Robinson JF, Gaw SL. Wildfire Smoke Exposure during Pregnancy: A Review of Potential Mechanisms of Placental Toxicity, Impact on Obstetric Outcomes, and Strategies to Reduce Exposure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13727. [PMID: 36360613 PMCID: PMC9657128 DOI: 10.3390/ijerph192113727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Climate change is accelerating the intensity and frequency of wildfires globally. Understanding how wildfire smoke (WS) may lead to adverse pregnancy outcomes and alterations in placental function via biological mechanisms is critical to mitigate the harms of exposure. We aim to review the literature surrounding WS, placental biology, biological mechanisms underlying adverse pregnancy outcomes as well as interventions and strategies to avoid WS exposure in pregnancy. This review includes epidemiologic and experimental laboratory-based studies of WS, air pollution, particulate matter (PM), and other chemicals related to combustion in relation to obstetric outcomes and placental biology. We summarized the available clinical, animal, and placental studies with WS and other combustion products such as tobacco, diesel, and wood smoke. Additionally, we reviewed current recommendations for prevention of WS exposure. We found that there is limited data specific to WS; however, studies on air pollution and other combustion sources suggest a link to inflammation, oxidative stress, endocrine disruption, DNA damage, telomere shortening, epigenetic changes, as well as metabolic, vascular, and endothelial dysregulation in the maternal-fetal unit. These alterations in placental biology contribute to adverse obstetric outcomes that disproportionally affect the most vulnerable. Limiting time outdoors, wearing N95 respirator face masks and using high quality indoor air filters during wildfire events reduces exposure to related environmental exposures and may mitigate morbidities attributable to WS.
Collapse
Affiliation(s)
- Emilia Basilio
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Rebecca Chen
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | | | - Amy M. Padula
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Joshua F. Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| | - Stephanie L. Gaw
- Division of Maternal-Fetal Medicine, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
8
|
Meyrueix LP, Gharaibeh R, Xue J, Brouwer C, Jones C, Adair L, Norris SA, Ideraabdullah F. Gestational diabetes mellitus placentas exhibit epimutations at placental development genes. Epigenetics 2022; 17:2157-2177. [DOI: 10.1080/15592294.2022.2111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Affiliation(s)
| | - Raad Gharaibeh
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, USA
- Bioinformatics Service Division, University of North Carolina, Charlotte, NC, USA
- Department of Medicine, Division of Gastroenterology, University of Florida, Gainesville, FL, USA
| | - Jing Xue
- Genetics Department, University of North Carolina, Chapel Hill, NC, USA
| | - Cory Brouwer
- Department of Bioinformatics and Genomics, University of North Carolina, Charlotte, NC, USA
- Bioinformatics Service Division, University of North Carolina, Charlotte, NC, USA
| | - Corbin Jones
- Department of Biology and Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC, USA
| | - Linda Adair
- Nutrition Department, University of North Carolina, Chapel Hill, NC, USA
| | - Shane A. Norris
- SAMRC Developmental Health Pathways for Health Research Unit, University of Witwatersrand, Johannesburg, South Africa
| | - Folami Ideraabdullah
- Nutrition Department, University of North Carolina, Chapel Hill, NC, USA
- Genetics Department, University of North Carolina, Chapel Hill, NC, USA
- SAMRC Developmental Health Pathways for Health Research Unit, University of Witwatersrand, Johannesburg, South Africa
- Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
9
|
The Impact of Oxidative Stress of Environmental Origin on the Onset of Placental Diseases. Antioxidants (Basel) 2022; 11:antiox11010106. [PMID: 35052610 PMCID: PMC8773163 DOI: 10.3390/antiox11010106] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress (OS) plays a pivotal role in placental development; however, abnormal loads in oxidative stress molecules may overwhelm the placental defense mechanisms and cause pathological situations. The environment in which the mother evolves triggers an exposure of the placental tissue to chemical, physical, and biological agents of OS, with potential pathological consequences. Here we shortly review the physiological and developmental functions of OS in the placenta, and present a series of environmental pollutants inducing placental oxidative stress, for which some insights regarding the underlying mechanisms have been proposed, leading to a recapitulation of the noxious effects of OS of environmental origin upon the human placenta.
Collapse
|
10
|
Sagrillo-Fagundes L, Casagrande Paim T, Pretto L, Bertaco I, Zanatelli C, Vaillancourt C, Wink MR. The implications of the purinergic signaling throughout pregnancy. J Cell Physiol 2021; 237:507-522. [PMID: 34596240 DOI: 10.1002/jcp.30594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/26/2021] [Accepted: 09/14/2021] [Indexed: 12/14/2022]
Abstract
Purinergic signaling is a necessary mechanism to trigger or even amplify cell communication. Its ligands, notably adenosine triphosphate (ATP) and adenosine, modulate specific membrane-bound receptors in virtually all human cells. Regardless of the stage of the pregnancy, cellular communication between maternal, placental, and fetal cells is the paramount mechanism to sustain its optimal status. In this review, we describe the crucial role of purinergic signaling on the regulation of the maternal-fetal trophic exchanges, immune control, and endocrine exchanges throughout pregnancy. The nature of the modulation of both ATP and adenosine on the embryo-maternal interface, going through placental invasion until birth delivery depends on the general maternal-fetal health state and consequently on the selective activation of their specific receptors. In addition, an increasing number of studies have been demonstrating the pivotal role of ATP and adenosine in modulating deleterious effects of suboptimal conditions of pregnancy. Here, we discuss the role of purinergic signaling on the balance that coordinates the embryo-maternal exchanges and a promising therapeutic venue in the context of pregnancy disorders.
