1
|
Zhang F, Xia Y, Su J, Quan F, Zhou H, Li Q, Feng Q, Lin C, Wang D, Jiang Z. Neutrophil diversity and function in health and disease. Signal Transduct Target Ther 2024; 9:343. [PMID: 39638788 PMCID: PMC11627463 DOI: 10.1038/s41392-024-02049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/07/2024] Open
Abstract
Neutrophils, the most abundant type of granulocyte, are widely recognized as one of the pivotal contributors to the acute inflammatory response. Initially, neutrophils were considered the mobile infantry of the innate immune system, tasked with the immediate response to invading pathogens. However, recent studies have demonstrated that neutrophils are versatile cells, capable of regulating various biological processes and impacting both human health and disease. Cytokines and other active mediators regulate the functional activity of neutrophils by activating multiple receptors on these cells, thereby initiating downstream signal transduction pathways. Dysfunctions in neutrophils and disruptions in neutrophil homeostasis have been implicated in the pathogenesis of numerous diseases, including cancer and inflammatory disorders, often due to aberrant intracellular signaling. This review provides a comprehensive synthesis of neutrophil biological functions, integrating recent advancements in this field. Moreover, it examines the biological roles of receptors on neutrophils and downstream signaling pathways involved in the regulation of neutrophil activity. The pathophysiology of neutrophils in numerous human diseases and emerging therapeutic approaches targeting them are also elaborated. This review also addresses the current limitations within the field of neutrophil research, highlighting critical gaps in knowledge that warrant further investigation. In summary, this review seeks to establish a comprehensive and multidimensional model of neutrophil regulation, providing new perspectives for potential clinical applications and further research.
Collapse
Affiliation(s)
- Fengyuan Zhang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Yidan Xia
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Jiayang Su
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China
| | - Fushi Quan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Chao Lin
- School of Grain Science and Technology, Jilin Business and Technology College, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China.
| | - Ziping Jiang
- Department of Hand and Foot Surgery, Orthopedics Center, The First Hospital of Jilin University, Changchun, People's Republic of China.
- Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Felton JL, Redondo MJ, Oram RA, Speake C, Long SA, Onengut-Gumuscu S, Rich SS, Monaco GSF, Harris-Kawano A, Perez D, Saeed Z, Hoag B, Jain R, Evans-Molina C, DiMeglio LA, Ismail HM, Dabelea D, Johnson RK, Urazbayeva M, Wentworth JM, Griffin KJ, Sims EK. Islet autoantibodies as precision diagnostic tools to characterize heterogeneity in type 1 diabetes: a systematic review. COMMUNICATIONS MEDICINE 2024; 4:66. [PMID: 38582818 PMCID: PMC10998887 DOI: 10.1038/s43856-024-00478-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/05/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Islet autoantibodies form the foundation for type 1 diabetes (T1D) diagnosis and staging, but heterogeneity exists in T1D development and presentation. We hypothesized that autoantibodies can identify heterogeneity before, at, and after T1D diagnosis, and in response to disease-modifying therapies. METHODS We systematically reviewed PubMed and EMBASE databases (6/14/2022) assessing 10 years of original research examining relationships between autoantibodies and heterogeneity before, at, after diagnosis, and in response to disease-modifying therapies in individuals at-risk or within 1 year of T1D diagnosis. A critical appraisal checklist tool for cohort studies was modified and used for risk of bias assessment. RESULTS Here we show that 152 studies that met extraction criteria most commonly characterized heterogeneity before diagnosis (91/152). Autoantibody type/target was most frequently examined, followed by autoantibody number. Recurring themes included correlations of autoantibody number, type, and titers with progression, differing phenotypes based on order of autoantibody seroconversion, and interactions with age and genetics. Only 44% specifically described autoantibody assay standardization program participation. CONCLUSIONS Current evidence most strongly supports the application of autoantibody features to more precisely define T1D before diagnosis. Our findings support continued use of pre-clinical staging paradigms based on autoantibody number and suggest that additional autoantibody features, particularly in relation to age and genetic risk, could offer more precise stratification. To improve reproducibility and applicability of autoantibody-based precision medicine in T1D, we propose a methods checklist for islet autoantibody-based manuscripts which includes use of precision medicine MeSH terms and participation in autoantibody standardization workshops.
Collapse
Affiliation(s)
- Jamie L Felton
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Maria J Redondo
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Division of Pediatric Diabetes and Endocrinology, Texas Children's Hospital, Houston, TX, USA
| | - Richard A Oram
- NIHR Exeter Biomedical Research Centre (BRC), Academic Kidney Unit, University of Exeter, Exeter, UK
- Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
- Royal Devon University Healthcare NHS Foundation Trust, Exeter, UK
| | - Cate Speake
- Center for Interventional Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - S Alice Long
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Suna Onengut-Gumuscu
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Stephen S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - Gabriela S F Monaco
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Arianna Harris-Kawano
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
| | - Dianna Perez
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
| | - Zeb Saeed
- Department of Endocrinology, Diabetes and Metabolism, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Benjamin Hoag
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Rashmi Jain
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
| | - Carmella Evans-Molina
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Endocrinology, Diabetes and Metabolism, Indiana University School of Medicine, Indianapolis, IN, USA
- Richard L. Roudebush VAMC, Indianapolis, IN, USA
| | - Linda A DiMeglio
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Heba M Ismail
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Dana Dabelea
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, Aurora, CO, USA
| | - Randi K Johnson
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Epidemiology, Colorado School of Public Health, Aurora, CO, USA
| | | | - John M Wentworth
- Royal Melbourne Hospital Department of Diabetes and Endocrinology, Parkville, VIC, Australia
- Walter and Eliza Hall Institute, Parkville, VIC, Australia
- University of Melbourne Department of Medicine, Parkville, VIC, Australia
| | - Kurt J Griffin
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD, USA
- Sanford Research, Sioux Falls, SD, USA
| | - Emily K Sims
- Department of Pediatrics, Center for Diabetes and Metabolic Diseases, Indianapolis, IN, USA.
