1
|
Sarkar A, Cominetti O, Montoliu I, Hosking J, Pinkney J, Martin FP, Dunson DB. Bayesian semiparametric inference in longitudinal metabolomics data. Sci Rep 2024; 14:31336. [PMID: 39732846 DOI: 10.1038/s41598-024-82718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
The article is motivated by an application to the EarlyBird cohort study aiming to explore how anthropometrics and clinical and metabolic processes are associated with obesity and glucose control during childhood. There is interest in inferring the relationship between dynamically changing and high-dimensional metabolites and a longitudinal response. Important aspects of the analysis include the selection of the important set of metabolites and the accommodation of missing data in both response and covariate values. With this motivation, we propose a flexible but parsimonious Bayesian semiparametric joint model for the outcome and the covariate generating processes, making novel use of nonparametric mean processes, latent factor models, and different classes of continuous shrinkage priors. The proposed approach efficiently addresses daunting dimensionality challenges, simplifies imputation tasks, and automates the selection of important predictors. Implementation via an efficient Markov chain Monte Carlo algorithm appropriately accounts for uncertainty in various aspects of the analysis. Simulation experiments illustrate the efficacy of the proposed methodology. The application to the EarlyBird cohort study illustrates its practical utility in enabling statistical integration of different molecular processes involved in glucose production and metabolism. From this study, we were able to show that glucose levels from 5 to 16 years of age are associated with different circulating levels of metabolites in the blood serum and can be fitted over time for a wide range of shapes of trajectories. The metabolites contributing the most to explaining glucose trajectories tend to be involved in different central energy metabolomic pathways. The methodology provides a tool to generate new hypotheses related to obesity and glucose control during childhood and adolescence.
Collapse
Affiliation(s)
- Abhra Sarkar
- Department of Statistics and Data Sciences, University of Texas at Austin, Austin, 78712-1823, USA.
| | | | - Ivan Montoliu
- Nestlé Research, Lausanne, 1015, Switzerland
- Merck Biotech Development Center, Corsier-sur-Vevey, 1809, Switzerland
| | - Joanne Hosking
- University of Plymouth, Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BT, UK
| | - Jonathan Pinkney
- University of Plymouth, Peninsula Schools of Medicine and Dentistry, Plymouth, PL6 8BT, UK
| | | | - David B Dunson
- Department of Statistical Science, Duke University, Durham, 27708-0251, USA
| |
Collapse
|
2
|
Luong TV, Pedersen MGB, Abild CB, Lauritsen KM, Kjærulff MLG, Møller N, Gormsen LC, Søndergaard E. A 3-Week Ketogenic Diet Increases Skeletal Muscle Insulin Sensitivity in Individuals With Obesity: A Randomized Controlled Crossover Trial. Diabetes 2024; 73:1631-1640. [PMID: 39052652 PMCID: PMC11417439 DOI: 10.2337/db24-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
A ketogenic diet (KD) can induce weight loss and improve glycemic regulation, potentially reducing the risk of type 2 diabetes development. To elucidate the underlying mechanisms behind these beneficial effects of a KD, we investigated the impact of a KD on organ-specific insulin sensitivity (IS) in skeletal muscle, liver, and adipose tissue. We hypothesized that a KD would increase IS in skeletal muscle. The study included 11 individuals with obesity who underwent a randomized, crossover trial with two 3-week interventions: 1) a KD and 2) a standard diet. Skeletal muscle IS was quantified as the increase in glucose disposal during a hyperinsulinemic-euglycemic clamp (HEC). Hepatic IS and adipose tissue IS were quantified as the relative suppression of endogenous glucose production (EGP) and the relative suppression of palmitate flux during the HEC. The KD led to a 2.2-kg weight loss and increased insulin-stimulated glucose disposal, whereas the relative suppression of EGP during the HEC was similar. In addition, the KD decreased insulin-mediated suppression of lipolysis. In conclusion, a KD increased skeletal muscle IS in individuals with obesity. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Thien Vinh Luong
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Mette Glavind Bülow Pedersen
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Mette Louise Gram Kjærulff
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Niels Møller
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Lars Christian Gormsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
| | - Esben Søndergaard
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
- Medical/Steno Aarhus Research Laboratory, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Endocrinology and Internal Medicine, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Zang S, Wang R, Liu Y, Zhao S, Su L, Dai X, Chen H, Yin Z, Zheng L, Liu Q, Zhai Y. Insulin Signaling Pathway Mediates FoxO-Pepck Axis Regulation of Glucose Homeostasis in Drosophila suzukii. Int J Mol Sci 2024; 25:10441. [PMID: 39408770 PMCID: PMC11482478 DOI: 10.3390/ijms251910441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/19/2024] Open
Abstract
The agricultural pest Drosophila suzukii exhibits a strong preference for feeding on fresh fruits, demonstrating high adaptability to sugary environments. Meanwhile, high sugar levels stimulate insulin secretion, thereby regulating the steady state of sugar metabolism. Understanding the mechanisms related to sugar metabolism in D. suzukii is crucial due to its adaptation to these specific environmental conditions. The insulin signaling pathway is an evolutionarily conserved phosphorylation cascade with significant roles in development and metabolism. We observed that the activation of the insulin signaling pathway inhibited FoxO activity and downregulated the expression of Pepck, thereby activating glycolysis and reducing glucose levels. By contrast, inhibiting insulin signaling increased the FoxO activity and upregulated the expression of Pepck, which activated gluconeogenesis and led to increased glucose levels. Our findings demonstrated the crucial role of the insulin signaling pathway in mediating glucose metabolism through the FoxO-Pepck axis, which supports the ecological adaptation of D. suzukii to high-sugar niches, thereby providing insights into its metabolic control and suggesting potential strategies for pest management. Elucidating these molecular processes is important for understanding metabolic regulation and ecological specialization in D. suzukii.
Collapse
Affiliation(s)
- Shuting Zang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Ruijuan Wang
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Yan Liu
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Shan Zhao
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Long Su
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Xiaoyan Dai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Hao Chen
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Zhenjuan Yin
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Li Zheng
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| | - Qingxin Liu
- College of Life Sciences, Shandong Agricultural University, Tai’an 271000, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Key Laboratory of Natural Enemies Insects, Ministry of Agriculture and Rural Affairs, Jinan 250100, China
| |
Collapse
|
4
|
Kodama T, Watanabe S, Kayanuma I, Sasaki A, Kurokawa D, Baba O, Jimbo M, Furukawa F. Gluconeogenesis during development of the grass puffer (Takifugu niphobles). Comp Biochem Physiol A Mol Integr Physiol 2024; 295:111663. [PMID: 38735624 DOI: 10.1016/j.cbpa.2024.111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/09/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
During the development of teleost fish, the sole nutrient source is the egg yolk. The yolk consists mostly of proteins and lipids, with only trace amounts of carbohydrates such as glycogen and glucose. However, past evidence in some fishes showed transient increase in glucose during development, which may have supported the development of the embryos. Recently, we found in zebrafish that the yolk syncytial layer (YSL), an extraembryonic tissue surrounding the yolk, undergoes gluconeogenesis. However, in other teleost species, the knowledge on such gluconeogenic functions during early development is lacking. In this study, we used a marine fish, the grass puffer (Takifugu niphobles) and assessed possible gluconeogenic functions of their YSL, to understand the difference or shared features of gluconeogenesis between these species. A liquid chromatography (LC) / mass spectrometry (MS) analysis revealed that glucose and glycogen content significantly increased in the grass puffer during development. Subsequent real-time PCR results showed that most of the genes involved in gluconeogenesis increased in segmentation stages and/or during hatching. Among these genes, many were expressed in the YSL and liver, as shown by in situ hybridization analysis. In addition, glycogen immunostaining revealed that this carbohydrate source was accumulated in many tissues at segmentation stage but exclusively in the liver in hatched individuals. Taken together, these results suggest that developing grass puffer undergoes gluconeogenesis and glycogen synthesis during development, and that gluconeogenic activity is shared in YSL of zebrafish and grass puffer.
Collapse
Affiliation(s)
- Takafumi Kodama
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Seiya Watanabe
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Isana Kayanuma
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Akira Sasaki
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Daisuke Kurokawa
- Misaki Marine Biological Station, Graduate School of Science, The University of Tokyo, 1024 Koajiro, Misaki, Miura, Kanagawa 238-0225, Japan
| | - Otto Baba
- Oral and Maxillofacial Anatomy, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8504, Japan
| | - Mitsuru Jimbo
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Fumiya Furukawa
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan.
| |
Collapse
|
5
|
Kajani S, Laker RC, Ratkova E, Will S, Rhodes CJ. Hepatic glucagon action: beyond glucose mobilization. Physiol Rev 2024; 104:1021-1060. [PMID: 38300523 DOI: 10.1152/physrev.00028.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/02/2024] Open
Abstract
Glucagon's ability to promote hepatic glucose production has been known for over a century, with initial observations touting this hormone as a diabetogenic agent. However, glucagon receptor agonism [when balanced with an incretin, including glucagon-like peptide 1 (GLP-1) to dampen glucose excursions] is now being developed as a promising therapeutic target in the treatment of metabolic diseases, like metabolic dysfunction-associated steatotic disease/metabolic dysfunction-associated steatohepatitis (MASLD/MASH), and may also have benefit for obesity and chronic kidney disease. Conventionally regarded as the opposing tag-team partner of the anabolic mediator insulin, glucagon is gradually emerging as more than just a "catabolic hormone." Glucagon action on glucose homeostasis within the liver has been well characterized. However, growing evidence, in part thanks to new and sensitive "omics" technologies, has implicated glucagon as more than just a "glucose liberator." Elucidation of glucagon's capacity to increase fatty acid oxidation while attenuating endogenous lipid synthesis speaks to the dichotomous nature of the hormone. Furthermore, glucagon action is not limited to just glucose homeostasis and lipid metabolism, as traditionally reported. Glucagon plays key regulatory roles in hepatic amino acid and ketone body metabolism, as well as mitochondrial turnover and function, indicating broader glucagon signaling consequences for metabolic homeostasis mediated by the liver. Here we examine the broadening role of glucagon signaling within the hepatocyte and question the current dogma, to appreciate glucagon as more than just that "catabolic hormone."
Collapse
Affiliation(s)
- Sarina Kajani
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Rhianna C Laker
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Ekaterina Ratkova
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Sarah Will
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| | - Christopher J Rhodes
- Early Cardiovascular, Renal and Metabolism, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, Maryland, United States
| |
Collapse
|
6
|
Furukawa F, Aoyagi A, Sano K, Sameshima K, Goto M, Tseng YC, Ikeda D, Lin CC, Uchida K, Okumura SI, Yasumoto K, Jimbo M, Hwang PP. Gluconeogenesis in the extraembryonic yolk syncytial layer of the zebrafish embryo. PNAS NEXUS 2024; 3:pgae125. [PMID: 38585339 PMCID: PMC10997050 DOI: 10.1093/pnasnexus/pgae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/11/2024] [Indexed: 04/09/2024]
Abstract
Yolk-consuming (lecithotrophic) embryos of oviparous animals, such as those of fish, need to make do with the maternally derived yolk. However, in many cases, yolk possesses little carbohydrates and sugars, including glucose, the essential monosaccharide. Interestingly, increases in the glucose content were found in embryos of some teleost fishes; however, the origin of this glucose has been unknown. Unveiling new metabolic strategies in fish embryos has a potential for better aquaculture technologies. In the present study, using zebrafish, we assessed how these embryos obtain the glucose. We employed stable isotope (13C)-labeled substrates and injected them to the zebrafish embryos. Our liquid chromatography-mass spectrometry-based isotope tracking revealed that among all tested substrate, glutamate was most actively metabolized to produce glucose in the zebrafish embryos. Expression analysis for gluconeogenic genes found that many of these were expressed in the yolk syncytial layer (YSL), an extraembryonic tissue found in teleost fishes. Generation 0 (G0) knockout of pck2, a gene encoding the key enzyme for gluconeogenesis from Krebs cycle intermediates, reduced gluconeogenesis from glutamate, suggesting that this gene is responsible for gluconeogenesis from glutamate in the zebrafish embryos. These results showed that teleost YSL undergoes gluconeogenesis, likely contributing to the glucose supplementation to the embryos with limited glucose source. Since many other animal lineages lack YSL, further comparative analysis will be interesting.
