1
|
Hsu LS, Lin CL, Pan MH, Chen WJ. Intervention of a Communication Between PI3K/Akt and β-Catenin by (-)-Epigallocatechin-3-Gallate Suppresses TGF-β1-Promoted Epithelial-Mesenchymal Transition and Invasive Phenotype of NSCLC Cells. ENVIRONMENTAL TOXICOLOGY 2025; 40:848-859. [PMID: 39865447 DOI: 10.1002/tox.24475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/28/2025]
Abstract
The epithelial-mesenchymal transition (EMT) assists in the acquisition of invasiveness, relapse, and resistance in non-small cell lung cancer (NSCLC) and can be caused by the signaling of transforming growth factor-β1 (TGF-β1) through Smad-mediated or Smad-independent pathways. (-)-Epigallocatechin-3-gallate (EGCG), a multifunctional cancer-preventing bioconstituent found in tea polyphenols, has been shown to repress TGF-β1-triggered EMT in the human NSCLC A549 cell line by inhibiting the activation of Smad2 and Erk1/2 or reducing the acetylation of Smad2 and Smad3. However, its impact on the Smad-independent pathway remains unclear. Here, we found that EGCG, similar to LY294002 (a specific inhibitor of phosphatidylinositol 3-kinase [PI3K]), downregulated Akt activation and restored the action of glycogen synthase kinase-3β (GSK-3β), accompanied by TGF-β1-caused changes in hallmarks of EMT such as N-cadherin, E-cadherin, vimentin, and Snail in A549 cells. EGCG inhibited β-catenin expression and its nuclear localization caused by TGF-β1, suggesting that EGCG blocks the crosstalk between the PI3K/Akt/GSK-3β route and β-catenin. Furthermore, it was shown that EGCG suppressed TGF-β1-elicited invasive phenotypes of A549 cells, including invading and migrating activities, matrix metalloproteinase-2 (MMP-2) secretion, cell adhesion, and wound healing. In summary, we suggest that EGCG inhibits the induction of EMT by TGF-β1 in NSCLC not only through a Smad-dependent pathway, but also through the regulation of the PI3K/Akt/β-catenin signaling axis.
Collapse
Affiliation(s)
- Li-Sung Hsu
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chih-Li Lin
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Public Health, China Medical University, Taichung, Taiwan
| | - Wei-Jen Chen
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Biomedical Sciences, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
2
|
Beltrán-Rivera A, García-Arrarás JE. Cellular dedifferentiation. Revisiting Betty Hay's legacy. Dev Biol 2025; 523:1-8. [PMID: 40164323 DOI: 10.1016/j.ydbio.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
The concept of mature specialized cells and the stability of the differentiated state was fundamentally challenged by Elizabeth Hay's groundbreaking observations on amphibian limb regeneration, published in 1959. Building on previous work by C.S. Thornton, she discovered that muscle cells could dedifferentiate and transform into progenitor cells within the regeneration blastema reshaping our understanding of cell differentiation. This pivotal finding reshaped our understanding of cell differentiation, opening new avenues of research. Though controversial, her findings significantly advanced the fields of cell plasticity and regenerative biology.
Collapse
|
3
|
Moore Zajic EL, Zhao R, McKinney MC, Yi K, Wood C, Trainor PA. Cell extrusion drives neural crest cell delamination. Proc Natl Acad Sci U S A 2025; 122:e2416566122. [PMID: 40063802 PMCID: PMC11929498 DOI: 10.1073/pnas.2416566122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/17/2025] [Indexed: 03/15/2025] Open
Abstract
Neural crest cells (NCC) comprise a heterogeneous population of cells with variable potency that contribute to nearly every tissue and organ throughout the body. Considered unique to vertebrates, NCC are transiently generated within the dorsolateral region of the neural plate or neural tube during neurulation. Their delamination and migration are crucial for embryo development as NCC differentiation is influenced by their final resting locations. Previous work in avian and aquatic species revealed that NCC delaminate via an epithelial-mesenchymal transition (EMT), which transforms these progenitor cells from static polarized epithelial cells into migratory mesenchymal cells with fluid front and back polarity. However, the cellular and molecular mechanisms facilitating NCC delamination in mammals are poorly understood. Through time-lapse imaging of NCC delamination in mouse embryos, we identified a subset of cells that exit the neuroepithelium as isolated round cells, which then halt for a short period prior to acquiring the mesenchymal migratory morphology classically associated with delaminating NCC. High-magnification imaging and protein localization analyses of the cytoskeleton, together with measurements of pressure and tension of delaminating NCC and neighboring neuroepithelial cells, revealed that round NCC are extruded from the neuroepithelium prior to completion of EMT. Furthermore, cranial NCC are extruded through activation of the mechanosensitive ion channel, PIEZO1. Our results support a model in which cell density, pressure, and tension in the neuroepithelium result in activation of the live cell extrusion pathway and delamination of a subpopulation of NCC in parallel with EMT, which has implications for cell delamination in development and disease.
Collapse
Affiliation(s)
| | - Ruonan Zhao
- Stowers Institute for Medical Research, Kansas City, MO64110
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS66160
| | | | - Kexi Yi
- Stowers Institute for Medical Research, Kansas City, MO64110
| | | | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO64110
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS66160
| |
Collapse
|
4
|
Saha SK, Sarkar M, Srivastava M, Dutta S, Sen S. Nuclear α-actinin-4 regulates breast cancer invasiveness and EMT. Cytoskeleton (Hoboken) 2025; 82:145-157. [PMID: 39143850 DOI: 10.1002/cm.21901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/12/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a key process where cells lose their adhesion properties and augment their invasive properties. α-Actinin4 (ACTN4) is an actin crosslinking protein that responds to mechanical stimuli and is found to be elevated in breast cancer patients. While ACTN4 has been implicated in regulating cancer invasiveness by modulating cytoskeletal organization, its nuclear functions remain much less explored. Here we address this question by first establishing a correlation between nuclear localization and invasiveness in breast cancer cells. Using cancer databases, we then establish a correlation between ACTN4 expression and EMT in breast cancer. Interestingly, TGFβ-induced EMT induction in MCF10A normal mammary epithelial cells leads to increased ACTN4 expression and nuclear enrichment. We then show that ACTN4 knockdown in MDA-MB-231 breast cancer cells, which harbor sizeable fraction of nuclear ACTN4, leads to reduced invasiveness and loss of mesenchymal traits. Similar behavior was observed in knockdown cells expressing K255E ACTN4, which is primarily localized to the cytosol. Together, our findings establish a role for nuclear ACTN4 in regulating invasiveness via modulation of EMT.
Collapse
Affiliation(s)
- Sumon Kumar Saha
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Madhurima Sarkar
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | | | - Sarbajeet Dutta
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| | - Shamik Sen
- Department of Biosciences & Bioengineering, IIT Bombay, Mumbai, India
| |
Collapse
|
5
|
Masciale V, Banchelli F, Grisendi G, Samarelli AV, Raineri G, Rossi T, Zanoni M, Cortesi M, Bandini S, Ulivi P, Martinelli G, Stella F, Dominici M, Aramini B. The molecular features of lung cancer stem cells in dedifferentiation process-driven epigenetic alterations. J Biol Chem 2024; 300:107994. [PMID: 39547513 PMCID: PMC11714729 DOI: 10.1016/j.jbc.2024.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 10/30/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024] Open
Abstract
Cancer stem cells (CSCs) may be dedifferentiated somatic cells following oncogenic processes, representing a subpopulation of cells able to promote tumor growth with their capacities for proliferation and self-renewal, inducing lineage heterogeneity, which may be a main cause of resistance to therapies. It has been shown that the "less differentiated process" may have an impact on tumor plasticity, particularly when non-CSCs may dedifferentiate and become CSC-like. Bidirectional interconversion between CSCs and non-CSCs has been reported in other solid tumors, where the inflammatory stroma promotes cell reprogramming by enhancing Wnt signaling through nuclear factor kappa B activation in association with intracellular signaling, which may induce cells' pluripotency, the oncogenic transformation can be considered another important aspect in the acquisition of "new" development programs with oncogenic features. During cell reprogramming, mutations represent an initial step toward dedifferentiation, in which tumor cells switch from a partially or terminally differentiated stage to a less differentiated stage that is mainly manifested by re-entry into the cell cycle, acquisition of a stem cell-like phenotype, and expression of stem cell markers. This phenomenon typically shows up as a change in the form, function, and pattern of gene and protein expression, and more specifically, in CSCs. This review would highlight the main epigenetic alterations, major signaling pathways and driver mutations in which CSCs, in tumors and specifically, in lung cancer, could be involved, acting as key elements in the differentiation/dedifferentiation process. This would highlight the main molecular mechanisms which need to be considered for more tailored therapies.
Collapse
Affiliation(s)
- Valentina Masciale
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Federico Banchelli
- Department of Statistical Sciences "Paolo Fortunati", Alma Mater Studiorum- University of Bologna, Bologna, Italy
| | - Giulia Grisendi
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Anna Valeria Samarelli
- Laboratory of and Respiratory Medicine, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Giulia Raineri
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy
| | - Tania Rossi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michele Zanoni
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Michela Cortesi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Sara Bandini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Paola Ulivi
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Giovanni Martinelli
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Franco Stella
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy
| | - Massimo Dominici
- Laboratory of Cellular Therapies, Department of Medical and Surgical Sciences for Children & Adults, University Hospital of Modena, Modena, Italy; Division of Oncology, University Hospital of Modena and Reggio Emilia, University of Modena and Reggio Emilia, Modena, Italy
| | - Beatrice Aramini
- Thoracic Surgery Unit, Department of Medical and Surgical Sciences-DIMEC of the Alma Mater Studiorum, University of Bologna, G.B. Morgagni-L. Pierantoni Hospital, Forlì, Italy.
| |
Collapse
|
6
|
Kim RT, Whited JL. Putative epithelial-mesenchymal transitions during salamander limb regeneration: Current perspectives and future investigations. Ann N Y Acad Sci 2024; 1540:89-103. [PMID: 39269330 PMCID: PMC11471381 DOI: 10.1111/nyas.15210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Previous studies have implicated epithelial-mesenchymal transition (EMT) in salamander limb regeneration. In this review, we describe putative roles for EMT during each stage of limb regeneration in axolotls and other salamanders. We hypothesize that EMT and EMT-like gene expression programs may regulate three main cellular processes during limb regeneration: (1) keratinocyte migration during wound closure; (2) transient invasion of the stump by epithelial cells undergoing EMT; and (3) use of EMT-like programs by non-epithelial blastemal progenitor cells to escape the confines of their niches. Finally, we propose nontraditional roles for EMT during limb regeneration that warrant further investigation, including alternative EMT regulators, stem cell activation, and fibrosis induced by aberrant EMT.
