1
|
Nguyen AK, Schall PZ, Kidd JM. A map of canine sequence variation relative to a Greenland wolf outgroup. Mamm Genome 2024; 35:565-576. [PMID: 39088040 DOI: 10.1007/s00335-024-10056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
For over 15 years, canine genetics research relied on a reference assembly from a Boxer breed dog named Tasha (i.e., canFam3.1). Recent advances in long-read sequencing and genome assembly have led to the development of numerous high-quality assemblies from diverse canines. These assemblies represent notable improvements in completeness, contiguity, and the representation of gene promoters and gene models. Although genome graph and pan-genome approaches have promise, most genetic analyses in canines rely upon the mapping of Illumina sequencing reads to a single reference. The Dog10K consortium, and others, have generated deep catalogs of genetic variation through an alignment of Illumina sequencing reads to a reference genome obtained from a German Shepherd Dog named Mischka (i.e., canFam4, UU_Cfam_GSD_1.0). However, alignment to a breed-derived genome may introduce bias in genotype calling across samples. Since the use of an outgroup reference genome may remove this effect, we have reprocessed 1929 samples analyzed by the Dog10K consortium using a Greenland wolf (mCanLor1.2) as the reference. We efficiently performed remapping and variant calling using a GPU-implementation of common analysis tools. The resulting call set removes the variability in genetic differences seen across samples and breed relationships revealed by principal component analysis are not affected by the choice of reference genome. Using this sequence data, we inferred the history of population sizes and found that village dog populations experienced a 9-13 fold reduction in historic effective population size relative to wolves.
Collapse
Affiliation(s)
- Anthony K Nguyen
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Peter Z Schall
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Jeffrey M Kidd
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Alves Monteiro HJ, Bekkevold D, Pacheco G, Mortensen S, Lou RN, Therkildsen NO, Tanguy A, Robert C, De Wit P, Meldrup D, Laugen AT, Zu Ermgassen PSE, Strand Å, Saurel C, Hemmer-Hansen J. Genome-Wide Population Structure in a Marine Keystone Species, the European Flat Oyster (Ostrea edulis). Mol Ecol 2024:e17573. [PMID: 39533801 DOI: 10.1111/mec.17573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/02/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
Ostrea edulis, the European flat oyster, was once a widespread economically and ecologically important marine species, but has suffered dramatic declines over the past two centuries. Consequently, there has been a surge in European restoration efforts, many of which focus on restocking as a conservation measure. In this study, we used whole-genome sequencing (WGS) data to investigate the population structure, demographic history, and patterns of local adaptation of O. edulis across its natural distribution with increased sampling densities at Scandinavian localities. Results revealed seven distinct genetic clusters, including previously undescribed complex population structure in Norway, and evidence for introgression between genetic clusters in Scandinavia. We detected large structural variants (SVs) on three pseudo-chromosomes. These megabase long regions were characterised by strong linkage disequilibrium and clear geographical differentiation, suggestive of chromosomal inversions potentially associated with local adaptation. The results indicated that genomic traces of past translocations of non-native O. edulis were still present in some individuals, but overall, we found limited evidence of major impacts of translocations on the scale of contemporary population structure. Our findings highlight the importance of considering population structure and signatures of selection in the design of effective conservation strategies to preserve and restore wild native European flat oyster populations, and we provide direct knowledge safeguarding sustainable mitigation actions in this important species.
Collapse
Affiliation(s)
- Homère J Alves Monteiro
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
- Section for Evolutionary Genomics, Faculty of Health and Medical Sciences, The Globe Institute, University of Copenhagen, Copenhagen K, Denmark
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - George Pacheco
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Oslo, Norway
| | | | - Runyang Nicolas Lou
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA
- Department of Integrative Biology, University of California Berkeley, Berkeley, California, USA
| | - Nina O Therkildsen
- Department of Natural Resources and the Environment, Cornell University, Ithaca, New York, USA
| | - Arnaud Tanguy
- Sorbonne Université, CNRS, UMR 7144, Station Biologique de Roscoff, Roscoff, France
| | - Chloé Robert
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
| | - Pierre De Wit
- Department of Marine Sciences, Tjärnö Marine Laboratory, University of Gothenburg, Strömstad, Sweden
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Dorte Meldrup
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Ane T Laugen
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Natural Sciences, Centre for Coastal Research, University of Agder, Kristiansand, Norway
| | | | - Åsa Strand
- Department of Environmental Intelligence, IVL Swedish Environmental Research Institute, Fiskebäckskil, Sweden
| | - Camille Saurel
- National Institute of Aquatic Resources, Danish Shellfish Centre, Technical University of Denmark, Nykøbing Mors, Denmark
| | - Jakob Hemmer-Hansen
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| |
Collapse
|
3
|
Gouy A, Wang X, Kapopoulou A, Neuenschwander S, Schmid E, Excoffier L, Heckel G. Genomes of Microtus Rodents Highlight the Importance of Olfactory and Immune Systems in Their Fast Radiation. Genome Biol Evol 2024; 16:evae233. [PMID: 39445808 PMCID: PMC11579656 DOI: 10.1093/gbe/evae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 10/02/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
The characterization of genes and biological functions underlying functional diversification and the formation of species is a major goal of evolutionary biology. In this study, we investigated the fast radiation of Microtus voles, one of the most speciose group of mammals, which shows strong genetic divergence despite few readily observable morphological differences. We produced an annotated reference genome for the common vole, Microtus arvalis, and resequenced the genomes of 10 different species and evolutionary lineages spanning the Microtus speciation continuum. Our full-genome sequences illustrate the recent and fast diversification of this group, and we identified genes in highly divergent genomic windows that have likely particular roles in their radiation. We found three biological functions enriched for highly divergent genes in most Microtus species and lineages: olfaction, immunity and metabolism. In particular, olfaction-related genes (mostly olfactory receptors and vomeronasal receptors) are fast evolving in all Microtus species indicating the exceptional importance of the olfactory system in the evolution of these rodents. Of note is e.g. the shared signature among vole species on Olfr1019 which has been associated with fear responses against predator odors in rodents. Our analyses provide a genome-wide basis for the further characterization of the ecological factors and processes of natural and sexual selection that have contributed to the fast radiation of Microtus voles.
Collapse
Affiliation(s)
- Alexandre Gouy
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Xuejing Wang
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Adamandia Kapopoulou
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | - Emanuel Schmid
- Vital-IT, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Laurent Excoffier
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Gerald Heckel
- Institute of Ecology and Evolution, University of Bern, Bern, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| |
Collapse
|
4
|
Sands AF, Andersson AAL, Reid K, Hains T, Joseph L, Drew A, Mason IJ, Rheindt FE, Dingle C, Merilä J. Genomic and Acoustic Biogeography of the Iconic Sulphur-crested Cockatoo Clarifies Species Limits and Patterns of Intraspecific Diversity. Mol Biol Evol 2024; 41:msae222. [PMID: 39447047 PMCID: PMC11586666 DOI: 10.1093/molbev/msae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 10/03/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024] Open
Abstract
Many highly recognizable species lack genetic data important for conservation due to neglect over their hyperabundance. This likely applies to the Sulfur-crested Cockatoo (Cacatua galerita), one of the world's most iconic parrots. The species is native to Australia, New Guinea, and some surrounding Melanesian islands of the latter. Four subspecies are currently recognised based on morphology. Australian subspecies and populations are abundant, but several factors threaten those in New Guinea and Melanesia. Genetic data from natural populations are scarce-information that is vital to identifying evolutionarily significant units (ESUs) important for modern conservation planning. We used whole-genome resequencing to investigate patterns of differentiation, evolutionary affinities, and demographic history across C. galerita's distribution range to assess whether currently recognised subspecies represent ESUs. We complement this with an assessment of bioacoustic variation across the species' distribution landscape. Our results point to C. galerita sensu lato (s.l.) comprising two species. We restrict C. galerita sensu stricto (s.s.) to populations in Australia and the Trans-Fly ecodomain of southern New Guinea. The second species, recognised here as Cacatua triton, likely occurs over much of the rest of New Guinea. Restricting further discussion of intraspecific diversity in C. triton, we show that within C. galerita s.s. two ESUs exist, which align to Cacatua galerita galerita in eastern Australia and southern New Guinea and Cacatua galerita fitzroyi in northern and north-western Australia. We suggest that the evolution of these species and ESUs are linked to Middle and Late Pleistocene glacial cycles and their effects on sea level and preferential habitats. We argue that conservation assessments need updating, protection of preferential forest and woodland habitats are important and reintroductions require careful management to avoid possible negative hybridization effects of non-complementary lineages.