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Carrera P, Marzinotto I, Bonfanti R, Massimino L, Calzavara S, Favellato Μ, Jofra T, De Giglio V, Bonura C, Stabilini A, Favalli V, Bondesan S, Cicalese MP, Laurenzi A, Caretto A, Frontino G, Rigamonti A, Molinari C, Scavini M, Sandullo F, Zapparoli E, Caridi N, Bonfiglio S, Castorani V, Ungaro F, Petrelli A, Barera G, Aiuti A, Bosi E, Battaglia M, Piemonti L, Lampasona V, Fousteri G. Genetic determinants of type 1 diabetes in individuals with weak evidence of islet autoimmunity at disease onset. Diabetologia 2023; 66:695-708. [PMID: 36692510 DOI: 10.1007/s00125-022-05865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 10/31/2022] [Indexed: 01/25/2023]
Abstract
AIMS/HYPOTHESIS Islet autoantibodies (AAbs) are detected in >90% of individuals with clinically suspected type 1 diabetes at disease onset. A single AAb, sometimes at low titre, is often detected in some individuals, making their diagnosis uncertain. Type 1 diabetes genetic risk scores (GRS) are a useful tool for discriminating polygenic autoimmune type 1 diabetes from other types of diabetes, particularly the monogenic forms, but testing is not routinely performed in the clinic. Here, we used a type 1 diabetes GRS to screen for monogenic diabetes in individuals with weak evidence of autoimmunity, i.e. with a single AAb at disease onset. METHODS In a pilot study, we genetically screened 142 individuals with suspected type 1 diabetes, 42 of whom were AAb-negative, 27 of whom had a single AAb (single AAb-positive) and 73 of whom had multiple AAbs (multiple AAb-positive) at disease onset. Next-generation sequencing (NGS) was performed in 41 AAb-negative participants, 26 single AAb-positive participants and 60 multiple AAb-positive participants using an analysis pipeline of more than 200 diabetes-associated genes. RESULTS The type 1 diabetes GRS was significantly lower in AAb-negative individuals than in those with a single and multiple AAbs. Pathogenetic class 4/5 variants in MODY or monogenic diabetes genes were identified in 15/41 (36.6%) AAb-negative individuals, while class 3 variants of unknown significance were identified in 17/41 (41.5%). Residual C-peptide levels at diagnosis were higher in individuals with mutations compared to those without pathogenetic variants. Class 3 variants of unknown significance were found in 11/26 (42.3%) single AAb-positive individuals, and pathogenetic class 4/5 variants were present in 2/26 (7.7%) single AAb-positive individuals. No pathogenetic class 4/5 variants were identified in multiple AAb-positive individuals, but class 3 variants of unknown significance were identified in 19/60 (31.7%) patients. Several patients across the three groups had more than one class 3 variant. CONCLUSIONS/INTERPRETATION These findings provide insights into the genetic makeup of patients who show weak evidence of autoimmunity at disease onset. Absence of islet AAbs or the presence of a single AAb together with a low type 1 diabetes GRS may be indicative of a monogenic form of diabetes, and use of NGS may improve the accuracy of diagnosis.
Collapse
Affiliation(s)
- Paola Carrera
- Unit of Genomics for Human Disease Diagnosis, IRCCS Ospedale San Raffaele, Milan, Italy
- Laboratory of Clinical Molecular Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ilaria Marzinotto
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Riccardo Bonfanti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Luca Massimino
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele Hospital, Milan, Italy
| | - Silvia Calzavara
- Laboratory of Clinical Molecular Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Tatiana Jofra
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Clara Bonura
- Pediatric Department, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Angela Stabilini
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Valeria Favalli
- Pediatric Department, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Simone Bondesan
- Unit of Genomics for Human Disease Diagnosis, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Maria Pia Cicalese
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Laurenzi
- Department of Internal Medicine, Diabetology, Endocrinology and Metabolism, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Amelia Caretto
- Department of Internal Medicine, Diabetology, Endocrinology and Metabolism, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Giulio Frontino
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Andrea Rigamonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Chiara Molinari
- Department of Internal Medicine, Diabetology, Endocrinology and Metabolism, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Marina Scavini
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Department of Internal Medicine, Diabetology, Endocrinology and Metabolism, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Federica Sandullo
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Ettore Zapparoli
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicoletta Caridi
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bonfiglio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Federica Ungaro
- Department of Gastroenterology and Digestive Endoscopy, IRCCS Ospedale San Raffaele Hospital, Milan, Italy
| | | | - Graziano Barera
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Pediatric Department, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandro Aiuti
- Vita-Salute San Raffaele University, Milan, Italy
- San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Emanuele Bosi
- Department of Internal Medicine, Diabetology, Endocrinology and Metabolism, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Manuela Battaglia
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Fondazione Telethon, Milan, Italy
| | - Lorenzo Piemonti
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| | - Georgia Fousteri
- Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
4
|
Uribe-Querol E, Rosales C. Neutrophils Actively Contribute to Obesity-Associated Inflammation and Pathological Complications. Cells 2022; 11:1883. [PMID: 35741012 PMCID: PMC9221045 DOI: 10.3390/cells11121883] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/08/2022] [Indexed: 02/01/2023] Open
Abstract
Obesity is characterized by an increase in body weight associated with an exaggerated enlargement of the adipose tissue. Obesity has serious negative effects because it is associated with multiple pathological complications such as type 2 diabetes mellitus, cardiovascular diseases, cancer, and COVID-19. Nowadays, 39% of the world population is obese or overweight, making obesity the 21st century epidemic. Obesity is also characterized by a mild, chronic, systemic inflammation. Accumulation of fat in adipose tissue causes stress and malfunction of adipocytes, which then initiate inflammation. Next, adipose tissue is infiltrated by cells of the innate immune system. Recently, it has become evident that neutrophils, the most abundant leukocytes in blood, are the first immune cells infiltrating the adipose tissue. Neutrophils then get activated and release inflammatory factors that recruit macrophages and other immune cells. These immune cells, in turn, perpetuate the inflammation state by producing cytokines and chemokines that can reach other parts of the body, creating a systemic inflammatory condition. In this review, we described the recent findings on the role of neutrophils during obesity and the initiation of inflammation. In addition, we discuss the involvement of neutrophils in the generation of obesity-related complications using diabetes as a prime example.