Collapse
Affiliation(s)
- Ryan T Kim
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Jessica L Whited
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Bette M, Reinhardt L, Gansukh U, Xiang-Tischhauser L, Meskeh H, Di Fazio P, Buchholz M, Stuck BA, Mandic R. The Role of TGF-β1 and Mutant SMAD4 on Epithelial-Mesenchymal Transition Features in Head and Neck Squamous Cell Carcinoma Cell Lines. Cancers (Basel) 2024; 16:3172. [PMID: 39335144 PMCID: PMC11429651 DOI: 10.3390/cancers16183172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
The aim of the present study was to investigate possible differences in the sensitivity of HNSCC cells to known EMT regulators. Three HNSCC cell lines (UM-SCC-1, -3, -22B) and the HaCaT control keratinocyte cell line were exposed to transforming growth factor beta 1 (TGF-β1), a known EMT master regulator, and the cellular response was evaluated by real-time cell analysis (RTCA), Western blot, quantitative PCR, flow cytometry, immunocytochemistry, and the wound closure (scratch) assay. Targeted sequencing on 50 cancer-related genes was performed using the Cancer Hotspot Panel v2. Mutant, and wild type SMAD4 cDNA was used to generate recombinant SMAD4 constructs for expression in mammalian cell lines. The most extensive response to TGF-β1, such as cell growth and migration, β-actin expression, or E-cadherin (CDH1) downregulation, was seen in cells with a more epithelial phenotype. Lower response correlated with higher basal p-TGFβ RII (Tyr424) levels, pointing to a possible autocrine pre-activation of these cell lines. Targeted sequencing revealed a homozygous SMAD4 mutation in the UM-SCC-22B cell line. Furthermore, PCR cloning of SMAD4 cDNA from the same cell line revealed an additional SMAD4 transcript with a 14 bp insertion mutation, which gives rise to a truncated SMAD4 protein. Overexpression of this mutant SMAD4 protein in the highly epithelial control cell line HaCaT resulted in upregulation of TGF-β1 and vimentin. Consistent with previous reports, the invasive and metastatic potential of HNSCC tumor cells appears associated with the level of autocrine secretion of EMT regulators such as TGF-β1, and it could be influenced by exogenous EMT cytokines such as those derived from immune cells of the tumor microenvironment. Furthermore, mutant SMAD4 appears to be a significant contributor to the mesenchymal transformation of HNSCC cells.
Collapse
Affiliation(s)
- Michael Bette
- Institute of Anatomy and Cell Biology, Philipps-Universität Marburg, 35037 Marburg, Germany
| | - Laura Reinhardt
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Uyanga Gansukh
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Li Xiang-Tischhauser
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Haifa Meskeh
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Pietro Di Fazio
- Department of Nuclear Medicine, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Malte Buchholz
- Clinic for Gastroenterology, Endocrinology and Metabolism, University Hospital, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Boris A Stuck
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| | - Robert Mandic
- Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital Marburg, Philipps-Universität Marburg, 35043 Marburg, Germany
| |
Collapse
|
8
|
Agraval H, Kandhari K, Yadav UCS. MMPs as potential molecular targets in epithelial-to-mesenchymal transition driven COPD progression. Life Sci 2024; 352:122874. [PMID: 38942362 DOI: 10.1016/j.lfs.2024.122874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality globally and the risk of developing lung cancer is six times greater in individuals with COPD who smoke compared to those who do not smoke. Matrix metalloproteinases (MMPs) play a crucial role in the pathophysiology of respiratory diseases by promoting inflammation and tissue degradation. Furthermore, MMPs are involved in key processes like epithelial-to-mesenchymal transition (EMT), metastasis, and invasion in lung cancer. While EMT has traditionally been associated with the progression of lung cancer, recent research highlights its active involvement in individuals with COPD. Current evidence underscores its role in orchestrating airway remodeling, fostering airway fibrosis, and contributing to the potential for malignant transformation in the complex pathophysiology of COPD. The precise regulatory roles of diverse MMPs in steering EMT during COPD progression needs to be elucidated. Additionally, the less-understood aspect involves how these MMPs bi-directionally activate or regulate various EMT-associated signaling cascades during COPD progression. This review article explores recent advancements in understanding MMPs' role in EMT during COPD progression and various pharmacological approaches to target MMPs. It also delves into the limitations of current MMP inhibitors and explores novel, advanced strategies for inhibiting MMPs, potentially offering new avenues for treating respiratory diseases.
Collapse
Affiliation(s)
- Hina Agraval
- Department of Medicine, National Jewish Health, Denver, CO 80206, USA
| | - Kushal Kandhari
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Umesh C S Yadav
- Special Center for Molecular Medicine, Jawaharlal Nehru University, New Delhi 110067, India.
| |
Collapse
|
9
|
Chen Y, Ji Y, Shen L, Li Y, Ren Y, Shi H, Li Y, Wu Y. High core 1β1,3-galactosyltransferase 1 expression is associated with poor prognosis and promotes cellular radioresistance in lung adenocarcinoma. J Cancer Res Clin Oncol 2024; 150:214. [PMID: 38662050 PMCID: PMC11045595 DOI: 10.1007/s00432-024-05745-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/07/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE Core 1β1,3-galactosyltransferase 1 (C1GALT1) exhibits elevated expression in multiple cancers. The present study aimed to elucidate the clinical significance of C1GALT1 aberrant expression and its impact on radiosensitivity in lung adenocarcinoma (LUAD). METHODS The C1GALT1 expression and its clinical relevance were investigated through public databases and LUAD tissue microarray analyses. A549 and H1299 cells with either C1GALT1 knockdown or overexpression were further assessed through colony formation, gamma-H2A histone family member X immunofluorescence, 5-ethynyl-2'-deoxyuridine incorporation, and flow cytometry assays. Bioinformatics analysis was used to explore single cell sequencing data, revealing the influence of C1GALT1 on cancer-associated cellular states. Vimentin, N-cadherin, and E-cadherin protein levels were measured through western blotting. RESULTS The expression of C1GALT1 was significantly higher in LUAD tissues than in adjacent non-tumor tissues both at mRNA and protein level. High expression of C1GALT1 was correlated with lymph node metastasis, advanced T stage, and poor survival, and was an independent risk factor for overall survival. Radiation notably upregulated C1GALT1 expression in A549 and H1299 cells, while radiosensitivity was increased following C1GALT1 knockdown and decreased following overexpression. Experiment results showed that overexpression of C1GALT1 conferred radioresistance, promoting DNA repair, cell proliferation, and G2/M phase arrest, while inhibiting apoptosis and decreasing E-cadherin expression, alongside upregulating vimentin and N-cadherin in A549 and H1299 cells. Conversely, C1GALT1 knockdown had opposing effects. CONCLUSION Elevated C1GALT1 expression in LUAD is associated with an unfavorable prognosis and contributes to increased radioresistance potentially by affecting DNA repair, cell proliferation, cell cycle regulation, and epithelial-mesenchymal transition (EMT).
Collapse
Affiliation(s)
- Yong Chen
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yanyan Ji
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Lin Shen
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Ying Li
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yue Ren
- Department of Medical Oncology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Hongcan Shi
- Department of Cardiothoracic Surgery, Medical College of Yangzhou University, Yangzhou University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yue Li
- Department of Medical Oncology, Clinical College of Dalian Medical University, Yangzhou, 225009, Jiangsu, People's Republic of China
| | - Yunjiang Wu
- Department of Thoracic Surgery, Affiliated Hospital of Yangzhou University, Yangzhou University, No. 368 Hanjiang Road, Yangzhou, 225009, Jiangsu, People's Republic of China.
| |
Collapse
|
10
|
Bhat GR, Sethi I, Sadida HQ, Rah B, Mir R, Algehainy N, Albalawi IA, Masoodi T, Subbaraj GK, Jamal F, Singh M, Kumar R, Macha MA, Uddin S, Akil ASAS, Haris M, Bhat AA. Cancer cell plasticity: from cellular, molecular, and genetic mechanisms to tumor heterogeneity and drug resistance. Cancer Metastasis Rev 2024; 43:197-228. [PMID: 38329598 PMCID: PMC11016008 DOI: 10.1007/s10555-024-10172-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 01/24/2024] [Indexed: 02/09/2024]
Abstract
Cancer is a complex disease displaying a variety of cell states and phenotypes. This diversity, known as cancer cell plasticity, confers cancer cells the ability to change in response to their environment, leading to increased tumor diversity and drug resistance. This review explores the intricate landscape of cancer cell plasticity, offering a deep dive into the cellular, molecular, and genetic mechanisms that underlie this phenomenon. Cancer cell plasticity is intertwined with processes such as epithelial-mesenchymal transition and the acquisition of stem cell-like features. These processes are pivotal in the development and progression of tumors, contributing to the multifaceted nature of cancer and the challenges associated with its treatment. Despite significant advancements in targeted therapies, cancer cell adaptability and subsequent therapy-induced resistance remain persistent obstacles in achieving consistent, successful cancer treatment outcomes. Our review delves into the array of mechanisms cancer cells exploit to maintain plasticity, including epigenetic modifications, alterations in signaling pathways, and environmental interactions. We discuss strategies to counteract cancer cell plasticity, such as targeting specific cellular pathways and employing combination therapies. These strategies promise to enhance the efficacy of cancer treatments and mitigate therapy resistance. In conclusion, this review offers a holistic, detailed exploration of cancer cell plasticity, aiming to bolster the understanding and approach toward tackling the challenges posed by tumor heterogeneity and drug resistance. As articulated in this review, the delineation of cellular, molecular, and genetic mechanisms underlying tumor heterogeneity and drug resistance seeks to contribute substantially to the progress in cancer therapeutics and the advancement of precision medicine, ultimately enhancing the prospects for effective cancer treatment and patient outcomes.
Collapse
Affiliation(s)
- Gh Rasool Bhat
- Advanced Centre for Human Genetics, Sher-I-Kashmir Institute of Medical Sciences, Soura, Srinagar, Jammu and Kashmir, India
| | - Itty Sethi
- Institute of Human Genetics, University of Jammu, Jammu, Jammu and Kashmir, India
| | - Hana Q Sadida
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Bilal Rah
- Iron Biology Group, Research Institute of Medical and Health Science, University of Sharjah, Sharjah, UAE
| | - Rashid Mir
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, Tabuk, Saudi Arabia
| | - Naseh Algehainy
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, Prince Fahad Bin Sultan Chair for Biomedical Research, University of Tabuk, Tabuk, Saudi Arabia
| | | | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | | | - Farrukh Jamal
- Dr. Rammanohar, Lohia Avadh University, Ayodhya, India
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Institute of Medical Sciences (AIIMS), Dr. BRAIRCH, All India, New Delhi, India
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, India
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Awantipora, Jammu and Kashmir, India
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
- Laboratory Animal Research Centre, Qatar University, Doha, Qatar
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar
| | - Mohammad Haris
- Laboratory Animal Research Centre, Qatar University, Doha, Qatar.
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, Doha, Qatar.
| |
Collapse
|
11
|
Acloque H, Yang J, Theveneau E. Epithelial-to-mesenchymal plasticity from development to disease: An introduction to the special issue. Genesis 2024; 62:e23581. [PMID: 38098257 PMCID: PMC11021161 DOI: 10.1002/dvg.23581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 12/17/2023]
Abstract
Epithelial-Mesenchymal Transition (EMT) refers to the ability of cells to switch between epithelial and mesenchymal states, playing critical roles in embryonic development, wound healing, fibrosis, and cancer metastasis. Here, we discuss some examples that challenge the use of specific markers to define EMT, noting that their expression may not always correspond to the expected epithelial or mesenchymal identity. In concordance with recent development in the field, we emphasize the importance of generalizing the use of the term Epithelial-Mesenchymal Plasticity (EMP), to better capture the diverse and context-dependent nature of the bidirectional journey that cells can undertake between the E and M phenotypes. We highlight the usefulness of studying a wide range of physiological EMT scenarios, stress the value of the dynamic of expression of EMP regulators and advocate, whenever possible, for more systematic functional assays to assess cellular states.