Collapse
Affiliation(s)
- Arthur F Sands
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Astrid A L Andersson
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Kerry Reid
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Taylor Hains
- Committee on Evolutionary Biology, University of Chicago, Chicago, IL, USA
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL, USA
| | - Leo Joseph
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia
| | - Alex Drew
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia
| | - Ian J Mason
- Australian National Wildlife Collection, CSIRO National Research Collections Australia, Canberra, Australia
| | - Frank E Rheindt
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore
| | - Caroline Dingle
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Biology Department, Capilano University, North Vancouver, BC, Canada
| | - Juha Merilä
- Area of Ecology and Biodiversity, School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR
- Ecological Genetics Research Unit, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Day G, Fox G, Hipperson H, Maher K, Tucker R, Horsburgh G, Waters D, Durant K, Burke T, Slate J, Arnold K. Revealing the Demographic History of the European Nightjar ( Caprimulgus europaeus). Ecol Evol 2024; 14:e70460. [PMID: 39463738 PMCID: PMC11512156 DOI: 10.1002/ece3.70460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/20/2024] [Accepted: 09/28/2024] [Indexed: 10/29/2024] Open
Abstract
A species' demographic history gives important context to contemporary population genetics and a possible insight into past responses to climate change; with an individual's genome providing a window into the evolutionary history of contemporary populations. Pairwise sequentially Markovian coalescent (PSMC) analysis uses information from a single genome to derive fluctuations in effective population size change over the last ~5 million years. Here, we apply PSMC analysis to two European nightjar (Caprimulgus europaeus) genomes, sampled in Northwest and Southern Europe, with the aim of revealing the demographic history of nightjar in Europe. We successfully reconstructed effective population size over the last 5 million years. Our analysis shows that in response to global climate change, the effective population size of nightjar broadly increased under stable warm periods and decreased during cooler spans and prolonged glacial periods. PSMC analysis on the pseudo-diploid combination of the two genomes revealed fluctuations in gene flow between ancestral populations over time, with gene flow ceasing by the last-glacial period. Our results are tentatively suggestive of divergence in the European nightjar population, with timings consistent with differentiation being driven by restriction to different refugia during periods of glaciation. Finally, our results suggest that migratory behaviour in nightjar likely evolved prior to the last-glacial period, with long-distance migration seemingly persisting throughout the Pleistocene. However, further genetic structure analysis of individuals from known breeding sites across the species' contemporary range is needed to understand the extent and origins of range-wide differentiation in nightjar.
Collapse
Affiliation(s)
- George Day
- Department of Environment and GeographyUniversity of YorkYorkUK
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
- British Antarctic SurveyCambridgeUK
| | - Graeme Fox
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
- University of NottinghamNottinghamUK
| | - Helen Hipperson
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Kathryn H. Maher
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Rachel Tucker
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Gavin J. Horsburgh
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Dean Waters
- Department of Environment and GeographyUniversity of YorkYorkUK
| | | | - Terry Burke
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | - Jon Slate
- NERC Environmental "Omics Facility ‐ Visitor FacilitySchool of BiosciencesSheffieldUK
| | | |
Collapse
|
6
|
Sromek L, Johnson KP, Kunnasranta M, Ylinen E, Virrueta Herrera S, Andrievskaya E, Alexeev V, Rusinek O, Rosing-Asvid A, Nyman T. Population genomics of seal lice provides insights into the postglacial history of northern European seals. Mol Ecol 2024; 33:e17523. [PMID: 39248016 DOI: 10.1111/mec.17523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/06/2024] [Accepted: 08/27/2024] [Indexed: 09/10/2024]
Abstract
Genetic analyses of host-specific parasites can elucidate the evolutionary histories and biological features of their hosts. Here, we used population-genomic analyses of ectoparasitic seal lice (Echinophthirius horridus) to shed light on the postglacial history of seals in the Arctic Ocean and the Baltic Sea region. One key question was the enigmatic origin of relict landlocked ringed seal populations in lakes Saimaa and Ladoga in northern Europe. We found that that lice of four postglacially diverged subspecies of the ringed seal (Pusa hispida) and Baltic gray seal (Halichoerus grypus), like their hosts, form genetically differentiated entities. Using coalescent-based demographic inference, we show that the sequence of divergences of the louse populations is consistent with the geological history of lake formation. In addition, local effective population sizes of the lice are generally proportional to the census sizes of their respective seal host populations. Genome-based reconstructions of long-term effective population sizes revealed clear differences among louse populations associated with gray versus ringed seals, with apparent links to Pleistocene and Holocene climatic variation as well as to the isolation histories of ringed seal subspecies. Interestingly, our analyses also revealed ancient gene flow between the lice of Baltic gray and ringed seals, suggesting that the distributions of Baltic seals overlapped to a greater extent in the past than is the case today. Taken together, our results demonstrate how genomic information from specialized parasites with higher mutation and substitution rates than their hosts can potentially illuminate finer scale population genetic patterns than similar data from their hosts.
Collapse
Affiliation(s)
- Ludmila Sromek
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Gdynia, Poland
| | - Kevin P Johnson
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois, Champaign, Illinois, USA
| | - Mervi Kunnasranta
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
- Natural Resources Institute Finland, Joensuu, Finland
| | - Eeva Ylinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | | | | | | | - Olga Rusinek
- Baikal Museum of the Siberian Branch of the Russian Academy of Sciences, Listvyanka, Russia
| | | | - Tommi Nyman
- Department of Ecosystems in the Barents Region, Svanhovd Research Station, Norwegian Institute of Bioeconomy Research, Svanvik, Norway
| |
Collapse
|
7
|
Quinn CB, Preckler-Quisquater S, Buchalski MR, Sacks BN. Whole Genomes Inform Genetic Rescue Strategy for Montane Red Foxes in North America. Mol Biol Evol 2024; 41:msae193. [PMID: 39288165 PMCID: PMC11424165 DOI: 10.1093/molbev/msae193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/07/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
A few iconic examples have proven the value of facilitated gene flow for counteracting inbreeding depression and staving off extinction; yet, the practice is often not implemented for fear of causing outbreeding depression. Using genomic sequencing, climatic niche modeling, and demographic reconstruction, we sought to assess the risks and benefits of using translocations as a tool for recovery of endangered montane red fox (Vulpes vulpes) populations in the western United States. We demonstrated elevated inbreeding and homozygosity of deleterious alleles across all populations, but especially those isolated in the Cascade and Sierra Nevada ranges. Consequently, translocations would be expected to increase population growth by masking deleterious recessive alleles. Demographic reconstructions further indicated shallow divergences of less than a few thousand years among montane populations, suggesting low risk of outbreeding depression. These genomic-guided findings set the stage for future management, the documentation of which will provide a roadmap for recovery of other data-deficient taxa.
Collapse
Affiliation(s)
- Cate B Quinn
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- California Department of Fish and Wildlife, Wildlife Genetics Research Unit, Wildlife Health Laboratory, Sacramento, CA, USA
- National Genomics Center for Wildlife and Fish Conservation, USDA Forest Service, Rocky Mountain Research Station, Missoula, MT, USA
| | - Sophie Preckler-Quisquater
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Michael R Buchalski
- California Department of Fish and Wildlife, Wildlife Genetics Research Unit, Wildlife Health Laboratory, Sacramento, CA, USA
| | - Benjamin N Sacks
- Mammalian Ecology and Conservation Unit, Veterinary Genetics Laboratory, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| |
Collapse
|
8
|
Lichman V, Ozerov M, López ME, Noreikiene K, Kahar S, Pukk L, Burimski O, Gross R, Vasemägi A. Whole-genome analysis reveals phylogenetic and demographic history of Eurasian perch. JOURNAL OF FISH BIOLOGY 2024; 105:871-885. [PMID: 38897597 DOI: 10.1111/jfb.15821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 04/19/2024] [Accepted: 05/14/2024] [Indexed: 06/21/2024]
Abstract
The contemporary diversity and distribution of species are shaped by their evolutionary and ecological history. This can be deciphered with the help of phylogenetic and demographic analysis methods, ideally combining and supplementing information from mitochondrial and nuclear genomes. In this study, we investigated the demographic history of Eurasian perch (Perca fluviatilis), a highly adaptable teleost with a distribution range across Eurasia. We combined whole-genome resequencing data with available genomic resources to analyse the phylogeny, phylogeography, and demographic history of P. fluviatilis populations from Europe and Siberia. We identified five highly diverged evolutionary mtDNA lineages, three of which show a strong signal of admixture in the Baltic Sea region. The estimated mean divergence time between these lineages ranged from 0.24 to 1.42 million years. Based on nuclear genomes, two distinct demographic trajectories were observed in European and Siberian samples reflecting contrasting demographic histories ca. 30,000-100,000 years before the present. A comparison of mtDNA and nuclear DNA evolutionary trees and AMOVA revealed concordances, as well as incongruences, between the two types of data, most likely reflecting recent postglacial colonization and hybridization events. Overall, our findings demonstrate the power and usefulness of genome-wide information for delineating historical processes that have shaped the genome of P. fluviatilis. We also highlight the added value of data-mining existing transcriptomic resources to complement novel sequence data, helping to shed light on putative glacial refugia and postglacial recolonization routes.
Collapse
Affiliation(s)
- Vitalii Lichman
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Mikhail Ozerov
- Biodiversity Unit, University of Turku, Turku, Finland
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
- Department of Biology, University of Turku, Turku, Finland
| | - María-Eugenia López
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| | - Kristina Noreikiene
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
- Department of Botany and Genetics, Vilnius University, Vilnius, Lithuania
| | - Siim Kahar
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Lilian Pukk
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Oksana Burimski
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Riho Gross
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
| | - Anti Vasemägi
- Institute of Veterinary Medicine and Animal Sciences, Chair of Aquaculture, Estonian University of Life Sciences, Tartu, Estonia
- Department of Aquatic Resources, Institute of Freshwater Research, Swedish University of Agricultural Sciences, Drottningholm, Sweden
| |
Collapse
|
9
|
Cádiz MI, Tengstedt ANB, Sørensen IH, Pedersen ES, Fox AD, Hansen MM. Demographic History and Inbreeding in Two Declining Sea Duck Species Inferred From Whole-Genome Sequence Data. Evol Appl 2024; 17:e70008. [PMID: 39257569 PMCID: PMC11386304 DOI: 10.1111/eva.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/12/2024] Open
Abstract
Anthropogenic impact has transitioned from threatening already rare species to causing significant declines in once numerous organisms. Long-tailed duck (Clangula hyemalis) and velvet scoter (Melanitta fusca) were once important quarry sea duck species in NW Europe, but recent declines resulted in their reclassification as vulnerable on the IUCN Red List. We sequenced and assembled genomes for both species and resequenced 15 individuals of each. Using analyses based on site frequency spectra and sequential Markovian coalescence, we found C. hyemalis to show more historical demographic stability, whereas M. fusca was affected particularly by the Last (Weichselian) Glaciation. This likely reflects C. hyemalis breeding continuously across the Arctic, with cycles of glaciation primarily shifting breeding areas south or north without major population declines, whereas the more restricted southern range of M. fusca would lead to significant range contraction during glaciations. Both species showed evidence of declines over the past thousands of years, potentially reflecting anthropogenic pressures with the recent decline indicating an accelerated process. Analysis of runs of homozygosity (ROH) showed low but nontrivial inbreeding, with F ROH from 0.012 to 0.063 in C. hyemalis and ranging from 0 to 0.047 in M. fusca. Lengths of ROH suggested that this was due to ongoing background inbreeding rather than recent declines. Overall, despite demographically important declines, this has not yet led to strong inbreeding and genetic erosion, and the most pressing conservation concern may be the risk of density-dependent (Allee) effects. We recommend monitoring of inbreeding using ROH analysis as a cost-efficient method to track future developments to support effective conservation of these species.