Collapse
Affiliation(s)
- Eileen Uribe-Querol
- Laboratorio de Biología del Desarrollo, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico;
| | - Carlos Rosales
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| |
Collapse
|
5
|
Giovenzana A, Carnovale D, Phillips B, Petrelli A, Giannoukakis N. Neutrophils and their role in the aetiopathogenesis of type 1 and type 2 diabetes. Diabetes Metab Res Rev 2022; 38:e3483. [PMID: 34245096 DOI: 10.1002/dmrr.3483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/12/2021] [Accepted: 06/19/2021] [Indexed: 12/25/2022]
Abstract
Multiple and complex aetiological processes underlie diabetes mellitus, which invariably result in the development of hyperglycaemia. Although there are two prevalent distinct forms of the disease, that is, type 1 and type 2 diabetes, accumulating evidence indicates that these syndromes share more aetiopathological mechanisms than originally thought. This compels a rethinking of the approaches to prevent and treat the different manifestations of what eventually becomes a hyperglycaemic state. This review aims to address the involvement of neutrophils, the most abundant type of granulocytes involved in the initiation of the acute phase of inflammation, in the aetiopathogenesis of diabetes mellitus, with a focus on type 1 and type 2 diabetes. We review the evidence that neutrophils are the first leucocytes to react to and accumulate inside target tissues of diabetes, such as the pancreas and insulin-sensitive tissues. We then review available data on the role of neutrophils and their functional alteration, with a focus on NETosis, in the progression towards clinical disease. Finally, we review potential approaches as secondary and adjunctive treatments to limit neutrophil-mediated damage in the prevention of the progression of subclinical disease to clinical hyperglycaemia.
Collapse
Affiliation(s)
- Anna Giovenzana
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Debora Carnovale
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Brett Phillips
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| | - Alessandra Petrelli
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milano, Lombardia, Italy
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
6
|
Schomburg L. Selenium Deficiency Due to Diet, Pregnancy, Severe Illness, or COVID-19-A Preventable Trigger for Autoimmune Disease. Int J Mol Sci 2021; 22:8532. [PMID: 34445238 PMCID: PMC8395178 DOI: 10.3390/ijms22168532] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/06/2021] [Indexed: 12/11/2022] Open
Abstract
The trace element selenium (Se) is an essential part of the human diet; moreover, increased health risks have been observed with Se deficiency. A sufficiently high Se status is a prerequisite for adequate immune response, and preventable endemic diseases are known from areas with Se deficiency. Biomarkers of Se status decline strongly in pregnancy, severe illness, or COVID-19, reaching critically low concentrations. Notably, these conditions are associated with an increased risk for autoimmune disease (AID). Positive effects on the immune system are observed with Se supplementation in pregnancy, autoimmune thyroid disease, and recovery from severe illness. However, some studies reported null results; the database is small, and randomized trials are sparse. The current need for research on the link between AID and Se deficiency is particularly obvious for rheumatoid arthritis and type 1 diabetes mellitus. Despite these gaps in knowledge, it seems timely to realize that severe Se deficiency may trigger AID in susceptible subjects. Improved dietary choices or supplemental Se are efficient ways to avoid severe Se deficiency, thereby decreasing AID risk and improving disease course. A personalized approach is needed in clinics and during therapy, while population-wide measures should be considered for areas with habitual low Se intake. Finland has been adding Se to its food chain for more than 35 years-a wise and commendable decision, according to today's knowledge. It is unfortunate that the health risks of Se deficiency are often neglected, while possible side effects of Se supplementation are exaggerated, leading to disregard for this safe and promising preventive and adjuvant treatment options. This is especially true in the follow-up situations of pregnancy, severe illness, or COVID-19, where massive Se deficiencies have developed and are associated with AID risk, long-lasting health impairments, and slow recovery.
Collapse
Affiliation(s)
- Lutz Schomburg
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Institut für Experimentelle Endokrinologie, Cardiovascular-Metabolic-Renal (CMR)-Research Center, Hessische Straße 3-4, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
7
|
Garciafigueroa Y, Phillips BE, Engman C, Trucco M, Giannoukakis N. Neutrophil-Associated Inflammatory Changes in the Pre-Diabetic Pancreas of Early-Age NOD Mice. Front Endocrinol (Lausanne) 2021; 12:565981. [PMID: 33776903 PMCID: PMC7988208 DOI: 10.3389/fendo.2021.565981] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022] Open
Abstract
A growing body of evidence indicates that neutrophils are the first major leukocyte population accumulating inside the pancreas even before the onset of a lymphocytic-driven impairment of functional beta cells in type 1 diabetes mellitus (T1D). In humans, pancreata from T1D deceased donors exhibit significant neutrophil accumulation. We present a time course of previously unknown inflammatory changes that accompany neutrophil and neutrophil elastase accumulation in the pancreas of the non-obese diabetic (NOD) mouse strain as early as 2 weeks of age. We confirm earlier findings in NOD mice that neutrophils accumulate as early as 2 weeks of age. We also observe a concurrent increase in the expression of neutrophil elastase in this time period. We also detect components of neutrophil extracellular traps (NET) mainly in the exocrine tissue of the pancreas during this time as well as markers of vascular pathology as early as 2 weeks of age. Age- and sex-matched C57BL/6 mice do not exhibit these features inside the pancreas. When we treated NOD mice with inhibitors of myeloperoxidase and neutrophil elastase, two key effectors of activated neutrophil activity, alone or in combination, we were unable to prevent the progression to hyperglycemia in any manner different from untreated control mice. Our data confirm and add to the body of evidence demonstrating neutrophil accumulation inside the pancreas of mice genetically susceptible to T1D and also offer novel insights into additional pathologic mechanisms involving the pancreatic vasculature that have, until now, not been discovered inside the pancreata of these mice. However, inhibition of key neutrophil enzymes expressed in activated neutrophils could not prevent diabetes. These findings add to the body of data supporting a role for neutrophils in the establishment of early pathology inside the pancreas, independently of, and earlier from the time at onset of lymphocytic infiltration. However, they also suggest that inhibition of neutrophils alone, acting via myeloperoxidase and neutrophil elastase only, in the absence of other other effector cells, is insufficient to alter the natural course of autoimmune diabetes, at least in the NOD model of the disease.