Collapse
Affiliation(s)
- Hervé Acloque
- INRAE, AgroParisTech, GABI, Université Paris Saclay, Jouy en Josas, France
| | - Jing Yang
- Department of Pharmacology and of Pediatrics, Moores Cancer Center, University of California San Diego, School of Medicine, La Jolla, California, USA
| | - Eric Theveneau
- Molecular, Cellular and Developmental Biology Department (MCD), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France
| |
Collapse
|
12
|
Doerr S, Zhou P, Ragkousi K. Origin and development of primary animal epithelia. Bioessays 2024; 46:e2300150. [PMID: 38009581 PMCID: PMC11164562 DOI: 10.1002/bies.202300150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/11/2023] [Accepted: 11/13/2023] [Indexed: 11/29/2023]
Abstract
Epithelia are the first organized tissues that appear during development. In many animal embryos, early divisions give rise to a polarized monolayer, the primary epithelium, rather than a random aggregate of cells. Here, we review the mechanisms by which cells organize into primary epithelia in various developmental contexts. We discuss how cells acquire polarity while undergoing early divisions. We describe cases where oriented divisions constrain cell arrangement to monolayers including organization on top of yolk surfaces. We finally discuss how epithelia emerge in embryos from animals that branched early during evolution and provide examples of epithelia-like arrangements encountered in single-celled eukaryotes. Although divergent and context-dependent mechanisms give rise to primary epithelia, here we trace the unifying principles underlying their formation.
Collapse
Affiliation(s)
- Sophia Doerr
- Department of Biology, Amherst College, Amherst, Massachusetts, USA
- Department of Biology, Institute of Molecular Biology, University of Oregon, Eugene, USA
| | - Phillip Zhou
- Department of Biology, Amherst College, Amherst, Massachusetts, USA
| | | |
Collapse
|
13
|
Junatas KL, Couck L, Tay H, Sinowatz F, Van Den Broeck W. Ultrastructural evidence of telocytes in the embryonic chick heart. Anat Histol Embryol 2024; 53:e12970. [PMID: 37740674 DOI: 10.1111/ahe.12970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 09/01/2023] [Accepted: 09/04/2023] [Indexed: 09/25/2023]
Abstract
The cardiac telocyte (TC) is a novel interstitial cell type with a unique ultrastructure and great potential in therapy. The present study examined its presence in the heart of chicken embryos ageing 7-15 days old (Hamburger-Hamilton [HH] stages 31-41) using transmission electron microscopy. TCs were identified across all stages in the atrial and ventricular myocardium, close to maturing cardiomyocytes, blood vessels and lymphatics. Early-stage TCs have immature features resembling mesenchymal cells. Late-stage TCs were distinct, possessing the cytoplasmic prolongations termed telopodes (Tps), which are very long and thin, usually 1-3 in number, and display a moniliform appearance and have an average thickness below 0.2 μm. TCs residing in the epicardium and endocardium were also detected. In the subepicardium near developing coronary vessels, they were localized in the cardiac stem cell niches, coexisting with cardiac stem cells and cardiomyocyte progenitors. Electron-dense structures and the release of extracellular vesicles were observed between embryonic TCs and surrounding structures, suggesting roles in intercellular communication, cardiomyocyte differentiation and maturation, angiogenesis, and stem cell nursing and guidance.
Collapse
Affiliation(s)
- Khan Lamanero Junatas
- Department of Morphology, Medical Imaging, Orthopaedics, Physiotherapy and Nutrition - Laboratory of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
- Department of Basic Veterinary Sciences, College of Veterinary Medicine, University of Southern Mindanao, Cotabato, Philippines
| | - Liesbeth Couck
- Department of Morphology, Medical Imaging, Orthopaedics, Physiotherapy and Nutrition - Laboratory of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hanna Tay
- Department of Morphology, Medical Imaging, Orthopaedics, Physiotherapy and Nutrition - Laboratory of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Fred Sinowatz
- Institute of Anatomy, Histology and Embryology, Department of Veterinary Sciences, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Wim Van Den Broeck
- Department of Morphology, Medical Imaging, Orthopaedics, Physiotherapy and Nutrition - Laboratory of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
14
|
Altundag Ö, Öteyaka MÖ, Çelebi-Saltik B. Co- and Triaxial Electrospinning for Stem Cell-based Bone Regeneration. Curr Stem Cell Res Ther 2024; 19:865-878. [PMID: 37594104 DOI: 10.2174/1574888x18666230818094216] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/06/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Bone tissue is composed of organic minerals and cells. It has the capacity to heal for certain minor damages, but when the bone defects surpass the critical threshold, they need fixing. Bone regeneration through natural and synthetic biodegradable materials requires various steps, such as manufacturing methods and materials selection. A successful biodegradable bone graft should have a high surface area/ volume ratio, strength, and a biocompatible, porous structure capable of promoting cell adhesion, proliferation, and differentiation. Considering these requirements, the electrospinning technique is promising for creating functional nano-sized scaffolds. The multi-axial methods, such as coaxial and triaxial electrospinning, are the most popular techniques to produce double or tri-layered scaffolds, respectively. Recently, stem cell culture on scaffolds and the application of osteogenic differentiation protocols on these scaffolds have opened new possibilities in the field of biomaterials research. This review discusses an overview of the progress in coaxial and triaxial technology through biodegradable composite bone materials. The review also carefully elaborates the osteogenic differentiation using stem cells and their performance with nano-sized scaffolds.
Collapse
Affiliation(s)
- Özlem Altundag
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Mustafa Özgür Öteyaka
- Department of Electronic and Automation, Mechatronic Program, Eskisehir Vocational School, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| |
Collapse
|
15
|
Parvanian S, Coelho-Rato LS, Patteson AE, Eriksson JE. Vimentin takes a hike - Emerging roles of extracellular vimentin in cancer and wound healing. Curr Opin Cell Biol 2023; 85:102246. [PMID: 37783033 PMCID: PMC11214764 DOI: 10.1016/j.ceb.2023.102246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 09/04/2023] [Indexed: 10/04/2023]
Abstract
Vimentin is a cytoskeletal protein important for many cellular processes, including proliferation, migration, invasion, stress resistance, signaling, and many more. The vimentin-deficient mouse has revealed many of these functions as it has numerous severe phenotypes, many of which are found only following a suitable challenge or stress. While these functions are usually related to vimentin as a major intracellular protein, vimentin is also emerging as an extracellular protein, exposed at the cell surface in an oligomeric form or secreted to the extracellular environment in soluble and vesicle-bound forms. Thus, this review explores the roles of the extracellular pool of vimentin (eVIM), identified in both normal and pathological states. It focuses specifically on the recent advances regarding the role of eVIM in wound healing and cancer. Finally, it discusses new technologies and future perspectives for the clinical application of eVIM.
Collapse
Affiliation(s)
- Sepideh Parvanian
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Center for Systems Biology, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA
| | - Leila S Coelho-Rato
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland
| | - Alison E Patteson
- Physics Department and BioInspired Institute, Syracuse University, Syracuse, NY, 13244, USA
| | - John E Eriksson
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520, Turku, Finland; Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland; Euro-Bioimaging ERIC, 20520 Turku, Finland.
| |
Collapse
|
16
|
He X, Tang R, Lou J, Wang R. Identifying key factors in cell fate decisions by machine learning interpretable strategies. J Biol Phys 2023; 49:443-462. [PMID: 37458834 PMCID: PMC10651582 DOI: 10.1007/s10867-023-09640-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/15/2023] [Indexed: 11/16/2023] Open
Abstract
Cell fate decisions and transitions are common in almost all developmental processes. Therefore, it is important to identify the decision-making mechanisms and important individual molecules behind the fate decision processes. In this paper, we propose an interpretable strategy based on systematic perturbation, unsupervised hierarchical cluster analysis (HCA), machine learning (ML), and Shapley additive explanation (SHAP) analysis for inferring the contribution and importance of individual molecules in cell fate decision and transition processes. In order to verify feasibility of the approach, we apply it to the core epithelial to mesenchymal transition (EMT)-metastasis network. The key factors identified in EMT-metastasis are consistent with relevant experimental observations. The approach presented here can be applied to other biological networks to identify important factors related to cell fate decisions and transitions.
Collapse
Affiliation(s)
- Xinyu He
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Ruoyu Tang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China
| | - Jie Lou
- Department of Mathematics, Shanghai University, Shanghai, 200444, China.
- Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.
| | - Ruiqi Wang
- Department of Mathematics, Shanghai University, Shanghai, 200444, China.
- Newtouch Center for Mathematics of Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
17
|
Hosseini V, Montazersaheb S, Hejazi N, Aslanabadi S, Mohammadinasr M, Hejazi MS. A snapshot of miRNAs in oral squamous cell carcinoma: Difference between cancer cells and corresponding normal cells. Pathol Res Pract 2023; 249:154731. [PMID: 37573620 DOI: 10.1016/j.prp.2023.154731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
Oral squamous cell carcinoma (OSCC) constitutes the most aggressive tumors of the oral cavity and is one of the leading causes of cancer mortality worldwide. Although recent clinical treatment strategies have improved the survival rate, the outcome of OSCC patients still remains dismal because of the lack of efficient diagnostic and treatment tools. As one of the main actors of OSCC scenario, microRNAs (miRNAs) are involved in triggering, progression and metastasis through the regulation of various cancer-related signaling pathways. Identification followed by precise study of the biology and mechanism of action of miRNAs will greatly help to provide valuable insights regarding OSCC development and can be considered as an anti-OSCC target. In the current review, we have provided a focused summary of the latest published papers on the role of miRNAs in apoptosis, cell cycle, proliferation, EMT and metastasis of OSCC as well as the role of long noncoding RNAs in the modulation of miRNAs in OSCC.