Collapse
Affiliation(s)
- Fumiya Furukawa
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Nankang, Taipei 11529, Taiwan ROC
| | - Akihiro Aoyagi
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Kaori Sano
- Department of Chemistry, Faculty of Science, Josai University, 1-1 Keyakidai, Sakado, Saitama 350-0295, Japan
| | - Keita Sameshima
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Miku Goto
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Yung-Che Tseng
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Nankang, Taipei 11529, Taiwan ROC
| | - Daisuke Ikeda
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Ching-Chun Lin
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Nankang, Taipei 11529, Taiwan ROC
| | - Katsuhisa Uchida
- Department of Marine Biology and Environmental Sciences, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-Nishi, Miyazaki 889-2192, Japan
| | - Sei-ichi Okumura
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Ko Yasumoto
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Mitsuru Jimbo
- School of Marine Biosciences, Kitasato University, 1-15-1 Kitazato, Minami-ku, Sagamihara, Kanagawa 252-0373, Japan
| | - Pung-Pung Hwang
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Sec. 2, Nankang, Taipei 11529, Taiwan ROC
| |
Collapse
|
7
|
Ahmed DY, Adam LN, Ahmed RA, Mirza MK. Assessment of liver enzymes as diagnostic biomarkers in type 2 diabetes mellitus: a cross-sectional study in Zakho, Iraq. Expert Rev Endocrinol Metab 2024; 19:179-185. [PMID: 38050336 DOI: 10.1080/17446651.2023.2291146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/13/2023] [Indexed: 12/06/2023]
Abstract
BACKGROUND This study aimed to identify the prevalence and factors associated with abnormal liver enzyme profiles in individuals with type 2 diabetes (T2D) in Zakho, to assess the association between demographic characteristics, clinical parameters, kidney function tests, lipid profiles, glucose levels, and T2D, and to identify resident risk factors. RESEARCH DESIGN AND METHODS A cross-sectional analysis of T2D patients admitted to Zakho General Hospital was conducted utilizing hospital records. The primary endpoint of interest was attaining HbA1C levels ≥ 6.5%. Analytical methodologies encompassed linear and multivariate logistic regression analyses, with due consideration of the association between diverse parameters and glycemic alterations. Further, the predictive value of biomarkers was evaluated through Receiver Operating Characteristic (ROC) curves and Area Under the Curve (AUC) analyses, complemented by Spearman correlation analysis to explore relationships among laboratory parameters. RESULTS The study found that 89.4% of participants had HbA1C levels above 6.5%, with a preference for T2D among older individuals (mean age: 52.93-49.89 respectively) and females. Age, glucose levels, and liver enzymes positively correlated with HbA1C. CONCLUSIONS The study emphasizes the diagnostic importance of liver enzymes in individuals with type 2 diabetes, suggesting that these biomarkers could be valuable indicators of disease severity and progression.
Collapse
Affiliation(s)
- Dilveen Y Ahmed
- Department of Biology, Faculty of Science, University of Zakho, Duhok, Kurdistan Region, Iraq
| | - Lina N Adam
- Department of Biology, Faculty of Science, University of Zakho, Duhok, Kurdistan Region, Iraq
| | - Resan A Ahmed
- Department of Biology, Faculty of Science, University of Zakho, Duhok, Kurdistan Region, Iraq
| | - Mohammed K Mirza
- Department of Biology, Faculty of Science, University of Zakho, Duhok, Kurdistan Region, Iraq
| |
Collapse
|
8
|
Moreno-Cabañas A, Gonzalez JT. Role of prior feeding status in mediating the effects of exercise on blood glucose kinetics. Am J Physiol Cell Physiol 2023; 325:C823-C832. [PMID: 37642241 PMCID: PMC10635662 DOI: 10.1152/ajpcell.00271.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Changes in blood glucose concentrations are underpinned by blood glucose kinetics (endogenous and exogenous glucose appearance rates and glucose disappearance rates). Exercise potently alters blood glucose kinetics and can thereby be used as a tool to control blood glucose concentration. However, most studies of exercise-induced changes in glucose kinetics are conducted in a fasted state, and therefore less is known about the effects of exercise on glucose kinetics when exercise is conducted in a postprandial state. Emerging evidence suggests that food intake prior to exercise can increase postprandial blood glucose flux compared with when meals are consumed after exercise, whereby both glucose appearance rates and disappearance rates are increased. The mechanisms underlying the mediating effect of exercise conducted in the fed versus the fasted state are yet to be fully elucidated. Current evidence demonstrates that exercise in the postprandial state increased glucose appearance rates due to both increased exogenous and endogenous appearance and may be due to changes in splanchnic blood flow, intestinal permeability, and/or hepatic glucose extraction. On the other hand, increased glucose disappearance rates after exercise in the fed state have been shown to be associated with increased intramuscular AMPK signaling via a mismatch between carbohydrate utilization and delivery. Due to differences in blood glucose kinetics and other physiological differences, studies conducted in the fasted state cannot be immediately translated to the fed state. Therefore, conducting studies in the fed state could improve the external validity of data pertaining to glucose kinetics and intramuscular signaling in response to nutrition and exercise.
Collapse
Affiliation(s)
- Alfonso Moreno-Cabañas
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
- Exercise Physiology Lab at Toledo, University of Castilla-La Mancha, Toledo, Spain
| | - Javier T Gonzalez
- Centre for Nutrition, Exercise and Metabolism, University of Bath, Bath, United Kingdom
- Department for Health, University of Bath, Bath, United Kingdom
| |
Collapse
|
9
|
Więckowska M, Szelenberger R, Niemcewicz M, Harmata P, Poplawski T, Bijak M. Ochratoxin A-The Current Knowledge Concerning Hepatotoxicity, Mode of Action and Possible Prevention. Molecules 2023; 28:6617. [PMID: 37764392 PMCID: PMC10534339 DOI: 10.3390/molecules28186617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Ochratoxin A (OTA) is considered as the most toxic of the other ochratoxins synthesized by various fungal species belonging to the Aspergillus and Penicillium families. OTA commonly contaminates food and beverages, resulting in animal and human health issues. The toxicity of OTA is known to cause liver damage and is still being researched. However, current findings do not provide clear insights into the toxin mechanism of action. The current studies focusing on the use of potentially protective compounds against the effects of the toxin are insufficient as they are mainly conducted on animals. Further research is required to fill the existing gaps in both fields (namely the exact OTA molecular mechanism and the prevention of its toxicity in the human liver). This review article is a summary of the so far obtained results of studies focusing on the OTA hepatotoxicity, its mode of action, and the known approaches of liver cells protection, which may be the base for expanding other research in near future.
Collapse
Affiliation(s)
- Magdalena Więckowska
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Rafał Szelenberger
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Marcin Niemcewicz
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| | - Piotr Harmata
- Faculty of Advanced Technologies and Chemistry, Military University of Technology, 2 gen. S. Kaliskiego St., 00-908 Warsaw, Poland;
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland;
| | - Michał Bijak
- Biohazard Prevention Centre, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (M.W.); (R.S.); (M.N.)
| |
Collapse
|
10
|
Zhang SY, Gao H, Askar A, Li XP, Zhang GC, Jing TZ, Zou H, Guan H, Zhao YH, Zou CS. Steroid hormone 20-hydroxyecdysone disturbs fat body lipid metabolism and negatively regulates gluconeogenesis in Hyphantria cunea larvae. INSECT SCIENCE 2023; 30:771-788. [PMID: 36342157 DOI: 10.1111/1744-7917.13130] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 06/15/2023]
Abstract
The steroid hormone 20-hydroxyecdysone (20E) has been described to regulate fat body lipid metabolism in insects, but its accurate regulatory mechanism, especially the crosstalk between 20E-induced lipid metabolism and gluconeogenesis remains largely unclear. Here, we specially investigated the effect of 20E on lipid metabolism and gluconeogenesis in the fat body of Hyphantria cunea larvae, a notorious pest in forestry. Lipidomics analysis showed that a total of 1 907 lipid species were identified in the fat body of H. cunea larvae assigned to 6 groups and 48 lipid classes. The differentially abundant lipids analysis showed a significant difference between 20E-treated and control samples, indicating that 20E caused a remarkable alteration of lipidomics profiles in the fat body of H. cunea larvae. Further studies demonstrated that 20E accelerated fatty acid β-oxidation, inhibited lipid synthesis, and promoted lipolysis. Meanwhile, the activities of pyruvate carboxylase, phosphoenolpyruvate carboxykinase, fructose-1,6-bisphosphatase, and glucose-6-phosphatase were dramatically suppressed by 20E in the fat body of H. cunea larvae. As well, the transcriptions of genes encoding these 4 rate-limiting gluconeogenic enzymes were significantly downregulated in the fat body of H. cunea larvae after treatment with 20E. Taken together, our results revealed that 20E disturbed fat body lipid homeostasis, accelerated fatty acid β-oxidation and promoted lipolysis, but negatively regulated gluconeogenesis in H. cunea larvae. The findings might provide a new insight into hormonal regulation of glucose and lipid metabolism in insect fat body.
Collapse
Affiliation(s)
- Sheng-Yu Zhang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Han Gao
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Ankarjan Askar
- School of Forestry, Northeast Forestry University, Harbin, China
| | | | - Guo-Cai Zhang
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Tian-Zhong Jing
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Hang Zou
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Hao Guan
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Yun-He Zhao
- School of Forestry, Northeast Forestry University, Harbin, China
| | - Chuan-Shan Zou
- School of Forestry, Northeast Forestry University, Harbin, China
| |
Collapse
|
11
|
For Flux Sake: Isotopic Tracer Methods of Monitoring Human Carbohydrate Metabolism During Exercise. Int J Sport Nutr Exerc Metab 2023; 33:60-70. [PMID: 36448486 DOI: 10.1123/ijsnem.2022-0170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/19/2022] [Accepted: 09/25/2022] [Indexed: 12/05/2022]
Abstract
Isotopic tracers can reveal insights into the temporal nature of metabolism and track the fate of ingested substrates. A common use of tracers is to assess aspects of human carbohydrate metabolism during exercise under various established models. The dilution model is used alongside intravenous infusion of tracers to assess carbohydrate appearance and disappearance rates in the circulation, which can be further delineated into exogenous and endogenous sources. The incorporation model can be used to estimate exogenous carbohydrate oxidation rates. Combining methods can provide insight into key factors regulating health and performance, such as muscle and liver glycogen utilization, and the underlying regulation of blood glucose homeostasis before, during, and after exercise. Obtaining accurate, quantifiable data from tracers, however, requires careful consideration of key methodological principles. These include appropriate standardization of pretrial diet, specific tracer choice, whether a background trial is necessary to correct expired breath CO2 enrichments, and if so, what the appropriate background trial should consist of. Researchers must also consider the intensity and pattern of exercise, and the type, amount, and frequency of feeding (if any). The rationale for these considerations is discussed, along with an experimental design checklist and equation list which aims to assist researchers in performing high-quality research on carbohydrate metabolism during exercise using isotopic tracer methods.