Collapse
Affiliation(s)
- Lucas Sagrillo-Fagundes
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Thaís Casagrande Paim
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiza Pretto
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Isadora Bertaco
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Carla Zanatelli
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | - Cathy Vaillancourt
- Centre Armand Frappier Santé Biotechnologie, INRS, Laval, Quebec, Canada
| | - Márcia R Wink
- Departamento de Ciências Básicas da Saúde e Laboratório de Biologia Celular, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
11
|
Habahbeh S, Imraish A, Zihlif M. The crosstalk between adenosine A2B receptor and insulin signalling in rat skeletal muscle cells. Biol Futur 2021; 71:283-288. [PMID: 34554511 DOI: 10.1007/s42977-020-00035-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 06/28/2020] [Indexed: 10/23/2022]
Abstract
Diabetes mellitus (DM) is a group of metabolic diseases characterised by hyperglycaemia resulting from defects in insulin secretion, insulin action, or both. Insulin therapy might be affected by specific metabolic enzymes and transporters. There are conflicting reports in the literature on the role of adenosine receptor A2B (AR2B) in skeletal and cardiac muscle glucose metabolism. This study aims to find out if there is an association between AR2B and insulin signalling, especially the metabolic pathways (AKT-GSK). Differentiated L6 cell rat muscle cells were treated with insulin, adenosine agonist NECA, selective AR2B antagonist PSB 603 and combinations between these reagents, the expression of AKT2, GSK3α, and GSK3β were measured by qPCR hydrolysis probe technique. Insulin increases AKT2, GSK3α and GSK3β mRNA expression, while AR2B antagonist inhibits AKT2 GSK3α and GSK3β mRNA expression and combining AR2B antagonist with insulin diminish insulin action and decrease AKT2 GSK3α and GSK3β mRNA expression, which means a strong relationship between AR2B and insulin action. Furthermore AR2B agonist may be a good candidate as an anti-diabetic drug.
Collapse
Affiliation(s)
- Suna Habahbeh
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Amer Imraish
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, 11942, Jordan
| | - Malek Zihlif
- Department of Pharmacology, School of Medicine, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
12
|
Exposome and foetoplacental vascular dysfunction in gestational diabetes mellitus. Mol Aspects Med 2021; 87:101019. [PMID: 34483008 DOI: 10.1016/j.mam.2021.101019] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/26/2021] [Indexed: 12/15/2022]
Abstract
A balanced communication between the mother, placenta and foetus is crucial to reach a successful pregnancy. Several windows of exposure to environmental toxins are present during pregnancy. When the women metabolic status is affected by a disease or environmental toxin, the foetus is impacted and may result in altered development and growth. Gestational diabetes mellitus (GDM) is a disease of pregnancy characterised by abnormal glucose metabolism affecting the mother and foetus. This disease of pregnancy associates with postnatal consequences for the child and the mother. The whole endogenous and exogenous environmental factors is defined as the exposome. Endogenous insults conform to the endo-exposome, and disruptors contained in the immediate environment are the ecto-exposome. Some components of the endo-exposome, such as Selenium, vitamins D and B12, adenosine, and a high-fat diet, and ecto-exposome, such as the heavy metals Arsenic, Mercury, Lead and Copper, and per- and polyfluoroakyl substances, result in adverse pregnancies, including an elevated risk of GDM or gestational diabesity. The impact of the exposome on the human placenta's vascular physiology and function in GDM and gestational diabesity is reviewed.
Collapse
|
13
|
Baryla I, Pluciennik E, Kośla K, Wojcik M, Zieleniak A, Zurawska-Klis M, Cypryk K, Wozniak LA, Bednarek AK. Identification of a novel association for the WWOX/HIF1A axis with gestational diabetes mellitus (GDM). PeerJ 2021; 9:e10604. [PMID: 33520443 PMCID: PMC7811782 DOI: 10.7717/peerj.10604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 11/28/2020] [Indexed: 12/12/2022] Open
Abstract
Background Although the WW-domain-containing oxidoreductase (WWOX)/Hypoxia-inducible factor 1 (HIF1) pathway is a well-known regulator of cellular glucose and energy metabolism in pathophysiological processes, its role in gestational diabetes mellitus (GDM), remains elusive. We undertook this study to determine the effect of WWOX/HIF1A signaling on the expression of glucose metabolism genes in GDM patients. Methods Leukocytes were obtained from 135 pregnant women with (n = 98) or without (n = 37) GDM and, in turn, 3 months (n = 8) and 1 year (n = 12) postpartum. Quantitative RT-PCR was performed to determine gene expression profiles of the WWOX/HIF1A-related genes, including those involved in glucose transport (SLC2A1, SLC2A4), glycolytic pathway (HK2, PKM2, PFK, LDHA), Wnt pathway (DVL2, CTNNB1), and inflammatory response (NFKB1). Results GDM patients displayed a significant downregulation of WWOX with simultaneous upregulation of HIF1A which resulted in approximately six times reduction in WWOX/HIF1A ratio. As a consequence, HIF1A induced genes (SLC2A1, HK2, PFK, PKM) were found to be overexpressed in GDM compared to normal pregnancy and negative correlate with WWOX/HIF1A ratio. The postpartum WWOX expression was higher than during GDM, but its level was comparable to that observed in normal pregnancy. Conclusions The obtained results suggest a significant contribution of the WWOX gene to glucose metabolism in patients with gestational diabetes. Decreased WWOX expression in GDM compared to normal pregnancy, and in particular reduction of WWOX/HIF1A ratio, indicate that WWOX modulates HIF1α activity in normal tissues as described in the tumor. The effect of HIF1α excessive activation is to increase the expression of genes encoding proteins directly involved in the glycolysis which may lead to pathological changes in glucose metabolism observed in gestational diabetes.