Collapse
Affiliation(s)
- Vahid Hosseini
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Narges Hejazi
- Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Sina Aslanabadi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mina Mohammadinasr
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Molecular Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran; Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
18
|
Arvelo F, Sojo F. Transición epitelio – mesenquima y cáncer. INVESTIGACIÓN CLÍNICA 2023; 64:379-404. [DOI: 10.54817/ic.v64n3a10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Cancer cell migration and invasion are critical components of metastatic disease, the leading cause of death in cancer patients. The epithe-lium-mesenchyme-transition (EMT) and mesenchyme-epithelium-transition (MET) are pathways involved in cancer metastasis. This process involves the degradation of cell-cell and cell-extracellular matrix junctions and the subse-quent loss of regulation of binding proteins such as E-cadherin. Cells undergo a reorganization of the cytoskeleton. These alterations are associated with a change in cell shape from epithelial to mesenchymal morphology. Understand-ing EMT and MET’s molecular and cellular basis provides fundamental insights into cancer etiology and may lead to new therapeutic strategies. In this review, we discuss some of the regulatory mechanisms and pathological role of epitheli-al-mesenchymal plasticity, focusing on the knowledge about the complexity and dynamics of this phenomenon in cancer
Collapse
Affiliation(s)
- Francisco Arvelo
- Fundación Instituto de Estudios Avanzados-IDEA, Area Salud, Caracas-Venezuela. Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| | - Felipe Sojo
- Fundación Instituto de Estudios Avanzados-IDEA, Area Salud, Caracas-Venezuela. Laboratorio de Cultivo de Tejidos y Biología de Tumores, Instituto de Biología Experimental, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
19
|
Araldi RP, Delvalle DA, da Costa VR, Alievi AL, Teixeira MR, Dias Pinto JR, Kerkis I. Exosomes as a Nano-Carrier for Chemotherapeutics: A New Era of Oncology. Cells 2023; 12:2144. [PMID: 37681875 PMCID: PMC10486723 DOI: 10.3390/cells12172144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/08/2023] [Accepted: 08/17/2023] [Indexed: 09/09/2023] Open
Abstract
Despite the considerable advancements in oncology, cancer remains one of the leading causes of death worldwide. Drug resistance mechanisms acquired by cancer cells and inefficient drug delivery limit the therapeutic efficacy of available chemotherapeutics drugs. However, studies have demonstrated that nano-drug carriers (NDCs) can overcome these limitations. In this sense, exosomes emerge as potential candidates for NDCs. This is because exosomes have better organotropism, homing capacity, cellular uptake, and cargo release ability than synthetic NDCs. In addition, exosomes can serve as NDCs for both hydrophilic and hydrophobic chemotherapeutic drugs. Thus, this review aimed to summarize the latest advances in cell-free therapy, describing how the exosomes can contribute to each step of the carcinogenesis process and discussing how these nanosized vesicles could be explored as nano-drug carriers for chemotherapeutics.
Collapse
Affiliation(s)
- Rodrigo Pinheiro Araldi
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
- BioDecision Analytics Ltd.a., São Paulo 13271-650, SP, Brazil;
| | - Denis Adrián Delvalle
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Vitor Rodrigues da Costa
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Structural and Functional Biology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Anderson Lucas Alievi
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Endocrinology and Metabology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | - Michelli Ramires Teixeira
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
- Endocrinology and Metabology Post-Graduation Program, Paulista School of Medicine, São Paulo Federal University (EPM-UNIFESP), São Paulo 04023-062, SP, Brazil
| | | | - Irina Kerkis
- Genetics Laboratory, Butantan Institute, São Paulo 05503-900, SP, Brazil; (D.A.D.); (V.R.d.C.); (A.L.A.); (M.R.T.)
| |
Collapse
|
20
|
Reisenauer KN, Aroujo J, Tao Y, Ranganathan S, Romo D, Taube JH. Therapeutic vulnerabilities of cancer stem cells and effects of natural products. Nat Prod Rep 2023; 40:1432-1456. [PMID: 37103550 PMCID: PMC10524555 DOI: 10.1039/d3np00002h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Covering: 1995 to 2022Tumors possess both genetic and phenotypic heterogeneity leading to the survival of subpopulations post-treatment. The term cancer stem cells (CSCs) describes a subpopulation that is resistant to many types of chemotherapy and which also possess enhanced migratory and anchorage-independent growth capabilities. These cells are enriched in residual tumor material post-treatment and can serve as the seed for future tumor re-growth, at both primary and metastatic sites. Elimination of CSCs is a key goal in enhancing cancer treatment and may be aided by application of natural products in conjunction with conventional treatments. In this review, we highlight molecular features of CSCs and discuss synthesis, structure-activity relationships, derivatization, and effects of six natural products with anti-CSC activity.
Collapse
Affiliation(s)
| | - Jaquelin Aroujo
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | - Yongfeng Tao
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | | | - Daniel Romo
- Department of Chemistry and Biochemistry, Baylor Univesrity, Waco, TX, USA
| | - Joseph H Taube
- Department of Biology, Baylor University, Waco, TX, USA.
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Radhakrishnan K, Truong L, Carmichael CL. An "unexpected" role for EMT transcription factors in hematological development and malignancy. Front Immunol 2023; 14:1207360. [PMID: 37600794 PMCID: PMC10435889 DOI: 10.3389/fimmu.2023.1207360] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
The epithelial to mesenchymal transition (EMT) is a fundamental developmental process essential for normal embryonic development. It is also important during various pathogenic processes including fibrosis, wound healing and epithelial cancer cell metastasis and invasion. EMT is regulated by a variety of cell signalling pathways, cell-cell interactions and microenvironmental cues, however the key drivers of EMT are transcription factors of the ZEB, TWIST and SNAIL families. Recently, novel and unexpected roles for these EMT transcription factors (EMT-TFs) during normal blood cell development have emerged, which appear to be largely independent of classical EMT processes. Furthermore, EMT-TFs have also begun to be implicated in the development and pathogenesis of malignant hematological diseases such as leukemia and lymphoma, and now present themselves or the pathways they regulate as possible new therapeutic targets within these malignancies. In this review, we discuss the ZEB, TWIST and SNAIL families of EMT-TFs, focusing on what is known about their normal roles during hematopoiesis as well as the emerging and "unexpected" contribution they play during development and progression of blood cancers.
Collapse
Affiliation(s)
- Karthika Radhakrishnan
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Lynda Truong
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
| | - Catherine L. Carmichael
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Monash University, Faculty of Medicine, Nursing and Health Sciences, Clayton, VIC, Australia
| |
Collapse
|
22
|
Brancher JA, Schuh R, Torres MFP, de Melo Teixeira do Brasil J, Hueb MA, dos Santos Haemmerle CA, Proff P, Alam MK, Kirschneck C, Küchler E. Assessing the relationship between single nucleotide polymorphisms in Wingless signaling pathway genes and sella turcica morphology. J Anat 2023; 243:167-173. [PMID: 36898853 PMCID: PMC10273339 DOI: 10.1111/joa.13855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/08/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023] Open
Abstract
Sella turcica development involves molecular factors and genes responsible for ossification. It is possible that single nucleotide polymorphisms (SNPs) in key genes are involved in morphological variation of sella turcica. Genes belonging to the WNT signaling pathway are involved in the ossification process and are candidates of sella turcica morphology. This study aimed to evaluate if SNPs in WNT6 (rs6754599) and WNT10A (rs10177996 and rs3806557) genes are associated with the calcification and patterns of the sella turcica. Nonsyndromic individuals were included in the research. Cephalometric radiographs were examined and the sella calcification was evaluated and classified according to the calcification of the interclinoid ligament (no calcification, partial calcification, and incomplete calcification) and sella turcica pattern (normal sella turcica, bridge type A-ribbon-like fusion, bridge type B-extension of the clinoid processes, incomplete bridge, hypertrophic posterior clinoid process, hypotrophic posterior clinoid process, irregularity in the posterior part, pyramidal shape of the dorsum, double contour of the floor, oblique anterior wall, and oblique contour of the floor). DNA samples were used to evaluate SNPs in the WNT genes (rs6754599, rs10177996, and rs3806557) using real-time PCR. Chi-square test or Fisher's exact test were used to compare the allele and genotype distributions according to sella turcica phenotypes. The alpha was set as 5% for all comparisons. A total of 169 individuals were included, 133 (78.7%) present sella turcica partially or completely calcified. Sella turcica anomalies were found in 131 individuals (77.5%). Sella turcica bridge type A (27.8%), posterior hypertrophic clinoid process (17.1%), and sella turcica bridge type B (11.2%) were the most prevalent morphological patterns observed. Individuals carrying the TT genotype in rs10177996 (TT vs. CT + CC) had higher chance to present a partially calcified sella turcica (p = 0.047; Odds ratio = 2.27, Confidence Interval 95% 1.01-5.13). In conclusion, the SNP in WNT10A is associated with the calcification phenotype of the sella turcica, the pleiotropic effect of this gene should be taken into consideration in future studies.
Collapse
Affiliation(s)
| | - Rodrigo Schuh
- Anatomy DepartmentFederal University of ParanáCuritibaParanáBrazil
| | | | | | - Maria Angélica Hueb
- Department of BiomaterialsUniversity of Uberaba–UNIUBEUberabaMinas GeraisBrazil
| | | | - Peter Proff
- Department of OrthodonticsUniversity of RegensburgRegensburgGermany
| | | | | | - Erika Calvano Küchler
- Department of BiomaterialsUniversity of Uberaba–UNIUBEUberabaMinas GeraisBrazil
- Department of OrthodonticsUniversity of RegensburgRegensburgGermany
- School of DentistryTuiuti University from Paraná, CuritibaParanáBrazil
| |
Collapse
|
23
|
Warrier NM, Kelkar N, Johnson CT, Govindarajan T, Prabhu V, Kumar P. Understanding cancer stem cells and plasticity: Towards better therapeutics. Eur J Cell Biol 2023; 102:151321. [PMID: 37137199 DOI: 10.1016/j.ejcb.2023.151321] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023] Open
Abstract
The ability of cancer cells to finally overcome various lines of treatment in due course has always baffled the scientific community. Even with the most promising therapies, relapse is ultimately seen, and this resilience has proved to be a major hurdle in the management of cancer. Accumulating evidence now attributes this resilience to plasticity. Plasticity is the ability of cells to change their properties and is substantial as it helps in normal tissue regeneration or post-injury repair processes. It also helps in the overall maintenance of homeostasis. Unfortunately, this critical ability of cells, when activated incorrectly, can lead to numerous diseases, including cancer. Therefore, in this review, we focus on the plasticity aspect with an emphasis on cancer stem cells (CSCs). We discuss the various forms of plasticity that provide survival advantages to CSCs. Moreover, we explore various factors that affect plasticity. Furthermore, we provide the therapeutic implications of plasticity. Finally, we provide an insight into the future targeted therapies involving plasticity for better clinical outcomes.
Collapse
Affiliation(s)
- Neerada Meenakshi Warrier
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Nachiket Kelkar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Carol Tresa Johnson
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Vijendra Prabhu
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Praveen Kumar
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
24
|
Gredler ML, Zallen JA. Multicellular rosettes link mesenchymal-epithelial transition to radial intercalation in the mouse axial mesoderm. Dev Cell 2023:S1534-5807(23)00134-X. [PMID: 37080203 DOI: 10.1016/j.devcel.2023.03.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/25/2023] [Accepted: 03/24/2023] [Indexed: 04/22/2023]
Abstract
Mesenchymal-epithelial transitions are fundamental drivers of development and disease, but how these behaviors generate epithelial structure is not well understood. Here, we show that mesenchymal-epithelial transitions promote epithelial organization in the mouse node and notochordal plate through the assembly and radial intercalation of three-dimensional rosettes. Axial mesoderm rosettes acquire junctional and apical polarity, develop a central lumen, and dynamically expand, coalesce, and radially intercalate into the surface epithelium, converting mesenchymal-epithelial transitions into higher-order tissue structure. In mouse Par3 mutants, axial mesoderm rosettes establish central tight junction polarity but fail to form an expanded apical domain and lumen. These defects are associated with altered rosette dynamics, delayed radial intercalation, and formation of a small, fragmented surface epithelial structure. These results demonstrate that three-dimensional rosette behaviors translate mesenchymal-epithelial transitions into collective radial intercalation and epithelial formation, providing a strategy for building epithelial sheets from individual self-organizing units in the mammalian embryo.