Collapse
Affiliation(s)
- Yesica Garciafigueroa
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Brett E. Phillips
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Carl Engman
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
| | - Massimo Trucco
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, Allegheny Health Network, Pittsburgh, PA, United States
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, United States
- *Correspondence: Nick Giannoukakis,
| |
Collapse
|
8
|
Redondo MJ, Sosenko J, Libman I, McVean JJF, Tosur M, Atkinson MA, Becker D, Geyer S. Single Islet Autoantibody at Diagnosis of Clinical Type 1 Diabetes is Associated With Older Age and Insulin Resistance. J Clin Endocrinol Metab 2020; 105:dgz296. [PMID: 31867614 PMCID: PMC7089846 DOI: 10.1210/clinem/dgz296] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 12/19/2019] [Indexed: 12/11/2022]
Abstract
CONTEXT Multiple islet autoantibody positivity usually precedes clinical (stage 3) type 1 diabetes (T1D). OBJECTIVE To test the hypothesis that individuals who develop stage 3 T1D with only a single autoantibody have unique metabolic differences. DESIGN Cross-sectional analysis of participants in the T1D TrialNet study. SETTING Autoantibody-positive relatives of individuals with stage 3 T1D. PARTICIPANTS Autoantibody-positive relatives who developed stage 3 T1D (at median age 12.4 years, range = 1.4-58.6) and had autoantibody data close to clinical diagnosis (n = 786, 47.4% male, 79.9% non-Hispanic white). MAIN OUTCOME MEASURES Logistic regression modeling was used to assess relationships between autoantibody status and demographic, clinical, and metabolic characteristics, adjusting for potential confounders and correcting for multiple comparisons. RESULTS At diagnosis of stage 3 T1D, single autoantibody positivity, observed in 119 (15.1%) participants (72% GAD65, 13% microinsulin antibody assay, 11% insulinoma-associated antigen 2, 1% islet cell antibody, 3% autoantibodies to zinc transporter 8 [ZnT8]), was significantly associated with older age, higher C-peptide measures (fasting, area under the curve, 2-hour, and early response in oral glucose tolerance test), higher homeostatic model assessment of insulin resistance, and lower T1D Index60 (all P < 0.03). While with adjustment for age, 2-hour C-peptide remained statistically different, controlling for body mass index (BMI) attenuated the differences. Sex, race, ethnicity, human leukocyte antigen DR3-DQ2, and/or DR4-DQ8, BMI category, and glucose measures were not significantly associated with single autoantibody positivity. CONCLUSIONS Compared with multiple autoantibody positivity, single autoantibody at diagnosis of stage 3 T1D was associated with older age and insulin resistance possibly mediated by elevated BMI, suggesting heterogeneous disease pathogenesis. These differences are potentially relevant for T1D prevention and treatment.
Collapse
Affiliation(s)
- Maria J Redondo
- Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas
| | | | | | | | - Mustafa Tosur
- Baylor College of Medicine, Texas Children’s Hospital, Houston, Texas
| | - Mark A Atkinson
- University of Florida Diabetes Institute, Gainesville, Florida
| | | | | |
Collapse
|
9
|
Speake C, Skinner SO, Berel D, Whalen E, Dufort MJ, Young WC, Odegard JM, Pesenacker AM, Gorus FK, James EA, Levings MK, Linsley PS, Akirav EM, Pugliese A, Hessner MJ, Nepom GT, Gottardo R, Long SA. A composite immune signature parallels disease progression across T1D subjects. JCI Insight 2019; 4:126917. [PMID: 31671072 PMCID: PMC6962023 DOI: 10.1172/jci.insight.126917] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
At diagnosis, most people with type 1 diabetes (T1D) produce measurable levels of endogenous insulin, but the rate at which insulin secretion declines is heterogeneous. To explain this heterogeneity, we sought to identify a composite signature predictive of insulin secretion, using a collaborative assay evaluation and analysis pipeline that incorporated multiple cellular and serum measures reflecting β cell health and immune system activity. The ability to predict decline in insulin secretion would be useful for patient stratification for clinical trial enrollment or therapeutic selection. Analytes from 12 qualified assays were measured in shared samples from subjects newly diagnosed with T1D. We developed a computational tool (DIFAcTO, Data Integration Flexible to Account for different Types of data and Outcomes) to identify a composite panel associated with decline in insulin secretion over 2 years following diagnosis. DIFAcTO uses multiple filtering steps to reduce data dimensionality, incorporates error estimation techniques including cross-validation and sensitivity analysis, and is flexible to assay type, clinical outcome, and disease setting. Using this novel analytical tool, we identified a panel of immune markers that, in combination, are highly associated with loss of insulin secretion. The methods used here represent a potentially novel process for identifying combined immune signatures that predict outcomes relevant for complex and heterogeneous diseases like T1D.
Collapse
Affiliation(s)
- Cate Speake
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Samuel O. Skinner
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Dror Berel
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Elizabeth Whalen
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Matthew J. Dufort
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - William Chad Young
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Jared M. Odegard
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Anne M. Pesenacker
- University of British Columbia BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Frans K. Gorus
- Diabetes Research Center, Medical School and University Hospital (UZ Brussel), Brussels Free University Vrije Universiteit Brussel, Brussels, Belgium
| | - Eddie A. James
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Megan K. Levings
- University of British Columbia BC Children’s Hospital Research Institute, Vancouver, British Columbia, Canada
| | - Peter S. Linsley
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| | - Eitan M. Akirav
- Research Institute, Islet Biology, New York University Winthrop Hospital, Mineola, New York, USA
- Stony Brook University School of Medicine, Stony Brook, New York, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Diabetes Endocrinology and Metabolism, Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | | | - Gerald T. Nepom
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
- Immune Tolerance Network, Bethesda, Maryland, USA
| | - Raphael Gottardo
- Vaccines and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - S. Alice Long
- Benaroya Research Institute at Virginia Mason, Seattle, Washington, USA
| |
Collapse
|
10
|
Vecchio F, Messina G, Giovenzana A, Petrelli A. New Evidence of Exocrine Pancreatopathy in Pre-symptomatic and Symptomatic Type 1 Diabetes. Curr Diab Rep 2019; 19:92. [PMID: 31471779 DOI: 10.1007/s11892-019-1223-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Type 1 diabetes (T1D) is one of the most frequent chronic autoimmune diseases in humans, characterized by the lack of insulin production resulting in high blood glucose levels and lifelong requirement of exogenous insulin administration for survival. It is now recognized that the autoimmune process begins years before the clinical onset, in a stage called pre-symptomatic T1D, in which the presence of β-cell-specific autoantibodies is detectable. Our aim is to review evidence for T1D as a "whole-pancreas disease," featured by both endocrine and exocrine pancreas alterations already at early disease stages. RECENT FINDINGS In this review, we discuss a series of recent observations indicating that in genetically predisposed individuals, structural and functional abnormalities as well as immune cell infiltration of the exocrine pancreas are already present in the pre-symptomatic stages of the disease. Despite T1D being considered a β-cell-specific disease, numerous reports point to the presence of exocrine pancreas subclinical abnormalities occurring during disease development. These observations challenge the long-standing idea that T1D exocrine damage exists as a mere consequence of disease progression and provide further explanation of mechanisms underlying T1D pathogenesis.