Collapse
Affiliation(s)
- María I Cádiz
- Department of Biology Aarhus University Aarhus Denmark
| | | | | | | | | | | |
Collapse
|
10
|
Mira-Jover A, Graciá E, Giménez A, Fritz U, Rodríguez-Caro RC, Bourgeois Y. Taking advantage of reference-guided assembly in a slowly-evolving lineage: Application to Testudo graeca. PLoS One 2024; 19:e0303408. [PMID: 39121089 PMCID: PMC11315351 DOI: 10.1371/journal.pone.0303408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/22/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Obtaining de novo chromosome-level genome assemblies greatly enhances conservation and evolutionary biology studies. For many research teams, long-read sequencing technologies (that produce highly contiguous assemblies) remain unaffordable or unpractical. For the groups that display high synteny conservation, these limitations can be overcome by a reference-guided assembly using a close relative genome. Among chelonians, tortoises (Testudinidae) are considered one of the most endangered taxa, which calls for more genomic resources. Here we make the most of high synteny conservation in chelonians to produce the first chromosome-level genome assembly of the genus Testudo with one of the most iconic tortoise species in the Mediterranean basin: Testudo graeca. RESULTS We used high-quality, paired-end Illumina sequences to build a reference-guided assembly with the chromosome-level reference of Gopherus evgoodei. We reconstructed a 2.29 Gb haploid genome with a scaffold N50 of 107.598 Mb and 5.37% gaps. We sequenced 25,998 protein-coding genes, and identified 41.2% of the assembly as repeats. Demographic history reconstruction based on the genome revealed two events (population decline and recovery) that were consistent with previously suggested phylogeographic patterns for the species. This outlines the value of such reference-guided assemblies for phylogeographic studies. CONCLUSIONS Our results highlight the value of using close relatives to produce de novo draft assemblies in species where such resources are unavailable. Our annotated genome of T. graeca paves the way to delve deeper into the species' evolutionary history and provides a valuable resource to enhance direct conservation efforts on their threatened populations.
Collapse
Affiliation(s)
- Andrea Mira-Jover
- Ecology Area, University Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO), Miguel Hernández University, Elche, Carretera de Beniel, Orihuela (Alicante), Spain
| | - Eva Graciá
- Ecology Area, University Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO), Miguel Hernández University, Elche, Carretera de Beniel, Orihuela (Alicante), Spain
| | - Andrés Giménez
- Ecology Area, University Institute for Agro-food and Agro-environmental Research and Innovation (CIAGRO), Miguel Hernández University, Elche, Carretera de Beniel, Orihuela (Alicante), Spain
| | - Uwe Fritz
- Museum of Zoology, Senckenberg Dresden, Dresden, Germany
| | | | | |
Collapse
|
11
|
Schoville SD, Burke RL, Dong DY, Ginsberg HS, Maestas L, Paskewitz SM, Tsao JI. Genome resequencing reveals population divergence and local adaptation of blacklegged ticks in the United States. Mol Ecol 2024; 33:e17460. [PMID: 38963031 DOI: 10.1111/mec.17460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/12/2024] [Accepted: 04/15/2024] [Indexed: 07/05/2024]
Abstract
Tick vectors and tick-borne disease are increasingly impacting human populations globally. An important challenge is to understand tick movement patterns, as this information can be used to improve management and predictive modelling of tick population dynamics. Evolutionary analysis of genetic divergence, gene flow and local adaptation provides insight on movement patterns at large spatiotemporal scales. We develop low coverage, whole genome resequencing data for 92 blacklegged ticks, Ixodes scapularis, representing range-wide variation across the United States. Through analysis of population genomic data, we find that tick populations are structured geographically, with gradual isolation by distance separating three population clusters in the northern United States, southeastern United States and a unique cluster represented by a sample from Tennessee. Populations in the northern United States underwent population contractions during the last glacial period and diverged from southern populations at least 50 thousand years ago. Genome scans of selection provide strong evidence of local adaptation at genes responding to host defences, blood-feeding and environmental variation. In addition, we explore the potential of low coverage genome sequencing of whole-tick samples for documenting the diversity of microbial pathogens and recover important tick-borne pathogens such as Borrelia burgdorferi. The combination of isolation by distance and local adaptation in blacklegged ticks demonstrates that gene flow, including recent expansion, is limited to geographical scales of a few hundred kilometres.
Collapse
Affiliation(s)
- Sean D Schoville
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Russell L Burke
- Department of Biology, Hofstra University, Hempstead, New York, USA
| | - Dahn-Young Dong
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Howard S Ginsberg
- United States Geological Survey, Eastern Ecological Science Center, Woodward Hall - PSE, Field Station at the University of Rhode Island, Kingston, Rhode Island, USA
| | - Lauren Maestas
- Cattle Fever Tick Research Laboratory, USDA, Agricultural Research Service, Edinburg, Texas, USA
| | - Susan M Paskewitz
- Department of Entomology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jean I Tsao
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, Michigan, USA
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
12
|
Hogg CJ, Edwards RJ, Farquharson KA, Silver LW, Brandies P, Peel E, Escalona M, Jaya FR, Thavornkanlapachai R, Batley K, Bradford TM, Chang JK, Chen Z, Deshpande N, Dziminski M, Ewart KM, Griffith OW, Marin Gual L, Moon KL, Travouillon KJ, Waters P, Whittington CM, Wilkins MR, Helgen KM, Lo N, Ho SYW, Ruiz Herrera A, Paltridge R, Marshall Graves JA, Renfree M, Shapiro B, Ottewell K, Belov K. Extant and extinct bilby genomes combined with Indigenous knowledge improve conservation of a unique Australian marsupial. Nat Ecol Evol 2024; 8:1311-1326. [PMID: 38945974 PMCID: PMC11239497 DOI: 10.1038/s41559-024-02436-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 05/03/2024] [Indexed: 07/02/2024]
Abstract
Ninu (greater bilby, Macrotis lagotis) are desert-dwelling, culturally and ecologically important marsupials. In collaboration with Indigenous rangers and conservation managers, we generated the Ninu chromosome-level genome assembly (3.66 Gbp) and genome sequences for the extinct Yallara (lesser bilby, Macrotis leucura). We developed and tested a scat single-nucleotide polymorphism panel to inform current and future conservation actions, undertake ecological assessments and improve our understanding of Ninu genetic diversity in managed and wild populations. We also assessed the beneficial impact of translocations in the metapopulation (N = 363 Ninu). Resequenced genomes (temperate Ninu, 6; semi-arid Ninu, 6; and Yallara, 4) revealed two major population crashes during global cooling events for both species and differences in Ninu genes involved in anatomical and metabolic pathways. Despite their 45-year captive history, Ninu have fewer long runs of homozygosity than other larger mammals, which may be attributable to their boom-bust life history. Here we investigated the unique Ninu biology using 12 tissue transcriptomes revealing expression of all 115 conserved eutherian chorioallantoic placentation genes in the uterus, an XY1Y2 sex chromosome system and olfactory receptor gene expansions. Together, we demonstrate the holistic value of genomics in improving key conservation actions, understanding unique biological traits and developing tools for Indigenous rangers to monitor remote wild populations.
Collapse
Affiliation(s)
- Carolyn J Hogg
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia.