Collapse
Affiliation(s)
- Marissa L Gredler
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Jennifer A Zallen
- Howard Hughes Medical Institute and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
25
|
Janke EK, Chalmers SB, Roberts-Thomson SJ, Monteith GR. Intersection between calcium signalling and epithelial-mesenchymal plasticity in the context of cancer. Cell Calcium 2023; 112:102741. [PMID: 37060674 DOI: 10.1016/j.ceca.2023.102741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/17/2023]
Abstract
Epithelial-mesenchymal transition (EMT) is a form of cellular phenotypic plasticity and is considered a crucial step in the progression of many cancers. The calcium ion (Ca2+) acts as a ubiquitous second messenger and is implicated in many cellular processes, including cell death, migration, invasion and more recently EMT. Throughout this review, the complex interplay between Ca2+ signalling and EMT will be explored. An overview of the Ca2+ pathways that are remodelled as a consequence of EMT is provided and the role of Ca2+ signalling in regulating EMT and its significance is considered. Ca2+ signalling pathways may represent a therapeutic opportunity to regulate EMT. However, as will be described in this review, the complexity of these signalling pathways represents significant challenges that must be considered if Ca2+ signalling is to be manipulated with the aim of therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Ellen K Janke
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Silke B Chalmers
- Department of Biomedicine, Aarhus University, Nordre Ringgade 1, Aarhus C, 8000, Denmark
| | - Sarah J Roberts-Thomson
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland, 4102, Australia
| | - Gregory R Monteith
- School of Pharmacy, The University of Queensland, 20 Cornwall Street, Woolloongabba, Brisbane, Queensland, 4102, Australia.
| |
Collapse
|
26
|
Friend C, Parajuli P, Razzaque MS, Atfi A. Deciphering epithelial-to-mesenchymal transition in pancreatic cancer. Adv Cancer Res 2023; 159:37-73. [PMID: 37268401 DOI: 10.1016/bs.acr.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Epithelial to mesenchymal transition (EMT) is a complex cellular program that alters epithelial cells and induces their transformation into mesenchymal cells. While essential to normal developmental processes such as embryogenesis and wound healing, EMT has also been linked to the development and progression of various diseases, including fibrogenesis and tumorigenesis. Under homeostatic conditions, initiation of EMT is mediated by key signaling pathways and pro-EMT-transcription factors (EMT-TFs); however, in certain contexts, these pro-EMT regulators and programs also drive cell plasticity and cell stemness to promote oncogenesis as well as metastasis. In this review, we will explain how EMT and EMT-TFs mediate the initiation of pro-cancer states and how they influence late-stage progression and metastasis in pancreatic ductal adenocarcinoma (PDAC), the most severe form of pancreatic cancer.
Collapse
Affiliation(s)
- Creighton Friend
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Parash Parajuli
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Mohammed S Razzaque
- Department of Pathology, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | - Azeddine Atfi
- Department of Biochemistry and Molecular Biology and Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
27
|
Mierke CT. The versatile roles of ADAM8 in cancer cell migration, mechanics, and extracellular matrix remodeling. Front Cell Dev Biol 2023; 11:1130823. [PMID: 36910158 PMCID: PMC9995898 DOI: 10.3389/fcell.2023.1130823] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The posttranslational proteolytic cleavage is a unique and irreversible process that governs the function and half-life of numerous proteins. Thereby the role of the family of A disintegrin and metalloproteases (ADAMs) plays a leading part. A member of this family, ADAM8, has gained attention in regulating disorders, such as neurogenerative diseases, immune function and cancer, by attenuating the function of proteins nearby the extracellular membrane leaflet. This process of "ectodomain shedding" can alter the turnover rate of a number of transmembrane proteins that function in cell adhesion and receptor signal transduction. In the past, the major focus of research about ADAMs have been on neurogenerative diseases, such as Alzheimer, however, there seems to be evidence for a connection between ADAM8 and cancer. The role of ADAMs in the field of cancer research has gained recent attention, but it has been not yet been extensively addressed. Thus, this review article highlights the various roles of ADAM8 with particular emphasis on pathological conditions, such as cancer and malignant cancer progression. Here, the shedding function, direct and indirect matrix degradation, effects on cancer cell mobility and transmigration, and the interplay of ADAM8 with matrix-embedded neighboring cells are presented and discussed. Moreover, the most probable mechanical impact of ADAM8 on cancer cells and their matrix environment is addressed and debated. In summary, this review presents recent advances in substrates/ligands and functions of ADAM8 in its new role in cancer and its potential link to cell mechanical properties and discusses matrix mechanics modifying properties. A deeper comprehension of the regulatory mechanisms governing the expression, subcellular localization, and activity of ADAM8 is expected to reveal appropriate drug targets that will permit a more tailored and fine-tuned modification of its proteolytic activity in cancer development and metastasis.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Biological Physics Division, Peter Debye Institute of Soft Matter Physics, Leipzig University, Leipzig, Germany
| |
Collapse
|
28
|
Galbraith M, Levine H, Onuchic JN, Jia D. Decoding the coupled decision-making of the epithelial-mesenchymal transition and metabolic reprogramming in cancer. iScience 2022; 26:105719. [PMID: 36582834 PMCID: PMC9792913 DOI: 10.1016/j.isci.2022.105719] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/03/2022] [Accepted: 11/30/2022] [Indexed: 12/11/2022] Open
Abstract
Cancer metastasis relies on an orchestration of traits driven by different interacting functional modules, including metabolism and epithelial-mesenchymal transition (EMT). During metastasis, cancer cells can acquire a hybrid metabolic phenotype (W/O) by increasing oxidative phosphorylation without compromising glycolysis and they can acquire a hybrid epithelial/mesenchymal (E/M) phenotype by engaging EMT. Both the W/O and E/M states are associated with high metastatic potentials, and many regulatory links coupling metabolism and EMT have been identified. Here, we investigate the coupled decision-making networks of metabolism and EMT. Their crosstalk can exhibit synergistic or antagonistic effects on the acquisition and stability of different coupled metabolism-EMT states. Strikingly, the aggressive E/M-W/O state can be enabled and stabilized by the crosstalk irrespective of these hybrid states' availability in individual metabolism or EMT modules. Our work emphasizes the mutual activation between metabolism and EMT, providing an important step toward understanding the multifaceted nature of cancer metastasis.
Collapse
Affiliation(s)
- Madeline Galbraith
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA,Department of Physics and Astronomy, Rice University, Houston, TX77005, USA
| | - Herbert Levine
- Center for Theoretical Biological Physics, Department of Physics, and Department of Bioengineering, Northeastern University, Boston, MA02115, USA,Corresponding author
| | - José N. Onuchic
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA,Department of Physics and Astronomy, Rice University, Houston, TX77005, USA,Department of Chemistry, Rice University, Houston, TX77005, USA,Department of Biosciences, Rice University, Houston, TX77005, USA,Corresponding author
| | - Dongya Jia
- Center for Theoretical Biological Physics, Rice University, Houston, TX 77005, USA,Corresponding author
| |
Collapse
|
29
|
Sari E, He C, Margaroli C. Plasticity towards Rigidity: A Macrophage Conundrum in Pulmonary Fibrosis. Int J Mol Sci 2022; 23:11443. [PMID: 36232756 PMCID: PMC9570276 DOI: 10.3390/ijms231911443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 11/16/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive, chronic, and ultimately fatal diffuse parenchymal lung disease. The molecular mechanisms of fibrosis in IPF patients are not fully understood and there is a lack of effective treatments. For decades, different types of drugs such as immunosuppressants and antioxidants have been tested, usually with unsuccessful results. Although two antifibrotic drugs (Nintedanib and Pirfenidone) are approved and used for the treatment of IPF, side effects are common, and they only slow down disease progression without improving patients' survival. Macrophages are central to lung homeostasis, wound healing, and injury. Depending on the stimulus in the microenvironment, macrophages may contribute to fibrosis, but also, they may play a role in the amelioration of fibrosis. In this review, we explore the role of macrophages in IPF in relation to the fibrotic processes, epithelial-mesenchymal transition (EMT), and their crosstalk with resident and recruited cells and we emphasized the importance of macrophages in finding new treatments.
Collapse
Affiliation(s)
- Ezgi Sari
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chao He
- Department of Medicine, Division of Pulmonary, Allergy & Critical Care Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Camilla Margaroli
- Department of Pathology, Division of Cellular and Molecular Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
30
|
ENO2 Promotes Colorectal Cancer Metastasis by Interacting with the LncRNA CYTOR and Activating YAP1-Induced EMT. Cells 2022; 11:cells11152363. [PMID: 35954207 PMCID: PMC9367517 DOI: 10.3390/cells11152363] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/24/2022] [Accepted: 07/29/2022] [Indexed: 01/27/2023] Open
Abstract
The glycolytic enzyme enolase 2 (ENO2) is dysregulated in many types of cancer. However, the roles and detailed molecular mechanism of ENO2 in colorectal cancer (CRC) metastasis remain unclear. Here, we performed a comprehensive analysis of ENO2 expression in 184 local CRC samples and samples from the TCGA and GEO databases and found that ENO2 upregulation in CRC samples was negatively associated with prognosis. By knocking down and overexpressing ENO2, we found that ENO2 promoted CRC cell migration and invasion, which is dependent on its interaction with the long noncoding RNA (lncRNA) CYTOR, but did not depend on glycolysis regulation. Furthermore, CYTOR mediated ENO2 binding to large tumor suppressor 1 (LATS1) and competitively inhibited the phosphorylation of Yes-associated protein 1 (YAP1), which ultimately triggered epithelial–mesenchymal transition (EMT). Collectively, these findings highlight the molecular mechanism of the ENO2–CYTOR interaction, and ENO2 could be considered a potential therapeutic target for CRC.