Collapse
|
12
|
Casas B, Vilén L, Bauer S, Kanebratt KP, Wennberg Huldt C, Magnusson L, Marx U, Andersson TB, Gennemark P, Cedersund G. Integrated experimental-computational analysis of a HepaRG liver-islet microphysiological system for human-centric diabetes research. PLoS Comput Biol 2022; 18:e1010587. [PMID: 36260620 PMCID: PMC9621595 DOI: 10.1371/journal.pcbi.1010587] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/31/2022] [Accepted: 09/19/2022] [Indexed: 11/05/2022] Open
Abstract
Microphysiological systems (MPS) are powerful tools for emulating human physiology and replicating disease progression in vitro. MPS could be better predictors of human outcome than current animal models, but mechanistic interpretation and in vivo extrapolation of the experimental results remain significant challenges. Here, we address these challenges using an integrated experimental-computational approach. This approach allows for in silico representation and predictions of glucose metabolism in a previously reported MPS with two organ compartments (liver and pancreas) connected in a closed loop with circulating medium. We developed a computational model describing glucose metabolism over 15 days of culture in the MPS. The model was calibrated on an experiment-specific basis using data from seven experiments, where HepaRG single-liver or liver-islet cultures were exposed to both normal and hyperglycemic conditions resembling high blood glucose levels in diabetes. The calibrated models reproduced the fast (i.e. hourly) variations in glucose and insulin observed in the MPS experiments, as well as the long-term (i.e. over weeks) decline in both glucose tolerance and insulin secretion. We also investigated the behaviour of the system under hypoglycemia by simulating this condition in silico, and the model could correctly predict the glucose and insulin responses measured in new MPS experiments. Last, we used the computational model to translate the experimental results to humans, showing good agreement with published data of the glucose response to a meal in healthy subjects. The integrated experimental-computational framework opens new avenues for future investigations toward disease mechanisms and the development of new therapies for metabolic disorders. Microphysiological systems (MPS) are powerful tools to unravel biological knowledge underlying disease. MPS provide a physiologically relevant, human-based in vitro setting, which can potentially yield better translatability to humans than current animal models and traditional cell cultures. However, mechanistic interpretation and extrapolation of the experimental results to human outcome remain significant challenges. In this study, we confront these challenges using an integrated experimental-computational approach. We present a computational model describing glucose metabolism in a previously reported MPS integrating liver and pancreas. This MPS supports a homeostatic feedback loop between HepaRG/HHSteC spheroids and pancreatic islets, and allows for detailed investigations of mechanisms underlying type 2 diabetes in humans. We show that the computational model captures the complex dynamics of glucose-insulin regulation observed in the system, and can provide mechanistic insight into disease progression features, such as insulin resistance and β-cell dynamics. Furthermore, the computational model can explain key differences in temporal dynamics between MPS and human responses, and thus provides a tool for translating experimental insights into human outcome. The integrated experimental-computational framework opens new avenues for future investigations toward disease mechanisms and the development of new therapies for metabolic disorders.
Collapse
Affiliation(s)
- Belén Casas
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Liisa Vilén
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Kajsa P. Kanebratt
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Charlotte Wennberg Huldt
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Lisa Magnusson
- Bioscience, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | | | - Tommy B. Andersson
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
| | - Peter Gennemark
- Drug Metabolism and Pharmacokinetics, Research and Early Development, Cardiovascular, Renal and Metabolism (CVRM), BioPharmaceuticals R&D, AstraZeneca, Gothenburg, Sweden
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Gunnar Cedersund
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
- Center for Medical Image Science and Visualization (CMIV), Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
13
|
Lee JH, Im SS. Function of gaseous hydrogen sulfide in liver fibrosis. BMB Rep 2022. [PMID: 36195563 PMCID: PMC9623240 DOI: 10.5483/bmbrep.2022.55.10.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Over the past few years, hydrogen sulfide (H2S) has been shown to exert several biological functions in mammalian. The endogenous production of H2S is mainly mediated by cystathione β-synthase, cystathione γ-lyase and 3-mercaptopyruvate sulfur transferase. These enzymes are broadly expressed in liver tissue and regulates liver function by working on a variety of molecular targets. As an important regulator of liver function, H2S is critically involved in the pathogenesis of various liver diseases, such as non-alcoholic steatohepatitis and liver cancer. Targeting H2S-generating enzymes may be a therapeutic strategy for controlling liver diseases. This review described the function of H2S in liver disease and summarized recent characterized role of H2S in several cellular process of the liver.
Collapse
Affiliation(s)
- Jae-Ho Lee
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| | - Seung-Soon Im
- Department of Physiology, Keimyung University School of Medicine, Daegu 42601, Korea
| |
Collapse
|
14
|
Tao Y, Jiang Q, Wang Q. Adipose tissue macrophages in remote modulation of hepatic glucose production. Front Immunol 2022; 13:998947. [PMID: 36091076 PMCID: PMC9449693 DOI: 10.3389/fimmu.2022.998947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Hepatic glucose production (HGP) is fine-regulated via glycogenolysis or gluconeogenesis to maintain physiological concentration of blood glucose during fasting-feeding cycle. Aberrant HGP leads to hyperglycemia in obesity-associated diabetes. Adipose tissue cooperates with the liver to regulate glycolipid metabolism. During these processes, adipose tissue macrophages (ATMs) change their profiles with various physio-pathological settings, producing diverse effects on HGP. Here, we briefly review the distinct phenotypes of ATMs under different nutrition states including feeding, fasting or overnutrition, and detail their effects on HGP. We discuss several pathways by which ATMs regulate hepatic gluconeogenesis or glycogenolysis, leading to favorable or unfavorable metabolic consequences. Furthermore, we summarize emerging therapeutic targets to correct metabolic disorders in morbid obesity or diabetes based on ATM-HGP axis. This review puts forward the importance and flexibility of ATMs in regulating HGP, proposing ATM-based HGP modulation as a potential therapeutic approach for obesity-associated metabolic dysfunction.
Collapse
|
15
|
Dietary iron modulates hepatic glucose homeostasis via regulating gluconeogenesis. J Nutr Biochem 2022; 109:109104. [PMID: 35863586 DOI: 10.1016/j.jnutbio.2022.109104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/24/2022]
Abstract
Iron exerts significant influences on glucose metabolism. However, the regulatory mechanisms underlying disordered glucose response remains largely unclear. The aim of this study was to examine the impact of dietary iron on hepatic gluconeogenesis in mice and in rat liver-derived cells. High iron models of C57BL/6J mice were fed with 1.25 g Fe/kg diets for 9 weeks, and high-iron BRL-3A cell models were treated with 250 μmol/L FeSO4 for 12 h and 24 h. Our data showed that higher iron intake resulted in higher hepatic iron without iron toxicity, and reduced body weight gain with no difference of food intakes. High dietary iron significantly increased 61% of hepatic glycogen deposition, but exhibited impairment in glucose responses in mice. Moreover, high dietary iron suppressed hepatic gluconeogenesis by repressing the expression of key gluconeogenic enzymes, phosphoenolpyruvate carboxykinase and glucose-6-phosphatase. Meanwhile, mice fed with higher iron diets exhibited both decreased AMP-activated protein kinase (AMPK) activity and peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α) protein levels. Furthermore, in BRL-3A cells, iron treatment increased cellular glucose uptake, and altered gluconeogenesis rhythmically by regulating the activation of AMPK and expression of PGC-1α successively. This study demonstrated that dietary high iron was able to increase hepatic glycogen deposition by enhancement of glucose uptake, and suppress hepatic gluconeogenesis by regulation of AMPK and PGC-1α.
Collapse
|
16
|
Wang XP, Huang Z, Li YL, Jin KY, Dong DJ, Wang JX, Zhao XF. Krüppel-like factor 15 integrated autophagy and gluconeogenesis to maintain glucose homeostasis under 20-hydroxyecdysone regulation. PLoS Genet 2022; 18:e1010229. [PMID: 35696369 PMCID: PMC9191741 DOI: 10.1371/journal.pgen.1010229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 05/02/2022] [Indexed: 01/18/2023] Open
Abstract
The regulation of glycometabolism homeostasis is vital to maintain health and development of animal and humans; however, the molecular mechanisms by which organisms regulate the glucose metabolism homeostasis from a feeding state switching to a non-feeding state are not fully understood. Using the holometabolous lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that the steroid hormone 20-hydroxyecdysone (20E) upregulated the expression of transcription factor Krüppel-like factor (identified as Klf15) to promote macroautophagy/autophagy, apoptosis and gluconeogenesis during metamorphosis. 20E via its nuclear receptor EcR upregulated Klf15 transcription in the fat body during metamorphosis. Knockdown of Klf15 using RNA interference delayed pupation and repressed autophagy and apoptosis of larval fat body during metamorphosis. KLF15 promoted autophagic flux and transiting to apoptosis. KLF15 bound to the KLF binding site (KLF bs) in the promoter of Atg8 (autophagy-related gene 8/LC3) to upregulate Atg8 expression. Knockdown Atg8 reduced free fatty acids (FFAs), glycerol, free amino acids (FAAs) and glucose levels. However, knockdown of Klf15 accumulated FFAs, glycerol, and FAAs. Glycolysis was switched to gluconeogenesis, trehalose and glycogen synthesis were changed to degradation during metamorphosis, which were accompanied by the variation of the related genes expression. KLF15 upregulated phosphoenolpyruvate carboxykinase (Pepck) expression by binding to KLF bs in the Pepck promoter for gluconeogenesis, which utilised FFAs, glycerol, and FAAs directly or indirectly to increase glucose in the hemolymph. Taken together, 20E via KLF15 integrated autophagy and gluconeogenesis by promoting autophagy-related and gluconeogenesis-related genes expression. Glucose is the direct substrate for energy production in animal and humans. Autophagy and gluconeogenesis are known to help organisms maintaining energy substrates; however, the mechanism of integration of autophagy and gluconeogenesis is unclear. Holometabolous insects stop feeding during metamorphosis under steroid hormone 20-hydroxyecdysone (20E) regulation, providing a good model for the study. Using lepidopteran insect Helicoverpa armigera, cotton bollworm, as a model, we revealed that Krüppel-like factor 15 (KLF15) integrated autophagy and gluconeogenesis to maintain glucose homeostasis under 20E regulation. 20E increased Klf15 expression, and KLF15 in turn promoted autophagy-related and gluconeogenesis-related genes expression during metamorphosis. Autophagy and apoptosis of the fat body provided substrates for gluconeogenesis. This work clarified the important functions and mechanisms of KLF15 in autophagy and glycometabolism reprogramming for glucose homeostasis after feeding stop during insect metamorphosis.
Collapse
Affiliation(s)
- Xiao-Pei Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhen Huang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Yan-Li Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Ke-Yan Jin
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Du-Juan Dong
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Jin-Xing Wang
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
| | - Xiao-Fan Zhao
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China
- * E-mail:
| |
Collapse
|
17
|
Trypanosoma brucei brucei Induced Hypoglycaemia Depletes Hepatic Glycogen and Altered Hepatic Hexokinase and Glucokinase Activities in Infected Mice. Acta Parasitol 2022; 67:1097-1106. [PMID: 35476260 DOI: 10.1007/s11686-022-00550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/04/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE Little progress has been made in understanding the effect of Trypanosoma brucei brucei infection that was allowed to run its course without treatment on human and animal carbohydrate metabolism even though most of the symptoms associated with the disease can be clearly linked with interference with host energy generation. The present study therefore assessed the course of untreated Trypanosoma brucei brucei infection on hepatic glycogen, hepatic hexokinase and glucokinase activities. METHODS Mice were grouped into two: control and infected group. Trypanosomiasis was induced by intraperitoneal inoculation of 1 × 104 parasites/mice in 0.3 ml of phosphate saline glucose. The infection was allowed to run its course until the first mortality was recorded with all the mice showing chronic symptoms of the second stage of the disease before the research was terminated. Blood and liver samples were collected from the mice in each group for the assessment of hepatic glycogen and total protein, hepatic hexokinase and glucokinase activities, liver biomarkers, blood glucose and protein with packed cell volume. RESULTS The infection resulted in decrease in blood glucose, hepatic glycogen, liver protein, PCV, hepatic hexokinase and glucokinase activities, but increase in serum total protein and liver biomarkers. CONCLUSION Trypanosomiasis negatively affects hepatic integrity, resulting in the depletion of hepatic glycogen content and suppression of both hepatic hexokinase and glucokinase activities. The suppression of hepatic hexokinase and glucokinase activities suggested that trypanosomiasis affected the oxidation of glucose and host energy generation via glycolysis. This probably denied the host of the needed energy which is likely the reason for early death in untreated African trypanosomiasis.