Collapse
Affiliation(s)
- Izabela Baryla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Elzbieta Pluciennik
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Kośla
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| | - Marzena Wojcik
- Department of Structural Biology, Medical University of Lodz, Lodz, Poland
| | - Andrzej Zieleniak
- Department of Structural Biology, Medical University of Lodz, Lodz, Poland
| | - Monika Zurawska-Klis
- Department of Internal Diseases and Diabetology, Medical University of Lodz, Lodz, Poland
| | - Katarzyna Cypryk
- Department of Internal Diseases and Diabetology, Medical University of Lodz, Lodz, Poland
| | | | - Andrzej K Bednarek
- Department of Molecular Carcinogenesis, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
14
|
Associations of Arginine with Gestational Diabetes Mellitus in a Follow-Up Study. Int J Mol Sci 2020; 21:ijms21217811. [PMID: 33105558 PMCID: PMC7659483 DOI: 10.3390/ijms21217811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
In the reported study we applied the targeted metabolomic profiling employing high pressure liquid chromatography coupled with triple quadrupole tandem mass spectrometry (HPLC–MS/MS) to understand the pathophysiology of gestational diabetes mellitus (GDM), early identification of women who are at risk of developing GDM, and the differences in recovery postpartum between these women and normoglycemic women. We profiled the peripheral blood from patients during the second trimester of pregnancy and three months, and one year postpartum. In the GDM group Arg, Gln, His, Met, Phe and Ser were downregulated with statistical significance in comparison to normoglycemic (NGT) women. From the analysis of the association of all amino acid profiles of GDM and NGT women, several statistical models predicting diabetic status were formulated and compared with the literature, with the arginine-based model as the most promising of the screened ones (area under the curve (AUC) = 0.749). Our research results have shed light on the critical role of arginine in the development of GDM and may help in precisely distinguishing between GDM and NGT and earlier detection of GDM but also in predicting women with the increased type 2 diabetes mellitus (T2DM) risk.
Collapse
|
15
|
Ley SH, Chavarro JE, Hinkle SN, Li M, Tsai MY, Hu FB, Zhang C. Lifetime duration of lactation and chronic inflammation among middle-aged women with a history of gestational diabetes. BMJ Open Diabetes Res Care 2020; 8:8/2/e001229. [PMID: 33115816 PMCID: PMC7594200 DOI: 10.1136/bmjdrc-2020-001229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION Longer duration of lactation is associated with lower cardiometabolic disease risk, but pathogenic pathways involved in the disease progression are unclear, especially among high-risk women. We aimed to examine the associations of lifetime lactation duration with cardiometabolic biomarkers among middle-aged women with a history of gestational diabetes (GDM). RESEARCH DESIGN AND METHODS Women with a history of GDM participating in the Nurses' Health Study II, a prospective cohort study, were identified and followed through biennial questionnaires beginning in 1991. Lactation history was asked in three follow-up questionnaires to calculate lifetime duration. In 2012-2014, fasting blood samples were collected through the Diabetes & Women's Health Study to measure inflammatory (C-reactive protein (CRP), interleukin (IL) 6), liver enzyme (alanine aminotransferase, aspartate aminotransferase, and gamma-glutamyl transferase), and lipid biomarkers (total cholesterol, low-density lipoprotein cholesterol, and high-density lipoprotein cholesterol). RESULTS At follow-up blood collection, women were at median age 58.2 (95% CI 51 to 65) years and 26.3 (95% CI 15.7 to 34.1) years since GDM index pregnancy. After multiple adjustment including prepregnancy body mass index (BMI), longer duration of lactation was significantly associated with lower CRP (least squares (LS) mean 1.90 mg/L (95% CI 1.47 to 2.45) for 0-month lactation, 1.98 mg/L (95% CI 1.68 to 2.32) for up to 12-month lactation, 1.67 mg/L (95% CI 1.42 to 1.97) for 12-24 month lactation, and 1.39 mg/L (95% CI 1.19 to 1.62) for >24-month lactation; p trend=0.003) and IL-6 (1.25 pg/L (95% CI 0.94 to 1.68), 1.19 pg/L (95% CI 0.99 to 1.42), 1.04 pg/L (95% CI 0.87 to 1.25), and 0.93 pg/L (95% CI 0.78 to 1.11); p trend=0.04). Longer duration of lactation was associated with lower risk for chronic inflammation using CRP 3 mg/L cut-off in middle-aged women (OR 0.81 (95% CI 0.69 to 0.940 per 1-year increase) with multiple adjustment. CONCLUSIONS Longer lifetime duration of lactation was associated with favorable inflammatory biomarker concentrations in middle-aged women with a history of GDM. Chronic inflammatory pathways may be responsible for previously reported associations between lactation and long-term risk for cardiometabolic diseases.
Collapse
Affiliation(s)
- Sylvia H Ley
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Los Angeles, USA
| | - Jorge E Chavarro
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Stefanie N Hinkle
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Mengying Li
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Michael Y Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Frank B Hu
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Cuilin Zhang
- Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Shakya AK, Naik RR, Almasri IM, Kaur A. Role and Function of Adenosine and its Receptors in Inflammation, Neuroinflammation, IBS, Autoimmune Inflammatory Disorders, Rheumatoid Arthritis and Psoriasis. Curr Pharm Des 2020; 25:2875-2891. [PMID: 31333103 DOI: 10.2174/1381612825666190716145206] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 07/04/2019] [Indexed: 12/11/2022]
Abstract
The physiological effects of endogenous adenosine on various organ systems are very complex and numerous which are elicited upon activation of any of the four G-protein-coupled receptors (GPCRs) denoted as A1, A2A, A2B and A3 adenosine receptors (ARs). Several fused heterocyclic and non-xanthine derivatives are reported as a possible target for these receptors due to physiological problems and lack of selectivity of xanthine derivatives. In the present review, we have discussed the development of various new chemical entities as a target for these receptors. In addition, compounds acting on adenosine receptors can be utilized in treating diseases like inflammation, neuroinflammation, autoimmune and related diseases.
Collapse
Affiliation(s)
- Ashok K Shakya
- Medicinal Chemistry, Drug Design and Drug Metabolism, Department of Pharmaceutical Sciences, Faculty of Pharmacy, Al- Ahliyya Amman University, PO Box 263, Amman 19328, Jordan
| | - Rajashri R Naik
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ihab M Almasri
- Medicinal Chemistry and Drug Design, Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmacy, Al Azhar University Gaza, Gaza Strip, Palestinian Territory, Occupied
| | - Avneet Kaur
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Mehrauli-Badarpur Road, Pushp Vihar, Sector-3, New Delhi-110017, India
| |
Collapse
|
17
|
Zyma M, Pawliczak R. Characteristics and the role of purinergic receptors in pathophysiology with focus on immune response. Int Rev Immunol 2020; 39:97-117. [PMID: 32037918 DOI: 10.1080/08830185.2020.1723582] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The nucleotide adenosine-5'-triphosphate (ATP) is mostly thought to be energy carrier, but evidence presented in multiple studies proves ATP involvement into variety of processes, due to its neuromodulatory capabilities. ATP and its metabolite-adenosine, bind to the purinergic receptors, which are divided into two types: adenosine binding P1 receptor and ADP/ATP binding P2 receptor. These receptors are expressed in different tissues and organs. Recent studies report their immunomodulatory characteristics, connected with varying immunological processes, such as immunological response or antigen presentation. Besides, they seem to play an important role in medical conditions such as bronchial asthma or variety of cancers. In this article, we would like to review recent discoveries on the field of purinergic receptors research focusing on their role in immunological system, and shed a new light upon the importance of these receptors in modern medicine development.