Collapse
Affiliation(s)
- Federica Vecchio
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | | | - Anna Giovenzana
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Alessandra Petrelli
- San Raffaele Diabetes Research Institute, IRCCS Ospedale San Raffaele, Milan, Italy.
| |
Collapse
|
11
|
Battaglia M, Petrelli A, Vecchio F. Neutrophils and type 1 diabetes: current knowledge and suggested future directions. Curr Opin Endocrinol Diabetes Obes 2019; 26:201-206. [PMID: 31157631 DOI: 10.1097/med.0000000000000485] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PURPOSE OF REVIEW Purpose of this review is to describe the most recent human studies on neutrophils in type 1 diabetes (T1D) and to focus on the key questions that still need to be addressed. RECENT FINDINGS Recent evidences demonstrate that neutrophils have marked abnormalities in phenotype and function and play a central role in initiation and perpetuation of aberrant immune responses and organ damage in various systemic autoimmune diseases such as lupus erythematosus and rheumatoid arthritis. In T1D, we have recently demonstrated that reduced circulating neutrophil numbers precede and accompany the disease and that neutrophils infiltrate the pancreas and extrude neutrophil extracellular traps already before the onset of clinical symptoms. However, few other evidences of alterations in neutrophil phenotype and function have been reported in humans, especially in the T1D presymptomatic phases. SUMMARY Dissecting the pathogenic role of these cells in human T1D is crucial for a better understanding of the disease and to open new therapeutic opportunities.
Collapse
Affiliation(s)
- Manuela Battaglia
- San Raffaele Diabetes Research Institute, IRCCS Ospedale, San Raffaele, Milan, Italy
| | | | | |
Collapse
|
12
|
Linsley PS, Greenbaum CJ, Rosasco M, Presnell S, Herold KC, Dufort MJ. Elevated T cell levels in peripheral blood predict poor clinical response following rituximab treatment in new-onset type 1 diabetes. Genes Immun 2019; 20:293-307. [PMID: 29925930 PMCID: PMC6477779 DOI: 10.1038/s41435-018-0032-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 04/05/2018] [Accepted: 04/09/2018] [Indexed: 12/11/2022]
Abstract
Biologic treatment of type 1 diabetes (T1D) with agents including anti-CD3 (otelixizumab and teplizumab), anti-CD20 (rituximab), LFA3Ig (alafacept), and CTLA4Ig (abatacept) results in transient stabilization of insulin C-peptide, a surrogate for endogenous insulin secretion. With the goal of inducing more robust immune tolerance, we used systems biology approaches to elucidate mechanisms associated with C-peptide stabilization in clinical trial blood samples from new-onset T1D subjects treated with the B cell-depleting drug, rituximab. RNA sequencing (RNA-seq) analysis of whole-blood samples from this trial revealed a transient increase in heterogeneous T cell populations, which were associated with decreased pharmacodynamic activity of rituximab, increased proliferative responses to islet antigens, and more rapid C-peptide loss. Our findings illustrate complexity in hematopoietic remodeling that accompanies B cell depletion by rituximab, which impacts and predicts therapeutic efficacy in T1D. Our data also suggest that a combination of rituximab with therapy targeting CD4 + T cells may be beneficial for T1D subjects.
Collapse
Affiliation(s)
- Peter S Linsley
- Systems Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
| | - Carla J Greenbaum
- Diabetes Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Mario Rosasco
- Systems Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Scott Presnell
- Systems Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT, 06520, USA
| | - Matthew J Dufort
- Systems Immunology Program, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| |
Collapse
|
13
|
Vecchio F, Lo Buono N, Stabilini A, Nigi L, Dufort MJ, Geyer S, Rancoita PM, Cugnata F, Mandelli A, Valle A, Leete P, Mancarella F, Linsley PS, Krogvold L, Herold KC, Elding Larsson H, Richardson SJ, Morgan NG, Dahl-Jørgensen K, Sebastiani G, Dotta F, Bosi E, Battaglia M. Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes. JCI Insight 2018; 3:122146. [PMID: 30232284 DOI: 10.1172/jci.insight.122146] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/03/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Neutrophils and their inflammatory mediators are key pathogenic components in multiple autoimmune diseases, while their role in human type 1 diabetes (T1D), a disease that progresses sequentially through identifiable stages prior to the clinical onset, is not well understood. We previously reported that the number of circulating neutrophils is reduced in patients with T1D and in presymptomatic at-risk subjects. The aim of the present work was to identify possible changes in circulating and pancreas-residing neutrophils throughout the disease course to better elucidate neutrophil involvement in human T1D. METHODS Data collected from 389 subjects at risk of developing T1D, and enrolled in 4 distinct studies performed by TrialNet, were analyzed with comprehensive statistical approaches to determine whether the number of circulating neutrophils correlates with pancreas function. To obtain a broad analysis of pancreas-infiltrating neutrophils throughout all disease stages, pancreas sections collected worldwide from 4 different cohorts (i.e., nPOD, DiViD, Siena, and Exeter) were analyzed by immunohistochemistry and immunofluorescence. Finally, circulating neutrophils were purified from unrelated nondiabetic subjects and donors at various T1D stages and their transcriptomic signature was determined by RNA sequencing. RESULTS Here, we show that the decline in β cell function is greatest in individuals with the lowest peripheral neutrophil numbers. Neutrophils infiltrate the pancreas prior to the onset of symptoms and they continue to do so as the disease progresses. Of interest, a fraction of these pancreas-infiltrating neutrophils also extrudes neutrophil extracellular traps (NETs), suggesting a tissue-specific pathogenic role. Whole-transcriptome analysis of purified blood neutrophils revealed a unique molecular signature that is distinguished by an overabundance of IFN-associated genes; despite being healthy, said signature is already present in T1D-autoantibody-negative at-risk subjects. CONCLUSIONS These results reveal an unexpected abnormality in neutrophil disposition both in the circulation and in the pancreas of presymptomatic and symptomatic T1D subjects, implying that targeting neutrophils might represent a previously unrecognized therapeutic modality. FUNDING Juvenile Diabetes Research Foundation (JDRF), NIH, Diabetes UK.