Collapse
|
18
|
Reconstructing Neanderthal diet: The case for carbohydrates. J Hum Evol 2021; 162:103105. [PMID: 34923240 DOI: 10.1016/j.jhevol.2021.103105] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 12/22/2022]
Abstract
Evidence for plants rarely survives on Paleolithic sites, while animal bones and biomolecular analyses suggest animal produce was important to hominin populations, leading to the perspective that Neanderthals had a very-high-protein diet. But although individual and short-term survival is possible on a relatively low-carbohydrate diet, populations are unlikely to have thrived and reproduced without plants and the carbohydrates they provide. Today, nutritional guidelines recommend that around half the diet should be carbohydrate, while low intake is considered to compromise physical performance and successful reproduction. This is likely to have been the same for Paleolithic populations, highlighting an anomaly in that the basic physiological recommendations do not match the extensive archaeological evidence. Neanderthals had large, energy-expensive brains and led physically active lifestyles, suggesting that for optimal health they would have required high amounts of carbohydrates. To address this anomaly, we begin by outlining the essential role of carbohydrates in the human reproduction cycle and the brain and the effects on physical performance. We then evaluate the evidence for resource availability and the archaeological evidence for Neanderthal diet and investigate three ways that the anomaly between the archaeological evidence and the hypothetical dietary requirements might be explained. First, Neanderthals may have had an as yet unidentified genetic adaptation to an alternative physiological method to spare blood glucose and glycogen reserves for essential purposes. Second, they may have existed on a less-than-optimum diet and survived rather than thrived. Third, the methods used in dietary reconstruction could mask a complex combination of dietary plant and animal proportions. We end by proposing that analyses of Paleolithic diet and subsistence strategies need to be grounded in the minimum recommendations throughout the life course and that this provides a context for interpretation of the archaeological evidence from the behavioral and environmental perspectives.
Collapse
|
19
|
Freitas-Lima LC, Budu A, Estrela GR, da Silva TA, Arruda AC, de Carvalho Araujo R. Metabolic fasting stress is ameliorated in Kinin B1 receptor-deficient mice. Life Sci 2021; 294:120007. [PMID: 34600938 DOI: 10.1016/j.lfs.2021.120007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 10/20/2022]
Abstract
The liver has an essential role in responding to metabolic demands under stress conditions. The organ stores, releases, and recycles metabolism-related substrates. However, it is not clear how the Kallikrein-Kinin System modulates metabolic flexibility shift between energetic sources. AIMS To analyze the hepatic metabolism in kinin B1 receptor deficient mice (B1KO mice) under fasting conditions. MAIN METHODS WT and B1KO male mice were allocated in a calorimetric cage for 7 days and 48 h before the euthanasia, half of the animals of both groups were under fasting conditions. Biochemical parameters, ketone bodies (KB), and gene expression involving the liver energetic metabolism genes were evaluated. KEY FINDINGS Kinin B1 receptor (B1R) modulates the metabolic shift under fasting conditions, reducing the VO2 expenditure. A preference for carbohydrates as an energetic source is suggested, as the B1KO group did not display an increase in KB in the serum. Moreover, the B1KO animals displayed higher serum triglycerides concentration compared to WT fasting mice. Interestingly, the lack of B1R induces the increase expression of enzymes from the glycolysis and lipolysis pathways under the fed. However, under fasting, the enzymatic expression of gluconeogenesis, glyceroneogenesis, and ketogenesis of these pathways does not occur, suggesting an absence of the shift metabolism responsivity, and this condition is modulated by PDK4 under FOXO1 control. SIGNIFICANCE B1R has an important role in the hepatic glucose metabolism, which in turn influences the energetic metabolism, and in long-term outcomes, such as in the decrease in hepatic glycogen stores and in the enhancement of hepatic metabolism.
Collapse
Affiliation(s)
| | - Alexandre Budu
- Department of Biophysics, Federal University of São Paulo, 04039032 São Paulo, Brazil.
| | - Gabriel Rufino Estrela
- Department of Medicine, Discipline of Nephrology, Federal University of São Paulo, São Paulo, Brazil; Department of Clinical and Experimental Oncology, Discipline of Hematology and Hematotherapy, Federal University of São Paulo, 04037002 São Paulo, Brazil.
| | - Thais Alves da Silva
- Department of Biophysics, Federal University of São Paulo, 04039032 São Paulo, Brazil.
| | - Adriano Cleis Arruda
- Department of Medicine, Discipline of Nephrology, Federal University of São Paulo, São Paulo, Brazil
| | - Ronaldo de Carvalho Araujo
- Department of Biophysics, Federal University of São Paulo, 04039032 São Paulo, Brazil; Department of Medicine, Discipline of Nephrology, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
20
|
Rao M, Zumbro EL, Broughton KS, LeMieux MJ. RETRACTED: Whey protein preload enhances the active GLP-1 response and reduces circulating glucose in women with polycystic ovarian syndrome. Nutr Res 2021; 92:84-98. [PMID: 34284269 DOI: 10.1016/j.nutres.2021.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 05/17/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
This article has been retracted: please see Elsevier Policy on Article Withdrawal (https://www.elsevier.com/locate/withdrawalpolicy). This article has been retracted at the request of the Editor-in-Chief. The article is a duplicate of a paper that has already been published in Nutrients: (Nutrients 2021, 13(7), 2451. https://doi.org/10.3390/nu13072451. Redundant publications overweigh the relative importance of published findings and distort the academic record of the authors. One of the conditions of submission of a paper for publication is therefore that authors declare explicitly that the paper has not been previously published and is not under consideration for publication elsewhere. As such this article represents a misuse of the scientific publishing system. The scientific community takes a very strong view on this matter and apologies are offered to readers of the journal that this was not detected during the submission process.
Collapse
Affiliation(s)
- Manisha Rao
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | - Emily L Zumbro
- School of Health Promotion and Kinesiology, Texas Woman's University, Denton, TX, USA
| | | | - Monique J LeMieux
- Nutrition and Food Sciences Department, Texas Woman's University, Denton, TX, USA.
| |
Collapse
|
21
|
Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nat Commun 2021; 12:3208. [PMID: 34050173 PMCID: PMC8163764 DOI: 10.1038/s41467-021-23545-7] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 04/30/2021] [Indexed: 02/04/2023] Open
Abstract
Aging leads to a gradual decline in physical activity and disrupted energy homeostasis. The NAD+-dependent SIRT6 deacylase regulates aging and metabolism through mechanisms that largely remain unknown. Here, we show that SIRT6 overexpression leads to a reduction in frailty and lifespan extension in both male and female B6 mice. A combination of physiological assays, in vivo multi-omics analyses and 13C lactate tracing identified an age-dependent decline in glucose homeostasis and hepatic glucose output in wild type mice. In contrast, aged SIRT6-transgenic mice preserve hepatic glucose output and glucose homeostasis through an improvement in the utilization of two major gluconeogenic precursors, lactate and glycerol. To mediate these changes, mechanistically, SIRT6 increases hepatic gluconeogenic gene expression, de novo NAD+ synthesis, and systemically enhances glycerol release from adipose tissue. These findings show that SIRT6 optimizes energy homeostasis in old age to delay frailty and preserve healthy aging.
Collapse
|
22
|
Prochownik EV, Wang H. The Metabolic Fates of Pyruvate in Normal and Neoplastic Cells. Cells 2021; 10:cells10040762. [PMID: 33808495 PMCID: PMC8066905 DOI: 10.3390/cells10040762] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 02/06/2023] Open
Abstract
Pyruvate occupies a central metabolic node by virtue of its position at the crossroads of glycolysis and the tricarboxylic acid (TCA) cycle and its production and fate being governed by numerous cell-intrinsic and extrinsic factors. The former includes the cell’s type, redox state, ATP content, metabolic requirements and the activities of other metabolic pathways. The latter include the extracellular oxygen concentration, pH and nutrient levels, which are in turn governed by the vascular supply. Within this context, we discuss the six pathways that influence pyruvate content and utilization: 1. The lactate dehydrogenase pathway that either converts excess pyruvate to lactate or that regenerates pyruvate from lactate for use as a fuel or biosynthetic substrate; 2. The alanine pathway that generates alanine and other amino acids; 3. The pyruvate dehydrogenase complex pathway that provides acetyl-CoA, the TCA cycle’s initial substrate; 4. The pyruvate carboxylase reaction that anaplerotically supplies oxaloacetate; 5. The malic enzyme pathway that also links glycolysis and the TCA cycle and generates NADPH to support lipid bio-synthesis; and 6. The acetate bio-synthetic pathway that converts pyruvate directly to acetate. The review discusses the mechanisms controlling these pathways, how they cross-talk and how they cooperate and are regulated to maximize growth and achieve metabolic and energetic harmony.
Collapse
Affiliation(s)
- Edward V. Prochownik
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
- The Department of Microbiology and Molecular Genetics, UPMC, Pittsburgh, PA 15213, USA
- The Hillman Cancer Center, UPMC, Pittsburgh, PA 15213, USA
- The Pittsburgh Liver Research Center, Pittsburgh, PA 15260, USA
- Correspondence: ; Tel.: +1-(412)-692-6795
| | - Huabo Wang
- Division of Hematology/Oncology, UPMC Children’s Hospital of Pittsburgh, Pittsburgh, PA 15224, USA;
| |
Collapse
|
23
|
The 'Jekyll and Hyde' of Gluconeogenesis: Early Life Adversity, Later Life Stress, and Metabolic Disturbances. Int J Mol Sci 2021; 22:ijms22073344. [PMID: 33805856 PMCID: PMC8037741 DOI: 10.3390/ijms22073344] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 01/06/2023] Open
Abstract
The physiological response to a psychological stressor broadly impacts energy metabolism. Inversely, changes in energy availability affect the physiological response to the stressor in terms of hypothalamus, pituitary adrenal axis (HPA), and sympathetic nervous system activation. Glucocorticoids, the endpoint of the HPA axis, are critical checkpoints in endocrine control of energy homeostasis and have been linked to metabolic diseases including obesity, insulin resistance, and type 2 diabetes. Glucocorticoids, through the glucocorticoid receptor, activate transcription of genes associated with glucose and lipid regulatory pathways and thereby control both physiological and pathophysiological systemic energy homeostasis. Here, we summarize the current knowledge of glucocorticoid functions in energy metabolism and systemic metabolic dysfunction, particularly focusing on glucose and lipid metabolism. There are elements in the external environment that induce lifelong changes in the HPA axis stress response and glucocorticoid levels, and the most prominent are early life adversity, or exposure to traumatic stress. We hypothesise that when the HPA axis is so disturbed after early life adversity, it will fundamentally alter hepatic gluconeogenesis, inducing hyperglycaemia, and hence crystalise the significant lifelong risk of developing either the metabolic syndrome, or type 2 diabetes. This gives a “Jekyll and Hyde” role to gluconeogenesis, providing the necessary energy in situations of acute stress, but driving towards pathophysiological consequences when the HPA axis has been altered.
Collapse
|
24
|
Sea Cucumber Peptides Improved the Mitochondrial Capacity of Mice: A Potential Mechanism to Enhance Gluconeogenesis and Fat Catabolism during Exercise for Improved Antifatigue Property. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4604387. [PMID: 32685094 PMCID: PMC7335390 DOI: 10.1155/2020/4604387] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/23/2020] [Accepted: 03/20/2020] [Indexed: 01/16/2023]
Abstract
Sea cucumber promotes multifaceted health benefits. However, the mechanisms of sea cucumber peptides (Scp) regulating the antifatigue capacity is still unknown. The present study is aimed at further elucidating the effects and mechanisms of Scp on the antifatigue capacity of mice. At first, C57BL/6J mice were assigned into four groups named Con, L-Scp, M-Scp, and H-Scp and received diets containing Scp (0%, 0.15%, 0.3%, and 0.5%, respectively) for continuous 30 days. On the 21th day, a fore grip test was conducted on mice. On the 25th day, a rotating rod test was conducted on mice. On the 30th day, the quantities of glycogen and mitochondrial DNA (mtDNA) were determined in 8 random mice and another 8 mice were forced to swim for 1 hour before slaughter for detecting biochemical indicators. It was observed that the Scp groups significantly prolonged the running time in rotarod, increased forelimb grip strength, improved lactic acid (LD) and urea nitrogen (BUN) levels in the serum, decreased lactic dehydrogenase (LDH) and glutamic oxalacetic transaminase (GOT) activities in the serum, increased blood glucose (BG) and glycogen (GN) levels in the liver and skeletal muscle after swimming, increased the activity of Na+-K+-ATPase and Ca2+-Mg2+-ATPase in the skeletal muscle and heart, and improved antioxidant capacity. Furthermore, Scp treatment significantly elevated the mRNA and protein relative levels of power-sensitive factors, lipid catabolism, and mitochondrial biogenesis and significantly upregulated mRNA levels of gluconeogenesis. Besides, mtDNA before the swimming test was increased in the three Scp groups. These results show that Scp treatment has antifatigue capacity. Furthermore, these results suggest that improved energy regulation and antioxidant capacity may be the result of improved mitochondrial function.
