1
|
Dong J, Zhang J, Cheng S, Qin B, Jin K, Chen B, Zhang Y, Lu J. A high-fat diet induced depression-like phenotype via hypocretin-HCRTR1 mediated inflammation activation. Food Funct 2024; 15:8661-8673. [PMID: 39056112 DOI: 10.1039/d4fo00210e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Background: A high-fat diet (HFD) is generally associated with an increased risk of mental disorders that constitute a sizeable worldwide health. A HFD results in the gut microbiota-brain axis being altered and linked to mental disorders. Hypocretin-1, which can promote appetite, has been previously confirmed to be associated with depression. However, no exact relationship has been found for hypocretin between depression and HFDs. Methods: Adult male SD rats were randomly assigned to either a HFD or a normal diet for eight weeks, followed by behavioral tests and plasma biochemical analyses. Then, we investigated the protein and mRNA levels of inflammation-related factors in the hippocampus. We also observed morphological changes in brain microglia and lipid accumulation. Additionally, metagenomic and metabolomic analyses of gut microbiomes were performed. 3T3-L1 cells were utilized in vitro to investigate the impact of hypocretin receptor 1 antagonists (SB334867) on lipid accumulation. To consider the connection between the brain and adipose tissue, we used a conditioned medium (CM) treated with 3T3-L1 cells to observe the activation and phagocytosis of BV2 cells. Following a 12-week period of feeding a HFD to C57BL/6 mice, a three-week intervention period was initiated during which the administration of SB334867 was observed. This was followed by a series of assessments, including monitoring of body weight changes and emotional problems, as well as attention to plasma biochemical levels and microglial cell phenotypes in the brain. Results: The HFD rats displayed anxiety and depressive-like behaviors. HFD rats exhibited increased plasma HDL, LDL, and TC levels. A HFD also causes an increase in hypocretin-1 and hypocretin-2 in the hypothalamus. Metagenomics and metabolomics revealed that the HFD caused an increase in the relative abundance of associated inflammatory bacteria and decreased the abundance of anti-inflammatory and bile acid metabolites. Compared with the CTR group, hippocampal microglia in the HFD group were significantly activated and accompanied by lipid deposition. At the same time, protein and mRNA expression levels of inflammation-related factors were increased. We found that SB334867 could significantly reduce lipid accumulation in 3T3-L1 cells after differentiation. The expression of inflammatory factors decreased in the SB334867 group. The administration of SB334867 was found to reverse the adverse effects of the HFD on body weight, depressive-like behaviour and anxiety-like mood. Furthermore, this treatment was associated with improvements in plasma biochemical levels and a reduction in the number of microglia in the brain. Conclusions: In summary, our results demonstrated that a HFD induced anxiety and depressive-like behaviors, which may be linked to the increased hypocretin-1 level and lipid accumulation. Supplementation with SB334867 improved the above. These observations highlight the possibility of hypocretin-1 inducing the risk of HFD-associated emotional dysfunctions.
Collapse
Affiliation(s)
- Jingyi Dong
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jinghui Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Shangping Cheng
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Bin Qin
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Kangyu Jin
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Bing Chen
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, China
| | - Yuyan Zhang
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
| | - Jing Lu
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, 310053, China.
- Department of Psychiatry, The First Affiliated Hospital, Zhejiang University School of Medicine, China
- Zhejiang Key Laboratory of Precision psychiatry, Hangzhou 310003, China
| |
Collapse
|
2
|
Bouâouda H, Jha PK. Orexin and MCH neurons: regulators of sleep and metabolism. Front Neurosci 2023; 17:1230428. [PMID: 37674517 PMCID: PMC10478345 DOI: 10.3389/fnins.2023.1230428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023] Open
Abstract
Sleep-wake and fasting-feeding are tightly coupled behavioral states that require coordination between several brain regions. The mammalian lateral hypothalamus (LH) is a functionally and anatomically complex brain region harboring heterogeneous cell populations that regulate sleep, feeding, and energy metabolism. Significant attempts were made to understand the cellular and circuit bases of LH actions. Rapid advancements in genetic and electrophysiological manipulation help to understand the role of discrete LH cell populations. The opposing action of LH orexin/hypocretin and melanin-concentrating hormone (MCH) neurons on metabolic sensing and sleep-wake regulation make them the candidate to explore in detail. This review surveys the molecular, genetic, and neuronal components of orexin and MCH signaling in the regulation of sleep and metabolism.
Collapse
Affiliation(s)
- Hanan Bouâouda
- Pharmacology Institute, Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Pawan Kumar Jha
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
3
|
Ten-Blanco M, Flores Á, Cristino L, Pereda-Pérez I, Berrendero F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: from animal to clinical studies. Front Neuroendocrinol 2023; 69:101066. [PMID: 37015302 DOI: 10.1016/j.yfrne.2023.101066] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/15/2023] [Accepted: 03/30/2023] [Indexed: 04/06/2023]
Abstract
Orexins (also known as hypocretins) are neuropeptides located exclusively in hypothalamic neurons that have extensive projections throughout the central nervous system and bind two different G protein-coupled receptors (OX1R and OX2R). Since its discovery in 1998, the orexin system has gained the interest of the scientific community as a potential therapeutic target for the treatment of different pathological conditions. Considering previous basic science research, a dual orexin receptor antagonist, suvorexant, was the first orexin agent to be approved by the US Food and Drug Administration to treat insomnia. In this review, we discuss and update the main preclinical and human studies involving the orexin system with several psychiatric and neurodegenerative diseases. This system constitutes a nice example of how basic scientific research driven by curiosity can be the best route to the generation of new and powerful pharmacological treatments.
Collapse
Affiliation(s)
- Marc Ten-Blanco
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - África Flores
- Pharmacology Unit, Department of Pathology and Experimental Therapeutics, Neurosciences Institute, University of Barcelona and Bellvitge University Hospital-IDIBELL, 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Luigia Cristino
- Endocannabinoid Research Group, Institute of Biomolecular Chemistry (ICB), National Research Council (CNR), Pozzuoli, Italy
| | - Inmaculada Pereda-Pérez
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Fernando Berrendero
- Faculty of Experimental Sciences, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Madrid, Spain.
| |
Collapse
|
4
|
Schéle E, Stoltenborg I, Xie A, Peris-Sampedro F, Adan RAH, Dickson SL. Engagement of the brain orexin system in activity-based anorexia behaviour in mice. Eur Neuropsychopharmacol 2023; 70:63-71. [PMID: 36889178 DOI: 10.1016/j.euroneuro.2023.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/24/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
While excessive physical activity is common amongst anorexia nervosa (AN) patients, contributing to their low body weight, little is known about the underlying biology and effective treatments targeting the hyperactivity are lacking. Given the role of orexin in arousal, physical activity and energy expenditure, we sought to investigate i) the extent to which orexin neurons are activated during severe anorectic state in the activity-based anorexia (ABA) mouse model, and ii) if the dual orexin receptor antagonist suvorexant can reduce physical activity during ABA. The Fos-TRAP2 technique enable us to visually capture active neurons (Fos expressing) during severe anorectic state in the ABA mouse model, and by immunohistochemistry, determine the extent to which these active neurons are orexin positive. In addition, suvorexant was administered peripherally to ABA mice and running activity was monitored. We found that a large population of orexin neurons in the hypothalamus are activated by ABA and that peripheral administration of suvorexant decreases food anticipatory activity in these mice. We conclude that orexin may be a suitable target to treat hyperactivity in AN and recommend further studies to examine the efficacy of suvorexant in aiding AN patients to control their drive for hyperactivity.