Collapse
|
31
|
A systematic characterization of microglia-like cell occurrence during retinal organoid differentiation. iScience 2022; 25:104580. [PMID: 35789843 PMCID: PMC9250027 DOI: 10.1016/j.isci.2022.104580] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 05/09/2022] [Accepted: 06/07/2022] [Indexed: 12/17/2022] Open
|
32
|
Xia Y, Zha J, Curull V, Sánchez-Font A, Guitart M, Rodríguez-Fuster A, Aguiló R, Barreiro E. Gene expression profile of epithelial-mesenchymal transition in tumors of patients with nsclc: the influence of COPD. ERJ Open Res 2022; 8:00105-2022. [PMID: 35854873 PMCID: PMC9289374 DOI: 10.1183/23120541.00105-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Epithelial–mesenchymal transition (EMT) is involved in the pathophysiology of lung cancer (LC) and COPD, and the latter is an important risk factor for LC. We hypothesised that the EMT gene expression profile and signalling cascade may differ in LC patients with COPD from those with no respiratory diseases. In lung tumour specimens obtained through video-assisted thoracoscopic surgery from LC (n=20, control group) and LC-COPD patients (n=30), gene expression (quantitative real-time PCR amplification) of EMT markers SMAD3, SMAD4, ZEB2, TWIST1, SNAI1, ICAM1, VIM, CDH2, MMP1 and MMP9 was detected. In lung tumours of LC-COPD compared to LC patients, gene expression of SMAD3, SMAD4, ZEB2 and CDH2 significantly declined, while no significant differences were detected for the other analysed markers. A significant correlation was found between pack-years (smoking burden) and SMAD3 gene expression among LC-COPD patients. LC-COPD patients exhibited mild-to-moderate airway obstruction and a significant reduction in diffusion capacity compared to LC patients. In lung tumour samples of patients with COPD, several markers of EMT expression, namely SMAD3, SMAD4, ZEB2 and CDH2, were differentially expressed suggesting that these markers are likely to play a role in the regulation of EMT in patients with this respiratory disease. Cigarette smoke did not seem to influence the expression of EMT markers in this study. These results have potential clinical implications in the management of patients with LC, particularly in those with underlying respiratory diseases. The downregulation of the epithelial–mesenchymal transition repressor SMAD pathway may favour a pro-tumoural micro-environment in patients with chronic airway diseases, namely COPD, which could be targeted therapeuticallyhttps://bit.ly/39oXnoG
Collapse
|
33
|
Sundararajan V, Burk UC, Bajdak-Rusinek K. Revisiting the miR-200 Family: A Clan of Five Siblings with Essential Roles in Development and Disease. Biomolecules 2022; 12:biom12060781. [PMID: 35740906 PMCID: PMC9221129 DOI: 10.3390/biom12060781] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/29/2022] [Accepted: 06/01/2022] [Indexed: 12/07/2022] Open
Abstract
Over two decades of studies on small noncoding RNA molecules illustrate the significance of microRNAs (miRNAs/miRs) in controlling multiple physiological and pathological functions through post-transcriptional and spatiotemporal gene expression. Among the plethora of miRs that are essential during animal embryonic development, in this review, we elaborate the indispensable role of the miR-200 family (comprising miR-200a, -200b, 200c, -141, and -429) in governing the cellular functions associated with epithelial homeostasis, such as epithelial differentiation and neurogenesis. Additionally, in pathological contexts, miR-200 family members are primarily involved in tumor-suppressive roles, including the reversal of the cancer-associated epithelial–mesenchymal transition dedifferentiation process, and are dysregulated during organ fibrosis. Moreover, recent eminent studies have elucidated the crucial roles of miR-200s in the pathophysiology of multiple neurodegenerative diseases and tissue fibrosis. Lastly, we summarize the key studies that have recognized the potential use of miR-200 members as biomarkers for the diagnosis and prognosis of cancers, elaborating the application of these small biomolecules in aiding early cancer detection and intervention.
Collapse
Affiliation(s)
- Vignesh Sundararajan
- Cancer Science Institute of Singapore, National University of Singapore, Center for Translational Medicine, Singapore 117599, Singapore;
| | - Ulrike C. Burk
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Karolina Bajdak-Rusinek
- Department of Medical Genetics, Faculty of Medical Sciences, Medical University of Silesia, 40-752 Katowice, Poland
- Correspondence: ; Tel.: +48-32-208-8382
| |
Collapse
|
34
|
Plasma membrane phosphatidylinositol (4,5)-bisphosphate is critical for determination of epithelial characteristics. Nat Commun 2022; 13:2347. [PMID: 35534464 PMCID: PMC9085759 DOI: 10.1038/s41467-022-30061-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/13/2022] [Indexed: 11/20/2022] Open
Abstract
Epithelial cells provide cell-cell adhesion that is essential to maintain the integrity of multicellular organisms. Epithelial cell-characterizing proteins, such as epithelial junctional proteins and transcription factors are well defined. However, the role of lipids in epithelial characterization remains poorly understood. Here we show that the phospholipid phosphatidylinositol (4,5)-bisphosphate [PI(4,5)P2] is enriched in the plasma membrane (PM) of epithelial cells. Epithelial cells lose their characteristics upon depletion of PM PI(4,5)P2, and synthesis of PI(4,5)P2 in the PM results in the development of epithelial-like morphology in osteosarcoma cells. PM localization of PARD3 is impaired by depletion of PM PI(4,5)P2 in epithelial cells, whereas expression of the PM-targeting exocyst-docking region of PARD3 induces osteosarcoma cells to show epithelial-like morphological changes, suggesting that PI(4,5)P2 regulates epithelial characteristics by recruiting PARD3 to the PM. These results indicate that a high level of PM PI(4,5)P2 plays a crucial role in the maintenance of epithelial characteristics. Epithelial cells provide cell-cell adhesion to maintain the integrity of multicellular organisms. Here the authors show that phospholipid phosphatidylinositol (4,5)-bisphosphate is critical for the maintenance of epithelial characteristics.
Collapse
|
35
|
Romero-Morales AI, Gama V. Revealing the Impact of Mitochondrial Fitness During Early Neural Development Using Human Brain Organoids. Front Mol Neurosci 2022; 15:840265. [PMID: 35571368 PMCID: PMC9102998 DOI: 10.3389/fnmol.2022.840265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Mitochondrial homeostasis -including function, morphology, and inter-organelle communication- provides guidance to the intrinsic developmental programs of corticogenesis, while also being responsive to environmental and intercellular signals. Two- and three-dimensional platforms have become useful tools to interrogate the capacity of cells to generate neuronal and glia progeny in a background of metabolic dysregulation, but the mechanistic underpinnings underlying the role of mitochondria during human neurogenesis remain unexplored. Here we provide a concise overview of cortical development and the use of pluripotent stem cell models that have contributed to our understanding of mitochondrial and metabolic regulation of early human brain development. We finally discuss the effects of mitochondrial fitness dysregulation seen under stress conditions such as metabolic dysregulation, absence of developmental apoptosis, and hypoxia; and the avenues of research that can be explored with the use of brain organoids.
Collapse
Affiliation(s)
| | - Vivian Gama
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Center for Stem Cell Biology, Vanderbilt University, Nashville, TN, United States
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
36
|
Bose S, Saha P, Chatterjee B, Srivastava AK. Chemokines driven ovarian cancer progression, metastasis and chemoresistance: potential pharmacological targets for cancer therapy. Semin Cancer Biol 2022; 86:568-579. [DOI: 10.1016/j.semcancer.2022.03.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/18/2022]
|
37
|
Glycosphingolipids in human embryonic stem cells and breast cancer stem cells, and potential cancer therapy strategies based on their structures and functions. Glycoconj J 2022; 39:177-195. [PMID: 35267131 DOI: 10.1007/s10719-021-10032-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/27/2021] [Accepted: 12/08/2021] [Indexed: 12/26/2022]
Abstract
Expression profiles of glycosphingolipids (GSLs) in human embryonic stem cell (hESC) lines and their differentiated embryoid body (EB) outgrowth cells, consisting of three germ layers, were surveyed systematically. Several globo- and lacto-series GSLs were identified in undifferentiated hESCs and during differentiation of hESCs to EB outgrowth cells, and core structure switching of these GSLs to gangliosides was observed. Such switching was attributable to altered expression of key glycosyltransferases (GTs) in GSL biosynthetic pathways, reflecting the unique stage-specific transitions and mechanisms characteristic of the differentiation process. Lineage-specific differentiation of hESCs was associated with further GSL alterations. During differentiation of undifferentiated hESCs to neural progenitor cells, core structure switching from globo- and lacto-series to primarily gangliosides (particularly GD3) was again observed. During differentiation to endodermal cells, alterations of GSL profiles were distinct from those in differentiation to EB outgrowth or neural progenitor cells, with high expression of Gb4Cer and low expression of stage-specific embryonic antigen (SSEA)-3, -4, or GD3 in endodermal cells. Again, such profile changes resulted from alterations of key GTs in GSL biosynthetic pathways. Novel glycan structures identified on hESCs and their differentiated counterparts presumably play functional roles in hESCs and related cancer or cancer stem cells, and will be useful as surface biomarkers. We also examined GSL expression profiles in breast cancer stem cells (CSCs), using a model of epithelial-mesenchymal transition (EMT)-induced human breast CSCs. We found that GD2 and GD3, together with their common upstream GTs, GD3 synthase (GD3S) and GD2/GM2 synthase, maintained stem cell phenotype in breast CSCs. Subsequent studies showed that GD3 was associated with epidermal growth factor receptor (EGFR), and activated EGFR signaling in breast CSCs and breast cancer cell lines. GD3S knockdown enhanced cytotoxicity of gefitinib (an EGFR kinase inhibitor) in resistant MDA-MB468 cells, both in vitro and in vivo. Our findings indicate that GD3S contributes to gefitinib resistance in EGFR-positive breast cancer cells, and is a potentially useful therapeutic target in drug-resistant breast cancers.
Collapse
|
38
|
Mierke CT. Viscoelasticity, Like Forces, Plays a Role in Mechanotransduction. Front Cell Dev Biol 2022; 10:789841. [PMID: 35223831 PMCID: PMC8864183 DOI: 10.3389/fcell.2022.789841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Abstract
Viscoelasticity and its alteration in time and space has turned out to act as a key element in fundamental biological processes in living systems, such as morphogenesis and motility. Based on experimental and theoretical findings it can be proposed that viscoelasticity of cells, spheroids and tissues seems to be a collective characteristic that demands macromolecular, intracellular component and intercellular interactions. A major challenge is to couple the alterations in the macroscopic structural or material characteristics of cells, spheroids and tissues, such as cell and tissue phase transitions, to the microscopic interferences of their elements. Therefore, the biophysical technologies need to be improved, advanced and connected to classical biological assays. In this review, the viscoelastic nature of cytoskeletal, extracellular and cellular networks is presented and discussed. Viscoelasticity is conceptualized as a major contributor to cell migration and invasion and it is discussed whether it can serve as a biomarker for the cells' migratory capacity in several biological contexts. It can be hypothesized that the statistical mechanics of intra- and extracellular networks may be applied in the future as a powerful tool to explore quantitatively the biomechanical foundation of viscoelasticity over a broad range of time and length scales. Finally, the importance of the cellular viscoelasticity is illustrated in identifying and characterizing multiple disorders, such as cancer, tissue injuries, acute or chronic inflammations or fibrotic diseases.
Collapse
Affiliation(s)
- Claudia Tanja Mierke
- Faculty of Physics and Earth Science, Peter Debye Institute of Soft Matter Physics, Biological Physics Division, University of Leipzig, Leipzig, Germany
| |
Collapse
|
39
|
Glogauer J, Blay J. Cannabinoids, their cellular receptors, and effects on the invasive phenotype of carcinoma and metastasis. Cancer Rep (Hoboken) 2022; 5:e1475. [PMID: 34313032 PMCID: PMC8842690 DOI: 10.1002/cnr2.1475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/20/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND The morbidity and mortality of cancer are significantly impacted by the invasive and metastatic potential of particular subgroups of malignant cells within a tumor. The particular pre-metastatic properties of cancerous cells are thus a critical target for novel therapeutics in the oncology field. Cannabinoid molecules have been investigated in recent years in the context of invasion and metastasis of various malignancies, with varying effects reported in the literature. RECENT FINDINGS There was substantial variability in the findings reported by the literature of the effects of cannabinoid molecules on cancer cell invasion and metastasis. These effects varied depending on which ligand and which of the CB1, CB2, or GPR55 receptors were investigated. These findings suggest a role for the phenomenon of biased signaling in explaining the diversity of effects of cannabinoid molecules on cancer cell invasion. CONCLUSION While substantially more investigation is required into the effects of cannabinoid molecules on cancer cell invasion and metastasis, we describe in this review the significant diversity in the responses of cancer cells to cannabinoid molecules in terms of their invasive and metastatic capacities.