Collapse
|
25
|
Lactation Ketoacidosis: A Systematic Review of Case Reports. ACTA ACUST UNITED AC 2020; 56:medicina56060299. [PMID: 32560535 PMCID: PMC7353886 DOI: 10.3390/medicina56060299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/29/2022]
Abstract
Background and Objective: Lactation ketoacidosis is a rare cause of high anion gap metabolic acidosis affecting breastfeeding mothers. We aim to review and analyze all cases of lactation ketoacidosis reported. Materials and Methods: A systematic search of PubMed/MEDLINE and Cumulative Index to Nursing and Allied Health Literature (CINAHL), identifying relevant case reports published from 1 January 1970 to 31 December 2019. We extracted the following data: the first author, country, year of publication, age of the mother, age of the child, weight/body mass index (BMI) of the mother, precipitating factors, presenting symptoms, biochemical results, treatment, breastfeeding, and time from presentation to the resolution of ketoacidosis. Results: Sixteen case reports and 1 case series reporting 18 cases of lactation ketoacidosis were found. Presenting symptoms were nausea (72%, 13/18), vomiting (67%, 12/18), malaise (56%, 10/18), abdominal pain (44%, 8/18), dyspnea (33%, 6/18), headache (22%, 4/18), and palpitation (11%, 2/18). Dieting and physical exercise to lose weight were reported in 76% (14/18). The treatments included IV dextrose, sodium bicarbonate, insulin, rehydration, monitoring and replacement of electrolytes, and resumption of a balanced diet. The prognoses were good, with no mortalities. Conclusions: lactation ketoacidosis should be suspected in unwell breastfeeding women with high anion gap metabolic acidosis, after excluding other causes.
Collapse
|
26
|
Mild depolarization of the inner mitochondrial membrane is a crucial component of an anti-aging program. Proc Natl Acad Sci U S A 2020; 117:6491-6501. [PMID: 32152094 PMCID: PMC7104298 DOI: 10.1073/pnas.1916414117] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The mitochondria, organelles that produce the largest amounts of ATP and reactive oxygen species (mROS) in living cells, are equipped with a universal mechanism that can completely prevent mROS production. This mechanism consists of mild depolarization of the inner mitochondrial membrane to decrease the membrane potential to a level sufficient to form ATP but insufficient to generate mROS. In short-lived mice, aging is accompanied by inactivation of the mild depolarization mechanism, resulting in chronic poisoning of the organism with mROS. However, mild depolarization still functions for many years in long-lived naked mole rats and bats. The mitochondria of various tissues from mice, naked mole rats (NMRs), and bats possess two mechanistically similar systems to prevent the generation of mitochondrial reactive oxygen species (mROS): hexokinases I and II and creatine kinase bound to mitochondrial membranes. Both systems operate in a manner such that one of the kinase substrates (mitochondrial ATP) is electrophoretically transported by the ATP/ADP antiporter to the catalytic site of bound hexokinase or bound creatine kinase without ATP dilution in the cytosol. One of the kinase reaction products, ADP, is transported back to the mitochondrial matrix via the antiporter, again through an electrophoretic process without cytosol dilution. The system in question continuously supports H+-ATP synthase with ADP until glucose or creatine is available. Under these conditions, the membrane potential, ∆ψ, is maintained at a lower than maximal level (i.e., mild depolarization of mitochondria). This ∆ψ decrease is sufficient to completely inhibit mROS generation. In 2.5-y-old mice, mild depolarization disappears in the skeletal muscles, diaphragm, heart, spleen, and brain and partially in the lung and kidney. This age-dependent decrease in the levels of bound kinases is not observed in NMRs and bats for many years. As a result, ROS-mediated protein damage, which is substantial during the aging of short-lived mice, is stabilized at low levels during the aging of long-lived NMRs and bats. It is suggested that this mitochondrial mild depolarization is a crucial component of the mitochondrial anti-aging system.
Collapse
|
27
|
Moreno JP, Crowley SJ, Alfano CA, Thompson D. Physiological mechanisms underlying children's circannual growth patterns and their contributions to the obesity epidemic in elementary school age children. Obes Rev 2020; 21:e12973. [PMID: 31737994 PMCID: PMC7002188 DOI: 10.1111/obr.12973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 10/18/2019] [Accepted: 10/18/2019] [Indexed: 12/20/2022]
Abstract
Several studies since the 1990s have demonstrated that children increase their body mass index at a faster rate during summer months compared with the school year, leading some to conclude that the out-of-school summer environment is responsible. Other studies, however, have suggested that seasonality may play a role in children's height and weight changes across the year. This article reviews evidence for seasonal differences in the rate of children's height and weight gain and proposes potential physiological mechanisms that may explain these seasonal variations.
Collapse
Affiliation(s)
- Jennette P Moreno
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| | - Stephanie J Crowley
- Biological Rhythm Research Laboratory, Department of Psychiatry and Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Candice A Alfano
- Sleep and Anxiety Center of Houston (SACH), Department of Psychology, University of Houston, Houston, Texas
| | - Debbe Thompson
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, Texas
| |
Collapse
|
28
|
Hassell Sweatman CZW. Mathematical model of diabetes and lipid metabolism linked to diet, leptin sensitivity, insulin sensitivity and VLDLTG clearance predicts paths to health and type II diabetes. J Theor Biol 2020; 486:110037. [PMID: 31626814 DOI: 10.1016/j.jtbi.2019.110037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 09/30/2019] [Indexed: 12/15/2022]
Abstract
An original model of diabetes linked to carbohydrate and lipid intake is presented and applied to predict the effects on biomarkers of various diets. The variables (biomarkers) are concentrations of fasting plasma glucose, insulin, leptin, glucagon, non-esterified fatty acids (NEFA) and very low density lipoprotein triglyceride (VLDLTG), as well as muscle lipids, hepatic lipids, pancreatic lipids, fat mass and mass of β-cells. The model predicts isocaloric high carbohydrate low fat (HCLF) diet and low carbohydrate high fat (LCHF) diet trajectories to health which vary in fat mass by at most a few kilograms at steady state. The LCHF trajectories to health are faster than isocaloric HCLF trajectories with respect to fat mass loss, although these trajectories may be slower initially if parameters are adjusting from HCLF values. On LC diets, leptin sensitivity and VLDLTG clearance are thought to increase. Increasing leptin sensitivity and VLDLTG clearance is predicted to lower lipids including fat mass and VLDLTG. The model predicts that changes in VLDLTG due to a change in diet happen rapidly, approaching steady state values after a few weeks, reflecting leptin sensitivity and VLDLTG clearance which are much harder to measure. The model predicts that if only insulin sensitivity increases on a LC diet, steady state fat mass would increase slightly. If leptin and insulin sensitivities increase concurrently, the combined effect could be a decrease in fat mass, consistent with the fact that increasing insulin sensitivity is often associated with fat mass loss in trials. The model predicts trajectories to fat type II diabetes with hypertriglyceridemia due to high carbohydrate moderate fat diets, on which insulin rises before falling, as ectopic fat deposits increase; made fatter and more diabetic by higher lipid consumption. It predicts trajectories to non-diabetic states with raised fat mass, VLDLTG and muscle, hepatic and pancreatic lipids due to moderate carbohydrate high fat diets. The model predicts paths to lean type II diabetes, on a diet of moderate energy but low β-cell replication rate or high death rate.
Collapse
|
29
|
Alnahdi A, John A, Raza H. N-acetyl cysteine attenuates oxidative stress and glutathione-dependent redox imbalance caused by high glucose/high palmitic acid treatment in pancreatic Rin-5F cells. PLoS One 2019; 14:e0226696. [PMID: 31860682 PMCID: PMC6924679 DOI: 10.1371/journal.pone.0226696] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023] Open
Abstract
Elevated levels of glucose and fatty acids are the main characteristics of diabetes, obesity and other metabolic disorders, associated with increased oxidative stress, mitochondrial dysfunction and inflammation. Once the primary pathogenesis of diabetes is established, which is potentially linked to both genetic and environmental factors, hyperglycemia and hyperlipidemia exert further destructive and/or toxic effects on β-cells. The concept of glucolipotoxicity has arisen from the combination of deleterious effects of chronic elevation of glucose and fatty acid levels on pancreatic β- cell function and/or survival. Though numerous studies have been conducted in this field, the exact molecular mechanisms and causative factors still need to be established. The aim of the present work was to elucidate the molecular mechanisms of oxidative stress, and inflammatory/antioxidant responses in the presence of high concentrations of glucose/fatty acids in a cell-culture system using an insulin-secreting pancreatic β-cell line (Rin-5F) and to study the effects of the antioxidant, N-acetyl cysteine (NAC) on β-cell toxicity. In our study, we investigated the molecular mechanism of cytotoxicity in the presence of high glucose (up to 25 mM) and high palmitic acid (up to 0.3 mM) on Rin-5F cells. Our results suggest that the cellular and molecular mechanisms underlying β-cell toxicity are mediated by increased oxidative stress, imbalance of redox homeostasis, glutathione (GSH) metabolism and alterations in inflammatory responses. Pre-treatment with NAC attenuated oxidative stress and alterations in GSH metabolism associated with β-cells cytotoxicity.
Collapse
Affiliation(s)
- Arwa Alnahdi
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Annie John
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Haider Raza
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
- * E-mail:
| |
Collapse
|
30
|
Brault C, Marc J, Delette C, Gruson B, Marolleau JP, Maizel J, Zerbib Y. L’effetWarburg, un challenge diagnostique pour le médecin réanimateur. MEDECINE INTENSIVE REANIMATION 2019. [DOI: 10.3166/rea-2019-0129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
L’effetWarburg (EW) est une complication rare des cancers solides et des hémopathies malignes. Il est lié à une dérégulation du métabolisme glucidique au sein des cellules cancéreuses, entraînant la dégradation du glucose en lactate. Elle s’accompagne d’hypoglycémies asymptomatiques et d’une accumulation de lactate responsable d’une acidose lactique de type B. Dans cet article, nous proposons un algorithme pour aider le clinicien à diagnostiquer l’EW et discutons des thérapeutiques à envisager.
Collapse
|
31
|
Abstract
PURPOSE OF REVIEW Increased glucose production associated with hepatic insulin resistance contributes to the development of hyperglycemia in T2D. The molecular mechanisms accounting for increased glucose production remain controversial. Our aims were to review recent literature concerning molecular mechanisms regulating glucose production and to discuss these mechanisms in the context of physiological experiments and observations in humans and large animal models. RECENT FINDINGS Genetic intervention studies in rodents demonstrate that insulin can control hepatic glucose production through both direct effects on the liver, and through indirect effects to inhibit adipose tissue lipolysis and limit gluconeogenic substrate delivery. However, recent experiments in canine models indicate that the direct effects of insulin on the liver are dominant over the indirect effects to regulate glucose production. Recent molecular studies have also identified insulin-independent mechanisms by which hepatocytes sense intrahepatic carbohydrate levels to regulate carbohydrate disposal. Dysregulation of hepatic carbohydrate sensing systems may participate in increased glucose production in the development of diabetes.
Collapse
Affiliation(s)
- Ashot Sargsyan
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Mark A Herman
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA.