Collapse
Affiliation(s)
- Erik Schéle
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden.
| | - Iris Stoltenborg
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Anders Xie
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Fiona Peris-Sampedro
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Roger A H Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht and Utrecht University, 3584 CJ Utrecht, The Netherlands
| | - Suzanne L Dickson
- Department of Physiology/Endocrine, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 405 30 Gothenburg, Sweden
| |
Collapse
|
5
|
Jeczmien-Lazur JS, Sanetra AM, Pradel K, Izowit G, Chrobok L, Palus-Chramiec K, Piggins HD, Lewandowski MH. Metabolic cues impact non-oscillatory intergeniculate leaflet and ventral lateral geniculate nucleus: standard versus high-fat diet comparative study. J Physiol 2023; 601:979-1016. [PMID: 36661095 DOI: 10.1113/jp283757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 01/12/2023] [Indexed: 01/21/2023] Open
Abstract
The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) are subcortical structures involved in entrainment of the brain's circadian system to photic and non-photic (e.g. metabolic and arousal) cues. Both receive information about environmental light from photoreceptors, exhibit infra-slow oscillations (ISO) in vivo, and connect to the master circadian clock. Although current evidence demonstrates that the IGL/VLG communicate metabolic information and are crucial for entrainment of circadian rhythms to time-restricted feeding, their sensitivity to food intake-related peptides has not been investigated yet. We examined the effect of metabolically relevant peptides on the spontaneous activity of IGL/VLG neurons. Using ex vivo and in vivo electrophysiological recordings as well as in situ hybridisation, we tested potential sensitivity of the IGL/VLG to anorexigenic and orexigenic peptides, such as cholecystokinin, glucagon-like peptide 1, oxyntomodulin, peptide YY, orexin A and ghrelin. We explored neuronal responses to these drugs during day and night, and in standard vs. high-fat diet conditions. We found that IGL/VLG neurons responded to all the substances tested, except peptide YY. Moreover, more neurons responded to anorexigenic drugs at night, while a high-fat diet affected the IGL/VLG sensitivity to orexigenic peptides. Interestingly, ISO neurons responded to light and orexin A, but did not respond to the other food intake-related peptides. In contrast, non-ISO cells were activated by metabolic peptides, with only some being responsive to light. Our results show for the first time that peptides involved in the body's energy homeostasis stimulate the thalamus and suggest functional separation of the IGL/VLG cells. KEY POINTS: The intergeniculate leaflet and ventral lateral geniculate nucleus (IGL/VLG) of the rodent thalamus process various signals and participate in circadian entrainment. In both structures, cells exhibiting infra-slow oscillatory activity as well as non-rhythmically firing neurons being observed. Here, we reveal that only one of these two groups of cells responds to anorexigenic (cholecystokinin, glucagon-like peptide 1 and oxyntomodulin) and orexigenic (ghrelin and orexin A) peptides. Neuronal responses vary depending on the time of day (day vs. night) and on the diet (standard vs. high-fat diet). Additionally, we visualised receptors to the tested peptides in the IGL/VLG using in situ hybridisation. Our results suggest that two electrophysiologically different subpopulations of IGL/VLG neurons are involved in two separate functions: one related to the body's energy homeostasis and one associated with the subcortical visual system.
Collapse
Affiliation(s)
- Jagoda S Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Anna M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Kamil Pradel
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Gabriela Izowit
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Lukasz Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland.,School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Katarzyna Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| | - Hugh D Piggins
- School of Physiology, Pharmacology, and Neuroscience, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Marian H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Krakow, Poland
| |
Collapse
|
6
|
Keeler JL, Robinson L, Keeler-Schäffeler R, Dalton B, Treasure J, Himmerich H. Growth factors in anorexia nervosa: a systematic review and meta-analysis of cross-sectional and longitudinal data. World J Biol Psychiatry 2022; 23:582-600. [PMID: 34875968 DOI: 10.1080/15622975.2021.2015432] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Growth factors are signalling molecules that play roles in the survival, proliferation, migration, and differentiation of cells. Studies have found alterations in specific growth factors in anorexia nervosa (AN). METHODS This systematic review and meta-analysis examined articles from three databases, measuring growth factors in AN cross-sectionally and longitudinally, and in recovered AN (rec-AN) cross-sectionally. Random-effects meta-analyses were conducted for brain-derived neurotrophic factor (BDNF) and insulin growth factor-I (IGF-1) for cross-sectional and longitudinal studies. RESULTS A total of 82 studies were included: 56 cross-sectional (BDNF: n = 15; IGF-1: n = 41) and 24 longitudinal (BDNF: n = 5; IGF-1: n = 19) were meta-analysed and 20 studies were narratively synthesised. In cross-sectional analyses, BDNF and IGF-1 were lower in AN compared to controls, and BDNF was marginally greater in rec-AN compared to controls. In longitudinal meta-analyses, BDNF and IGF-1 increased from baseline to follow-up. Cross-sectional subgroup analyses revealed no differences in BDNF between controls and AN binge-eating/purging subtypes. CONCLUSIONS It is likely that the low BDNF and IGF-1 levels found in AN are consequences of starvation, which are reversible with weight restoration. The increase in BDNF and IGF-1 during therapeutic weight restoration might improve neuroplasticity, which is the basis of learning, and thus psychotherapeutic success.
Collapse
Affiliation(s)
- Johanna Louise Keeler
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Lauren Robinson
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Bethan Dalton
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Janet Treasure
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Hubertus Himmerich
- Section of Eating Disorders, Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
7
|
Hellwig-Walter C, Brune M, Schellberg D, Buckert M, Wesche D, Cuntz U, Friederich HC, Wild B. Time course and reaction types of serum IGF-1 and its relationship to BMI and leptin regarding inpatients with anorexia nervosa. Growth Horm IGF Res 2022; 64:101470. [PMID: 35688068 DOI: 10.1016/j.ghir.2022.101470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/31/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Anorexia nervosa (AN) is a severe mental disorder that is characterized by restriction of energy intake, low weight, and endocrine abnormalities. One of the known endocrine changes in relation to underweight is in the GH/IGF-I axis. The aim of the study was (a) to investigate longitudinal characteristics of the IGF-I-change during therapy and weight gain in adult AN, (b) to determine relationships between IGF-I and leptin, (c) to characterize patients with weak and pronounced hormonal reactions to underweight. DESIGN Data was assessed from 19 AN patients. Over the first two months, serum IGF-I concentrations were assessed on a weekly basis; thereafter on a monthly basis. The trend of IGF-I values over time was analyzed using individual growth models. RESULTS In total, n = 177 IGF-I measurements were analyzed. IGF-I increased significantly dependent on BMI (slope = 20.81, p < 0.001), not modulated by duration of disease. The increase in IGF-I was significantly related to the increase in leptin concentrations over time (slope = 15.57, p < 0.001). Patients with a weaker hormonal reaction to underweight were significantly older compared to patients with a pronounced hormonal reaction (t(17) = 3.07, p = 0.007). CONCLUSIONS During treatment, IGF-I change is clearly related to BMI as well as to leptin. Age appears to be associated with the IGF-I response to underweight.
Collapse
Affiliation(s)
- Christiane Hellwig-Walter
- Department of General Internal Medicine and Psychosomatics, Medical University Hospital, Heidelberg, Germany
| | - Maik Brune
- Department of Endocrinology and Clinical Chemistry, Medical University Hospital, Heidelberg, Germany
| | - Dieter Schellberg
- Department of General Internal Medicine and Psychosomatics, Medical University Hospital, Heidelberg, Germany
| | - Magdalena Buckert
- Department of General Internal Medicine and Psychosomatics, Medical University Hospital, Heidelberg, Germany
| | - Daniela Wesche
- Department of General Internal Medicine and Psychosomatics, Medical University Hospital, Heidelberg, Germany
| | - Ulrich Cuntz
- Schön Klinik Roseneck, Prien am Chiemsee, Germany
| | - Hans-Christoph Friederich
- Department of General Internal Medicine and Psychosomatics, Medical University Hospital, Heidelberg, Germany
| | - Beate Wild
- Department of General Internal Medicine and Psychosomatics, Medical University Hospital, Heidelberg, Germany.
| |
Collapse
|
8
|
Smith LL. The Central Role of Hypothermia and Hyperactivity in Anorexia Nervosa: A Hypothesis. Front Behav Neurosci 2021; 15:700645. [PMID: 34421554 PMCID: PMC8377352 DOI: 10.3389/fnbeh.2021.700645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/24/2021] [Indexed: 12/24/2022] Open
Abstract
Typically, the development of anorexia nervosa (AN) is attributed to psycho-social causes. Several researchers have recently challenged this view and suggested that hypothermia and hyperactivity (HyAc) are central to AN. The following hypothesis will attempt to clarify their role in AN. Anorexia nervosa patients (ANs) have significantly lower core temperatures (Tcore) compared to healthy controls (HCs). This reduced temperature represents a reset Tcore that needs to be maintained. However, ANs cannot maintain this Tcore due primarily to a reduced basal metabolic rate (BMR); BMR usually supplies heat to sustain Tcore. Therefore, to generate the requisite heat, ANs revert to the behavioral-thermoregulatory strategy of HyAc. The majority of ANs (~89%) are reportedly HyAc. Surprisingly, engagement in HyAc is not motivated by a conscious awareness of low Tcore, but rather by the innocuous sensation of "cold- hands" frequently reported by ANs. That is, local hand-thermoreceptors signal the brain to initiate HyAc, which boosts perfusion of the hands and alters the sensation of "cold-discomfort" to one of "comfort." This "rewarding" consequence encourages repetition/habit formation. Simultaneously, hyperactivity increases the availability of heat to assist with the preservation of Tcore. Additionally, HyAc induces the synthesis of specific brain neuromodulators that suppress food intake and further promote HyAc; this outcome helps preserve low weight and perpetuates this vicious cycle. Based on this hypothesis and supported by rodent research, external heat availability should reduce the compulsion to be HyAc to thermoregulate. A reduction in HyAc should decrease the production of brain neuromodulators that suppress appetite. If verified, hopefully, this hypothesis will assist with the development of novel treatments to aid in the resolution of this intractable condition.