Collapse
Affiliation(s)
- Marharyta Zyma
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
18
|
Altered foetoplacental vascular endothelial signalling to insulin in diabesity. Mol Aspects Med 2019; 66:40-48. [DOI: 10.1016/j.mam.2019.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 02/19/2019] [Accepted: 02/28/2019] [Indexed: 12/26/2022]
|
19
|
Involvement of A2B adenosine receptors as anti-inflammatory in gestational diabesity. Mol Aspects Med 2019; 66:31-39. [DOI: 10.1016/j.mam.2019.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 11/23/2018] [Accepted: 01/17/2019] [Indexed: 02/07/2023]
|
20
|
Jacobson KA, Tosh DK, Jain S, Gao ZG. Historical and Current Adenosine Receptor Agonists in Preclinical and Clinical Development. Front Cell Neurosci 2019; 13:124. [PMID: 30983976 PMCID: PMC6447611 DOI: 10.3389/fncel.2019.00124] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022] Open
Abstract
Adenosine receptors (ARs) function in the body’s response to conditions of pathology and stress associated with a functional imbalance, such as in the supply and demand of energy/oxygen/nutrients. Extracellular adenosine concentrations vary widely to raise or lower the basal activation of four subtypes of ARs. Endogenous adenosine can correct an energy imbalance during hypoxia and other stress, for example, by slowing the heart rate by A1AR activation or increasing the blood supply to heart muscle by the A2AAR. Moreover, exogenous AR agonists, antagonists, or allosteric modulators can be applied for therapeutic benefit, and medicinal chemists working toward that goal have reported thousands of such agents. Thus, numerous clinical trials have ensued, using promising agents to modulate adenosinergic signaling, most of which have not succeeded. Currently, short-acting, parenteral agonists, adenosine and Regadenoson, are the only AR agonists approved for human use. However, new concepts and compounds are currently being developed and applied toward preclinical and clinical evaluation, and initial results are encouraging. This review focuses on key compounds as AR agonists and positive allosteric modulators (PAMs) for disease treatment or diagnosis. AR agonists for treating inflammation, pain, cancer, non-alcoholic steatohepatitis, angina, sickle cell disease, ischemic conditions and diabetes have been under development. Multiple clinical trials with two A3AR agonists are ongoing.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
21
|
Subiabre M, Villalobos-Labra R, Silva L, Fuentes G, Toledo F, Sobrevia L. Role of insulin, adenosine, and adipokine receptors in the foetoplacental vascular dysfunction in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165370. [PMID: 30660686 DOI: 10.1016/j.bbadis.2018.12.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/18/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022]
Abstract
Gestational diabetes mellitus (GDM) is a disease of pregnancy associated with maternal and foetal hyperglycaemia and altered foetoplacental vascular function. Human foetoplacental microvascular and macrovascular endothelium from GDM pregnancy show increased maximal l-arginine transport capacity via the human cationic amino acid transporter 1 (hCAT-1) isoform and nitric oxide (NO) synthesis by the endothelial NO synthase (eNOS). These alterations are paralleled by lower maximal transport activity of the endogenous nucleoside adenosine via the human equilibrative nucleoside transporter 1 (hENT1) and activation of adenosine receptors. A causal relationship has been described for adenosine-activation of A2A adenosine receptors, hCAT-1, and eNOS activity (i.e. the Adenosine/l-Arginine/Nitric Oxide, ALANO, signalling pathway). Insulin restores these alterations in GDM via activation of insulin receptor A (IR-A) form in the macrovascular but IR-A and IR-B forms in the microcirculation of the human placenta. Adipokines are secreted from adipocytes influencing the foetoplacental metabolic and vascular function. Various adipokines are dysregulated in GDM, with adiponectin and leptin playing major roles. Abnormal plasma concentration of these adipokines and the activation or their receptors are involved in the pathophysiology of GDM. However, involvement of adipokines, adenosine, and insulin receptors and membrane transporters in the aetiology of this disease of pregnancy is unknown. This review focuses on the pathophysiology of insulin and adenosine receptors and l-arginine and adenosine membranes transporters giving an overview of the key adipokines leptin and adiponectin in the foetoplacental vasculature in GDM. This article is part of a Special Issue entitled: Membrane Transporters and Receptors in Pregnancy Metabolic Complications edited by Luis Sobrevia.
Collapse
Affiliation(s)
- Mario Subiabre
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile.
| | - Roberto Villalobos-Labra
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile
| | - Luis Silva
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen, University Medical Centre Groningen (UMCG), Groningen 9700 RB, the Netherlands
| | - Gonzalo Fuentes
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Cell Physiology Laboratory, Biomedical Department, Faculty of Health Sciences, Universidad de Antofagasta, Antofagasta 1270300, Chile
| | - Fernando Toledo
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Basic Sciences, Faculty of Sciences, Universidad del Bío Bío, Chillán 3780000, Chile
| | - Luis Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Department of Obstetrics, Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago 8330024, Chile; Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville E-41012, Spain; University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Herston 4029, Queensland, Australia.