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia.
| | - Richard J Edwards
- Minderoo OceanOmics Centre at UWA, Oceans Institute, The University of Western Australia, Perth, Western Australia, Australia
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Katherine A Farquharson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Luke W Silver
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Parice Brandies
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Emma Peel
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| | - Merly Escalona
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Frederick R Jaya
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Rujiporn Thavornkanlapachai
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Kimberley Batley
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Tessa M Bradford
- Evolutionary Biology Unit, South Australian Museum, Adelaide, South Australia, Australia
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - J King Chang
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | | | - Nandan Deshpande
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Ramaciotti Centre for Genomics and School of Biotechnology and Biomolecular Science, UNSW, Sydney, New South Wales, Australia
| | - Martin Dziminski
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Kyle M Ewart
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Oliver W Griffith
- School of Natural Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Laia Marin Gual
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Katherine L Moon
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kenny J Travouillon
- Collections and Research, Western Australian Museum, Welshpool, Western Australia, Australia
| | - Paul Waters
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
| | - Camilla M Whittington
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Marc R Wilkins
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, Australia
- Ramaciotti Centre for Genomics and School of Biotechnology and Biomolecular Science, UNSW, Sydney, New South Wales, Australia
| | - Kristofer M Helgen
- Australian Museum Research Institute, Australian Museum, Sydney, New South Wales, Australia
| | - Nathan Lo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Simon Y W Ho
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Aurora Ruiz Herrera
- Departament de Biologia Cel·lular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
- Genome Integrity and Instability Group, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Rachel Paltridge
- Indigenous Desert Alliance, Alice Springs, Northern Territory, Australia
| | | | - Marilyn Renfree
- School of BioSciences, University of Melbourne, Melbourne, Victoria, Australia
| | - Beth Shapiro
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
- Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Kym Ottewell
- Biodiversity and Conservation Science, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia, Australia
| | - Katherine Belov
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein Science, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
An ZX, Shi LG, Hou GY, Zhou HL, Xun WJ. Genetic diversity and selection signatures in Hainan black goats revealed by whole-genome sequencing data. Animal 2024; 18:101147. [PMID: 38843669 DOI: 10.1016/j.animal.2024.101147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 06/22/2024] Open
Abstract
Understanding the genetic characteristics of indigenous goat breeds is crucial for their conservation and breeding efforts. Hainan black goats, as a native breed of south China's tropical island province of Hainan, possess distinctive traits such as black hair, a moderate growth rate, good meat quality, and small body size. However, they exhibit exceptional resilience to rough feeding conditions, possess high-quality meat, and show remarkable resistance to stress and heat. In this study, we resequenced the whole genome of Hainan black goats to study the economic traits and genetic basis of these goats, we leveraged whole-genome sequencing data from 33 Hainan black goats to analyze single nucleotide polymorphism (SNP) density, Runs of homozygosity (ROH), Integrated Haplotype Score (iHS), effective population size (Ne), Nucleotide diversity Analysis (Pi) and selection characteristics. Our findings revealed that Hainan black goats harbor a substantial degree of genetic variation, with a total of 23 608 983 SNPs identified. Analysis of ROHs identified 53 710 segments, predominantly composed of short fragments, with inbreeding events mainly occurring in ancient ancestors, the estimates of inbreeding based on ROH in Hainan black goats typically exhibit moderate values ranging from 0.107 to 0.186. This is primarily attributed to significant declines in the effective population size over recent generations. Moreover, we identified 921 candidate genes within the intersection candidate region of ROH and iHS. Several of these genes are associated with crucial traits such as immunity (PTPRC, HYAL1, HYAL2, HYAL3, CENPE and PKN1), heat tolerance (GNG2, MAPK8, CAPN2, SLC1A1 and LEPR), meat quality (ACOX1, SSTR1, CAMK2B, PPP2CA and PGM1), cashmere production (AKT4, CHRM2, OXTR, AKT3, HMCN1 and CDK19), and stress resistance (TLR2, IFI44, ENPP1, STK3 and NFATC1). The presence of these genes may be attributed to the genetic adaptation of Hainan black goats to local climate conditions. The insights gained from this study provide valuable references and a solid foundation for the preservation, breeding, and utilization of Hainan black goats and their valuable genetic resources.
Collapse
Affiliation(s)
- Z X An
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - L G Shi
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - G Y Hou
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571100, China
| | - H L Zhou
- Zhanjiang Experimental Station, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524000, China
| | - W J Xun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China.
| |
Collapse
|
14
|
Brown LM, Elbon MC, Bharadwaj A, Damle G, Lachance J. Does Effective Population Size Govern Evolutionary Differences in Telomere Length? Genome Biol Evol 2024; 16:evae111. [PMID: 38771124 PMCID: PMC11140418 DOI: 10.1093/gbe/evae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 05/08/2024] [Accepted: 05/14/2024] [Indexed: 05/22/2024] Open
Abstract
Lengths of telomeres vary by an order of magnitude across mammalian species. Similarly, age- and sex-standardized telomere lengths differ by up to 1 kb (14%) across human populations. How to explain these differences? Telomeres play a central role in senescence and aging, and genes that affect telomere length are likely under weak selection (i.e. telomere length is a trait that is subject to nearly neutral evolution). Importantly, natural selection is more effective in large populations than in small populations. Here, we propose that observed differences in telomere length across species and populations are largely due to differences in effective population sizes. In this perspective, we present preliminary evolutionary genetic evidence supporting this hypothesis and highlight the need for more data.
Collapse
Affiliation(s)
- Lyda M Brown
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mia C Elbon
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ajay Bharadwaj
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Gargi Damle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joseph Lachance
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
15
|
Tengstedt ANB, Liu S, Jacobsen MW, Gundlund C, Møller PR, Berg S, Bekkevold D, Hansen MM. Genomic insights on conservation priorities for North Sea houting and European lake whitefish (Coregonus spp.). Mol Ecol 2024:e17367. [PMID: 38686435 DOI: 10.1111/mec.17367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/08/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
Population genomics analysis holds great potential for informing conservation of endangered populations. We focused on a controversial case of European whitefish (Coregonus spp.) populations. The endangered North Sea houting is the only coregonid fish that tolerates oceanic salinities and was previously considered a species (C. oxyrhinchus) distinct from European lake whitefish (C. lavaretus). However, no firm evidence for genetic-based salinity adaptation has been available. Also, studies based on microsatellite and mitogenome data suggested surprisingly recent divergence (c. 2500 years bp) between houting and lake whitefish. These data types furthermore have provided no evidence for possible inbreeding. Finally, a controversial taxonomic revision recently classified all whitefish in the region as C. maraena, calling conservation priorities of houting into question. We used whole-genome and ddRAD sequencing to analyse six lake whitefish populations and the only extant indigenous houting population. Demographic inference indicated post-glacial expansion and divergence between lake whitefish and houting occurring not long after the Last Glaciation, implying deeper population histories than previous analyses. Runs of homozygosity analysis suggested not only high inbreeding (FROH up to 30.6%) in some freshwater populations but also FROH up to 10.6% in the houting prompting conservation concerns. Finally, outlier scans provided evidence for adaptation to high salinities in the houting. Applying a framework for defining conservation units based on current and historical reproductive isolation and adaptive divergence led us to recommend that the houting be treated as a separate conservation unit regardless of species status. In total, the results underscore the potential of genomics to inform conservation practices, in this case clarifying conservation units and highlighting populations of concern.
Collapse
Affiliation(s)
| | - Shenglin Liu
- Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Magnus W Jacobsen
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | | - Peter Rask Møller
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Søren Berg
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | - Dorte Bekkevold
- National Institute of Aquatic Resources, Technical University of Denmark, Silkeborg, Denmark
| | | |
Collapse
|
16
|
Luo CS, Li TT, Jiang XL, Song Y, Fan TT, Shen XB, Yi R, Ao XP, Xu GB, Deng M. High-quality haplotype-resolved genome assembly for ring-cup oak (Quercus glauca) provides insight into oaks demographic dynamics. Mol Ecol Resour 2024; 24:e13914. [PMID: 38108568 DOI: 10.1111/1755-0998.13914] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/19/2023]
Abstract
Quercus section Cyclobalanopsis represents a dominant woody lineage in East Asian evergreen broadleaved forests. Regardless of its ecological and economic importance, little is known about the genomes of species in this unique oak lineage. Quercus glauca is one of the most widespread tree species in the section Cyclobalanopsis. In this study, a high-quality haplotype-resolved reference genome was assembled for Q. glauca from PacBio HiFi and Hi-C reads. The genome size, contig N50, and scaffold N50 measured 902.88, 7.60, and 69.28 Mb, respectively, for haplotype1, and 913.28, 7.20, and 71.53 Mb, respectively, for haplotype2. A total of 37,457 and 38,311 protein-coding genes were predicted in haplotype1 and haplotype2, respectively. Homologous chromosomes in the Q. glauca genome had excellent gene pair collinearity. The number of R-genes in Q. glauca was similar to most East Asian oaks but less than oak species from Europe and America. Abundant structural variation in the Q. glauca genome could contribute to environmental stress tolerance in Q. glauca. Sections Cyclobalanopsis and Cerris diverged in the Oligocene, in agreement with fossil records for section Cyclobalanopsis, which document its presence in East Asia since the early Miocene. The demographic dynamics of closely related oak species were largely similar. The high-quality reference genome provided here for the most widespread species in section Cyclobalanopsis will serve as an essential genomic resource for evolutionary studies of key oak lineages while also supporting studies of interspecific introgression, local adaptation, and speciation in oaks.
Collapse
Affiliation(s)
- Chang-Sha Luo
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Tian-Tian Li
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiao-Long Jiang
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ying Song
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Ting-Ting Fan
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiang-Bao Shen
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Rong Yi
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Xiao-Ping Ao
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Gang-Biao Xu
- The Laboratory of Forestry Genetics, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Min Deng
- School of Ecology and Environmental Science, Yunnan University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, Yunnan, China
| |
Collapse
|
17
|
Dalapicolla J, Weir JT, Vilaça ST, Quaresma TF, Schneider MPC, Vasconcelos ATR, Aleixo A. Whole genomes show contrasting trends of population size changes and genomic diversity for an Amazonian endemic passerine over the late quaternary. Ecol Evol 2024; 14:e11250. [PMID: 38660467 PMCID: PMC11040105 DOI: 10.1002/ece3.11250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 03/16/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
The "Amazon tipping point" is a global change scenario resulting in replacement of upland terra-firme forests by large-scale "savannization" of mostly southern and eastern Amazon. Reduced rainfall accompanying the Last Glacial Maximum (LGM) has been proposed to have acted as such a tipping point in the past, with the prediction that terra-firme inhabiting species should have experienced reductions in population size as drier habitats expanded. Here, we use whole-genomes of an Amazonian endemic organism (Scale-backed antbirds - Willisornis spp.) sampled from nine populations across the region to test this historical demography scenario. Populations from southeastern Amazonia and close to the Amazon-Cerrado ecotone exhibited a wide range of demographic patterns, while most of those from northern and western Amazonia experienced uniform expansions between 400 kya and 80-60 kya, with gradual declines toward 20 kya. Southeastern populations of Willisornis were the last to diversify and showed smaller heterozygosity and higher runs of homozygosity values than western and northern populations. These patterns support historical population declines throughout the Amazon that affected more strongly lineages in the southern and eastern areas, where historical "tipping point" conditions existed due to the widespread replacement of humid forest by drier and open vegetation during the LGM.