Collapse
Affiliation(s)
- Lucille Lakier Smith
- Human Performance Laboratory, Department of Kinesiology, School of Health Sciences, East Carolina University, Greenville, NC, United States
| |
Collapse
|
9
|
Zhang J, Dulawa SC. The Utility of Animal Models for Studying the Metabo-Psychiatric Origins of Anorexia Nervosa. Front Psychiatry 2021; 12:711181. [PMID: 34721100 PMCID: PMC8551379 DOI: 10.3389/fpsyt.2021.711181] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 09/17/2021] [Indexed: 11/15/2022] Open
Abstract
Anorexia nervosa (AN) is a severe eating disorder that primarily affects young women and girls, and is characterized by abnormal restrictive feeding and a dangerously low body-mass index. AN has one of the highest mortality rates of any psychiatric disorder, and no approved pharmacological treatments exist. Current psychological and behavioral treatments are largely ineffective, and relapse is common. Relatively little basic research has examined biological mechanisms that underlie AN compared to other major neuropsychiatric disorders. A recent large-scale genome-wide association study (GWAS) revealed that the genetic architecture of AN has strong metabolic as well as psychiatric origins, suggesting that AN should be reconceptualized as a metabo-psychiatric disorder. Therefore, identifying the metabo-psychiatric mechanisms that contribute to AN may be essential for developing effective treatments. This review focuses on animal models for studying the metabo-psychiatric mechanisms that may contribute to AN, with a focus on the activity-based anorexia (ABA) paradigm. We also highlight recent work using modern circuit-dissecting neuroscience techniques to uncover metabolic mechanisms that regulate ABA, and encourage further work to ultimately identify novel treatment strategies for AN.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Stephanie C Dulawa
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
10
|
Tolle V, Ramoz N, Epelbaum J. Is there a hypothalamic basis for anorexia nervosa? HANDBOOK OF CLINICAL NEUROLOGY 2021; 181:405-424. [PMID: 34238474 DOI: 10.1016/b978-0-12-820683-6.00030-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The hypothalamus has long been known to control food intake and energy metabolism through a complex network of primary and secondary neurons and glial cells. Anorexia nervosa being a complex disorder characterized by abnormal feeding behavior and food aversion, it is thus quite surprising that not much is known concerning potential hypothalamic modifications in this disorder. In this chapter, we review the recent advances in the fields of genetics, epigenetics, structural and functional imaging, and brain connectivity, as well as neuroendocrine findings and emerging animal models, which have begun to unravel the importance of hypothalamic adaptive processes to our understanding of the pathology of eating disorders.
Collapse
|
11
|
Abstract
Twenty-two years after their discovery, the hypocretins (Hcrts), also known as orexins, are two of the most studied peptidergic systems, involved in myriad physiological systems that range from sleep, arousal, motivation, homeostatic regulation, fear, anxiety and learning. A causal relationship between activity of Hcrt and arousal stability was established shortly after their discovery and have led to the development of a new class of drugs to treat insomnia. In this review we discuss the many faces of the Hcrt system and examine recent findings that implicate decreased Hcrt function in the pathogenesis of a number of neuropsychiatric conditions. We also discuss future therapeutic strategies to replace or enhance Hcrt function as a treatment option for these neuropsychiatric conditions.
Collapse
Affiliation(s)
- Erica Seigneur
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| | - Luis de Lecea
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
12
|
Dunietz GL, Vanini G, Shannon C, O'Brien LM, Chervin RD. Associations of plasma hypocretin-1 with metabolic and reproductive health: Two systematic reviews of clinical studies. Sleep Med Rev 2020; 52:101307. [PMID: 32259696 PMCID: PMC7351596 DOI: 10.1016/j.smrv.2020.101307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/11/2022]
Abstract
The hypocretin system consists of two peptides hypocretin-1 and hypocretin-2 (HCRT1 and HCRT2). Hypocretin-containing neurons are located in the posterior and lateral hypothalamus, and have widespread projections throughout the brain and spinal cord. In addition to its presence in the cerebrospinal fluid (CSF), peripheral HCRT1 has been detected in plasma. Robust experimental evidence demonstrates functions of hypothalamic-originated HCRT1 in regulation of multiple biological systems related to sleep-wake states, energy homeostasis and endocrine function. In contrast, HCRT1 studies with human participants are limited by the necessarily invasive assessment of CSF HCRT1 to patients with underlying morbidity. Regulation by HCRT1 of energy homeostasis and reproduction in animals suggests similar regulation in humans and prompts these two systematic reviews. These reviews translate prior experimental findings from animal studies to humans and examine associations between HCRT1 and: 1) metabolic risk factors; 2) reproductive function in men, women and children. A total of 21 studies and six studies met the inclusion criteria for the two searches, respectively. Research question, study design, study population, assessments of HCRT1, reproductive, cardiometabolic data and main findings were extracted. Associations between HCRT1, metabolic and reproductive function are inconsistent. Limitations of studies and future research directions are outlined.
Collapse
Affiliation(s)
- Galit L Dunietz
- Division of Sleep Medicine, Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Carol Shannon
- Taubman Health Sciences Library, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Louise M O'Brien
- Division of Sleep Medicine, Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Obstetrics & Gynecology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ronald D Chervin
- Division of Sleep Medicine, Department of Neurology, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
Boutari C, Pappas PD, Mintziori G, Nigdelis MP, Athanasiadis L, Goulis DG, Mantzoros CS. The effect of underweight on female and male reproduction. Metabolism 2020; 107:154229. [PMID: 32289345 DOI: 10.1016/j.metabol.2020.154229] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Chronic energy deficiency can impair the hypothalamic-pituitary-gonadal (HPG) axis and lead to hypothalamic anovulation in underweight women. This review presents the syndromes related to underweight status that are associated with infertility, summarizes the underlying mechanisms, and reviews the available treatment options. Eating disorders, such as anorexia nervosa (AN), constitute the most common cause of infertility in underweight women, who, in addition, experience miscarriages, and sexual dysfunction. The relative energy deficiency in sports (RED-S; former terminology: athlete's triad) involves menstrual dysfunction due to low energy availability, which results in anovulation. Moreover, lipodystrophies, malnutrition, starvation, systematic illnesses (malignancies, endocrinopathies, infectious diseases, advanced chronic diseases, neurologic illnesses), and the utilization of drugs can cause excessive weight loss. They may result in fertility problems due to the loss of adipose tissue and the subsequent hormonal disturbances. Each of these conditions requires multidisciplinary management. Nutritional counseling should target the restoration of energy balance by increasing intake and reducing output. Medical treatment, recommended only for patients who did not respond to standard treatment, may include antipsychotics, antidepressants, or leptin administration. Finally, psychiatric treatment is considered an integral part of the standard treatment.
Collapse
Affiliation(s)
- Chrysoula Boutari
- Department of Medicine, Boston VA Healthcare System and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Panagiotis D Pappas
- Unit of Reproductive Endocrinology, 1(st) Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Greece
| | - Gesthimani Mintziori
- Unit of Reproductive Endocrinology, 1(st) Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Greece
| | - Meletios P Nigdelis
- Unit of Reproductive Endocrinology, 1(st) Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Greece
| | - Loukas Athanasiadis
- 3(rd) Department of Psychiatry, Medical School, Aristotle University of Thessaloniki, Greece
| | - Dimitrios G Goulis
- Unit of Reproductive Endocrinology, 1(st) Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Greece
| | - Christos S Mantzoros
- Department of Medicine, Boston VA Healthcare System and Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
14
|
Berner LA, Brown TA, Lavender JM, Lopez E, Wierenga CE, Kaye WH. Neuroendocrinology of reward in anorexia nervosa and bulimia nervosa: Beyond leptin and ghrelin. Mol Cell Endocrinol 2019; 497:110320. [PMID: 30395874 PMCID: PMC6497565 DOI: 10.1016/j.mce.2018.10.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/19/2018] [Accepted: 10/27/2018] [Indexed: 12/14/2022]
Abstract
The pathophysiology of anorexia nervosa (AN) and bulimia nervosa (BN) are still poorly understood, but psychobiological models have proposed a key role for disturbances in the neuroendocrines that signal hunger and satiety and maintain energy homeostasis. Mounting evidence suggests that many neuroendocrines involved in the regulation of homeostasis and body weight also play integral roles in food reward valuation and learning via their interactions with the mesolimbic dopamine system. Neuroimaging data have associated altered brain reward responses in this system with the dietary restriction and binge eating and purging characteristic of AN and BN. Thus, neuroendocrine dysfunction may contribute to or perpetuate eating disorder symptoms via effects on reward circuitry. This narrative review focuses on reward-related neuroendocrines that are altered in eating disorder populations, including peptide YY, insulin, stress and gonadal hormones, and orexins. We provide an overview of the animal and human literature implicating these neuroendocrines in dopaminergic reward processes and discuss their potential relevance to eating disorder symptomatology and treatment.