| |
Collapse
|
22
|
Jacobson KA, Tosh DK, Jain S, Gao ZG. Historical and Current Adenosine Receptor Agonists in Preclinical and Clinical Development. Front Cell Neurosci 2019. [PMID: 30983976 DOI: 10.3389/fncel.2019.00124/bibtex] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Adenosine receptors (ARs) function in the body's response to conditions of pathology and stress associated with a functional imbalance, such as in the supply and demand of energy/oxygen/nutrients. Extracellular adenosine concentrations vary widely to raise or lower the basal activation of four subtypes of ARs. Endogenous adenosine can correct an energy imbalance during hypoxia and other stress, for example, by slowing the heart rate by A1AR activation or increasing the blood supply to heart muscle by the A2AAR. Moreover, exogenous AR agonists, antagonists, or allosteric modulators can be applied for therapeutic benefit, and medicinal chemists working toward that goal have reported thousands of such agents. Thus, numerous clinical trials have ensued, using promising agents to modulate adenosinergic signaling, most of which have not succeeded. Currently, short-acting, parenteral agonists, adenosine and Regadenoson, are the only AR agonists approved for human use. However, new concepts and compounds are currently being developed and applied toward preclinical and clinical evaluation, and initial results are encouraging. This review focuses on key compounds as AR agonists and positive allosteric modulators (PAMs) for disease treatment or diagnosis. AR agonists for treating inflammation, pain, cancer, non-alcoholic steatohepatitis, angina, sickle cell disease, ischemic conditions and diabetes have been under development. Multiple clinical trials with two A3AR agonists are ongoing.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Shanu Jain
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
23
|
Mac-Marcjanek K, Zieleniak A, Zurawska-Klis M, Cypryk K, Wozniak L, Wojcik M. Expression Profile of Diabetes-Related Genes Associated with Leukocyte Sirtuin 1 Overexpression in Gestational Diabetes. Int J Mol Sci 2018; 19:ijms19123826. [PMID: 30513672 PMCID: PMC6321739 DOI: 10.3390/ijms19123826] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/26/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
Although compelling evidence indicates that Sirtuin 1 (SIRT1) plays a prominent role in type 2 diabetes, its relationship with gestational diabetes (GDM) remains elusive. This study was aimed at identifying diabetes-related genes and cellular pathways linked to changes of leukocyte SIRT1 expression at the time of GDM diagnosis. For this purpose, 122 GDM patients were screened for leukocyte SIRT1 expression, and two subgroups were distinguished, namely GDM/SIRT1(↑) (n = 30, p < 0.05) and GDM/SIRT1(↔) (n = 92, p > 0.05), with significant and insignificant changes in leukocyte SIRT1 expression compared to a normal glucose tolerant (NGT) group (n = 41), respectively. PCR array analysis identified 11 diabetes-related genes with at least a ± 2-fold difference in expression in GDM/SIRT1(↑) patients (n = 9) vs. NGT controls (n = 7); in addition, significant differences in the expression of four of the six investigated genes were confirmed between the entire GDM/SIRT1(↑) group and the whole NGT group (p < 0.05). Interestingly, of these four genes, only ACLY expression was found to significantly differ between GDM/SIRT1(↑) and GDM/SIRT1(↔). This study demonstrates that under hyperglycemic conditions, leukocyte SIRT1 overexpression is accompanied by an over-abundance of three transcripts and an under-abundance of another; these four govern related metabolism, inflammation, and transport functions, suggesting that such alterations might represent systemic biological adaptations with a unique ACLY under-expression in GDM/SIRT1(↑) women.
Collapse
Affiliation(s)
- Katarzyna Mac-Marcjanek
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland.
| | - Andrzej Zieleniak
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland.
| | - Monika Zurawska-Klis
- Diabetology and Metabolic Diseases Department, Medical University of Lodz, 92-213 Lodz.
| | - Katarzyna Cypryk
- Diabetology and Metabolic Diseases Department, Medical University of Lodz, 92-213 Lodz.
| | - Lucyna Wozniak
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland.
| | - Marzena Wojcik
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland.
| |
Collapse
|
24
|
Bukowiecka-Matusiak M, Burzynska-Pedziwiatr I, Sansone A, Malachowska B, Zurawska-Klis M, Ferreri C, Chatgilialoglu C, Ochedalski T, Cypryk K, Wozniak LA. Lipid profile changes in erythrocyte membranes of women with diagnosed GDM. PLoS One 2018; 13:e0203799. [PMID: 30216387 PMCID: PMC6138398 DOI: 10.1371/journal.pone.0203799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 08/09/2018] [Indexed: 12/30/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is a glucose intolerance that begins or is first recognized during pregnancy. It is currently a growing health problem worldwide affecting from 1% to 14% of all pregnant women depending on racial and ethnic group as well as the diagnostic and screening criteria. Our preliminary study aimed at investigating the erythrocyte membrane fatty acid profiles of pregnant women, in particular with diagnosed with gestational diabetes mellitus (GDM), and with normal glucose tolerant (NGT) pregnant women as a control group. The study group comprised 43 pregnant women, 32 of whom were diagnosed with GDM according to the WHO criteria, and 11 with normal glucose tolerance. The erythrocyte membrane phospholipids were obtained according to the Folch extraction procedure. Fatty acids (FA) were analyzed by gas chromatography (GC) as the corresponding fatty acid methyl esters (FAME). A cluster of 14 fatty acids identified contained >98% of the recognized peaks in the GC analysis. The analysis of fatty acids from erythrocytes revealed important differences between GDM and NGT women in the third trimester, and the results were correlated with biochemical data. Among the 14 measured FA representing the membrane lipidomic profile, the levels of three saturated FA (myristic, palmitic, stearic acids) tended to decrease in GDM patients, with the percentage content of stearic acid significantly changed. The relative content of monounsaturated fatty acids (MUFA) tended to increase, in particular the oleic acid and vaccenic acid contents were significantly increased in erythrocyte membranes of the GDM group in comparison with the NGT group. The GDM group demonstrated higher sapienic acid levels (+29%) but this change was not statistically significant. This study revealed association between an impaired cis-vaccenic acid concentration in erythrocytes membrane and GDM development. No significant changes of polyunsaturated fatty acids (PUFA) were observed in GDM and NGT erythrocytes. We postulate, basing on the differences between the GDM and NGT lipidomic profiles, that stearic and cis-vaccenic acids can be considered as dual biomarkers of specific SFA-MUFA conversion pathway, involving the coupling of delta-9 desaturase and elongase enzymes. Our results indicate that the SFA-MUFA families may be involved in the pathophysiology of metabolic diseases such as GDM, but the further studies are needed to confirm our hypothesis. In conclusion, the erythrocyte membranes of GDM women undergo remodeling resulting in abnormal fatty acid profiles, which are reflection of the long-term status of organism and can have great impact on both the mother and her offspring.