Collapse
Affiliation(s)
- Federica Vecchio
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Lo Buono
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angela Stabilini
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura Nigi
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Matthew J Dufort
- Systems Immunology Division, Benaroya Research Institute, Seattle, Washington, USA
| | - Susan Geyer
- University of South Florida, TNCC, Tampa, Florida, USA
| | - Paola Maria Rancoita
- Centre of Statistics for Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Cugnata
- Centre of Statistics for Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Alessandra Mandelli
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Valle
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Pia Leete
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building Barrack Road, Exeter, Devon, United Kingdom
| | - Francesca Mancarella
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Peter S Linsley
- Systems Immunology Division, Benaroya Research Institute, Seattle, Washington, USA
| | - Lars Krogvold
- Pediatric Department, Oslo University Hospital HF, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kevan C Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, Connecticut, USA
| | - Helena Elding Larsson
- Department of Clinical Sciences, Lund University/CRC, Skane University Hospital SUS, Malmo, Sweden
| | - Sarah J Richardson
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building Barrack Road, Exeter, Devon, United Kingdom
| | - Noel G Morgan
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, RILD Building Barrack Road, Exeter, Devon, United Kingdom
| | - Knut Dahl-Jørgensen
- Pediatric Department, Oslo University Hospital HF, Oslo, Norway; Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Francesco Dotta
- Diabetes Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, and Fondazione Umberto Di Mario ONLUS c/o Toscana Life Science, Siena, Italy
| | - Emanuele Bosi
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy, and the Department of Internal Medicine, IRCCS San Raffaele Hospital, Milan, Italy.,TrialNet Clinical Center, IRCCS San Raffaele Hospital, Milan, Italy
| | | | | | - Manuela Battaglia
- Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy.,TrialNet Clinical Center, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
14
|
Bingley PJ, Wherrett DK, Shultz A, Rafkin LE, Atkinson MA, Greenbaum CJ. Type 1 Diabetes TrialNet: A Multifaceted Approach to Bringing Disease-Modifying Therapy to Clinical Use in Type 1 Diabetes. Diabetes Care 2018; 41:653-661. [PMID: 29559451 PMCID: PMC5860837 DOI: 10.2337/dc17-0806] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 12/13/2017] [Indexed: 02/03/2023]
Abstract
What will it take to bring disease-modifying therapy to clinical use in type 1 diabetes? Coordinated efforts of investigators involved in discovery, translational, and clinical research operating in partnership with funders and industry and in sync with regulatory agencies are needed. This Perspective describes one such effort, Type 1 Diabetes TrialNet, a National Institutes of Health-funded and JDRF-supported international clinical trials network that emerged from the Diabetes Prevention Trial-Type 1 (DPT-1). Through longitudinal natural history studies, as well as trials before and after clinical onset of disease combined with mechanistic and ancillary investigations to enhance scientific understanding and translation to clinical use, TrialNet is working to bring disease-modifying therapies to individuals with type 1 diabetes. Moreover, TrialNet uses its expertise and experience in clinical studies to increase efficiencies in the conduct of trials and to reduce the burden of participation on individuals and families. Herein, we highlight key contributions made by TrialNet toward a revised understanding of the natural history of disease and approaches to alter disease course and outline the consortium's plans for the future.
Collapse
Affiliation(s)
- Polly J Bingley
- Diabetes and Metabolism, Bristol Medical School, University of Bristol, Bristol, U.K
| | - Diane K Wherrett
- Department of Paediatrics, The Hospital for Sick Children, University of Toronto, Toronto, Canada
| | - Ann Shultz
- Diabetes Research Program, Benaroya Research Institute, Seattle, WA
| | - Lisa E Rafkin
- University of Miami Diabetes Research Institute, Miami, FL
| | - Mark A Atkinson
- Departments of Pathology and Pediatrics, University of Florida College of Medicine,Gainesville, FL
| | | |
Collapse
|
15
|
Paul M, Badal D, Jacob N, Dayal D, Kumar R, Bhansali A, Bhadada SK, Sachdeva N. Pathophysiological characteristics of preproinsulin-specific CD8+ T cells in subjects with juvenile-onset and adult-onset type 1 diabetes: A 1-year follow-up study. Pediatr Diabetes 2018; 19:68-79. [PMID: 28488272 DOI: 10.1111/pedi.12536] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 03/02/2017] [Accepted: 04/05/2017] [Indexed: 12/30/2022] Open
Abstract
AIMS/HYPOTHESIS Among the beta-cell associated antigens, preproinsulin (PPI) has been shown to play a key role in the pathogenesis of type 1 diabetes (T1D). PPI-specific autoreactive CD8+ T cells emerge early during beta-cell destruction and persist in peripheral circulation during diabetes progression. However, the influence of insulin therapy on phenotype of autoreactive CD8+ T cells in T1D including, juvenile-onset T1D (JOT1D), and adult-onset T1D (AOT1D) is not yet known. METHODS We followed the time course of PPI-specific CD8+ T cells in JOT1D and AOT1D subjects that achieved glycemic control after 1 year of insulin therapy, using major histocompatibility complex-I (MHC-I) dextramers by flow cytometry. RESULTS AND DISCUSSION At follow-up, PPI-specific CD8+ T cells could be detected consistently in peripheral blood of all T1D subjects. Proportion of PPI-specific effector memory (TEM ) subsets decreased, while central memory T (TCM ) cells remained unchanged in both groups. Expression of granzyme-B and perforin in PPI-specific CD8+ T cells also remained unchanged. Further, on analysis of B-chain and signal peptide (SP) specific CD8+ T cell responses separately, we again observed decrease in TEM subset in both the groups, while increase in naive (TN ) subset was observed in B-chain specific CD8+ T cells only. CONCLUSION Our study shows that PPI-specific CD8+ T cells can be detected in both JOT1D and AOT1D subjects over a period of time with reliable consistency in frequency but variable pathophysiological characteristics. Insulin therapy seems to reduce the PPI-specific TEM subsets; however, the PPI-specific TCM cells continue to persist as attractive targets for immunotherapy.
Collapse
Affiliation(s)
- Mahinder Paul
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Darshan Badal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Neenu Jacob
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Devi Dayal
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Rakesh Kumar
- Department of Pediatrics, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Anil Bhansali
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| |
Collapse
|
16
|
Battaglia M, Anderson MS, Buckner JH, Geyer SM, Gottlieb PA, Kay TWH, Lernmark Å, Muller S, Pugliese A, Roep BO, Greenbaum CJ, Peakman M. Understanding and preventing type 1 diabetes through the unique working model of TrialNet. Diabetologia 2017; 60:2139-2147. [PMID: 28770323 PMCID: PMC5838353 DOI: 10.1007/s00125-017-4384-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes is an autoimmune disease arising from the destruction of pancreatic insulin-producing beta cells. The disease represents a continuum, progressing sequentially at variable rates through identifiable stages prior to the onset of symptoms, through diagnosis and into the critical periods that follow, culminating in a variable depth of beta cell depletion. The ability to identify the very earliest of these presymptomatic stages has provided a setting in which prevention strategies can be trialled, as well as furnishing an unprecedented opportunity to study disease evolution, including intrinsic and extrinsic initiators and drivers. This niche opportunity is occupied by Type 1 Diabetes TrialNet, an international consortium of clinical trial centres that leads the field in intervention and prevention studies, accompanied by deep longitudinal bio-sampling. In this review, we focus on discoveries arising from this unique bioresource, comprising more than 70,000 samples, and outline the processes and science that have led to new biomarkers and mechanistic insights, as well as identifying new challenges and opportunities. We conclude that via integration of clinical trials and mechanistic studies, drawing in clinicians and scientists and developing partnership with industry, TrialNet embodies an enviable and unique working model for understanding a disease that to date has no cure and for designing new therapeutic approaches.