Collapse
Affiliation(s)
- Laura A Berner
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States.
| | - Tiffany A Brown
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Jason M Lavender
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Emily Lopez
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Christina E Wierenga
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| | - Walter H Kaye
- University of California, San Diego, Eating Disorders Center for Treatment and Research, Department of Psychiatry, United States
| |
Collapse
|
15
|
Nakashima H, Umegaki H, Yanagawa M, Komiya H, Watanabe K, Kuzuya M. Plasma orexin-A-like immunoreactivity levels and renal function in patients in a geriatric ward. Peptides 2019; 118:170092. [PMID: 31163198 DOI: 10.1016/j.peptides.2019.170092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/26/2019] [Accepted: 05/28/2019] [Indexed: 10/26/2022]
Abstract
Orexin-A is a neuropeptide mainly produced by hypothalamic neurons with functions in the central nervous system such as regulation of the sleep-wake cycle. Recent studies suggest that orexin-A also plays major roles in peripheral tissues. Although a few studies have reported a role for the kidney in the dynamics of orexin-A, little is known about the association between plasma orexin-A-like immunoreactivity (orexin-A-LI) levels and renal function. We evaluated this association, and also explored other clinical characteristics associated with plasma orexin-A-LI levels. In this cross-sectional study, we included 70 consecutive patients aged ≥65 years admitted to the geriatric ward of Nagoya University Hospital from December 2017 to January 2018. Patients taking suvorexant (an orexin receptor antagonist) were excluded. On hospital days 2-4, fasting blood was collected in the morning. We evaluated associations between plasma orexin-A-LI levels and renal function and other clinical characteristics. Renal function was evaluated in two ways: the estimated glomerular filtration rate (eGFR) using serum creatinine, and estimated creatinine clearance (eCrCl) using the Cockroft-Gault formula. Pearson's correlation coefficient revealed that plasma orexin-A-LI levels were negatively correlated with the eGFR (r = -0.351, p = 0.003) and eCrCl (r = -0.342, p = 0.004). There were no significant associations between plasma orexin-A-LI levels and the primary diagnosis, body mass index, duration of fasting, or other clinical characteristics. In conclusion, plasma orexin-A-LI levels were negatively correlated with renal function in patients in a geriatric ward. Renal function may affect the study design and data interpretation in studies of plasma orexin-A-LI.
Collapse
Affiliation(s)
- Hirotaka Nakashima
- Department of Geriatrics, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan; Centre for Community Liaison and Patient Consultations, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| | - Hiroyuki Umegaki
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| | - Madoka Yanagawa
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| | - Hitoshi Komiya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| | - Kazuhisa Watanabe
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan.
| | - Masafumi Kuzuya
- Centre for Community Liaison and Patient Consultations, Nagoya University Hospital, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan; Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8560, Japan; Institute of Innovation for Future Society, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
16
|
Steward T, Mestre-Bach G, Granero R, Sánchez I, Riesco N, Vintró-Alcaraz C, Sauchelli S, Jiménez-Murcia S, Agüera Z, Fernández-García JC, Garrido-Sánchez L, Tinahones FJ, Casanueva FF, Baños RM, Botella C, Crujeiras AB, Torre RDL, Fernández-Real JM, Frühbeck G, Ortega FJ, Rodríguez A, Menchón JM, Fernández-Aranda F. Reduced Plasma Orexin-A Concentrations are Associated with Cognitive Deficits in Anorexia Nervosa. Sci Rep 2019; 9:7910. [PMID: 31133733 PMCID: PMC6536521 DOI: 10.1038/s41598-019-44450-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 05/07/2019] [Indexed: 01/06/2023] Open
Abstract
Orexins/hypocretins are neuropeptides implicated in numerous processes, including food intake and cognition. The role of these peptides in the psychopathology of anorexia nervosa (AN) remains poorly understood. The aim of the current study was to evaluate the associations between plasma orexin-A (OXA) concentrations and neuropsychological functioning in adult women with AN, and a matched control group. Fasting plasma OXA concentrations were taken in 51 females with AN and in 51 matched healthy controls. Set-shifting was assessed using the Wisconsin Card Sorting Test (WCST), whereas decision making was measured using the Iowa Gambling Task (IGT). The AN group exhibited lower plasma OXA levels than the HC group. Lower mean scores were obtained on the IGT in AN patients. WCST perseverative errors were significantly higher in the AN group compared to HC. In both the AN and HC group, OXA levels were negatively correlated with WCST non-perseverative errors. Reduced plasma OXA concentrations were found to be associated with set-shifting impairments in AN. Taking into consideration the function of orexins in promoting arousal and cognitive flexibility, future studies should explore whether orexin partly underpins the cognitive impairments found in AN.
Collapse
Affiliation(s)
- Trevor Steward
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.,Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain
| | - Gemma Mestre-Bach
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.,Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain
| | - Roser Granero
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain.,Departament de Psicobiologia i Metodologia, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Isabel Sánchez
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.,Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain
| | - Nadine Riesco
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.,Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain
| | - Cristina Vintró-Alcaraz
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.,Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain
| | - Sarah Sauchelli
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.,Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Zaida Agüera
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.,Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain
| | - Jose C Fernández-García
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain.,Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - Lourdes Garrido-Sánchez
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain.,Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - Francisco J Tinahones
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain.,Unidad de Gestión Clínica de Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Universidad de Málaga, Hospital Clínico Virgen de la Victoria, Málaga, Spain
| | - Felipe F Casanueva
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain.,Molecular and Celular Endocrinology, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Rosa M Baños
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain.,Department of Psychological, Personality, Evaluation and Treatment of the University of Valencia, Valencia, Spain
| | - Cristina Botella
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain
| | - Ana B Crujeiras
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain.,Molecular and Celular Endocrinology, Instituto de Investigacion Sanitaria (IDIS), Complejo Hospitalario Universitario de Santiago (CHUS) and Santiago de Compostela University (USC), Santiago de Compostela, Spain
| | - Rafael de la Torre
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain.,Integrated Pharmacology and Systems Neurosciences Research Group, Neuroscience Research Program Organization IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.,Department of Health and Experimental Sciences, Universitat Pompeu Fabra Barcelona, Barcelona, Spain
| | - Jose M Fernández-Real
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain.,Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació, Biomèdica de Girona (IdIBGi), Hospital Dr Josep Trueta, Girona, Spain
| | - Gema Frühbeck
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain.,Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra-IdiSNA, Pamplona, Spain
| | - Francisco J Ortega
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain.,Department of Diabetes, Endocrinology and Nutrition, Institut d'Investigació, Biomèdica de Girona (IdIBGi), Hospital Dr Josep Trueta, Girona, Spain
| | - Amaia Rodríguez
- Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain.,Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra-IdiSNA, Pamplona, Spain
| | - José M Menchón
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain.,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain.,CIBER Salud Mental, Instituto Salud Carlos III (Spain), Madrid, Spain
| | - Fernando Fernández-Aranda
- Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain. .,Ciber Fisiopatologia Obesidad y Nutrición, Instituto Salud Carlos III (Spain), Madrid, Spain. .,Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
17
|
Barson JR. Orexin/hypocretin and dysregulated eating: Promotion of foraging behavior. Brain Res 2018; 1731:145915. [PMID: 30125533 DOI: 10.1016/j.brainres.2018.08.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 07/31/2018] [Accepted: 08/15/2018] [Indexed: 12/14/2022]
Abstract
At its discovery, orexin/hypocretin (OX) was hypothesized to promote food intake. Subsequently, with the identification of the participation of OX in numerous other phenomena, including arousal and drug seeking, this neuropeptide was proposed to be involved in highly motivated behaviors. The present review develops the hypothesis that the primary evolutionary function of OX is to promote foraging behavior, seeking for food under conditions of limited availability. Thus, it will first describe published literature on OX and homeostatic food intake, which shows that OX neurons are activated by conditions of food deprivation and in turn stimulate food intake. Next, it will present literature on excessive and binge-like food intake, which demonstrates that OX stimulates both intake and willingness to work for palatable food. Importantly, studies show that binge-like eating can be inhibited by OX antagonists at doses far lower than those required to suppress homeostatic intake (3 mg/kg vs. 30 mg/kg), suggesting that an OX-based pharmacotherapy, at the right dose, could specifically control dysregulated eating. Finally, the review will discuss the role of OX in foraging behavior, citing literature which shows that OX neurons, which are activated during the anticipation of food reward, can promote a number of phenomena involved in successful foraging, including food-anticipatory locomotor behavior, olfactory sensitivity, visual attention, spatial memory, and mastication. Thus, OX may promote homeostatic eating, as well as binge eating of palatable food, due to its ability to stimulate and coordinate the activities involved in foraging behavior.