Collapse
Affiliation(s)
| | | | - Anna Sansone
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | - Beata Malachowska
- Medical University of Lodz, Department of Biostatistics and Translational Medicine, Lodz, Poland
| | - Monika Zurawska-Klis
- Medical University of Lodz, Department of Nursing and Obstetrics, Department of Clinic Nursing, Department of Diabetology and Metabolic Diseases Lodz, Poland
| | - Carla Ferreri
- Consiglio Nazionale delle Ricerche, Institute for the Organic Synthesis and Photoreactivity, Bologna, Italy
| | | | - Tomasz Ochedalski
- Medical University of Lodz, Department of Comparative Endocrinology, Lodz, Poland
| | - Katarzyna Cypryk
- Medical University of Lodz, Department of Nursing and Obstetrics, Department of Clinic Nursing, Department of Diabetology and Metabolic Diseases Lodz, Poland
| | | |
Collapse
|
25
|
Lai KP, Li JW, Chan TF, Chen A, Lee CYL, Yeung WSB, Wong CKC. Transcriptomic and methylomic analysis reveal the toxicological effect of 2,3,7,8-Tetrachlorodibenzodioxin on human embryonic stem cell. CHEMOSPHERE 2018; 206:663-673. [PMID: 29778942 DOI: 10.1016/j.chemosphere.2018.05.058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/08/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
Cumulating epidemiological studies demonstrated that environmental exposure to endocrine disrupting chemicals (EDCs) during the early stages of fetal development is associated with the increase in disease susceptibility in later life. The fetal developmental plasticity is considered as a protective mechanism against an undesirable prenatal environment. Dioxin is one of the environmental contaminants and is considered a diabetogenic factor. Experimental animal and human epidemiological studies have revealed that dioxin exposure was associated with insulin resistance and altered beta cell function. But the effect of dioxin exposure in early stage of fetal development is still largely unknown. In this report, we used the human embryonic stem cell (hESC) line, VAL-3, as a model, together with Methyl-CpG Binding Domain (MBD) protein-enriched genome sequencing and transcriptome sequencing (RNA-seq), in order to determine the dynamic changes of the epigenetic landscape and transcriptional dysregulation in hESC upon dioxin exposure. The bioinformatics analyses including the Database for Annotation, Visualization and Integrated Discovery (DAVID) analysis and Ingenuity Pathway Analysis (IPA) highlighted the predisposed neural, hepatic, cardiac and metabolic toxicological effects of dioxin during the fetal development.
Collapse
Affiliation(s)
- Keng Po Lai
- Department of Chemistry, City University of Hong Kong, China
| | - Jing Woei Li
- Department of Chemistry, City University of Hong Kong, China; Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, China
| | - Ting Fung Chan
- Partner State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, China
| | - Andy Chen
- Department of Obstetrics and Gynaecology, The University of Hong Kong, China
| | - Cherie Yin Lau Lee
- Department of Obstetrics and Gynaecology, The University of Hong Kong, China
| | | | - Chris Kong Chu Wong
- Partner State Key Laboratory of Environmental and Biological Analysis, Croucher Institute for Environmental Sciences, Department of Biology, Hong Kong Baptist University, China.
| |
Collapse
|
26
|
Alayón AN, Ortega Avila JG, Echeverri Jiménez I. Carbohydrate metabolism and gene expression of sirtuin 1 in healthy subjects after Sacha inchi oil supplementation: a randomized trial. Food Funct 2018; 9:1570-1577. [DOI: 10.1039/c7fo01956d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The addition of Sacha inchi oil improved insulin sensitivity in people with higher glycemic response after a fat load.
Collapse
|
27
|
Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017; 8:661. [PMID: 28993732 PMCID: PMC5622197 DOI: 10.3389/fphar.2017.00661] [Citation(s) in RCA: 275] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022] Open
Abstract
Purinergic signalling, i.e., the role of nucleotides as extracellular signalling molecules, was proposed in 1972. However, this concept was not well accepted until the early 1990's when receptor subtypes for purines and pyrimidines were cloned and characterised, which includes four subtypes of the P1 (adenosine) receptor, seven subtypes of P2X ion channel receptors and 8 subtypes of the P2Y G protein-coupled receptor. Early studies were largely concerned with the physiology, pharmacology and biochemistry of purinergic signalling. More recently, the focus has been on the pathophysiology and therapeutic potential. There was early recognition of the use of P1 receptor agonists for the treatment of supraventricular tachycardia and A2A receptor antagonists are promising for the treatment of Parkinson's disease. Clopidogrel, a P2Y12 antagonist, is widely used for the treatment of thrombosis and stroke, blocking P2Y12 receptor-mediated platelet aggregation. Diquafosol, a long acting P2Y2 receptor agonist, is being used for the treatment of dry eye. P2X3 receptor antagonists have been developed that are orally bioavailable and stable in vivo and are currently in clinical trials for the treatment of chronic cough, bladder incontinence, visceral pain and hypertension. Antagonists to P2X7 receptors are being investigated for the treatment of inflammatory disorders, including neurodegenerative diseases. Other investigations are in progress for the use of purinergic agents for the treatment of osteoporosis, myocardial infarction, irritable bowel syndrome, epilepsy, atherosclerosis, depression, autism, diabetes, and cancer.