- Division of Diabetes, Endocrinology, and Metabolism, Duke University, Durham, NC, USA.
| |
Collapse
|
32
|
Metabolic and Epigenetic Action Mechanisms of Antidiabetic Medicinal Plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3583067. [PMID: 31191707 PMCID: PMC6525884 DOI: 10.1155/2019/3583067] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/17/2019] [Indexed: 12/14/2022]
Abstract
Diabetes is a predominant metabolic disease nowadays due to the off-beam lifestyle of diet and reduced physical activity. Complications of the illness include the gene-environment interactions and the downstream genetic and epigenetic consequences, e.g., cardiovascular diseases, tumor progression, retinopathy, nephropathy, neuropathy, polydipsia, polyphagia, polyuria, and weight loss. This review sheds the light on the mechanistic insights of antidiabetic medicinal plants in targeting key organs and tissues involved in regulating blood glucose homeostasis including the pancreas, liver, muscles, adipose tissues, and glucose absorption in the intestine. Diabetes is also involved in modulating major epigenetic pathways such as DNA methylation and histone modification. In this respect, we will discuss the phytochemicals as current and future epigenetic drugs in the treatment of diabetes. In addition, several proteins are common targets for the treatment of diabetes. Some phytochemicals are expected to directly interact with these targets. We lastly uncover modeling studies that predict such plausible interactions. In conclusion, this review article presents the mechanistic insight of phytochemicals in the treatment of diabetes by combining both the cellular systems biology and molecular modeling.
Collapse
|
33
|
Melo M, Caetano W, Oliveira E, Barbosa P, Rando A, Pedrosa M, Godoi V. Effects of nanoparticles of hydroxy-aluminum phthalocyanine on markers of liver injury and glucose metabolism in diabetic mice. Braz J Med Biol Res 2018; 52:e7715. [PMID: 30517288 PMCID: PMC6293445 DOI: 10.1590/1414-431x20187715] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 10/22/2018] [Indexed: 12/21/2022] Open
Abstract
Photodynamic therapy, by reducing pain and inflammation and promoting the proliferation of healthy cells, can be used to treat recurrent lesions, such as diabetic foot ulcers. Studies using the photosensitizer phthalocyanine, together with the nanostructured copolymeric matrix of Pluronic® and Carbopol® for the treatment of diabetic foot ulcers and leishmaniosis lesions, are showing promising outcomes. Despite their topical or subcutaneous administration, these molecules are absorbed and their systemic effects are unknown. Therefore, we investigated the effect of the subcutaneous administration of the hydroxy-aluminum phthalocyanine hydrogel without illumination on systemic parameters, markers of liver injury, and liver energy metabolism in type 1 diabetic Swiss mice. Both the hydrogel and the different doses of phthalocyanine changed the levels of injury markers and the liver glucose release, sometimes aggravating the alterations caused by the diabetic condition itself. However, the dose of 2.23 µg/mL caused less marked plasmatic and metabolic changes and did not change glucose tolerance or insulin sensitivity of the diabetic mice. These results are indicative that the use of hydroxy-aluminum phthalocyanine hydrogel for the treatment of cutaneous ulcers in diabetic patients is systemically safe.
Collapse
Affiliation(s)
- M.A.B. Melo
- Programa de Pós-Graduação em Ciências Fisiológicas, Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - W. Caetano
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - E.L. Oliveira
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - P.M. Barbosa
- Departamento de Química, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - A.L.B. Rando
- Departamento de Biologia, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - M.M.D. Pedrosa
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - V.A.F. Godoi
- Departamento de Ciências Fisiológicas, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
34
|
Ang T, Kowalski GM, Bruce CR. Endogenous glucose production after sequential meals in humans: evidence for more prolonged suppression after ingestion of a second meal. Am J Physiol Endocrinol Metab 2018; 315:E904-E911. [PMID: 30106620 DOI: 10.1152/ajpendo.00233.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Single-meal studies have shown that carbohydrate ingestion causes rapid and persistent suppression of endogenous glucose production (EGP). However, little is known about the regulation of EGP under real-life eating patterns in which multiple carbohydrate-containing meals are consumed throughout the day. Therefore, we aimed to characterize the regulation of EGP in response to sequential meals, specifically during the breakfast-lunch transition. Nine healthy individuals (5 men, 4 women; 32 ± 2 yr; 25.0 ± 1.4 kg/m2) ingested two identical mixed meals, each containing 25 g of glucose, separated by 4 h, and EGP was determined by the variable infusion tracer-clamp approach. EGP was rapidly suppressed after both meals, with the pattern and magnitude of suppression being similar over the initial 75-min postmeal period. However, EGP suppression was more transient after breakfast compared with lunch, with EGP returning to basal rates 3 h after breakfast. In contrast, EGP remained in a suppressed state for the entire 4-h postlunch period. This occurred despite each meal eliciting similar plasma glucose and insulin responses. However, there was greater suppression of plasma glucagon levels after lunch, likely contributing to this response. These findings highlight the potential for distinct regulation of EGP with each meal of the day and suggest that EGP may be in a suppressed state for much of the day, since EGP did not return to basal rates even after a lunch meal containing a modest amount of carbohydrate.
Collapse
Affiliation(s)
- Teddy Ang
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University , Geelong , Australia
| | - Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University , Geelong , Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Sciences, Deakin University , Geelong , Australia
| |
Collapse
|
35
|
Gaudichon C, Ta HY, Khodorova NV, Oberli M, Breton I, Benamouzig R, Tomé D, Godin JP. Time course of fractional gluconeogenesis after meat ingestion in healthy adults: a D 2O study. Am J Physiol Endocrinol Metab 2018; 315:E454-E459. [PMID: 29920213 DOI: 10.1152/ajpendo.00157.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the postprandial state, glucose homeostasis is challenged by macronutrient intake, including proteins that trigger insulin secretion and provide glucose precursors. However, little is known about the postprandial response of gluconeogenesis to a protein meal. We aimed to quantify the evolution of fractional gluconeogenesis after a meat meal. Thirteen healthy subjects received oral doses of D2O. After fasting overnight, they ingested a steak (120 g). Glycemia, insulinemia, and 2H enrichments in glucose and plasma water were measured for 8 h after the meal. Fractional gluconeogenesis was assessed using the average method. Glucose was stable for 5 h and then decreased. There was a slight increase of insulin 1 h after the meal. 2H enrichment in the carbon 5 position of glucose (C5) increased after 2 h, whereas it decreased in plasma water. Consequently, fractional gluconeogenesis increased from 68.2 ± 7.2% before the meal to 75.5 ± 5.8% 8 h after the meal, the latter corresponding to 22 h without a glucose supply. These values are consistent with the exhaustion of glycogen stores after 24 h but represent the highest among values in the literature. The impact of methodological conditions is discussed.
Collapse
Affiliation(s)
- Claire Gaudichon
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay , 75005, Paris , France
| | - Hai-Yen Ta
- Institute of Food Safety and Analytical Sciences, Nestle Research, Vers-chez-les Blanc, 1000-Lausanne , Switzerland
| | - Nadezda V Khodorova
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay , 75005, Paris , France
| | - Marion Oberli
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay , 75005, Paris , France
| | - Isabelle Breton
- Institute of Food Safety and Analytical Sciences, Nestle Research, Vers-chez-les Blanc, 1000-Lausanne , Switzerland
| | - Robert Benamouzig
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay , 75005, Paris , France
| | - Daniel Tomé
- UMR PNCA, AgroParisTech, INRA, Université Paris-Saclay , 75005, Paris , France
| | - Jean-Philippe Godin
- Institute of Food Safety and Analytical Sciences, Nestle Research, Vers-chez-les Blanc, 1000-Lausanne , Switzerland
| |
Collapse
|
36
|
Travassos PB, Godoy G, De Souza HM, Curi R, Bazotte RB. Performance during a strenuous swimming session is associated with high blood lactate: pyruvate ratio and hypoglycemia in fasted rats. ACTA ACUST UNITED AC 2018; 51:e7057. [PMID: 29590261 PMCID: PMC5886545 DOI: 10.1590/1414-431x20187057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 02/02/2018] [Indexed: 11/22/2022]
Abstract
The aim of this study was to investigate the effect of lactatemia elevation and glycemia reduction on strenuous swimming performance in fasted rats. Three rats were placed in a swimming tank at the same time. The first rat was removed immediately (control group) and the remaining ones were submitted to a strenuous swimming session. After the second rat was exhausted (Exh group), the third one was immediately removed from the water (Exe group). According to the period of time required for exhaustion, the rats were divided into four groups: low performance (3–7 min), low-intermediary performance (8–12 min), high-intermediary performance (13–17 min), and high performance (18–22 min). All rats were removed from the swimming tanks and immediately killed by decapitation for blood collection or anesthetized for liver perfusion experiments. Blood glucose, lactate, and pyruvate concentrations, blood lactate/pyruvate ratio, and liver lactate uptake and its conversion to glucose were evaluated. Exhaustion in low and low-intermediary performance were better associated with higher lactate/pyruvate ratio. On the other hand, exhaustion in high-intermediary and high performance was better associated with hypoglycemia. Lactate uptake and glucose production from lactate in livers from the Exe and Exh groups were maintained. We concluded that there is a time sequence in the participation of lactate/pyruvate ratio and hypoglycemia in performance during an acute strenuous swimming section in fasted rats. The liver had an important participation in preventing hyperlactatemia and hypoglycemia during swimming through lactate uptake and its conversion to glucose.
Collapse
Affiliation(s)
- P B Travassos
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - G Godoy
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| | - H M De Souza
- Departamento de Ciências Fisiológicas, Universidade Estadual de Londrina, Londrina, PR, Brasil
| | - R Curi
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - R B Bazotte
- Departamento de Farmacologia e Terapêutica, Universidade Estadual de Maringá, Maringá, PR, Brasil
| |
Collapse
|
37
|
Te Morenga L, Docherty P, Williams S, Mann J. The Effect of a Diet Moderately High in Protein and Fiber on Insulin Sensitivity Measured Using the Dynamic Insulin Sensitivity and Secretion Test (DISST). Nutrients 2017; 9:nu9121291. [PMID: 29186908 PMCID: PMC5748742 DOI: 10.3390/nu9121291] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 11/24/2017] [Accepted: 11/24/2017] [Indexed: 12/13/2022] Open
Abstract
Evidence shows that weight loss improves insulin sensitivity but few studies have examined the effect of macronutrient composition independently of weight loss on direct measures of insulin sensitivity. We randomised 89 overweight or obese women to either a standard diet (StdD), that was intended to be low in fat and relatively high in carbohydrate (n = 42) or to a relatively high protein (up to 30% of energy), relatively high fibre (>30 g/day) diet (HPHFib) (n = 47) for 10 weeks. Advice regarding strict adherence to energy intake goals was not given. Insulin sensitivity and secretion was assessed by a novel method—the Dynamic Insulin Sensitivity and Secretion Test (DISST). Although there were significant improvements in body composition and most cardiometabolic risk factors on HPHFib, insulin sensitivity was reduced by 19.3% (95% CI: 31.8%, 4.5%; p = 0.013) in comparison with StdD. We conclude that the reduction in insulin sensitivity after a diet relatively high in both protein and fibre, despite cardiometabolic improvements, suggests insulin sensitivity may reflect metabolic adaptations to dietary composition for maintenance of glucose homeostasis, rather than impaired metabolism.
Collapse
Affiliation(s)
- Lisa Te Morenga
- Department of Human Nutrition, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- Edgar Diabetes and Obesity Research Centre, University of Otago, Dunedin 9054, New Zealand.
- Riddet Institute, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| | - Paul Docherty
- Department of Mechanical Engineering, University of Canterbury, Christchurch 8140, New Zealand.
| | - Sheila Williams
- Department of Preventive and Social Medicine, University of Otago, Dunedin 9054, New Zealand.
| | - Jim Mann
- Department of Human Nutrition, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
- Edgar Diabetes and Obesity Research Centre, University of Otago, Dunedin 9054, New Zealand.