Collapse
Affiliation(s)
- Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA.
| |
Collapse
|
18
|
Pałasz A, Janas-Kozik M, Borrow A, Arias-Carrión O, Worthington JJ. The potential role of the novel hypothalamic neuropeptides nesfatin-1, phoenixin, spexin and kisspeptin in the pathogenesis of anxiety and anorexia nervosa. Neurochem Int 2018; 113:120-136. [DOI: 10.1016/j.neuint.2017.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 02/07/2023]
|
19
|
Kim DY, Yu J, Mui RK, Niibori R, Taufique HB, Aslam R, Semple JW, Cordes SP. The tyrosine kinase receptor Tyro3 enhances lifespan and neuropeptide Y (Npy) neuron survival in the mouse anorexia ( anx) mutation. Dis Model Mech 2017; 10:581-595. [PMID: 28093506 PMCID: PMC5451163 DOI: 10.1242/dmm.027433] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/12/2016] [Indexed: 01/01/2023] Open
Abstract
Severe appetite and weight loss define the eating disorder anorexia nervosa, and can also accompany the progression of some neurodegenerative disorders such as amyotrophic lateral sclerosis (ALS). Although acute loss of hypothalamic neurons that produce appetite-stimulating neuropeptide Y (Npy) and agouti-related peptide (Agrp) in adult mice or in mice homozygous for the anorexia (anx) mutation causes aphagia, our understanding of the factors that help maintain appetite regulatory circuitry is limited. Here we identify a mutation (C19T) that converts an arginine to a tryptophan (R7W) in the TYRO3 protein tyrosine kinase 3 (Tyro3) gene, which resides within the anx critical interval, as contributing to the severity of anx phenotypes. Our observation that, like Tyro3-/- mice, anx/anx mice exhibit abnormal secondary platelet aggregation suggested that the C19T Tyro3 variant might have functional consequences. Tyro3 is expressed in the hypothalamus and other brain regions affected by the anx mutation, and its mRNA localization appeared abnormal in anx/anx brains by postnatal day 19 (P19). The presence of wild-type Tyro3 transgenes, but not an R7W-Tyro3 transgene, doubled the weight and lifespans of anx/anx mice and near-normal numbers of hypothalamic Npy-expressing neurons were present in Tyro3-transgenic anx/anx mice at P19. Although no differences in R7W-Tyro3 signal sequence function or protein localization were discernible in vitro, distribution of R7W-Tyro3 protein differed from that of Tyro3 protein in the cerebellum of transgenic wild-type mice. Thus, R7W-Tyro3 protein localization deficits are only detectable in vivo Further analyses revealed that the C19T Tyro3 mutation is present in a few other mouse strains, and hence is not the causative anx mutation, but rather an anx modifier. Our work shows that Tyro3 has prosurvival roles in the appetite regulatory circuitry and could also provide useful insights towards the development of interventions targeting detrimental weight loss.
Collapse
Affiliation(s)
- Dennis Y Kim
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Joanna Yu
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Ryan K Mui
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Rieko Niibori
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
| | - Hamza Bin Taufique
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| | - Rukhsana Aslam
- Keenan Research Centre for Biomedical Science, St. Michaels Hospital, Toronto, ON M5B 1W8, Canada
- Canadian Blood Services, 67 College Street, Toronto, ON M5G 2M1, Canada
| | - John W Semple
- Keenan Research Centre for Biomedical Science, St. Michaels Hospital, Toronto, ON M5B 1W8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A1, Canada
- Canadian Blood Services, 67 College Street, Toronto, ON M5G 2M1, Canada
| | - Sabine P Cordes
- Lunenfeld-Tanenbaum Research Institute, Room 876, Mount Sinai Hospital, 600 University Avenue, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, 1 King's Crescent, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
20
|
Plasma kisspeptin and ghrelin levels are independently correlated with physical activity in patients with anorexia nervosa. Appetite 2017; 108:141-150. [DOI: 10.1016/j.appet.2016.09.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 09/01/2016] [Accepted: 09/27/2016] [Indexed: 12/22/2022]
|
21
|
Ishikawa M, Aono Y, Saigusa T. Role of orexin receptor subtypes in the inhibitory effects of orexin-A on potassium chloride-induced increases in intracellular calcium ion levels in neurons derived from dorsal root ganglion of carrageenan-treated rats. J Oral Sci 2017; 59:557-564. [DOI: 10.2334/josnusd.16-0759] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Manabu Ishikawa
- Nihon University Graduate School of Dentistry at Matsudo, Anesthesiology
| | - Yuri Aono
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo
| | - Tadashi Saigusa
- Department of Pharmacology, Nihon University School of Dentistry at Matsudo
| |
Collapse
|
22
|
Grzelak T, Dutkiewicz A, Paszynska E, Dmitrzak-Weglarz M, Slopien A, Tyszkiewicz-Nwafor M. Neurobiochemical and psychological factors influencing the eating behaviors and attitudes in anorexia nervosa. J Physiol Biochem 2016; 73:297-305. [PMID: 27924450 PMCID: PMC5399064 DOI: 10.1007/s13105-016-0540-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 11/23/2016] [Indexed: 12/22/2022]
Abstract
The aim of this study was to determine the characteristic features which contribute to inappropriate eating attitudes in people suffering from anorexia nervosa, based on an analysis of recent data. Factors influencing these attitudes have a genetic, neurobiological, biochemical, affective-motivational, cognitive, and behavioral background. Another important issue addressed in the paper is a description of the mechanism leading to continuous dietary restrictions. The altered activity of neurotransmitters modulating patients’ moods after the consumption of food and a disturbed responsiveness to enterohormones enhance affective-motivational and cognitive aspects which, in turn, impede the improvement of eating behaviors. An understanding of the mechanisms behind the factors affecting the maintenance of inappropriate eating attitudes may contribute to greater effectiveness in the treatment of anorexia nervosa.
Collapse
Affiliation(s)
- Teresa Grzelak
- Division of Biology of Civilization-Linked Diseases, Department of Chemistry and Clinical Biochemistry, Poznan University of Medical Sciences, Swiecickiego Str. 6, 60-781, Poznan, Poland.
| | - Agata Dutkiewicz
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Elzbieta Paszynska
- Department of Biomaterials and Experimental Dentistry, Poznan University of Medical Sciences, Poznan, Poland
| | - Monika Dmitrzak-Weglarz
- Psychiatric Genetics Unit, Department of Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Agnieszka Slopien
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Marta Tyszkiewicz-Nwafor
- Department of Child and Adolescent Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
23
|
Gorwood P, Blanchet-Collet C, Chartrel N, Duclos J, Dechelotte P, Hanachi M, Fetissov S, Godart N, Melchior JC, Ramoz N, Rovere-Jovene C, Tolle V, Viltart O, Epelbaum J. New Insights in Anorexia Nervosa. Front Neurosci 2016; 10:256. [PMID: 27445651 PMCID: PMC4925664 DOI: 10.3389/fnins.2016.00256] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/23/2016] [Indexed: 12/18/2022] Open
Abstract
Anorexia nervosa (AN) is classically defined as a condition in which an abnormally low body weight is associated with an intense fear of gaining weight and distorted cognitions regarding weight, shape, and drive for thinness. This article reviews recent evidences from physiology, genetics, epigenetics, and brain imaging which allow to consider AN as an abnormality of reward pathways or an attempt to preserve mental homeostasis. Special emphasis is put on ghrelino-resistance and the importance of orexigenic peptides of the lateral hypothalamus, the gut microbiota and a dysimmune disorder of neuropeptide signaling. Physiological processes, secondary to underlying, and premorbid vulnerability factors-the "pondero-nutritional-feeding basements"- are also discussed.