Collapse
Affiliation(s)
- Geoffrey Burnstock
- Autonomic Neuroscience Centre, University College Medical SchoolLondon, United Kingdom
- Department of Pharmacology and Therapeutics, The University of Melbourne, MelbourneVIC, Australia
| |
Collapse
|
28
|
Westermeier F, Sáez T, Arroyo P, Toledo F, Gutiérrez J, Sanhueza C, Pardo F, Leiva A, Sobrevia L. Insulin receptor isoforms: an integrated view focused on gestational diabetes mellitus. Diabetes Metab Res Rev 2016; 32:350-65. [PMID: 26431063 DOI: 10.1002/dmrr.2729] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/14/2015] [Accepted: 09/27/2015] [Indexed: 12/17/2022]
Abstract
The human insulin receptor (IR) exists in two isoforms that differ by the absence (IR-A) or the presence (IR-B) of a 12-amino acid segment encoded by exon 11. Both isoforms are functionally distinct regarding their binding affinities and intracellular signalling. However, the underlying mechanisms related to their cellular functions in several tissues are only partially understood. In this review, we summarize the current knowledge in this field regarding the alternative splicing of IR isoform, tissue-specific distribution and signalling both in physiology and disease, with an emphasis on the human placenta in gestational diabetes mellitus (GDM). Furthermore, we discuss the clinical relevance of IR isoforms highlighted by findings that show altered insulin signalling due to differential IR-A and IR-B expression in human placental endothelium in GDM pregnancies. Future research and clinical studies focused on the role of IR isoform signalling might provide novel therapeutic targets for treating GDM to improve the adverse maternal and neonatal outcomes.
Collapse
Affiliation(s)
- F Westermeier
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Advanced Centre for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Faculty of Science, Universidad San Sebastián, Santiago, Chile
| | - T Sáez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- University Medical Centre Groningen (UMCG), Faculty of Medicine, University of Groningen, Groningen, The Netherlands
| | - P Arroyo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F Toledo
- Department of Basic Sciences, Faculty of Sciences, Universidad del Bío-Bío, Chillán, Chile
| | - J Gutiérrez
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Cellular Signalling and Differentiation Laboratory (CSDL), School of Medical Technology, Health Sciences Faculty, Universidad San Sebastian, Santiago, Chile
| | - C Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - F Pardo
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A Leiva
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - L Sobrevia
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynaecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Physiology, Faculty of Pharmacy, Universidad de Sevilla, Seville, Spain
- University of Queensland Centre for Clinical Research (UQCCR), Faculty of Medicine and Biomedical Sciences, University of Queensland, Queensland, Australia
| |
Collapse
|
29
|
Wojcik M, Zieleniak A, Zurawska-Klis M, Cypryk K, Wozniak LA. Increased expression of immune-related genes in leukocytes of patients with diagnosed gestational diabetes mellitus (GDM). Exp Biol Med (Maywood) 2015; 241:457-65. [PMID: 26568332 DOI: 10.1177/1535370215615699] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/14/2015] [Indexed: 12/16/2022] Open
Abstract
Compelling evidence indicates that the immune system is linked to metabolism in gestational diabetes mellitus (GDM), but factors participating in these processes still are awaiting identification. Inducible nitric oxide synthase, encoded by the NOS2 gene, and surfactant protein D, encoded by the SFTPD gene, have been implicated in diabetes. We investigated NOS2 and SFTPD mRNA levels in leukocytes obtained from 125 pregnant women with (n = 87) or without (control group; n = 38) GDM, and, in turn, correlated their expression with clinical parameters of subjects. Leukocytes were isolated from the blood of pregnant women and NOS2 and SFTPD expression in these cells was determined by quantitative real time PCR (qRT-PCR). Univariate correlation analyses were performed to assess an association between leukocyte NOS2 and SFTPD expression and clinical characteristics of patients. qRT-PCR experiments disclosed significantly increased leukocyte NOS2 and SFTPD mRNA levels in hyperglycemic GDM patients (P < 0.05). In the entire study group, there were significant positive associations of leukocyte NOS2 and SFTPD mRNAs with C-reactive protein. Additionally, transcript level of SFTPD also correlated positively with fasting glycemia and insulin resistance. This study demonstrates that an impaired glucose metabolism in GDM may be predominant predictor of leukocyte NOS2 and SFTPD overexpression in diabetic patients. Furthermore, alterations in the expression of these genes are associated with glucose metabolism dysfunction and/or inflammation during pregnancy. In addition, these findings support the utilization of leukocytes as good experimental model to study a relationship between immune-related genes and metabolic changes in women with GDM, as well as to assess the potential mechanisms underlying these alterations.
Collapse
Affiliation(s)
- Marzena Wojcik
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland
| | - Andrzej Zieleniak
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland
| | - Monika Zurawska-Klis
- Diabetology and Metabolic Diseases Department, Medical University of Lodz, 92-213 Lodz, Poland Diabetological Medical Center "OmniMed", 93-338 Lodz, Poland
| | - Katarzyna Cypryk
- Diabetology and Metabolic Diseases Department, Medical University of Lodz, 92-213 Lodz, Poland Diabetological Medical Center "OmniMed", 93-338 Lodz, Poland
| | - Lucyna Alicja Wozniak
- Department of Structural Biology, Faculty of Biomedical Sciences and Postgraduate Education, Medical University of Lodz, 90-752 Lodz, Poland
| |
Collapse
|
30
|
Merighi S, Borea PA, Gessi S. Adenosine receptors and diabetes: Focus on the A2B adenosine receptor subtype. Pharmacol Res 2015; 99:229-36. [DOI: 10.1016/j.phrs.2015.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 12/21/2022]
|
31
|
Antonioli L, Blandizzi C, Csóka B, Pacher P, Haskó G. Adenosine signalling in diabetes mellitus--pathophysiology and therapeutic considerations. Nat Rev Endocrinol 2015; 11:228-41. [PMID: 25687993 DOI: 10.1038/nrendo.2015.10] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Adenosine is a key extracellular signalling molecule that regulates several aspects of tissue function by activating four G-protein-coupled receptors, A1, A2A, A2B and A1 adenosine receptors. Accumulating evidence highlights a critical role for the adenosine system in the regulation of glucose homeostasis and the pathophysiology of type 1 diabetes mellitus (T1DM) and type 2 diabetes mellitus (T2DM). Although adenosine signalling is known to affect insulin secretion, new data indicate that adenosine signalling also contributes to the regulation of β-cell homeostasis and activity by controlling the proliferation and regeneration of these cells as well as the survival of β cells in inflammatory microenvironments. Furthermore, adenosine is emerging as a major regulator of insulin responsiveness by controlling insulin signalling in adipose tissue, muscle and liver; adenosine also indirectly mediates effects on inflammatory and/or immune cells in these tissues. This Review critically discusses the role of the adenosine-adenosine receptor system in regulating both the onset and progression of T1DM and T2DM, and the potential of pharmacological manipulation of the adenosinergic system as an approach to manage T1DM, T2DM and their associated complications.