Collapse
Affiliation(s)
- Jeronymo Dalapicolla
- Instituto Tecnológico ValeBelémParáBrazil
- Departamento de Sistemática e EcologiaUniversidade Federal da Paraíba, João PessoaParaíbaBrazil
| | - Jason T. Weir
- Department of Biological SciencesUniversity of Toronto ScarboroughTorontoOntarioCanada
- Department of Ecology and Evolutionary BiologyUniversity of TorontoTorontoOntarioCanada
- Department of Natural History, Royal Ontario MuseumTorontoOntarioCanada
| | | | | | - Maria P. C. Schneider
- Laboratório de Genômica e BiotecnologiaInstituto de Ciências Biológicas, UFPABelémBrazil
| | - Ana Tereza R. Vasconcelos
- Laboratório de BioinformáticaLaboratório Nacional de Computação Científica, PetrópolisRio de JaneiroBrazil
| | | |
Collapse
|
18
|
Kent TV, Schrider DR, Matute DR. Demographic history and the efficacy of selection in the globally invasive mosquito Aedes aegypti. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.584008. [PMID: 38559089 PMCID: PMC10979846 DOI: 10.1101/2024.03.07.584008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Aedes aegypti is the main vector species of yellow fever, dengue, zika and chikungunya. The species is originally from Africa but has experienced a spectacular expansion in its geographic range to a large swath of the world, the demographic effects of which have remained largely understudied. In this report, we examine whole-genome sequences from 6 countries in Africa, North America, and South America to investigate the demographic history of the spread of Ae. aegypti into the Americas its impact on genomic diversity. In the Americas, we observe patterns of strong population structure consistent with relatively low (but probably non-zero) levels of gene flow but occasional long-range dispersal and/or recolonization events. We also find evidence that the colonization of the Americas has resulted in introduction bottlenecks. However, while each sampling location shows evidence of a past population contraction and subsequent recovery, our results suggest that the bottlenecks in America have led to a reduction in genetic diversity of only ~35% relative to African populations, and the American samples have retained high levels of genetic diversity (expected heterozygosity of ~0.02 at synonymous sites) and have experienced only a minor reduction in the efficacy of selection. These results evoke the image of an invasive species that has expanded its range with remarkable genetic resilience in the face of strong eradication pressure.
Collapse
Affiliation(s)
- Tyler V. Kent
- Department of Biology, College of Arts and Sciences, University of North Carolina, Chapel Hill, NC, USA
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel R. Schrider
- Department of Genetics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Daniel R. Matute
- Department of Biology, College of Arts and Sciences, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Liang Y, Xian L, Pan J, Zhu K, Guo H, Liu B, Zhang N, Ou-Yang Y, Zhang Q, Zhang D. De Novo Genome Assembly of the Whitespot Parrotfish ( Scarus forsteni): A Valuable Scaridae Genomic Resource. Genes (Basel) 2024; 15:249. [PMID: 38397238 PMCID: PMC10888354 DOI: 10.3390/genes15020249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/01/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Scarus forsteni, a whitespot parrotfish from the Scaridae family, is a herbivorous fish inhabiting coral reef ecosystems. The deterioration of coral reefs has highly affected the habitats of the parrotfish. The decline in genetic diversity of parrotfish emphasizes the critical importance of conserving their genetic variability to ensure the resilience and sustainability of marine ecosystems for future generations. In this study, a genome of S. forsteni was assembled de novo through using Illumina and Nanopore sequencing. The 1.71-Gb genome of S. forsteni, was assembled into 544 contigs (assembly level: contig). It exhibited an N50 length of 17.97 Mb and a GC content percentage of 39.32%. Our BUSCO analysis revealed that the complete protein of the S. forsteni genome had 98.10% integrity. Combined with structure annotation data, 34,140 (74.81%) genes were functionally annotated out of 45,638 predicted protein-coding genes. Upon comparing the genome size and TE content of teleost fishes, a roughly linear relationship was observed between these two parameters. However, TE content is not a decisive factor in determining the genome size of S. forsteni. Population history analysis results indicate that S. forsteni experienced two major population expansions, both of which occurred before the last interglacial period. In addition, through a comparative genomic analysis of the evolutionary relationship of other species, it was found that S. forsteni had the closest relationship with Cheilinus undulatus, another member of the Labridae family. Our expansion and contraction analysis of the gene family showed that the expansion genes were mainly associated with immune diseases, organismal systems, and cellular processes. At the same time, cell transcription and translation, sex hormone regulation, and other related pathways were also more prominent in the positive selection genes. The genomic sequence of S. forsteni offers valuable resources for future investigations on the conservation, evolution, and behavior of fish species.
Collapse
Affiliation(s)
- Yu Liang
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Lin Xian
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Jinmin Pan
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Kecheng Zhu
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Huayang Guo
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Baosuo Liu
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Nan Zhang
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| | - Yan Ou-Yang
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Qin Zhang
- Guangxi Marine Microbial Resources Industrialization Engineering Technology Research Center, Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, 158 University Road, Nanning 530008, China
| | - Dianchang Zhang
- Chinese Academy of Fishery Sciences, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
- Sanya Tropical Fisheries Research Institute, Sanya 572018, China
- Guangdong Provincial Engineer Technology Research Center of Marine Biological Seed Industry, Guangzhou 510300, China
| |
Collapse
|
20
|
Moran PA, Bosse M, Mariën J, Halfwerk W. Genomic footprints of (pre) colonialism: Population declines in urban and forest túngara frogs coincident with historical human activity. Mol Ecol 2024; 33:e17258. [PMID: 38153193 DOI: 10.1111/mec.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 11/21/2023] [Accepted: 12/06/2023] [Indexed: 12/29/2023]
Abstract
Urbanisation is rapidly altering ecosystems, leading to profound biodiversity loss. To mitigate these effects, we need a better understanding of how urbanisation impacts dispersal and reproduction. Two contrasting population demographic models have been proposed that predict that urbanisation either promotes (facilitation model) or constrains (fragmentation model) gene flow and genetic diversity. Which of these models prevails likely depends on the strength of selection on specific phenotypic traits that influence dispersal, survival, or reproduction. Here, we a priori examined the genomic impact of urbanisation on the Neotropical túngara frog (Engystomops pustulosus), a species known to adapt its reproductive traits to urban selective pressures. Using whole-genome resequencing for multiple urban and forest populations we examined genomic diversity, population connectivity and demographic history. Contrary to both the fragmentation and facilitation models, urban populations did not exhibit substantial changes in genomic diversity or differentiation compared with forest populations, and genomic variation was best explained by geographic distance rather than environmental factors. Adopting an a posteriori approach, we additionally found both urban and forest populations to have undergone population declines. The timing of these declines appears to coincide with extensive human activity around the Panama Canal during the last few centuries rather than recent urbanisation. Our study highlights the long-lasting legacy of past anthropogenic disturbances in the genome and the importance of considering the historical context in urban evolution studies as anthropogenic effects may be extensive and impact nonurban areas on both recent and older timescales.
Collapse
Affiliation(s)
- Peter A Moran
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Mirte Bosse
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Animal Breeding and Genomics, Wageningen University and Research, Wageningen, The Netherlands
| | - Janine Mariën
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Wouter Halfwerk
- A-LIFE, Section Ecology & Evolution, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
21
|
Liu M, Song Y, Zhang S, Yu L, Yuan Z, Yang H, Zhang M, Zhou Z, Seim I, Liu S, Fan G, Yang H. A chromosome-level genome of electric catfish ( Malapterurus electricus) provided new insights into order Siluriformes evolution. MARINE LIFE SCIENCE & TECHNOLOGY 2024; 6:1-14. [PMID: 38433969 PMCID: PMC10901758 DOI: 10.1007/s42995-023-00197-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 09/22/2023] [Indexed: 03/05/2024]
Abstract
The electric catfish (Malapterurus electricus), belonging to the family Malapteruridae, order Siluriformes (Actinopterygii: Ostariophysi), is one of the six branches that has independently evolved electrical organs. We assembled a 796.75 Mb M. electricus genome and anchored 88.72% sequences into 28 chromosomes. Gene family analysis revealed 295 expanded gene families that were enriched on functions related to glutamate receptors. Convergent evolutionary analyses of electric organs among different lineage of electric fishes further revealed that the coding gene of rho guanine nucleotide exchange factor 4-like (arhgef4), which is associated with G-protein coupled receptor (GPCR) signaling pathway, underwent adaptive parallel evolution. Gene identification suggests visual degradation in catfishes, and an important role for taste in environmental adaptation. Our findings fill in the genomic data for a branch of electric fish and provide a relevant genetic basis for the adaptive evolution of Siluriformes. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-023-00197-8.