Collapse
Affiliation(s)
- Philip Gorwood
- Centre Hospitalier Sainte-Anne (CMME)Paris, France; UMR-S 894, Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et NeurosciencesParis, France; Université Paris Descartes, Sorbonne Paris CitéParis, France
| | | | - Nicolas Chartrel
- Institut National de la Santé et de la Recherche Médicale U982, Laboratory of Neuronal and Neuroendocrine Differentiation and Communication, Institute for Research and Innovation in BiomedicineRouen, France; Normandy UniversityCaen, France; University of RouenRouen, France
| | - Jeanne Duclos
- Adolescents and Young Adults Psychiatry Department, Institut Mutualiste MontsourisParis, France; CESP, Institut National de la Santé et de la Recherche Médicale, Université Paris-Descartes, USPCParis, France; University Reims, Champagne-Ardenne, Laboratoire Cognition, Santé, Socialisation (C2S)-EA 6291Reims, France
| | - Pierre Dechelotte
- Institut National de la Santé et de la Recherche Médicale U1073 IRIB Normandy UniversityRouen, France; Faculté de Médecine-PharmacieRouen, France
| | - Mouna Hanachi
- Université de Versailles Saint-Quentin-en-Yvelines, Institut National de la Santé et de la Recherche Médicale U1179, équipe Thérapeutiques Innovantes et Technologies Appliquées aux Troubles Neuromoteurs, UFR des Sciences de la Santé Simone VeilMontigny-le-Bretonneux, France; Département de Médecine (Unité de Nutrition), Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de ParisGarches, France
| | - Serguei Fetissov
- Institut National de la Santé et de la Recherche Médicale U1073 IRIB Normandy University Rouen, France
| | - Nathalie Godart
- Adolescents and Young Adults Psychiatry Department, Institut Mutualiste MontsourisParis, France; CESP, Institut National de la Santé et de la Recherche Médicale, Université Paris-Descartes, USPCParis, France
| | - Jean-Claude Melchior
- Université de Versailles Saint-Quentin-en-Yvelines, Institut National de la Santé et de la Recherche Médicale U1179, équipe Thérapeutiques Innovantes et Technologies Appliquées aux Troubles Neuromoteurs, UFR des Sciences de la Santé Simone VeilMontigny-le-Bretonneux, France; Département de Médecine (Unité de Nutrition), Hôpital Raymond Poincaré, Assistance Publique-Hôpitaux de ParisGarches, France
| | - Nicolas Ramoz
- UMR-S 894, Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et NeurosciencesParis, France; Université Paris Descartes, Sorbonne Paris CitéParis, France
| | - Carole Rovere-Jovene
- Institut de Pharmacologie Moléculaire et Cellulaire, UMR6097, Centre National de la Recherche Scientifique Valbonne, France
| | - Virginie Tolle
- UMR-S 894, Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et NeurosciencesParis, France; Université Paris Descartes, Sorbonne Paris CitéParis, France
| | - Odile Viltart
- Université Lille, Inserm, CHU Lille, UMR-S 1172 - JPArc - Centre de Recherche Jean-Pierre AUBERT Neurosciences et Cancer Lille, France
| | - Jacques Epelbaum
- UMR-S 894, Institut National de la Santé et de la Recherche Médicale, Centre de Psychiatrie et NeurosciencesParis, France; Université Paris Descartes, Sorbonne Paris CitéParis, France
| |
Collapse
|
24
|
Sauchelli S, Jiménez-Murcia S, Sánchez I, Riesco N, Custal N, Fernández-García JC, Garrido-Sánchez L, Tinahones FJ, Steiger H, Israel M, Baños RM, Botella C, de la Torre R, Fernández-Real JM, Ortega FJ, Frühbeck G, Granero R, Tárrega S, Crujeiras AB, Rodríguez A, Estivill X, Beckmann JS, Casanueva FF, Menchón JM, Fernández-Aranda F. Orexin and sleep quality in anorexia nervosa: Clinical relevance and influence on treatment outcome. Psychoneuroendocrinology 2016; 65:102-8. [PMID: 26741881 DOI: 10.1016/j.psyneuen.2015.12.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 11/29/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
Abstract
BACKGROUND AND AIMS Orexins/hypocretins are orexigenic peptides implicated in the regulation of feeding behavior and the sleep/wake cycle. Little is known about the functioning of these peptides in anorexia nervosa (AN). The aims of the current study were to evaluate the extent to which orexin-A might be linked to sleep and treatment outcome in AN. METHOD Fasting plasma orexin-A concentrations were measured in 48 females with AN at the start of a day hospital treatment and in 98 normal-eater/healthy-weight controls. The Pittsburgh Sleep Quality Index was administered at the beginning of the treatment as a measure of sleep quality. Other psychopathological variables were evaluated with the Symptom Checklist-Revised (SCL90R) and the Eating Disorder Inventory-2 (EDI). Patients were assessed at the start and end of treatment by means of commonly used diagnostic criteria and clinical questionnaires. RESULTS The AN patients presented more sleep disturbances and poorer overall sleep quality than did the healthy controls (p=.026) but there were no global differences between groups in plasma orexin-A concentrations (p=.071). In the AN sample, orexin-A concentrations were associated with greater sleep disturbances (|r|=.30), sleep inefficiency (|r|=.22) and poorer overall sleep (|r|=.22). Structural Equation Modeling (SEM) showed that both elevated orexin-A concentrations and inadequate sleep predicted poorer treatment outcome. CONCLUSION Plasma orexin-A concentrations contribute to poor sleep quality in AN, and both of these variables are associated with therapy response.
Collapse
Affiliation(s)
- Sarah Sauchelli
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain
| | - Susana Jiménez-Murcia
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Isabel Sánchez
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
| | - Nadine Riesco
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
| | - Nuria Custal
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain
| | - Jose C Fernández-García
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Lourdes Garrido-Sánchez
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Francisco J Tinahones
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition, Hospital Clínico Universitario Virgen de Victoria, Málaga, Spain
| | - Howard Steiger
- Douglas University Institute in Mental Health & Psychiatry Department, McGill University, Montreal, Canada
| | - Mimi Israel
- Douglas University Institute in Mental Health & Psychiatry Department, McGill University, Montreal, Canada
| | - Rosa M Baños
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Department of Psychological, Personality, Evaluation and Treatment of the University of Valencia, Valencia, Spain
| | - Cristina Botella
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Department of Basic Psychology, Clinic and Psychobiology of the University Jaume I, Castelló, Spain
| | - Rafael de la Torre
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Integrated Pharmacology and Systems Neurosciences Research Group, Neuroscience Research Program Organization IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Department of Health and Experimental Sciences, Universitat Pompeu Fabra Barcelona, Spain
| | - Jose M Fernández-Real
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition, Institu d'Investigació, Biomèdica de Girona (IdIBGi), Hospital Dr Josep Trueta, Girona, Spain
| | - Francisco J Ortega
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Department of Diabetes, Endocrinology and Nutrition, Institu d'Investigació, Biomèdica de Girona (IdIBGi), Hospital Dr Josep Trueta, Girona, Spain
| | - Gema Frühbeck
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra-IdiSNA, Pamplona, Spain
| | - Roser Granero
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Department of Psychobiology and Methodology, Autonomous University of Barcelona, Barcelona, Spain
| | - Salome Tárrega
- Department of Psychobiology and Methodology, Autonomous University of Barcelona, Barcelona, Spain
| | - Ana B Crujeiras
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Department of Medicine, Endocrinology Division, Santiago de Compostela University, Complejo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Amaia Rodríguez
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra-IdiSNA, Pamplona, Spain
| | - Xavier Estivill
- Center for Genomic Regulation (CRG), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), ISCIII, Barcelona, Spain
| | | | - Felipe F Casanueva
- CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Department of Medicine, Endocrinology Division, Santiago de Compostela University, Complejo Hospitalario Universitario, Santiago de Compostela, Spain
| | - Jose M Menchón
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain; Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain; CIBER Salud Mental (CIBERSAM), ISCIII, Barcelona, Spain
| | - Fernando Fernández-Aranda
- Department of Psychiatry, University Hospital of Bellvitge-IDIBELL, Barcelona, Spain; CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto Salud Carlos III, Madrid, Spain; Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
25
|
Interacting Neural Processes of Feeding, Hyperactivity, Stress, Reward, and the Utility of the Activity-Based Anorexia Model of Anorexia Nervosa. Harv Rev Psychiatry 2016; 24:416-436. [PMID: 27824637 PMCID: PMC5485261 DOI: 10.1097/hrp.0000000000000111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Anorexia nervosa (AN) is a psychiatric illness with minimal effective treatments and a very high rate of mortality. Understanding the neurobiological underpinnings of the disease is imperative for improving outcomes and can be aided by the study of animal models. The activity-based anorexia rodent model (ABA) is the current best parallel for the study of AN. This review describes the basic neurobiology of feeding and hyperactivity seen in both ABA and AN, and compiles the research on the role that stress-response and reward pathways play in modulating the homeostatic drive to eat and to expend energy, which become dysfunctional in ABA and AN.