Collapse
Affiliation(s)
- Judah Glogauer
- Michael G. DeGroote School of MedicineMcMaster University Waterloo Regional CampusKitchenerOntarioCanada
| | - Jonathan Blay
- School of PharmacyUniversity of WaterlooWaterlooOntarioCanada
- Department of PathologyDalhousie UniversityHalifaxNova ScotiaCanada
| |
Collapse
|
40
|
Suprewicz Ł, Swoger M, Gupta S, Piktel E, Byfield FJ, Iwamoto DV, Germann D, Reszeć J, Marcińczyk N, Carroll RJ, Janmey PA, Schwarz JM, Bucki R, Patteson AE. Extracellular Vimentin as a Target Against SARS-CoV-2 Host Cell Invasion. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105640. [PMID: 34866333 PMCID: PMC9252327 DOI: 10.1002/smll.202105640] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/29/2021] [Indexed: 05/07/2023]
Abstract
Infection of human cells by pathogens, including SARS-CoV-2, typically proceeds by cell surface binding to a crucial receptor. The primary receptor for SARS-CoV-2 is the angiotensin-converting enzyme 2 (ACE2), yet new studies reveal the importance of additional extracellular co-receptors that mediate binding and host cell invasion by SARS-CoV-2. Vimentin is an intermediate filament protein that is increasingly recognized as being present on the extracellular surface of a subset of cell types, where it can bind to and facilitate pathogens' cellular uptake. Biophysical and cell infection studies are done to determine whether vimentin might bind SARS-CoV-2 and facilitate its uptake. Dynamic light scattering shows that vimentin binds to pseudovirus coated with the SARS-CoV-2 spike protein, and antibodies against vimentin block in vitro SARS-CoV-2 pseudovirus infection of ACE2-expressing cells. The results are consistent with a model in which extracellular vimentin acts as a co-receptor for SARS-CoV-2 spike protein with a binding affinity less than that of the spike protein with ACE2. Extracellular vimentin may thus serve as a critical component of the SARS-CoV-2 spike protein-ACE2 complex in mediating SARS-CoV-2 cell entry, and vimentin-targeting agents may yield new therapeutic strategies for preventing and slowing SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Maxx Swoger
- Physics Department and BioInspired Institute, Syracuse University
| | - Sarthak Gupta
- Physics Department and BioInspired Institute, Syracuse University
| | - Ewelina Piktel
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
| | - Fitzroy J. Byfield
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania
| | - Daniel V. Iwamoto
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania
| | - Danielle Germann
- Physics Department and BioInspired Institute, Syracuse University
| | - Joanna Reszeć
- Department of Medical Pathomorphology, Medical University of Białystok, PL-15269 Białystok, Poland
| | - Natalia Marcińczyk
- Department of Biopharmacy, Medical University of Białystok, Białystok, Poland
| | | | - Paul A. Janmey
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania
| | - J. M. Schwarz
- Physics Department and BioInspired Institute, Syracuse University
- Indian Creek Farm, Ithaca, NY
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Poland
- Institute for Medicine and Engineering and Department of Physiology, University of Pennsylvania
| | | |
Collapse
|
41
|
Nam MW, Kim CW, Choi KC. Epithelial-Mesenchymal Transition-Inducing Factors Involved in the Progression of Lung Cancers. Biomol Ther (Seoul) 2022; 30:213-220. [PMID: 35039464 PMCID: PMC9047489 DOI: 10.4062/biomolther.2021.178] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/05/2022] [Accepted: 01/05/2022] [Indexed: 11/15/2022] Open
Abstract
Although there have been advances in cancer therapy and surgical improvement, lung cancer has the lowest survival rate (19%) at all stages. This is because most patients are diagnosed with concurrent metastasis, which occurs due to numerous related reasons. Especially, lung cancer is one of the most common and malignant cancers in the world. Although there are advanced therapeutic strategies, lung cancer remains one of the main causes of cancer death. Recent work has proposed that epithelial-mesenchymal transition (EMT) is the main cause of metastasis in most cases of human cancers including lung cancer. EMT involves the conversion of epithelial cells, wherein the cells lose their epithelial abilities and become mesenchymal cells involved in embryonic development, such as gastrulation and neural crest formation. In addition, recent research has indicated that EMT contributes to altering the cancer cells into cancer stem cells (CSCs). Although EMT is important in the developmental stages, this process also activates lung cancer progression, including complicated and diverse signaling pathways. Despite the numerous investigations on signaling pathways involved in the progression of lung cancer, this malignancy is considered critical for treatment. EMT in lung cancer involves many transcription factors and inducers, for example, Snail, TWIST, and ZEB are the master regulators of EMT. EMT-related factors and signaling pathways are involved in the progression of lung cancer, proposing new approaches to lung cancer therapy. In the current review, we highlight the signaling pathways implicated in lung cancer and elucidate the correlation of these pathways, indicating new insights to treat lung cancer and other malignancies.
Collapse
Affiliation(s)
- Min-Woo Nam
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Cho-Won Kim
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Kyung-Chul Choi
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea
| |
Collapse
|
42
|
Ishiguro-Katsuta H, Okada Y. Effects of TGF-β on Growth and Invasion of Human Oral Squamous Cell Carcinoma Cell Lines. J HARD TISSUE BIOL 2022. [DOI: 10.2485/jhtb.31.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Hitoe Ishiguro-Katsuta
- Histopathology of Pathogenic Mechanisms, Field of Oral & Maxillofacial Imaging and Histopathological Diagnostics, Course of Applied Science, The Nippon Dental University Graduate School of Life Dentistry at Niigata
| | - Yasuo Okada
- Department of Pathology, The Nippon Dental University School of Life Dentistry at Niigata
| |
Collapse
|
43
|
Lotsberg ML, Davidsen KT, D’Mello Peters S, Haaland GS, Rayford A, Lorens JB, Engelsen AST. The Role of AXL Receptor Tyrosine Kinase in Cancer Cell Plasticity and Therapy Resistance. BIOMARKERS OF THE TUMOR MICROENVIRONMENT 2022:307-327. [DOI: 10.1007/978-3-030-98950-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
44
|
Hu P, So K, Chen H, Lin Q, Xu M, Lin Y. A monoclonal antibody against basic fibroblast growth factor attenuates cisplatin resistance in lung cancer by suppressing the epithelial-mesenchymal transition. Int J Immunopathol Pharmacol 2022; 36:3946320221105134. [PMID: 35649742 PMCID: PMC9168941 DOI: 10.1177/03946320221105134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objectives: To investigate the underlying mechanisms of how the basic fibroblast growth factor monoclonal antibody (bFGFmAb) attenuates cisplatin (DDP) resistance in lung cancer using A549 cells and cisplatin-resistant A549 cells (A549/DDP). Methods: Cancer cell proliferation, cell viability, and 50% inhibitory concentration (IC50) of cisplatin were assessed. Transwell assays were utilized to evaluate the invasion activity of tumor cells in response to treatment. Epithelial-to-mesenchymal transition markers and drug resistance proteins were analysed using Western blots. Results: We demonstrate that the bFGFmAb inhibits the proliferation and invasion of both A549 and A549/DDP cells. The bFGFmAb increases cisplatin sensitivity of both A549 and A549/DDP cells as evidenced by an increase in the IC50 of cisplatin in A549 and A549/DDP cells. Furthermore, bFGFmAb significantly increases the expression of E-cadherin, whilst decreasing the expression of N-cadherin and bFGF in both cell lines, thereby showing inhibition of epithelial-to-mesenchymal transition. In addition, we demonstrate that bFGFmAb significantly reduces the expression of the lung resistance protein. Conclusions: Our data suggests that the humanized bFGFmAb is a promising agent to attenuate cisplatin resistance in NSCLC. The underlying mechanism for this effect of bFGFmAb may be associated with the inhibition of epithelial-to-mesenchymal transition and reduced expression of lung resistance protein.
Collapse
Affiliation(s)
- Penghui Hu
- Department of Oncology, 162698The First Affiliated Hospital of Jinan University, Guangzhou, China
- Department of Oncology, 71537Jiangmen Central Hospital, Jiangmen, China
| | - Kaman So
- Department of Oncology, 162698The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Hongjie Chen
- Department of Traditional Chinese Medicine, 144991Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qimou Lin
- Department of Surgery, 71537Jiangmen Central Hospital, Jiangmen, China
| | - Meng Xu
- Department of Oncology, 162698The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yiguang Lin
- Department of Traditional Chinese Medicine, 144991Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
- School of Life Sciences, 1994University of Technology Sydney, Sydney, NSW, Australia
- Centre Laboratory, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| |
Collapse
|
45
|
Lohoff T, Ghazanfar S, Missarova A, Koulena N, Pierson N, Griffiths JA, Bardot ES, Eng CHL, Tyser RCV, Argelaguet R, Guibentif C, Srinivas S, Briscoe J, Simons BD, Hadjantonakis AK, Göttgens B, Reik W, Nichols J, Cai L, Marioni JC. Integration of spatial and single-cell transcriptomic data elucidates mouse organogenesis. Nat Biotechnol 2022; 40:74-85. [PMID: 34489600 PMCID: PMC8763645 DOI: 10.1038/s41587-021-01006-2] [Citation(s) in RCA: 161] [Impact Index Per Article: 53.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Molecular profiling of single cells has advanced our knowledge of the molecular basis of development. However, current approaches mostly rely on dissociating cells from tissues, thereby losing the crucial spatial context of regulatory processes. Here, we apply an image-based single-cell transcriptomics method, sequential fluorescence in situ hybridization (seqFISH), to detect mRNAs for 387 target genes in tissue sections of mouse embryos at the 8-12 somite stage. By integrating spatial context and multiplexed transcriptional measurements with two single-cell transcriptome atlases, we characterize cell types across the embryo and demonstrate that spatially resolved expression of genes not profiled by seqFISH can be imputed. We use this high-resolution spatial map to characterize fundamental steps in the patterning of the midbrain-hindbrain boundary (MHB) and the developing gut tube. We uncover axes of cell differentiation that are not apparent from single-cell RNA-sequencing (scRNA-seq) data, such as early dorsal-ventral separation of esophageal and tracheal progenitor populations in the gut tube. Our method provides an approach for studying cell fate decisions in complex tissues and development.
Collapse
Affiliation(s)
- T Lohoff
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- Epigenetics Programme, Babraham Institute, Cambridge, UK
| | - S Ghazanfar
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - A Missarova
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - N Koulena
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - N Pierson
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - J A Griffiths
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
- Genomics Plc, Cambridge, UK
| | - E S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - C-H L Eng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - R C V Tyser
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - R Argelaguet
- Epigenetics Programme, Babraham Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK
| | - C Guibentif
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
- Sahlgrenska Center for Cancer Research, Department of Microbiology and Immunology, University of Gothenburg, Gothenburg, Sweden
| | - S Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J Briscoe
- The Francis Crick Institute, London, UK
| | - B D Simons
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- The Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of Cambridge, Cambridge, UK
| | - A-K Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - B Göttgens
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | - W Reik
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Epigenetics Programme, Babraham Institute, Cambridge, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| | - J Nichols
- Wellcome-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Cambridge, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK.
| | - L Cai
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - J C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
46
|
Nasri A, Foisset F, Ahmed E, Lahmar Z, Vachier I, Jorgensen C, Assou S, Bourdin A, De Vos J. Roles of Mesenchymal Cells in the Lung: From Lung Development to Chronic Obstructive Pulmonary Disease. Cells 2021; 10:3467. [PMID: 34943975 PMCID: PMC8700565 DOI: 10.3390/cells10123467] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Mesenchymal cells are an essential cell type because of their role in tissue support, their multilineage differentiation capacities and their potential clinical applications. They play a crucial role during lung development by interacting with airway epithelium, and also during lung regeneration and remodeling after injury. However, much less is known about their function in lung disease. In this review, we discuss the origins of mesenchymal cells during lung development, their crosstalk with the epithelium, and their role in lung diseases, particularly in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Amel Nasri
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Florent Foisset
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Engi Ahmed
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Zakaria Lahmar
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - Isabelle Vachier
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
| | - Christian Jorgensen
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Said Assou
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
| | - Arnaud Bourdin
- Department of Respiratory Diseases, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34090 Montpellier, France; (E.A.); (Z.L.); (I.V.); (A.B.)