Collapse
Affiliation(s)
- Manuela Battaglia
- Diabetes Research Institute (DRI), IRCCS San Raffaele Scientific Institute, Via Olgettina 58, 20132, Milan, Italy.
| | - Mark S Anderson
- Diabetes Center, University of California, San Francisco, CA, USA
| | - Jane H Buckner
- Translational Research Program, Benaroya Research Institute, Seattle, WA, USA
| | - Susan M Geyer
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Peter A Gottlieb
- Barbara Davis Center for Childhood Diabetes, University of Colorado School of Medicine, Aurora, CO, USA
| | - Thomas W H Kay
- St Vincent's Institute, Fitzroy, VIC, Australia
- Department of Medicine, St Vincent's Hospital, University of Melbourne, Fitzroy, VIC, Australia
| | - Åke Lernmark
- Lund University/CRC, Department of Clinical Sciences, Skane University Hospital, Malmö, Sweden
| | - Sarah Muller
- Health Informatics Institute, University of South Florida, Tampa, FL, USA
| | - Alberto Pugliese
- Diabetes Research Institute, Department of Medicine, Division of Diabetes Endocrinology and Metabolism, Department of Microbiology and Immunology, Leonard Miller School of Medicine University of Miami, Miami, FL, USA
| | - Bart O Roep
- Department of Diabetes Immunology, Diabetes & Metabolism Research Institute, Beckman Research Institute at the City of Hope, Duarte, CA, USA
- Department of Immunohaematology & Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Mark Peakman
- Department of Immunobiology, Faculty of Life Sciences & Medicine, King's College London, London, SE1 9RT, UK.
- National Institute for Health Research Biomedical Research Centre at Guy's and St Thomas' Hospital Foundation Trust and King's College London, London, UK.
- Institute of Diabetes, Endocrinology and Obesity, King's Health Partners, London, UK.
| |
Collapse
|
17
|
Circulating B cells in type 1 diabetics exhibit fewer maturation-associated phenotypes. Clin Immunol 2017; 183:336-343. [PMID: 28951327 DOI: 10.1016/j.clim.2017.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/16/2017] [Accepted: 09/22/2017] [Indexed: 01/05/2023]
Abstract
Although autoantibodies have been used for decades as diagnostic and prognostic markers in type 1 diabetes (T1D), further analysis of developmental abnormalities in B cells could reveal tolerance checkpoint defects that could improve individualized therapy. To evaluate B cell developmental progression in T1D, immunophenotyping was used to classify circulating B cells into transitional, mature naïve, mature activated, and resting memory subsets. Then each subset was analyzed for the expression of additional maturation-associated markers. While the frequencies of B cell subsets did not differ significantly between patients and controls, some T1D subjects exhibited reduced proportions of B cells that expressed transmembrane activator and CAML interactor (TACI) and Fas receptor (FasR). Furthermore, some T1D subjects had B cell subsets with lower frequencies of class switching. These results suggest circulating B cells exhibit variable maturation phenotypes in T1D. These phenotypic variations may correlate with differences in B cell selection in individual T1D patients.
Collapse
|
18
|
Guglielmi C, Williams SR, Del Toro R, Pozzilli P. Efficacy and safety of otelixizumab use in new-onset type 1 diabetes mellitus. Expert Opin Biol Ther 2017; 16:841-6. [PMID: 27145230 DOI: 10.1080/14712598.2016.1180363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Type 1 diabetes (T1DM) is an immune-mediated disease induced by antigen-specific T cells infiltrating pancreatic beta cells leading to the progressive loss of endogenous insulin secretion. AREAS COVERED The identification of specific components of the autoimmune response favoured the implementation of several immunomodulatory therapies including antiCD3 monoclonal antibody (mAb) called otelixizumab. Otelixizumab is a chimeric monoclonal antibody that targets the ε-chain of the CD3T-lymphocyte surface receptor that has been developed with the aim of short therapeutic courses capable of inducing a remission of T1DM. Clinical trials have been carried out with otelixizumab to evaluate its safety and efficacy, but despite positive results of Phase I and II studies, the results of Phase III studies have been contradictory. EXPERT OPINION High doses of otelixizumab have shown beneficial effects on beta cell function whereas a lower dose, which was tested to avoid the adverse effects associated with higher doses, was not effective on beta cells preservation. We believe that otelixizumab is a drug of potential interest for treating new onset T1DM patients and its use in combination with other immunomodulatory agents should be considered as a solution to circumvent adverse effects while maintaining efficacy.
Collapse
Affiliation(s)
- Chiara Guglielmi
- a Unit of Endocrinology and Diabetes, Department of Medicine , University Campus Bio-Medico di Roma , Rome , Italy
| | - Stefan Rhys Williams
- b Centre of Immunology, Barts and The London School of Medicine and Dentistry , Queen Mary, University of London , London , UK
| | - Rossella Del Toro
- a Unit of Endocrinology and Diabetes, Department of Medicine , University Campus Bio-Medico di Roma , Rome , Italy
| | - Paolo Pozzilli
- a Unit of Endocrinology and Diabetes, Department of Medicine , University Campus Bio-Medico di Roma , Rome , Italy.,b Centre of Immunology, Barts and The London School of Medicine and Dentistry , Queen Mary, University of London , London , UK
| |
Collapse
|
19
|
Abstract
In this review, we present findings that support autocrine cell protection by C-peptide in the context of clinical studies of type 1 diabetes (T1D), which universally measure C-peptide serum levels as a surrogate for β cell functional mass. Over the last decade, evidence has accumulated that supports models in which C-peptide, cosecreted with insulin by pancreatic β cells, acts on peripheral targets including the vascular endothelium to reduce oxidative stress and apoptosis subsequent to exposure to diabetic insults. In parallel, as assays have become more sensitive, C-peptide has been detected in the circulation of most subjects with T1D where higher C-peptide levels are associated with fewer and slower development of diabetic microvascular complications, consistent with antioxidant protection by C-peptide. Clinical trials investigating C-peptide-replacement therapy effects have demonstrated amelioration of T1D nephropathy and neuropathy. Recently, the antioxidant action of C-peptide was extended to the β cells secreting it, that is an autocrine mechanism. Autocrine protection has major implications for the treatment of diabetes because the more C-peptide secreted, the more protection provided to the same β cells resulting in a slower decay in β cell functional mass over the time course of disease. Why β cells evolved to cosecrete an antioxidant C-peptide hormone together with the glycaemia-lowering insulin hormone is explored in the context of proposed evolutionary advantages of physiologically transient oxidative stress and insulin resistance as an adaptation for survival through times of fuel scarcity. The importance of recognizing autocrine C-peptide protection of functional β cell mass in observational clinical studies, and its therapeutic implications in interventional C-peptide-replacement studies, will be discussed.