Collapse
Affiliation(s)
- Meiru Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Yue Song
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Suyu Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Lili Yu
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Zengbao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
- BGI-Shenzhen, Shenzhen, 518083 China
| | - Hengjia Yang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Mengqi Zhang
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
| | - Zhuocheng Zhou
- Professional Committee of Native Aquatic Organisms and Water Ecosystem of China Fisheries Association, Beijing, 100125 China
| | - Inge Seim
- Integrative Biology Laboratory, College of Life Sciences, Nanjing Normal University, Nanjing, 210023 China
| | - Shanshan Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao, 266555 China
- BGI-Shenzhen, Shenzhen, 518083 China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| | - Huanming Yang
- BGI-Shenzhen, Shenzhen, 518083 China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, 518083 China
| |
Collapse
|
22
|
Teixeira H, Le Corre M, Michon L, Nicoll MAC, Jaeger A, Nikolic N, Pinet P, Couzi FX, Humeau L. Past volcanic activity predisposes an endemic threatened seabird to negative anthropogenic impacts. Sci Rep 2024; 14:1960. [PMID: 38263429 PMCID: PMC10805739 DOI: 10.1038/s41598-024-52556-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/19/2024] [Indexed: 01/25/2024] Open
Abstract
Humans are regularly cited as the main driver of current biodiversity extinction, but the impact of historic volcanic activity is often overlooked. Pre-human evidence of wildlife abundance and diversity are essential for disentangling anthropogenic impacts from natural events. Réunion Island, with its intense and well-documented volcanic activity, endemic biodiversity, long history of isolation and recent human colonization, provides an opportunity to disentangle these processes. We track past demographic changes of a critically endangered seabird, the Mascarene petrel Pseudobulweria aterrima, using genome-wide SNPs. Coalescent modeling suggested that a large ancestral population underwent a substantial population decline in two distinct phases, ca. 125,000 and 37,000 years ago, coinciding with periods of major eruptions of Piton des Neiges. Subsequently, the ancestral population was fragmented into the two known colonies, ca. 1500 years ago, following eruptions of Piton de la Fournaise. In the last century, both colonies declined significantly due to anthropogenic activities, and although the species was initially considered extinct, it was rediscovered in the 1970s. Our findings suggest that the current conservation status of wildlife on volcanic islands should be firstly assessed as a legacy of historic volcanic activity, and thereafter by the increasing anthropogenic impacts, which may ultimately drive species towards extinction.
Collapse
Affiliation(s)
- Helena Teixeira
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS, IFREMER, Université de Nouvelle-Calédonie), 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, Ile de La Réunion, France.
| | - Matthieu Le Corre
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS, IFREMER, Université de Nouvelle-Calédonie), 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, Ile de La Réunion, France
| | - Laurent Michon
- Université de La Réunion, Laboratoire Géosciences Réunion, 97744, Saint Denis, France
- Université Paris Cité, Institut de physique du globe de Paris, CNRS, 75005, Paris, France
| | - Malcolm A C Nicoll
- Institute of Zoology, Zoological Society of London, Regent's Park, London, NW1 4RY, UK
| | - Audrey Jaeger
- UMR ENTROPIE (Université de La Réunion, IRD, CNRS, IFREMER, Université de Nouvelle-Calédonie), 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, Ile de La Réunion, France
| | | | - Patrick Pinet
- Parc National de La Réunion, Life+ Pétrels, 258 Rue de la République, 97431, Plaine des Palmistes, Réunion Island, France
| | - François-Xavier Couzi
- Société d'Etudes Ornithologiques de La Réunion (SEOR), 13 ruelle des Orchidées, 97440, Saint André, Réunion Island, France
| | - Laurence Humeau
- UMR PVBMT (Université de La Réunion, CIRAD), 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, Ile de La Réunion, France
| |
Collapse
|
23
|
Fleck SJ, Tomlin C, da Silva Coelho FA, Richter M, Danielson ES, Backenstose N, Krabbenhoft T, Lindqvist C, Albert VA. High quality genomes produced from single MinION flow cells clarify polyploid and demographic histories of critically endangered Fraxinus (ash) species. Commun Biol 2024; 7:54. [PMID: 38184717 PMCID: PMC10771460 DOI: 10.1038/s42003-023-05748-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 12/27/2023] [Indexed: 01/08/2024] Open
Abstract
With populations of threatened and endangered species declining worldwide, efforts are being made to generate high quality genomic records of these species before they are lost forever. Here, we demonstrate that data from single Oxford Nanopore Technologies (ONT) MinION flow cells can, even in the absence of highly accurate short DNA-read polishing, produce high quality de novo plant genome assemblies adequate for downstream analyses, such as synteny and ploidy evaluations, paleodemographic analyses, and phylogenomics. This study focuses on three North American ash tree species in the genus Fraxinus (Oleaceae) that were recently added to the International Union for Conservation of Nature (IUCN) Red List as critically endangered. Our results support a hexaploidy event at the base of the Oleaceae as well as a subsequent whole genome duplication shared by Syringa, Osmanthus, Olea, and Fraxinus. Finally, we demonstrate the use of ONT long-read sequencing data to reveal patterns in demographic history.
Collapse
Affiliation(s)
- Steven J Fleck
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
| | - Crystal Tomlin
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | | | - Michaela Richter
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | | | - Nathan Backenstose
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Trevor Krabbenhoft
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Charlotte Lindqvist
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA
| | - Victor A Albert
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, 14260, USA.
| |
Collapse
|
24
|
Broyles GG, Myers BM, Friedman NR, Gawin DF, Mohd-Taib FS, Sahlan PGM, Seneviratne SS, de Silva NCG, Lekamlage TTM, Hund AK, Scordato ESC. Evolutionarily labile dispersal behavior and discontinuous habitats enhance population differentiation in island versus continentally distributed swallows. Evolution 2023; 77:2656-2671. [PMID: 37801637 DOI: 10.1093/evolut/qpad179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/18/2023] [Accepted: 10/05/2023] [Indexed: 10/08/2023]
Abstract
The causes of population divergence in vagile groups remain a paradox in evolutionary biology: dispersive species should be able to colonize new areas, a prerequisite for allopatric speciation, but dispersal also facilitates gene flow, which erodes population differentiation. Strong dispersal ability has been suggested to enhance divergence in patchy habitats and inhibit divergence in continuous landscapes, but empirical support for this hypothesis is lacking. Here we compared patterns of population divergence in a dispersive clade of swallows distributed across both patchy and continuous habitats. The Pacific Swallow (Hirundo tahitica) has an insular distribution throughout Southeast Asia and the Pacific, while its sister species, the Welcome Swallow (H. neoxena), has a continental distribution in Australia. We used whole-genome data to demonstrate strong genetic structure and limited introgression among insular populations, but not among continental populations. Demographic models show that historic changes in habitat connectivity have contributed to population structure within the clade. Swallows appear to exhibit evolutionarily labile dispersal behavior in which they reduce dispersal propensity after island colonization despite retaining strong flight ability. Our data support the hypothesis that fragmented habitats enhance population differentiation in vagile groups, and suggest that labile dispersal behavior is a key mechanism underlying this pattern.
Collapse
Affiliation(s)
- Grant G Broyles
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
| | - Brian M Myers
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
- Department of Biology, Eastern Oregon University, La Grande, OR, United States
| | - Nicholas R Friedman
- Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Japan
- Centre for Taxonomy and Morphology, Museum of Nature Hamburg, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Hamburg, Germany
| | - Dency F Gawin
- Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Kota Samarahan, Sarawak, Malaysia
| | - Farah S Mohd-Taib
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Selangor, Malaysia
| | - Penigran G M Sahlan
- Sabah Forestry Department, Forest Research Centre, Sandakan, Sabah, Malaysia
| | - Sampath S Seneviratne
- Avian Sciences and Conservation, Department of Zoology and Environment Sciences, The University of Colombo, Colombo, Sri Lanka
| | - N Chamalka G de Silva
- Avian Sciences and Conservation, Department of Zoology and Environment Sciences, The University of Colombo, Colombo, Sri Lanka
- Department of Physiology and Neurobiology, College of Liberal Arts and Sciences, University of Connecticut, Storrs, CT, United States
| | - Thilini T M Lekamlage
- Avian Sciences and Conservation, Department of Zoology and Environment Sciences, The University of Colombo, Colombo, Sri Lanka
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Amanda K Hund
- Department of Ecology and Evolution, The University of Colorado, Boulder, CO, United States
- Department of Biology, Carleton College, Northfield, MN, United States
| | - Elizabeth S C Scordato
- Department of Biological Sciences, California State Polytechnic University, Pomona, CA, United States
| |
Collapse
|
25
|
Bergman J, Pedersen RØ, Lundgren EJ, Lemoine RT, Monsarrat S, Pearce EA, Schierup MH, Svenning JC. Worldwide Late Pleistocene and Early Holocene population declines in extant megafauna are associated with Homo sapiens expansion rather than climate change. Nat Commun 2023; 14:7679. [PMID: 37996436 PMCID: PMC10667484 DOI: 10.1038/s41467-023-43426-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
The worldwide extinction of megafauna during the Late Pleistocene and Early Holocene is evident from the fossil record, with dominant theories suggesting a climate, human or combined impact cause. Consequently, two disparate scenarios are possible for the surviving megafauna during this time period - they could have declined due to similar pressures, or increased in population size due to reductions in competition or other biotic pressures. We therefore infer population histories of 139 extant megafauna species using genomic data which reveal population declines in 91% of species throughout the Quaternary period, with larger species experiencing the strongest decreases. Declines become ubiquitous 32-76 kya across all landmasses, a pattern better explained by worldwide Homo sapiens expansion than by changes in climate. We estimate that, in consequence, total megafauna abundance, biomass, and energy turnover decreased by 92-95% over the past 50,000 years, implying major human-driven ecosystem restructuring at a global scale.
Collapse
Affiliation(s)
- Juraj Bergman
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark.