- PhyMedExp, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34295 Montpellier, France
| | - John De Vos
- Institute for Regenerative Medicine and Biotherapy, Université de Montpellier, INSERM, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France; (A.N.); (F.F.); (C.J.); (S.A.)
- Department of Cell and Tissue Engineering, Université de Montpellier, Centre Hospitalier Universitaire de Montpellier, 34000 Montpellier, France
| |
Collapse
|
47
|
Cela V, Malacarne E, Obino MER, Marzi I, Papini F, Vergine F, Pisacreta E, Zappelli E, Pietrobono D, Scarfò G, Daniele S, Franzoni F, Martini C, Artini PG. Exploring Epithelial-Mesenchymal Transition Signals in Endometriosis Diagnosis and In Vitro Fertilization Outcomes. Biomedicines 2021; 9:biomedicines9111681. [PMID: 34829910 PMCID: PMC8615497 DOI: 10.3390/biomedicines9111681] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/02/2021] [Accepted: 11/11/2021] [Indexed: 01/05/2023] Open
Abstract
Endometriosis (EMS) pathogenesis has been related to the release of inflammatory mediators in peritoneal fluid, creating an altered microenvironment that leads to low-grade oocyte/embryos and to the reduction of implantation rates. The Epithelial–Mesenchymal Transition (EMT), an inflammation-related process, can be a further contributing factor to EMS. This study aimed to investigate, among various cytokines and EMT markers (Cadherins, TGF-β, HIF-1α), diagnostic markers of EMS and prognostic factors of in vitro fertilization (IVF) outcomes. Herein, EMS patients manifested higher serum levels of the inflammatory molecules IL-6, IL-8, and IL-12 and a decrease in the concentrations of the anti-inflammatory IL-10. Moreover, biochemical markers associated with the EMT process were more elevated in serum and follicular fluid (FF) of EMS patients than in controls. At the end, the number of good-quality embryos was inversely related to serum IL-6 and EMT markers. Interestingly, serum IL-6 and FF IL-10 concentrations differentiated EMS patients from controls. Finally, serum IL-8 and E-Cadherin levels, as well as FF IL-10, predicted positive IVF outcome with great accuracy. Our data confirm the pivotal role of inflammatory mediators (i.e., IL-6 and IL-10) in EMS pathogenesis and suggest that EMT-related markers are elevated in EMS patients and can be predictive of IVF outcome.
Collapse
Affiliation(s)
- Vito Cela
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
| | - Elisa Malacarne
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
| | - Maria Elena Rosa Obino
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
| | - Ilaria Marzi
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
| | - Francesca Papini
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
| | - Francesca Vergine
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
| | - Elena Pisacreta
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
| | - Elisa Zappelli
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.Z.); (D.P.); (S.D.); (C.M.)
| | - Deborah Pietrobono
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.Z.); (D.P.); (S.D.); (C.M.)
| | - Giorgia Scarfò
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (F.F.)
| | - Simona Daniele
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.Z.); (D.P.); (S.D.); (C.M.)
| | - Ferdinando Franzoni
- Division of General Medicine, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (G.S.); (F.F.)
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy; (E.Z.); (D.P.); (S.D.); (C.M.)
| | - Paolo Giovanni Artini
- Division of Gynecology and Obstetrics, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (V.C.); (E.M.); (M.E.R.O.); (I.M.); (F.P.); (F.V.); (E.P.)
- Correspondence: ; Tel.: +39-050-554-104
| |
Collapse
|
48
|
Palamaris K, Felekouras E, Sakellariou S. Epithelial to Mesenchymal Transition: Key Regulator of Pancreatic Ductal Adenocarcinoma Progression and Chemoresistance. Cancers (Basel) 2021; 13:cancers13215532. [PMID: 34771695 PMCID: PMC8582651 DOI: 10.3390/cancers13215532] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma’s (PDAC) dismal prognosis is associated with its aggressive biological behavior and resistance to chemotherapy. Epithelial to mesenchymal transition (EMT) has been recognized as a key driver of PDAC progression and development of drug resistance. EMT is a transient and reversible process leading to transdifferentiation of epithelial cells into a more mesenchymal phenotype. It is regulated by multiple signaling pathways that control the activity of a transcription factors network. Activation of EMT in pre-invasive stages of PDAC has been accused for early dissemination. Furthermore, it contributes to the development of intratumoral heterogeneity and drug resistance. This review summarizes the available data regarding signaling networks regulating EMT and describes the integral role of EMT in different aspects of PDAC pathogenesis. Abstract Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies, characterized by aggressive biological behavior and a lack of response to currently available chemotherapy. Emerging evidence has identified epithelial to mesenchymal transition (EMT) as a key driver of PDAC progression and a central regulator in the development of drug resistance. EMT is a reversible transdifferentiation process controlled by complex interactions between multiple signaling pathways such as TGFb, Wnt, and Notch, which converge to a network of specific transcription factors. Activation of EMT transcriptional reprogramming converts cancer cells of epithelial differentiation into a more mesenchymal phenotypic state. EMT occurrence in pre-invasive pancreatic lesions has been implicated in early PDAC dissemination. Moreover, cancer cell phenotypic plasticity driven by EMT contributes to intratumoral heterogeneity and drug tolerance and is mechanistically associated with the emergence of cells exhibiting cancer stem cells (CSCs) phenotype. In this review we summarize the available data on the signaling cascades regulating EMT and the molecular isnteractions between pancreatic cancer and stromal cells that activate them. In addition, we provide a link between EMT, tumor progression, and chemoresistance in PDAC.
Collapse
Affiliation(s)
- Kostas Palamaris
- 1ST Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Evangelos Felekouras
- 1ST Department of Surgery, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Stratigoula Sakellariou
- 1ST Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Correspondence:
| |
Collapse
|
49
|
The Underappreciated Role of Epithelial Mesenchymal Transition in Chronic Obstructive Pulmonary Disease and Its Strong Link to Lung Cancer. Biomolecules 2021; 11:biom11091394. [PMID: 34572606 PMCID: PMC8472619 DOI: 10.3390/biom11091394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/14/2022] Open
Abstract
The World Health Organisation reported COPD to be the third leading cause of death globally in 2019, and in 2020, the most common cause of cancer death was lung cancer; when these linked conditions are added together they come near the top of the leading causes of mortality. The cell-biological program termed epithelial-to-mesenchymal transition (EMT) plays an important role in organ development, fibrosis and cancer progression. Over the past decade there has emerged a substantial literature that also links EMT specifically to the pathophysiology of chronic obstructive pulmonary disease (COPD) as primarily an airway fibrosis disease; COPD is a recognised strong independent risk factor for the development of lung cancer, over and above the risks associated with smoking. In this review, our primary focus is to highlight these linkages and alert both the COPD and lung cancer fields to these complex interactions. We emphasise the need for inter-disciplinary attention and research focused on the likely crucial roles of EMT (and potential for its inhibition) with recognition of its strategic place mechanistically in both COPD and lung cancer. As part of this we discuss the future potential directions for novel therapeutic opportunities, including evidence-based strategic repurposing of currently used familiar/approved medications.
Collapse
|
50
|
Karsten N, Kolben T, Mahner S, Beyer S, Meister S, Kuhn C, Schmoeckel E, Wuerstlein R, Harbeck N, Ditsch N, Jeschke U, Friese K, Kolben TM. The role of E-Cadherin expression in primary site of breast cancer. Arch Gynecol Obstet 2021; 305:913-920. [PMID: 34510244 PMCID: PMC8967771 DOI: 10.1007/s00404-021-06198-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE The tumour's ability to metastasize is the major cause for fatal outcomes in cancer diseases. In breast cancer, aberrant E-Cadherin expression has been linked to invasiveness and poor prognosis. METHOD We assessed expression of E-Cadherin by immunohistochemistry in primary tumour tissue from 125 female breast cancer patients. Staining intensities were analysed using the immunoreactive score (IRS). We investigated E-Cadherin expression and its associations with clinicopathological parameters (age, tumour size, lymph node status, grade, hormone receptors, Her2 Status) as well as with recurrence and survival. RESULTS Increased, rather than aberrant E-Cadherin expression was found and was associated with poor outcome (p = 0.046). Our data show an association between elevated E-Cadherin in primary tumour tissue and an unfavourable negative prognosis in patients. CONCLUSION This association was somehow unexpected as loss of E-Cadherin has long been regarded as a prerequisite for development of invasiveness and metastases. Our findings support the notion that E-Cadherin promotes, rather than suppresses, development of metastasis and invasiveness.
Collapse
Affiliation(s)
- Nora Karsten
- Department of Obstetrics and Gynaecology, Breast Center and CCCLMU, LMU University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| | - Thomas Kolben
- Department of Obstetrics and Gynaecology, Breast Center and CCCLMU, LMU University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| | - Sven Mahner
- Department of Obstetrics and Gynaecology, Breast Center and CCCLMU, LMU University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| | - Susanne Beyer
- Department of Obstetrics and Gynaecology, Breast Center and CCCLMU, LMU University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| | - Sarah Meister
- Department of Obstetrics and Gynaecology, Breast Center and CCCLMU, LMU University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| | - Christina Kuhn
- Department of Gynaecology and Obstetrics, University Hospital, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Elisa Schmoeckel
- Department of Pathology, LMU Munich, Marchioninistr. 27, 81377, Munich, Germany
| | - Rachel Wuerstlein
- Department of Obstetrics and Gynaecology, Breast Center and CCCLMU, LMU University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| | - Nadia Harbeck
- Department of Obstetrics and Gynaecology, Breast Center and CCCLMU, LMU University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| | - Nina Ditsch
- Department of Gynaecology and Obstetrics, University Hospital, Stenglinstr. 2, 86156, Augsburg, Germany
| | - Udo Jeschke
- Department of Obstetrics and Gynaecology, Breast Center and CCCLMU, LMU University Hospital, Marchioninistr. 15, 81377, Munich, Germany. .,Department of Gynaecology and Obstetrics, University Hospital, Stenglinstr. 2, 86156, Augsburg, Germany.
| | - Klaus Friese
- Department of Oncology, Hospital Bad Trissl, Bad-Trissl-Straße 73, 83080, Oberaudorf, Germany
| | - Theresa Maria Kolben
- Department of Obstetrics and Gynaecology, Breast Center and CCCLMU, LMU University Hospital, Marchioninistr. 15, 81377, Munich, Germany
| |
Collapse
|