Collapse
|
26
|
Orexin-A and Endocannabinoid Activation of the Descending Antinociceptive Pathway Underlies Altered Pain Perception in Leptin Signaling Deficiency. Neuropsychopharmacology 2016; 41:508-20. [PMID: 26081302 PMCID: PMC5130126 DOI: 10.1038/npp.2015.173] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 12/12/2022]
Abstract
Pain perception can become altered in individuals with eating disorders and obesity for reasons that have not been fully elucidated. We show that leptin deficiency in ob/ob mice, or leptin insensitivity in the arcuate nucleus of the hypothalamus in mice with high-fat diet (HFD)-induced obesity, are accompanied by elevated orexin-A (OX-A) levels and orexin receptor-1 (OX1-R)-dependent elevation of the levels of the endocannabinoid, 2-arachidonoylglycerol (2-AG), in the ventrolateral periaqueductal gray (vlPAG). In ob/ob mice, these alterations result in the following: (i) increased excitability of OX1-R-expressing vlPAG output neurons and subsequent increased OFF and decreased ON cell activity in the rostral ventromedial medulla, as assessed by patch clamp and in vivo electrophysiology; and (ii) analgesia, in both healthy and neuropathic mice. In HFD mice, instead, analgesia is only unmasked following leptin receptor antagonism. We propose that OX-A/endocannabinoid cross talk in the descending antinociceptive pathway might partly underlie increased pain thresholds in conditions associated with impaired leptin signaling.
Collapse
|
27
|
Neuropeptide Y and α-MSH circadian levels in two populations with low body weight: anorexia nervosa and constitutional thinness. PLoS One 2015; 10:e0122040. [PMID: 25798605 PMCID: PMC4370702 DOI: 10.1371/journal.pone.0122040] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 02/10/2015] [Indexed: 11/19/2022] Open
Abstract
Context Anorexia nervosa (AN) presents an adaptive appetite regulating profile including high levels of ghrelin and 26RFa (orexigenic) and low levels of leptin and PYY (anorexigenic). However, this adaptive mechanism is not effective in promoting food intake. The NPY/proopiomelanocortin (POMC) system plays a crucial role in the regulation of feeding behavior as NPY is the most potent orexigenic neuropeptide identified so far and as the POMC-derived peptide α-MSH drastically reduces food intake, and this peptidergic system has not been thoroughly studied in AN. Objective The aim of the present study was thus to investigate whether a dysfunction of the NPY/POMC occurs in two populations with low body weight, AN and constitutional thinness (CT). Design and Settings This was a cross-sectional study performed in an endocrinological unit and in an academic laboratory. Investigated Subjects Three groups of age-matched young women were studied: 23 with AN (AN), 22 CT and 14 normal weight controls. Main Outcome Measures Twelve-point circadian profiles of plasma NPY and α-MSH levels were measured in the three groups of investigated subjects. Results No significant circadian variation of NPY was detected between the three groups. Plasma α-MSH levels were significantly lower in AN (vs controls) all over the day. The CT group, compared to controls, presented lower levels of α-MSH in the morning and the evening, and an important rise during lunchtime. Conclusion In AN patients, the NPY system is not up-regulated under chronic undernutrition suggesting that this may play a role in the inability of anorectic women to adapt food intake to their energy demand. In contrast, low circadian α-MSH levels integrate the adaptive profile of appetite regulation of this disease. Finally, in CT women, the important α-MSH peak detected during lunchtime could explain why these patients are rapidly food satisfied.
Collapse
|
28
|
Chen Q, de Lecea L, Hu Z, Gao D. The hypocretin/orexin system: an increasingly important role in neuropsychiatry. Med Res Rev 2014; 35:152-97. [PMID: 25044006 DOI: 10.1002/med.21326] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Hypocretins, also named as orexins, are excitatory neuropeptides secreted by neurons specifically located in lateral hypothalamus and perifornical areas. Orexinergic fibers are extensively distributed in various brain regions and involved in a number of physiological functions, such as arousal, cognition, stress, appetite, and metabolism. Arousal is the most important function of orexin system as dysfunction of orexin signaling leads to narcolepsy. In addition to narcolepsy, orexin dysfunction is associated with serious neural disorders, including addiction, depression, and anxiety. However, some results linking orexin with these disorders are still contradictory, which may result from differences of detection methods or the precision of tools used in measurements; strategies targeted to orexin system (e.g., antagonists to orexin receptors, gene delivery, and cell transplantation) are promising new tools for treatment of neuropsychiatric disorders, though studies are still in a stage of preclinical or clinical research.
Collapse
Affiliation(s)
- Quanhui Chen
- Department of Physiology, Third Military Medical University, Chongqing 400038, China; Department of Sleep and Psychology, Institute of Surgery Research, Daping Hospital, Third Military Medical University, Chongqing 400038, China
| | | | | | | |
Collapse
|
29
|
Perez-Leighton CE, Grace M, Billington CJ, Kotz CM. Role of spontaneous physical activity in prediction of susceptibility to activity based anorexia in male and female rats. Physiol Behav 2014; 135:104-11. [PMID: 24912135 DOI: 10.1016/j.physbeh.2014.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/20/2014] [Accepted: 06/01/2014] [Indexed: 11/15/2022]
Abstract
Anorexia nervosa (AN) is a chronic eating disorder affecting females and males, defined by body weight loss, higher physical activity levels and restricted food intake. Currently, the commonalities and differences between genders in etiology of AN are not well understood. Animal models of AN, such as activity-based anorexia (ABA), can be helpful in identifying factors determining individual susceptibility to AN. In ABA, rodents are given an access to a running wheel while food restricted, resulting in paradoxical increased physical activity levels and weight loss. Recent studies suggest that different behavioral traits, including voluntary exercise, can predict individual weight loss in ABA. A higher inherent drive for movement may promote development and severity of AN, but this hypothesis remains untested. In rodents and humans, drive for movement is defined as spontaneous physical activity (SPA), which is time spent in low-intensity, non-volitional movements. In this paper, we show that a profile of body weight history and behavioral traits, including SPA, can predict individual weight loss caused by ABA in male and female rats with high accuracy. Analysis of the influence of SPA on ABA susceptibility in males and females rats suggests that either high or low levels of SPA increase the probability of high weight loss in ABA, but with larger effects in males compared to females. These results suggest that the same behavioral profile can identify individuals at-risk of AN for both male and female populations and that SPA has predictive value for susceptibility to AN.
Collapse
Affiliation(s)
- Claudio E Perez-Leighton
- Center for Integrative Medicine and Innovative Science, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile; Escuela de Nutricion, Facultad de Medicina, Universidad Andres Bello, Santiago, Chile.
| | - Martha Grace
- Minneapolis VA Health Care System, Minneapolis, MN USA
| | - Charles J Billington
- Minneapolis VA Health Care System, Minneapolis, MN USA; Minnesota Obesity Center, University of Minnesota, Minneapolis, MN, USA; Department of Medicine, University of Minnesota, Minneapolis, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| | - Catherine M Kotz
- Minneapolis VA Health Care System, Minneapolis, MN USA; Minnesota Obesity Center, University of Minnesota, Minneapolis, MN, USA; Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA
| |
Collapse
|
30
|
Abstract
The hypocretin system is constituted by a small group of hypothalamic neurons with widespread connections within the entire central nervous system producing two neuropeptides involved in several key physiological functions such as the regulation of sleep and wakefulness, motor control, autonomic functions, metabolism, feeding behavior, and reward. Narcolepsy with cataplexy is a neurological disorder regarded as a disease model for the selective hypocretin system damage, and also shares several psychopatological traits and comorbidities with psychiatric disorders. We reviewed the available literature on the involvement of the hypocretin system in psychiatric nosography. Different evidences such as cerebrospinal hypocretin-1 levels, genetic polymorphisms of the neuropeptides or their receptors, response to treatments, clinical, experimental and functional data directly or indirectly linked the hypocretin system to schizophrenia, mood, anxiety and eating disorders, as well as to addiction. Future genetic and pharmacological studies will disentangle the hypocretin system role in the field of psychiatry.