- Riddet Institute, University of Otago, PO Box 56, Dunedin 9054, New Zealand.
| |
Collapse
|
38
|
Wendt SL, Ranjan A, Møller JK, Schmidt S, Knudsen CB, Holst JJ, Madsbad S, Madsen H, Nørgaard K, Jørgensen JB. Cross-Validation of a Glucose-Insulin-Glucagon Pharmacodynamics Model for Simulation Using Data From Patients With Type 1 Diabetes. J Diabetes Sci Technol 2017; 11:1101-1111. [PMID: 28654314 PMCID: PMC5951032 DOI: 10.1177/1932296817693254] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Currently, no consensus exists on a model describing endogenous glucose production (EGP) as a function of glucagon concentrations. Reliable simulations to determine the glucagon dose preventing or treating hypoglycemia or to tune a dual-hormone artificial pancreas control algorithm need a validated glucoregulatory model including the effect of glucagon. METHODS Eight type 1 diabetes (T1D) patients each received a subcutaneous (SC) bolus of insulin on four study days to induce mild hypoglycemia followed by a SC bolus of saline or 100, 200, or 300 µg of glucagon. Blood samples were analyzed for concentrations of glucagon, insulin, and glucose. We fitted pharmacokinetic (PK) models to insulin and glucagon data using maximum likelihood and maximum a posteriori estimation methods. Similarly, we fitted a pharmacodynamic (PD) model to glucose data. The PD model included multiplicative effects of insulin and glucagon on EGP. Bias and precision of PD model test fits were assessed by mean predictive error (MPE) and mean absolute predictive error (MAPE). RESULTS Assuming constant variables in a subject across nonoutlier visits and using thresholds of ±15% MPE and 20% MAPE, we accepted at least one and at most three PD model test fits in each of the seven subjects. Thus, we successfully validated the PD model by leave-one-out cross-validation in seven out of eight T1D patients. CONCLUSIONS The PD model accurately simulates glucose excursions based on plasma insulin and glucagon concentrations. The reported PK/PD model including equations and fitted parameters allows for in silico experiments that may help improve diabetes treatment involving glucagon for prevention of hypoglycemia.
Collapse
Affiliation(s)
- Sabrina Lyngbye Wendt
- Zealand Pharma A/S, Glostrup, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Ajenthen Ranjan
- Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | - Jan Kloppenborg Møller
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Signe Schmidt
- Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
- Danish Diabetes Academy, Odense, Denmark
| | | | - Jens Juul Holst
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sten Madsbad
- Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
- Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Madsen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Kirsten Nørgaard
- Department of Endocrinology, Hvidovre University Hospital, Hvidovre, Denmark
| | - John Bagterp Jørgensen
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark
| |
Collapse
|
39
|
Kowalski GM, Moore SM, Hamley S, Selathurai A, Bruce CR. The Effect of Ingested Glucose Dose on the Suppression of Endogenous Glucose Production in Humans. Diabetes 2017; 66:2400-2406. [PMID: 28684634 DOI: 10.2337/db17-0433] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/21/2017] [Indexed: 11/13/2022]
Abstract
Insulin clamp studies have shown that the suppressive actions of insulin on endogenous glucose production (EGP) are markedly more sensitive than for stimulating glucose disposal (Rd). However, clamp conditions do not adequately mimic postprandial physiological responses. Here, using the variable infusion dual-tracer approach, we used a threefold range of ingested glucose doses (25, 50, and 75 g) to investigate how physiological changes in plasma insulin influence EGP in healthy subjects. Remarkably, the glucose responses were similar for all doses tested, yet there was a dose-dependent increase in insulin secretion and plasma insulin levels. Nonetheless, EGP was suppressed with the same rapidity and magnitude (∼55%) across all doses. The progressive hyperinsulinemia, however, caused a dose-dependent increase in the estimated rates of Rd, which likely accounts for the lack of a dose effect on plasma glucose excursions. This suggests that after glucose ingestion, the body preferentially permits a transient and optimal degree of postprandial hyperglycemia to efficiently enhance insulin-induced changes in glucose fluxes, thereby minimizing the demand for insulin secretion. This may represent an evolutionarily conserved mechanism that not only reduces the secretory burden on β-cells but also avoids the potential negative consequences of excessive insulin release into the systemic arterial circulation.
Collapse
Affiliation(s)
- Greg M Kowalski
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Victoria, Australia
| | - Samantha M Moore
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Victoria, Australia
| | - Steven Hamley
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Victoria, Australia
| | - Ahrathy Selathurai
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Victoria, Australia
| | - Clinton R Bruce
- Institute for Physical Activity and Nutrition, School of Exercise and Nutrition Science, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
40
|
|
41
|
Van Sinderen M, Steinberg G, Jorgensen SB, Honeyman J, Chow JDY, Simpson ER, Jones MEE, Boon WC. Sexual dimorphism in the glucose homeostasis phenotype of the Aromatase Knockout (ArKO) mice. J Steroid Biochem Mol Biol 2017; 170:39-48. [PMID: 27353462 DOI: 10.1016/j.jsbmb.2016.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 05/04/2016] [Accepted: 05/12/2016] [Indexed: 02/08/2023]
Abstract
We investigated the effects of estrogens on glucose homeostasis using the Aromatase Knockout (ArKO) mouse, which is unable to convert androgens into estrogens. The ArKO mouse is a model of total estrogen ablation which develops symptoms of metabolic syndrome. To determine the development and progression of whole body state of insulin resistance of ArKO mice, comprehensive whole body tolerance tests were performed on WT, ArKO and estrogen administrated mice at 3 and 12 months of age. The absence of estrogens in the male ArKO mice leads to hepatic insulin resistance, glucose and pyruvate intolerance from 3 to 12 months with consistent improvement upon estrogen treatment. Estrogen absence in the female ArKO mice leads to glucose intolerance without pyruvate intolerance or insulin resistance. The replacement of estrogens in the female WT and ArKO mice exhibited both insulin sensitizing and resistance effects depending on age and dosage. In conclusion, this study presents information on the sexually dimorphic roles of estrogens on glucose homeostasis regulation.
Collapse
Affiliation(s)
- Michelle Van Sinderen
- Hudson Institute of Medical Research, Clayton, Vic 3180, Australia; Dept of Anatomy and Developmental Biology, Monash University, Clayton, Vic 3800, Australia
| | - Gregory Steinberg
- St. Vincent's Institute of Medical Research and Dept of Medicine, University of Melbourne, Fitzroy, Vic 3065, Australia; Division of Endocrinology and Metabolism, Dept of Medicine, McMaster University, ON, Canada
| | - Sebastian B Jorgensen
- St. Vincent's Institute of Medical Research and Dept of Medicine, University of Melbourne, Fitzroy, Vic 3065, Australia; Diabetes Research Unit, Novo Nordisk A/S, Maaloev, Denmark
| | - Jane Honeyman
- St. Vincent's Institute of Medical Research and Dept of Medicine, University of Melbourne, Fitzroy, Vic 3065, Australia
| | - Jenny D Y Chow
- Dept of Anatomy and Developmental Biology, Monash University, Clayton, Vic 3800, Australia
| | - Evan R Simpson
- Hudson Institute of Medical Research, Clayton, Vic 3180, Australia
| | | | - Wah Chin Boon
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic 3000, Australia; Dept of Anatomy and Developmental Biology, Monash University, Clayton, Vic 3800, Australia.
| |
Collapse
|
42
|
Bond ST, Howlett KF, Kowalski GM, Mason S, Connor T, Cooper A, Streltsov V, Bruce CR, Walder KR, McGee SL. Lysine post-translational modification of glyceraldehyde-3-phosphate dehydrogenase regulates hepatic and systemic metabolism. FASEB J 2017; 31:2592-2602. [PMID: 28258188 DOI: 10.1096/fj.201601215r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 02/13/2017] [Indexed: 12/31/2022]
Abstract
Reciprocal regulation of hepatic glycolysis and gluconeogenesis contributes to systemic metabolic homeostasis. Recent evidence from lower order organisms has found that reversible post-translational modification of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), particularly acetylation, contributes to the reciprocal regulation of glycolysis/gluconeogenesis. However, whether this occurs in mammalian hepatocytes in vitro or in vivo is unknown. Several proteomics studies have identified 4 lysine residues in critical regions of mammalian GAPDH that are altered by multiple post-translational modifications. In FAO hepatoma cells, mutation of all 4 lysine residues (4K-R GAPDH) to mimic their unmodified state reduced GAPDH glycolytic activity and glycolytic flux and increased gluconeogenic GAPDH activity and glucose production. Hepatic expression of 4K-R GAPDH in mice increased GAPDH gluconeogenic activity and the contribution of gluconeogenesis to endogenous glucose production in the unfed state. Consistent with the increased reliance on the energy-consuming gluconeogenic pathway, plasma free fatty acids and ketones were elevated in mice expressing 4K-R GAPDH, suggesting enhanced lipolysis and hepatic fatty acid oxidation. In normal mice, food withholding and refeeding, as well as hormonal regulators of reciprocal glycolysis/gluconeogenesis, such as insulin, glucagon, and norepinephrine, had no effect on global GAPDH acetylation. However, GAPDH acetylation was reduced in obese and type 2 diabetic db/db mice. These findings show that post-translational modification of GAPDH lysine residues regulates hepatic and systemic metabolism, revealing an unappreciated role for hepatic GAPDH in substrate selection and utilization.-Bond, S. T., Howlett, K. F., Kowalski, G. M., Mason, S., Connor, T., Cooper, A., Streltsov, V., Bruce, C. R., Walder, K. R., McGee, S. L. Lysine post-translational modification of glyceraldehyde-3-phosphate dehydrogenase regulates hepatic and systemic metabolism.
Collapse
Affiliation(s)
- Simon T Bond
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Kirsten F Howlett
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, New South Wales, Australia.,Institute of Physical Activity and Nutrition, Deakin University, Burwood, New South Wales, Australia
| | - Greg M Kowalski
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, New South Wales, Australia.,Institute of Physical Activity and Nutrition, Deakin University, Burwood, New South Wales, Australia
| | - Shaun Mason
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, New South Wales, Australia.,Institute of Physical Activity and Nutrition, Deakin University, Burwood, New South Wales, Australia
| | - Timothy Connor
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Adrian Cooper
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Victor Streltsov
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) Manufacturing Flagship, Parkville, Victoria, Australia
| | - Clinton R Bruce
- School of Exercise and Nutrition Sciences, Deakin University, Burwood, New South Wales, Australia.,Institute of Physical Activity and Nutrition, Deakin University, Burwood, New South Wales, Australia
| | - Ken R Walder
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia.,Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| | - Sean L McGee
- Metabolic Research Unit, School of Medicine, Deakin University, Geelong, Victoria, Australia; .,Centre for Molecular and Medical Research, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
43
|
Nur77 suppresses hepatocellular carcinoma via switching glucose metabolism toward gluconeogenesis through attenuating phosphoenolpyruvate carboxykinase sumoylation. Nat Commun 2017; 8:14420. [PMID: 28240261 PMCID: PMC5333363 DOI: 10.1038/ncomms14420] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
Gluconeogenesis, an essential metabolic process for hepatocytes, is downregulated in hepatocellular carcinoma (HCC). Here we show that the nuclear receptor Nur77 is a tumour suppressor for HCC that regulates gluconeogenesis. Low Nur77 expression in clinical HCC samples correlates with poor prognosis, and a Nur77 deficiency in mice promotes HCC development. Nur77 interacts with phosphoenolpyruvate carboxykinase (PEPCK1), the rate-limiting enzyme in gluconeogenesis, to increase gluconeogenesis and suppress glycolysis, resulting in ATP depletion and cell growth arrest. However, PEPCK1 becomes labile after sumoylation and is degraded via ubiquitination, which is augmented by the p300 acetylation of ubiquitin-conjugating enzyme 9 (Ubc9). Although Nur77 attenuates sumoylation and stabilizes PEPCK1 via impairing p300 activity and preventing the Ubc9-PEPCK1 interaction, Nur77 is silenced in HCC samples due to Snail-mediated DNA methylation of the Nur77 promoter. Our study reveals a unique mechanism to suppress HCC by switching from glycolysis to gluconeogenesis through Nur77 antagonism of PEPCK1 degradation.