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark.
| | - Rasmus Ø Pedersen
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Erick J Lundgren
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Rhys T Lemoine
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Sophie Monsarrat
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- Rewilding Europe, Toernooiveld 1, 6525 ED, Nijmegen, The Netherlands
| | - Elena A Pearce
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Mikkel H Schierup
- Bioinformatics Research Centre, Aarhus University, DK-8000, Aarhus C, Denmark
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, DK-8000, Aarhus C, Denmark
| |
Collapse
|
26
|
Zhang H, Lundberg M, Tarka M, Hasselquist D, Hansson B. Evidence of Site-Specific and Male-Biased Germline Mutation Rate in a Wild Songbird. Genome Biol Evol 2023; 15:evad180. [PMID: 37793164 PMCID: PMC10627410 DOI: 10.1093/gbe/evad180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023] Open
Abstract
Germline mutations are the ultimate source of genetic variation and the raw material for organismal evolution. Despite their significance, the frequency and genomic locations of mutations, as well as potential sex bias, are yet to be widely investigated in most species. To address these gaps, we conducted whole-genome sequencing of 12 great reed warblers (Acrocephalus arundinaceus) in a pedigree spanning 3 generations to identify single-nucleotide de novo mutations (DNMs) and estimate the germline mutation rate. We detected 82 DNMs within the pedigree, primarily enriched at CpG sites but otherwise randomly located along the chromosomes. Furthermore, we observed a pronounced sex bias in DNM occurrence, with male warblers exhibiting three times more mutations than females. After correction for false negatives and adjusting for callable sites, we obtained a mutation rate of 7.16 × 10-9 mutations per site per generation (m/s/g) for the autosomes and 5.10 × 10-9 m/s/g for the Z chromosome. To demonstrate the utility of species-specific mutation rates, we applied our autosomal mutation rate in models reconstructing the demographic history of the great reed warbler. We uncovered signs of drastic population size reductions predating the last glacial period (LGP) and reduced gene flow between western and eastern populations during the LGP. In conclusion, our results provide one of the few direct estimates of the mutation rate in wild songbirds and evidence for male-driven mutations in accordance with theoretical expectations.
Collapse
Affiliation(s)
- Hongkai Zhang
- Department of Biology, Lund University, Lund, Sweden
| | - Max Lundberg
- Department of Biology, Lund University, Lund, Sweden
| | - Maja Tarka
- Department of Biology, Lund University, Lund, Sweden
| | | | - Bengt Hansson
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
27
|
Heraghty SD, Jackson JM, Lozier JD. Whole genome analyses reveal weak signatures of population structure and environmentally associated local adaptation in an important North American pollinator, the bumble bee Bombus vosnesenskii. Mol Ecol 2023; 32:5479-5497. [PMID: 37702957 DOI: 10.1111/mec.17125] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/14/2023]
Abstract
Studies of species that experience environmental heterogeneity across their distributions have become an important tool for understanding mechanisms of adaptation and predicting responses to climate change. We examine population structure, demographic history and environmentally associated genomic variation in Bombus vosnesenskii, a common bumble bee in the western USA, using whole genome resequencing of populations distributed across a broad range of latitudes and elevations. We find that B. vosnesenskii exhibits minimal population structure and weak isolation by distance, confirming results from previous studies using other molecular marker types. Similarly, demographic analyses with Sequentially Markovian Coalescent models suggest that minimal population structure may have persisted since the last interglacial period, with genomes from different parts of the species range showing similar historical effective population size trajectories and relatively small fluctuations through time. Redundancy analysis revealed a small amount of genomic variation explained by bioclimatic variables. Environmental association analysis with latent factor mixed modelling (LFMM2) identified few outlier loci that were sparsely distributed throughout the genome and although a few putative signatures of selective sweeps were identified, none encompassed particularly large numbers of loci. Some outlier loci were in genes with known regulatory relationships, suggesting the possibility of weak selection, although compared with other species examined with similar approaches, evidence for extensive local adaptation signatures in the genome was relatively weak. Overall, results indicate B. vosnesenskii is an example of a generalist with a high degree of flexibility in its environmental requirements that may ultimately benefit the species under periods of climate change.
Collapse
Affiliation(s)
- Sam D Heraghty
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Jason M Jackson
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| | - Jeffrey D Lozier
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, Alabama, USA
| |
Collapse
|
28
|
Yu X, Qin M, Qu M, Jiang Q, Guo S, Chen Z, Shen Y, Fu G, Fei Z, Huang H, Gao L, Yao X. Genomic analyses reveal dead-end hybridization between two deeply divergent kiwifruit species rather than homoploid hybrid speciation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1528-1543. [PMID: 37258460 DOI: 10.1111/tpj.16336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/02/2023]
Abstract
Despite the importance of hybridization in evolution, the evolutionary consequence of homoploid hybridizations in plants remains poorly understood. Specially, homoploid hybridization events have been rarely documented due to a lack of genomic resources and methodological limitations. Actinidia zhejiangensis was suspected to have arisen from hybridization of Actinidia eriantha and Actinidia hemsleyana or Actinidia rufa. However, this species was very rare in nature and exhibited sympatric distribution with its potential parent species, which implied it might be a spontaneous hybrid of ongoing homoploid hybridization. Here, we illustrate the dead-end homoploid hybridization and genomic basis of isolating barriers between A. eriantha and A. hemsleyana through whole genome sequencing and population genomic analyses. Chromosome-scale genome assemblies of A. zhejiangensis and A. hemsleyana were generated. The chromosomes of A. zhejiangensis are confidently assigned to the two haplomes, and one of them originates from A. eriantha and the other originates from A. hemsleyana. Whole genome resequencing data reveal that A. zhejiangensis are mainly F1 hybrids of A. hemsleyana and A. eriantha and gene flow initiated about 0.98 million years ago, implying both strong genetic barriers and ongoing hybridization between these two deeply divergent kiwifruit species. Five inversions containing genes involved in pollen germination and pollen tube growth might account for the fertility breakdown of hybrids between A. hemsleyana and A. eriantha. Despite its distinct morphological traits and long recurrent hybrid origination, A. zhejiangensis does not initiate speciation. Collectively, our study provides new insights into homoploid hybridization in plants and provides genomic resources for evolutionary and functional genomic studies of kiwifruit.
Collapse
Affiliation(s)
- Xiaofen Yu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Mengyun Qin
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Minghao Qu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Quan Jiang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sumin Guo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Zhenghai Chen
- Forest Resources Monitoring Center of Zhejiang Province, Hangzhou, Zhejiang, 310020, China
| | - Yufang Shen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Guodong Fu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York, 14853, USA
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, 14853, USA
| | - Hongwen Huang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, Jiangxi, 332900, China
| | - Lei Gao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
- Hubei Hongshan Laboratory, Wuhan, Hubei, 430070, China
| | - Xiaohong Yao
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| |
Collapse
|
29
|
Burbrink FT, Harrington SM, Bobo D, Myers EA. Considering admixture when producing draft genomes: an example in North American ratsnakes (Pantherophis alleghaniensis/Pantherophis obsoletus). G3 (BETHESDA, MD.) 2023; 13:jkad113. [PMID: 37228097 PMCID: PMC10411579 DOI: 10.1093/g3journal/jkad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/24/2023] [Accepted: 05/04/2023] [Indexed: 05/27/2023]
Abstract
The number of reference genomes of snakes lags behind several other vertebrate groups (e.g. birds and mammals). However, in the last two years, a concerted effort by researchers from around the world has produced new genomes of snakes representing members from several new families. Here, we present a high-quality, annotated genome of the central ratsnake (Pantherophis alleghaniensis), a member of the most diverse snake lineage, Colubroidea. Pantherophis alleghaniensis is found in the central part of the Nearctic, east of the Mississippi River. This genome was sequenced using 10X Chromium synthetic long reads and polished using Illumina short reads. The final genome assembly had an N50 of 21.82 Mb and an L50 of 22 scaffolds with a maximum scaffold length of 82.078 Mb. The genome is composed of 49.24% repeat elements dominated by long interspersed elements. We annotated this genome using transcriptome assemblies from 14 tissue types and recovered 28,368 predicted proteins. Finally, we estimated admixture proportions between two species of ratsnakes and discovered that this specimen is an admixed individual containing genomes from the western (Pantherophis obsoletus) and central ratsnakes (P. alleghaniensis). We discuss the importance of considering interspecific admixture in downstream approaches for inferring demography and phylogeny.
Collapse
Affiliation(s)
- Frank T Burbrink
- Department of Herpetology, American Museum of Natural History, New York, NY 10024, USA
| | - Sean M Harrington
- Department of Herpetology, American Museum of Natural History, New York, NY 10024, USA
- INBRE Data Science Core, University of Wyoming, Laramie, WY 82071, USA
| | - Dean Bobo
- Institute for Comparative Genomics, American Museum of Natural History, New York, NY 10024, USA
| | - Edward A Myers
- Department of Herpetology, American Museum of Natural History, New York, NY 10024, USA
- Department of Biological Sciences, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
30
|
Schweiger R, Durbin R. Ultrafast genome-wide inference of pairwise coalescence times. Genome Res 2023; 33:1023-1031. [PMID: 37562965 PMCID: PMC10538485 DOI: 10.1101/gr.277665.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 06/21/2023] [Indexed: 08/12/2023]
Abstract
The pairwise sequentially Markovian coalescent (PSMC) algorithm and its extensions infer the coalescence time of two homologous chromosomes at each genomic position. This inference is used in reconstructing demographic histories, detecting selection signatures, studying genome-wide associations, constructing ancestral recombination graphs, and more. Inference of coalescence times between each pair of haplotypes in a large data set is of great interest, as they may provide rich information about the population structure and history of the sample. Here, we introduce a new method, Gamma-SMC, which is more than 10 times faster than current methods. To obtain this speed-up, we represent the posterior coalescence time distributions succinctly as a gamma distribution with just two parameters; in contrast, PSMC and its extensions hold these in a vector over discrete intervals of time. Thus, Gamma-SMC has constant time-complexity per site, without dependence on the number of discrete time states. Additionally, because of this continuous representation, our method is able to infer times spanning many orders of magnitude and, as such, is robust to parameter misspecification. We describe how this approach works, show its performance on simulated and real data, and illustrate its use in studying recent positive selection in the 1000 Genomes Project data set.