Collapse
Affiliation(s)
- P Luppi
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - P Drain
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
20
|
Vehik K, Lynch KF, Schatz DA, Akolkar B, Hagopian W, Rewers M, She JX, Simell O, Toppari J, Ziegler AG, Lernmark Å, Bonifacio E, Krischer JP. Reversion of β-Cell Autoimmunity Changes Risk of Type 1 Diabetes: TEDDY Study. Diabetes Care 2016; 39:1535-42. [PMID: 27311490 PMCID: PMC5001144 DOI: 10.2337/dc16-0181] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/20/2016] [Indexed: 02/03/2023]
Abstract
OBJECTIVE β-Cell autoantibodies are a feature of the preclinical phase of type 1 diabetes. Here, we asked how frequently they revert in a cohort of children at risk for type 1 diabetes and whether reversion has any effect on type 1 diabetes risk. RESEARCH DESIGN AND METHODS Children were up to 10 years of age and screened more than once for insulin autoantibody, GAD antibody, and insulinoma antigen-2 antibodies. Persistent autoantibody was defined as an autoantibody present on two or more consecutive visits and confirmed in two reference laboratories. Reversion was defined as two or more consecutive negative visits after persistence. Time-dependent Cox regression was used to examine how reversion modified the risk of development of multiple autoantibodies and type 1 diabetes. RESULTS Reversion was relatively frequent for autoantibodies to GAD65 (19%) and insulin (29%), but was largely restricted to children who had single autoantibodies (24%) and rare in children who had developed multiple autoantibodies (<1%). Most (85%) reversion of single autoantibodies occurred within 2 years of seroconversion. Reversion was associated with HLA genotype, age, and decreasing titer. Children who reverted from single autoantibodies to autoantibody negative had, from birth, a risk for type 1 diabetes of 0.14 per 100 person-years; children who never developed autoantibodies, 0.06 per 100 person-years; and, children who remained single-autoantibody positive, 1.8 per 100 person-years. CONCLUSIONS Type 1 diabetes risk remained high in children who had developed multiple β-cell autoantibodies even when individual autoantibodies reverted. We suggest that monitoring children with single autoantibodies for at least 1 year after seroconversion is beneficial for stratification of type 1 diabetes risk.
Collapse
Affiliation(s)
- Kendra Vehik
- Health Informatics Institute, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Kristian F Lynch
- Health Informatics Institute, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Desmond A Schatz
- Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | | | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | - Jin-Xiong She
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Olli Simell
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Anette-G Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V. Neuherberg, Neuherberg, Germany
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/CRC, Skåne University, Malmö, Sweden
| | - Ezio Bonifacio
- Center for Regenerative Therapies, University of Technology, Dresden, Germany Paul Langerhans Institute Dresden, German Center for Diabetes Research (DZD), Dresden, Germany
| | - Jeffrey P Krischer
- Health Informatics Institute, Department of Pediatrics, Morsani College of Medicine, University of South Florida, Tampa, FL
| |
Collapse
|
21
|
Affiliation(s)
- Johnny Ludvigsson
- Department of Clinical and Experimental Medicine, University Hospital, Linkoping University, Linköping, Sweden
| |
Collapse
|
22
|
Pham MN, von Herrath MG, Vela JL. Antigen-Specific Regulatory T Cells and Low Dose of IL-2 in Treatment of Type 1 Diabetes. Front Immunol 2016; 6:651. [PMID: 26793191 PMCID: PMC4707297 DOI: 10.3389/fimmu.2015.00651] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 12/17/2015] [Indexed: 12/19/2022] Open
Abstract
Regulatory T cells (Tregs) play an important role in preventing effector T-cell (Teff) targeting of self-antigens that can lead to tissue destruction in autoimmune settings, including type 1 diabetes (T1D). Autoimmunity is caused in part by an imbalance between Teff and Tregs. Early attempts to treat with immunosuppressive agents have led to serious side effects, thus requiring a more targeted approach. Low-dose IL-2 (LD IL-2) can provide immunoregulation with few side effects by preferentially acting on Tregs to drive tolerance. The concept of LD IL-2 as a therapeutic approach is supported by data in mouse models where autoimmunity is cured and further strengthened by success in human clinical studies in hepatitis C virus-induced vasculitis, chronic graft-versus-host disease, and Alopecia areata. Treatment will require identification of a safe therapeutic window, which is a difficult task given that patients are reported to have deficient or defective IL-2 production or signaling and have experienced mild activation of NK cells and eosinophils with LD IL-2 therapy. In T1D, an LD IL-2 clinical trial concluded that Tregs can be safely expanded in humans; however, the study was not designed to address efficacy. Antigen-specific therapies have also aimed at regulation of the autoimmune response but have been filled with disappointment despite an extensive list of diverse islet antigens tested in humans. This approach could be enhanced through the addition of LD IL-2 to the antigenic treatment regimen to improve the frequency and function of antigen-specific Tregs, without global immunosuppression. Here, we will discuss the use of LD IL-2 and islet antigen to enhance antigen-specific Tregs in T1D and focus on what is known about their immunological impact, their safety, and potential efficacy, and need for better methods to identify therapeutic effectiveness.
Collapse
Affiliation(s)
- Minh N Pham
- Novo Nordisk Research Center, Seattle, WA, USA; Pacific Northwest Diabetes Research Institute, Seattle, WA, USA
| | | | | |
Collapse
|
23
|
Gomez-Tourino I, Arif S, Eichmann M, Peakman M. T cells in type 1 diabetes: Instructors, regulators and effectors: A comprehensive review. J Autoimmun 2016; 66:7-16. [DOI: 10.1016/j.jaut.2015.08.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/20/2015] [Indexed: 12/16/2022]
|