Collapse
|
44
|
Chen W, Balland E, Cowley MA. Hypothalamic Insulin Resistance in Obesity: Effects on Glucose Homeostasis. Neuroendocrinology 2017; 104:364-381. [PMID: 28122381 DOI: 10.1159/000455865] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 01/04/2017] [Indexed: 01/05/2023]
Abstract
The central link between obesity and type 2 diabetes is the development of insulin resistance. To date, it is still not clear whether hyperinsulinemia causes insulin resistance, which underlies the pathogenesis of obesity-associated type 2 diabetes, owing to the sophisticated regulatory mechanisms that exist in the periphery and in the brain. In recent years, accumulating evidence has demonstrated the existence of insulin resistance within the hypothalamus. In this review, we have integrated the recent discoveries surrounding both central and peripheral insulin resistance to provide a comprehensive overview of insulin resistance in obesity and the regulation of systemic glucose homeostasis. In particular, this review will discuss how hyperinsulinemia and hyperleptinemia in obesity impair insulin sensitivity in tissues such as the liver, skeletal muscle, adipose tissue, and the brain. In addition, this review highlights insulin transport into the brain, signaling pathways associated with hypothalamic insulin receptor expression in the regulation of hepatic glucose production, and finally the perturbation of systemic glucose homeostasis as a consequence of central insulin resistance. We also suggest future approaches to overcome both central and peripheral insulin resistance to treat obesity and type 2 diabetes.
Collapse
Affiliation(s)
- Weiyi Chen
- Department of Physiology/Biomedical Discovery Institute, Monash University, Clayton, VIC, Australia
| | | | | |
Collapse
|
45
|
Analysis of Mammalian Cell Proliferation and Macromolecule Synthesis Using Deuterated Water and Gas Chromatography-Mass Spectrometry. Metabolites 2016; 6:metabo6040034. [PMID: 27754354 PMCID: PMC5192440 DOI: 10.3390/metabo6040034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 10/10/2016] [Accepted: 10/10/2016] [Indexed: 11/16/2022] Open
Abstract
Deuterated water (²H₂O), a stable isotopic tracer, provides a convenient and reliable way to label multiple cellular biomass components (macromolecules), thus permitting the calculation of their synthesis rates. Here, we have combined ²H₂O labelling, GC-MS analysis and a novel cell fractionation method to extract multiple biomass components (DNA, protein and lipids) from the one biological sample, thus permitting the simultaneous measurement of DNA (cell proliferation), protein and lipid synthesis rates. We have used this approach to characterize the turnover rates and metabolism of a panel of mammalian cells in vitro (muscle C2C12 and colon cancer cell lines). Our data show that in actively-proliferating cells, biomass synthesis rates are strongly linked to the rate of cell division. Furthermore, in both proliferating and non-proliferating cells, it is the lipid pool that undergoes the most rapid turnover when compared to DNA and protein. Finally, our data in human colon cancer cell lines reveal a marked heterogeneity in the reliance on the de novo lipogenic pathway, with the cells being dependent on both 'self-made' and exogenously-derived fatty acid.
Collapse
|
46
|
Webster CC, Noakes TD, Chacko SK, Swart J, Kohn TA, Smith JAH. Gluconeogenesis during endurance exercise in cyclists habituated to a long-term low carbohydrate high-fat diet. J Physiol 2016; 594:4389-405. [PMID: 26918583 DOI: 10.1113/jp271934] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/23/2016] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Blood glucose is an important fuel for endurance exercise. It can be derived from ingested carbohydrate, stored liver glycogen and newly synthesized glucose (gluconeogenesis). We hypothesized that athletes habitually following a low carbohydrate high fat (LCHF) diet would have higher rates of gluconeogenesis during exercise compared to those who follow a mixed macronutrient diet. We used stable isotope tracers to study glucose production kinetics during a 2 h ride in cyclists habituated to either a LCHF or mixed macronutrient diet. The LCHF cyclists had lower rates of total glucose production and hepatic glycogenolysis but similar rates of gluconeogenesis compared to those on the mixed diet. The LCHF cyclists did not compensate for reduced dietary carbohydrate availability by increasing glucose synthesis during exercise but rather adapted by altering whole body substrate utilization. ABSTRACT Endogenous glucose production (EGP) occurs via hepatic glycogenolysis (GLY) and gluconeogenesis (GNG) and plays an important role in maintaining euglycaemia. Rates of GLY and GNG increase during exercise in athletes following a mixed macronutrient diet; however, these processes have not been investigated in athletes following a low carbohydrate high fat (LCHF) diet. Therefore, we studied seven well-trained male cyclists that were habituated to either a LCHF (7% carbohydrate, 72% fat, 21% protein) or a mixed diet (51% carbohydrate, 33% fat, 16% protein) for longer than 8 months. After an overnight fast, participants performed a 2 h laboratory ride at 72% of maximal oxygen consumption. Glucose kinetics were measured at rest and during the final 30 min of exercise by infusion of [6,6-(2) H2 ]-glucose and the ingestion of (2) H2 O tracers. Rates of EGP and GLY both at rest and during exercise were significantly lower in the LCHF group than the mixed diet group (Exercise EGP: LCHF, 6.0 ± 0.9 mg kg(-1) min(-1) , Mixed, 7.8 ± 1.1 mg kg(-1) min(-1) , P < 0.01; Exercise GLY: LCHF, 3.2 ± 0.7 mg kg(-1) min(-1) , Mixed, 5.3 ± 0.9 mg kg(-1) min(-1) , P < 0.01). Conversely, no difference was detected in rates of GNG between groups at rest or during exercise (Exercise: LCHF, 2.8 ± 0.4 mg kg(-1) min(-1) , Mixed, 2.5 ± 0.3 mg kg(-1) min(-1) , P = 0.15). We conclude that athletes on a LCHF diet do not compensate for reduced glucose availability via higher rates of glucose synthesis compared to athletes on a mixed diet. Instead, GNG remains relatively stable, whereas glucose oxidation and GLY are influenced by dietary factors.
Collapse
Affiliation(s)
- Christopher C Webster
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Newlands, South Africa
| | - Timothy D Noakes
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Newlands, South Africa
| | - Shaji K Chacko
- Department of Pediatrics, Children's Nutrition Research Center, US Department of Agriculture/Agricultural Research Service, Baylor College of Medicine, Houston, TX, USA
| | - Jeroen Swart
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Newlands, South Africa
| | - Tertius A Kohn
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Newlands, South Africa
| | - James A H Smith
- Division of Exercise Science and Sports Medicine (ESSM), Department of Human Biology, Faculty of Health Sciences, University of Cape Town, Newlands, South Africa
| |
Collapse
|
47
|
Kowalski GM, Hamley S, Selathurai A, Kloehn J, De Souza DP, O'Callaghan S, Nijagal B, Tull DL, McConville MJ, Bruce CR. Reversing diet-induced metabolic dysregulation by diet switching leads to altered hepatic de novo lipogenesis and glycerolipid synthesis. Sci Rep 2016; 6:27541. [PMID: 27273128 PMCID: PMC4895138 DOI: 10.1038/srep27541] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 05/18/2016] [Indexed: 02/02/2023] Open
Abstract
In humans, low-energy diets rapidly reduce hepatic fat and improve/normalise glycemic control. Due to difficulties in obtaining human liver, little is known about changes to the lipid species and pathway fluxes that occur under these conditions. Using a combination of stable isotope, and targeted metabolomic approaches we investigated the acute (7-9 days) hepatic effects of switching high-fat high-sucrose diet (HFD) fed obese mice back to a chow diet. Upon the switch, energy intake was reduced, resulting in reductions of fat mass and hepatic triacyl- and diacylglycerol. However, these parameters were still elevated compared to chow fed mice, thus representing an intermediate phenotype. Nonetheless, glucose intolerance and hyperinsulinemia were completely normalized. The diet reversal resulted in marked reductions in hepatic de novo lipogenesis when compared to the chow and HFD groups. Compared with HFD, glycerolipid synthesis was reduced in the reversal animals, however it remained elevated above that of chow controls, indicating that despite experiencing a net loss in lipid stores, the liver was still actively esterifying available fatty acids at rates higher than that in chow control mice. This effect likely promotes the re-esterification of excess free fatty acids released from the breakdown of adipose depots during the weight loss period.
Collapse
Affiliation(s)
- Greg M Kowalski
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Steven Hamley
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Ahrathy Selathurai
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| | - Joachim Kloehn
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - David P De Souza
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Sean O'Callaghan
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Brunda Nijagal
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Dedreia L Tull
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Malcolm J McConville
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, Parkville, Australia
| | - Clinton R Bruce
- Centre for Physical Activity and Nutrition Research, School of Exercise and Nutrition Sciences, Deakin University, Burwood, Australia
| |
Collapse
|
48
|
Nutritional regulation of the anabolic fate of amino acids within the liver in mammals: concepts arising from in vivo studies. Nutr Res Rev 2016; 28:22-41. [PMID: 26156215 DOI: 10.1017/s0954422415000013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
At the crossroad between nutrient supply and requirements, the liver plays a central role in partitioning nitrogenous nutrients among tissues. The present review examines the utilisation of amino acids (AA) within the liver in various physiopathological states in mammals and how the fates of AA are regulated. AA uptake by the liver is generally driven by the net portal appearance of AA. This coordination is lost when demands by peripheral tissues is important (rapid growth or lactation), or when certain metabolic pathways within the liver become a priority (synthesis of acute-phase proteins). Data obtained in various species have shown that oxidation of AA and export protein synthesis usually responds to nutrient supply. Gluconeogenesis from AA is less dependent on hepatic delivery and the nature of nutrients supplied, and hormones like insulin are involved in the regulatory processes. Gluconeogenesis is regulated by nutritional factors very differently between mammals (glucose absorbed from the diet is important in single-stomached animals, while in carnivores, glucose from endogenous origin is key). The underlying mechanisms explaining how the liver adapts its AA utilisation to the body requirements are complex. The highly adaptable hepatic metabolism must be capable to deal with the various nutritional/physiological challenges that mammals have to face to maintain homeostasis. Whereas the liver responds generally to nutritional parameters in various physiological states occurring throughout life, other complex signalling pathways at systemic and tissue level (hormones, cytokines, nutrients, etc.) are involved additionally in specific physiological/nutritional states to prioritise certain metabolic pathways (pathological states or when nutritional requirements are uncovered).
Collapse
|
49
|
Emerging role of the brain in the homeostatic regulation of energy and glucose metabolism. Exp Mol Med 2016; 48:e216. [PMID: 26964832 PMCID: PMC4892882 DOI: 10.1038/emm.2016.4] [Citation(s) in RCA: 229] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 12/07/2015] [Accepted: 12/09/2015] [Indexed: 12/12/2022] Open
Abstract
Accumulated evidence from genetic animal models suggests that the brain, particularly the hypothalamus, has a key role in the homeostatic regulation of energy and glucose metabolism. The brain integrates multiple metabolic inputs from the periphery through nutrients, gut-derived satiety signals and adiposity-related hormones. The brain modulates various aspects of metabolism, such as food intake, energy expenditure, insulin secretion, hepatic glucose production and glucose/fatty acid metabolism in adipose tissue and skeletal muscle. Highly coordinated interactions between the brain and peripheral metabolic organs are critical for the maintenance of energy and glucose homeostasis. Defective crosstalk between the brain and peripheral organs contributes to the development of obesity and type 2 diabetes. Here we comprehensively review the above topics, discussing the main findings related to the role of the brain in the homeostatic regulation of energy and glucose metabolism.
Collapse
|
50
|
Somvanshi PR, Patel AK, Bhartiya S, Venkatesh KV. Influence of plasma macronutrient levels on hepatic metabolism: role of regulatory networks in homeostasis and disease states. RSC Adv 2016. [DOI: 10.1039/c5ra18128c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Multilevel regulations by metabolic, signaling and transcription pathways form a complex network that works to provide robust metabolic regulation in the liver. This analysis indicates that dietary perturbations in these networks can lead to insulin resistance.
Collapse
Affiliation(s)
- Pramod R. Somvanshi
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - Anilkumar K. Patel
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - Sharad Bhartiya
- Control Systems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| | - K. V. Venkatesh
- Biosystems Engineering Lab
- Department of Chemical Engineering
- Indian Institute of Technology Bombay
- Mumbai
- India 400076
| |
Collapse
|