Collapse
Affiliation(s)
- Luca Antonioli
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Corrado Blandizzi
- Department of Clinical and Experimental Medicine, University of Pisa, Via Roma 55, 56126 Pisa, Italy
| | - Balázs Csóka
- Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, 185 South Orange Avenue, University Heights, Newark, NJ 07103, USA
| | - Pál Pacher
- Section on Oxidative Stress Tissue Injury, Laboratories of Physiological Studies, NIH/NIAAA, 5625 Fishers Lane, Bethesda, MD 20892, USA
| | - György Haskó
- Department of Surgery and Center for Immunity and Inflammation, Rutgers-New Jersey Medical School, 185 South Orange Avenue, University Heights, Newark, NJ 07103, USA
| |
Collapse
|
32
|
Guzman-Flores JM, Cortez-Espinosa N, Cortés-Garcia JD, Vargas-Morales JM, Cataño-Cañizalez YG, Rodríguez-Rivera JG, Portales-Perez DP. Expression of CD73 and A2A receptors in cells from subjects with obesity and type 2 diabetes mellitus. Immunobiology 2015; 220:976-84. [PMID: 25770019 DOI: 10.1016/j.imbio.2015.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/10/2015] [Accepted: 02/19/2015] [Indexed: 01/01/2023]
Abstract
Regulatory T cells have various mechanisms to suppress the inflammatory response, among these, the modulation of the microenvironment through adenosine and with the participation of CD39, CD73 and A2A. The aim of this study was to assess the expression of CD73 and A2A in immune cells and the effect of activation of A2A by an adenosine analogue on apoptosis in patients with obesity and type 2 diabetes mellitus (T2D). CD73 and A2A expression were analyzed by flow cytometry in lymphocyte subpopulations from patients with obesity (n = 22), T2D (n = 22), and healthy subjects (n = 20). Lymphocytes were treated with the selective A2A antagonist (ZM241385) or the selective A2A agonist (CGS21680), and apoptotic cells were detected by Annexin V. We found an increased expression of CD39 coupled to a decrease in CD73 in the patient groups with obesity and T2D compared to the control group in the different studied lymphocyte subpopulations. A2A expression was found to be increased in different subpopulations of lymphocytes from T2D patients. We also detected positive correlations between CD39+ cells and age and BMI. Meanwhile, CD73+ cells showed negative correlations with age, WHR, BMI, FPG, HbAc1, triglycerides and cholesterol. Moreover, an increase in the percentage of apoptotic cells from T2D patients with regard to the groups with obesity and control was observed. In addition, the CD8+ T cells of patients with T2D exhibited decreased apoptosis when treated with the A2A agonist. In conclusion, our data suggest a possible role for CD73 and A2A in inflammation observed in patients with T2D and obesity mediated via apoptosis.
Collapse
Affiliation(s)
- Juan M Guzman-Flores
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico
| | - Nancy Cortez-Espinosa
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico
| | - Juan D Cortés-Garcia
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico
| | - Juan M Vargas-Morales
- Laboratory of Clinical Analysis "Dr. Pedro Medina de los Santos", Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico
| | - Yolanda G Cataño-Cañizalez
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico
| | - Jaime G Rodríguez-Rivera
- Department of Internal Medicine and Endocrinology, Hospital Central Dr Ignacio MoronesPrieto, San Luis Potosí, S.L.P., Mexico
| | - Diana P Portales-Perez
- Laboratory of Immunology and Cellular and Molecular Biology, Faculty of Chemical Sciences, UASLP, San Luis Potosí, S.L.P., Mexico.
| |
Collapse
|
33
|
Dual stimulus-dependent effect of Oenothera paradoxa extract on the respiratory burst in human leukocytes: suppressing for Escherichia coli and phorbol myristate acetate and stimulating for formyl-methionyl-leucyl-phenylalanine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:764367. [PMID: 25298860 PMCID: PMC4178919 DOI: 10.1155/2014/764367] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 08/15/2014] [Indexed: 12/14/2022]
Abstract
Although a growing body of evidence suggests that plant polyphenols can modulate human immune responses, their simultaneous action on monocyte and neutrophil oxidative burst is currently poorly understood. Based on the hypothesis that various polyphenols contained in plant extracts might affect the oxidative burst of phagocytes, we evaluated the effects of ethanolic O. paradoxa extract polyphenols on monocyte and neutrophil oxidative burst in vitro activated by different stimuli, including opsonized bacteria E. coli, phorbol 12-myristate 13-acetate (PMA), and formyl-methionyl-leucyl-phenylalanine (fMLP). Samples were analyzed by the dihydrorhodamine flow cytometry assay. Our results showed that the extract repressed significantly and dose-dependently reactive oxygen species production in both cell types stimulated with E. coli and PMA (P < 0.05) and its inhibitory efficiency was stimulus- and cell-type-dependent. Interestingly, there was significant stimulatory effect of the extract on bursting phagocytes induced by fMLP (P < 0.05). Additionally, several flavonoids and phenolic compounds as well as penta-galloyl-β-(D)-glucose (PGG), the representative of hydrolyzable tannins, were identified in the 60% extract by high-performance liquid chromatography (HPLC) coupled to electrospray ionization in negative ion mode. In summary, the ethanolic O. paradoxa extract, rich in flavonoids and phenolic compounds, exhibits dual stimulus-dependent effect on the respiratory burst in human leukocytes; hence, it might affect immune responses in humans.
Collapse
|