Collapse
Affiliation(s)
- Fabio Pizza
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Via Ugo Foscolo 7, 40123, Bologna, Italy
| | | | | | | |
Collapse
|
31
|
Assessment of gene expression in peripheral blood using RNAseq before and after weight restoration in anorexia nervosa. Psychiatry Res 2013; 210:287-93. [PMID: 23778302 PMCID: PMC3805820 DOI: 10.1016/j.psychres.2013.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 05/06/2013] [Accepted: 05/20/2013] [Indexed: 12/30/2022]
Abstract
We examined gene expression in the blood of six females with anorexia nervosa (AN) before and after weight restoration using RNAseq. AN cases (aged 19-39) completed clinical assessments and had blood drawn for RNA at hospital admission (T1,<~75% ideal body weight, IBW) and again at discharge (T2,≥ ~ 85% IBW). To examine the relationship between weight restoration and differential gene expression, normalized gene expression levels were analyzed using a paired design. We found 564 genes whose expression was nominally significantly different following weight restoration (p<0.01, 231 increased and 333 decreased). With a more stringent significance threshold (false discovery rate q<0.05), 67 genes met criteria for differential expression. Of the top 20 genes, CYP11A1, C16orf11, LINC00235, and CPA3 were down-regulated more than two-fold after weight restoration while multiple olfactory receptor genes (OR52J3, OR51L1, OR51A4, and OR51A2) were up-regulated more than two-fold after weight restoration. Pathway analysis revealed up-regulation of two broad pathways with largely overlapping genes, one related to protein secretion and signaling and the other associated with defense response to bacterial regulation. Although results are preliminary secondary to a small sample size, these data provide initial evidence of transcriptional alterations during weight restoration in AN.
Collapse
|
32
|
Wu WN, Wu PF, Zhou J, Guan XL, Zhang Z, Yang YJ, Long LH, Xie N, Chen JG, Wang F. Orexin-A Activates Hypothalamic AMP-Activated Protein Kinase Signaling through a Ca2+-Dependent Mechanism Involving Voltage-Gated L-Type Calcium Channel. Mol Pharmacol 2013; 84:876-87. [DOI: 10.1124/mol.113.086744] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
|
33
|
Conti E, Tremolizzo L, Bomba M, Uccellini O, Rossi MS, Raggi ME, Neri F, Ferrarese C, Nacinovich R. Reduced fasting plasma levels of diazepam-binding inhibitor in adolescents with anorexia nervosa. Int J Eat Disord 2013; 46:626-9. [PMID: 23625555 DOI: 10.1002/eat.22129] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 01/07/2013] [Accepted: 01/27/2013] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Altered expression and/or function, both peripherally and centrally, of various neuropeptides is involved in the neurophysiology of anorexia nervosa (AN). Diazepam-binding inhibitor (DBI) is an interesting peptide for understanding this crosstalk. The aim of this work was to assess fasting plasma levels of DBI and leptin in patients with AN. METHOD Twenty-four AN adolescents were recruited together with 10 age-comparable healthy controls. Neuropeptide determinations were performed on plasma samples by enzyme-linked immunosorbent assays. Patients with AN were further characterized for the presence of a depressive state or anxiety by using, respectively, the Children's Depression Inventory or the State-Trait Anxiety Inventory form Y. RESULTS Levels of both plasma DBI and leptin were reduced in patients with AN (∼40 and ∼70%, respectively). DBI levels displayed a tendency to increase in the presence of a depressive state, although not with anxiety, whereas leptin levels correlated exclusively with body mass index. DISCUSSION These data further extend our knowledge of neuropeptide dysfunction in AN, and plasma DBI may represent a marker for this disease, in particular considering its correlation with comorbid mood disorders.
Collapse
Affiliation(s)
- Elisa Conti
- Neurology and Laboratory of Neurobiology, University of Milano-Bicocca, San Gerardo Hospital, Monza, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Perez-Leighton CE, Billington CJ, Kotz CM. Orexin modulation of adipose tissue. Biochim Biophys Acta Mol Basis Dis 2013; 1842:440-5. [PMID: 23791983 DOI: 10.1016/j.bbadis.2013.06.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2013] [Revised: 05/23/2013] [Accepted: 06/05/2013] [Indexed: 10/26/2022]
Abstract
The orexins are neuropeptides with critical functions in the central nervous system. These neuropeptides have important roles in energy balance and obesity, and therefore on the accumulation of adipose tissue. Rodents lacking orexins, typically through genetic knockouts, experience increased weight gain and accumulation of adipose tissue. Evidence indicates that the lack of the orexins increase adiposity as a result of decreased energy expenditure, principally through a reduction of physical activity. Different lines of evidence suggest that other mechanisms are likely also in play, and neural influences on both white and brown adipose tissues remain to be fully and functionally defined. In addition, the orexin peptides and their receptors are expressed in adipose tissue, with little available information as to their significance. This review summarizes our current understanding of how the orexin peptides affect adipose tissue. We provide a brief introduction to the physiology of orexins and their effects on white and brown adipose tissues in the context of energy balance. We conclude this review by integrating this information in the context of the known physiology of the orexins. This article is part of a Special Issue entitled: Modulation of Adipose Tissue in Health and Disease.
Collapse
Affiliation(s)
- Claudio E Perez-Leighton
- Veterans Health Care System, GRECC, One Veterans Drive, Minneapolis, MN 55417, USA; University of Minnesota, MN Obesity Center, 1334 Eckles Avenue, St Paul, MN 55108, USA; Center for Integrative Medicine and Innovative Sciences, Facultad de Medicina, Universidad Andres Bello, Echaurren 183, Santiago, 8370071, Chile.
| | - Charles J Billington
- Veterans Health Care System, Endocrinology, One Veterans Drive, Minneapolis, MN 55417, USA; University of Minnesota, MN Obesity Center, 1334 Eckles Avenue, St Paul, MN 55108, USA; University of Minnesota, Graduate Program in Nutrition, 1334 Eckles Avenue, St Paul, MN 55108, USA
| | - Catherine M Kotz
- Veterans Health Care System, GRECC, One Veterans Drive, Minneapolis, MN 55417, USA; University of Minnesota, MN Obesity Center, 1334 Eckles Avenue, St Paul, MN 55108, USA; University of Minnesota, Department of Food Science and Nutrition, 1334 Eckles Avenue, St Paul, MN 55108, USA; University of Minnesota, Graduate Program in Nutrition, 1334 Eckles Avenue, St Paul, MN 55108, USA; University of Minnesota, Graduate Program in Neuroscience, USA
| |
Collapse
|
35
|
Monteleone P, Maj M. Dysfunctions of leptin, ghrelin, BDNF and endocannabinoids in eating disorders: beyond the homeostatic control of food intake. Psychoneuroendocrinology 2013; 38:312-30. [PMID: 23313276 DOI: 10.1016/j.psyneuen.2012.10.021] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 12/18/2022]
Abstract
A large body of literature documents the occurrence of alterations in the physiology of both central and peripheral modulators of appetite in acute patients with anorexia nervosa (AN) and bulimia nervosa (BN). Until more recently the role of most of the appetite modulators in the control of eating behavior was conceptualized solely in terms of their influence on homeostatic control of energy balance. However, it is becoming more and more evident that appetite modulators also affect the non-homeostatic cognitive, emotional and rewarding component of food intake as well as non food-related reward, and, recently, AN and BN have been pathophysiologically linked to dysfunctions of reward mechanisms. Therefore, the possibility exists that observed changes in appetite modulators in acute AN and BN may represent not only homeostatic adaptations to malnutrition, but also contribute to the development and/or the maintenance of aberrant non-homeostatic behaviors, such as self-starvation and binge eating. In the present review, the evidences supporting a role of leptin, ghrelin, brain-derived neurotrophic factor and endocannabinoids in the homeostatic and non-homeostatic dysregulations of patients with AN and BN will be presented. The reviewed literature is highly suggestive that changes in the physiology of these modulators may play a pivotal role in the pathophysiology of eating disorders by providing a possible link between motivated behaviors, reward processes, cognitive functions and energy balance.
Collapse
Affiliation(s)
- Palmiero Monteleone
- Department of Medicine and Surgery, University of Salerno, via S. Allende, 84084 Baronissi (Salerno), Italy.
| | | |
Collapse
|