Collapse
Affiliation(s)
- Regev Schweiger
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Richard Durbin
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| |
Collapse
|
31
|
Palahí I Torres A, Höök L, Näsvall K, Shipilina D, Wiklund C, Vila R, Pruisscher P, Backström N. The fine-scale recombination rate variation and associations with genomic features in a butterfly. Genome Res 2023; 33:810-823. [PMID: 37308293 PMCID: PMC10317125 DOI: 10.1101/gr.277414.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 05/03/2023] [Indexed: 06/14/2023]
Abstract
Recombination is a key molecular mechanism that has profound implications on both micro- and macroevolutionary processes. However, the determinants of recombination rate variation in holocentric organisms are poorly understood, in particular in Lepidoptera (moths and butterflies). The wood white butterfly (Leptidea sinapis) shows considerable intraspecific variation in chromosome numbers and is a suitable system for studying regional recombination rate variation and its potential molecular underpinnings. Here, we developed a large whole-genome resequencing data set from a population of wood whites to obtain high-resolution recombination maps using linkage disequilibrium information. The analyses revealed that larger chromosomes had a bimodal recombination landscape, potentially caused by interference between simultaneous chiasmata. The recombination rate was significantly lower in subtelomeric regions, with exceptions associated with segregating chromosome rearrangements, showing that fissions and fusions can have considerable effects on the recombination landscape. There was no association between the inferred recombination rate and base composition, supporting a limited influence of GC-biased gene conversion in butterflies. We found significant but variable associations between the recombination rate and the density of different classes of transposable elements, most notably a significant enrichment of short interspersed nucleotide elements in genomic regions with higher recombination rate. Finally, the analyses unveiled significant enrichment of genes involved in farnesyltranstransferase activity in recombination coldspots, potentially indicating that expression of transferases can inhibit formation of chiasmata during meiotic division. Our results provide novel information about recombination rate variation in holocentric organisms and have particular implications for forthcoming research in population genetics, molecular/genome evolution, and speciation.
Collapse
Affiliation(s)
- Aleix Palahí I Torres
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden;
| | - Lars Höök
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Karin Näsvall
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Daria Shipilina
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Christer Wiklund
- Department of Zoology: Division of Ecology, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Roger Vila
- Butterfly Diversity and Evolution Lab, Institut de Biologia Evolutiva (CSIC-UPF), 08003 Barcelona, Spain
| | - Peter Pruisscher
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| | - Niclas Backström
- Evolutionary Biology Program, Department of Ecology and Genetics (IEG), Uppsala University, SE-752 36 Uppsala, Sweden
| |
Collapse
|
32
|
Lozier JD, Strange JP, Heraghty SD. Whole genome demographic models indicate divergent effective population size histories shape contemporary genetic diversity gradients in a montane bumble bee. Ecol Evol 2023; 13:e9778. [PMID: 36744081 PMCID: PMC9889631 DOI: 10.1002/ece3.9778] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/05/2023] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Understanding historical range shifts and population size variation provides an important context for interpreting contemporary genetic diversity. Methods to predict changes in species distributions and model changes in effective population size (N e) using whole genomes make it feasible to examine how temporal dynamics influence diversity across populations. We investigate N e variation and climate-associated range shifts to examine the origins of a previously observed latitudinal heterozygosity gradient in the bumble bee Bombus vancouverensis Cresson (Hymenoptera: Apidae: Bombus Latreille) in western North America. We analyze whole genomes from a latitude-elevation cline using sequentially Markovian coalescent models of N e through time to test whether relatively low diversity in southern high-elevation populations is a result of long-term differences in N e. We use Maxent models of the species range over the last 130,000 years to evaluate range shifts and stability. N e fluctuates with climate across populations, but more genetically diverse northern populations have maintained greater N e over the late Pleistocene and experienced larger expansions with climatically favorable time periods. Northern populations also experienced larger bottlenecks during the last glacial period, which matched the loss of range area near these sites; however, bottlenecks were not sufficient to erode diversity maintained during periods of large N e. A genome sampled from an island population indicated a severe postglacial bottleneck, indicating that large recent postglacial declines are detectable if they have occurred. Genetic diversity was not related to niche stability or glacial-period bottleneck size. Instead, spatial expansions and increased connectivity during favorable climates likely maintain diversity in the north while restriction to high elevations maintains relatively low diversity despite greater stability in southern regions. Results suggest genetic diversity gradients reflect long-term differences in N e dynamics and also emphasize the unique effects of isolation on insular habitats for bumble bees. Patterns are discussed in the context of conservation under climate change.
Collapse
Affiliation(s)
- Jeffrey D. Lozier
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabamaUSA
| | - James P. Strange
- Department of EntomologyThe Ohio State UniversityColumbusOhioUSA
| | - Sam D. Heraghty
- Department of Biological SciencesThe University of AlabamaTuscaloosaAlabamaUSA
| |
Collapse
|
33
|
Lundberg M, Mackintosh A, Petri A, Bensch S. Inversions maintain differences between migratory phenotypes of a songbird. Nat Commun 2023; 14:452. [PMID: 36707538 PMCID: PMC9883250 DOI: 10.1038/s41467-023-36167-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Structural rearrangements have been shown to be important in local adaptation and speciation, but have been difficult to reliably identify and characterize in non-model species. Here we combine long reads, linked reads and optical mapping to characterize three divergent chromosome regions in the willow warbler Phylloscopus trochilus, of which two are associated with differences in migration and one with an environmental gradient. We show that there are inversions (0.4-13 Mb) in each of the regions and that the divergence times between inverted and non-inverted haplotypes are similar across the regions (~1.2 Myrs), which is compatible with a scenario where inversions arose in either of two allopatric populations that subsequently hybridized. The improved genomes allow us to detect additional functional differences in the divergent regions, providing candidate genes for migration and adaptations to environmental gradients.
Collapse
Affiliation(s)
- Max Lundberg
- Department of Biology, Lund University, Lund, Sweden.
| | | | - Anna Petri
- Science for Life Laboratory, Uppsala Genome Center, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
34
|
Bursell MG, Dikow RB, Figueiró HV, Dudchenko O, Flanagan JP, Aiden EL, Goossens B, Nathan SK, Johnson WE, Koepfli KP, Frandsen PB. Whole genome analysis of clouded leopard species reveals an ancient divergence and distinct demographic histories. iScience 2022; 25:105647. [PMID: 36590460 PMCID: PMC9801239 DOI: 10.1016/j.isci.2022.105647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/08/2022] [Accepted: 11/18/2022] [Indexed: 12/14/2022] Open
Abstract
Similar to other apex predator species, populations of mainland (Neofelis nebulosa) and Sunda (Neofelis diardi) clouded leopards are declining. Understanding their patterns of genetic variation can provide critical insights on past genetic erosion and a baseline for understanding their long-term conservation needs. As a step toward this goal, we present draft genome assemblies for the two clouded leopard species to quantify their phylogenetic divergence, genome-wide diversity, and historical population trends. We estimate that the two species diverged 5.1 Mya, much earlier than previous estimates of 1.41 Mya and 2.86 Mya, suggesting they separated when Sundaland was becoming increasingly isolated from mainland Southeast Asia. The Sunda clouded leopard displays a distinct and reduced effective population size trajectory, consistent with a lower genome-wide heterozygosity and SNP density, relative to the mainland clouded leopard. Our results provide new insights into the evolutionary history and genetic health of this unique lineage of felids.
Collapse
Affiliation(s)
- Madeline G. Bursell
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560, USA
| | - Rebecca B. Dikow
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560, USA
| | - Henrique V. Figueiró
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
| | | | - Erez Lieberman Aiden
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Center for Theoretical Biological Physics, Rice University, Houston, TX, USA
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, WA 6009, Australia
- Departments of Computer Science and Computational and Applied Mathematics, Rice University,Houston, TX, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech University, Shanghai, China
| | - Benoit Goossens
- Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia
- Organisms and Environment Division, Cardiff School of Biosciences, Cardiff, UK
- Danau Girang Field Centre, c/o Sabah Wildlife Department, Kota Kinabalu, Sabah, Malaysia
| | | | - Warren E. Johnson
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
- The Walter Reed Biosystematics Unit, Museum Support Center MRC-534, Smithsonian Institution, Suitland, MD, USA
- Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Loyola University Maryland, Baltimore, MD, USA
| | - Klaus-Peter Koepfli
- Center for Species Survival, Smithsonian Conservation Biology Institute, National Zoological Park, Front Royal, VA 22630, USA
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA 22630, USA
| | - Paul B. Frandsen
- Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84602, USA
- Data Science Lab, Office of the Chief Information Officer, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
35
|
Wang Y, Zhao Z, Miao X, Wang Y, Qian X, Chen L, Wang C, Li S. eSMC: a statistical model to infer admixture events from individual genomics data. BMC Genomics 2022; 23:827. [PMCID: PMC9748406 DOI: 10.1186/s12864-022-09033-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/21/2022] [Indexed: 12/15/2022] Open
Abstract
Abstract
Background
Inferring historical population admixture events yield essential insights in understanding a species demographic history. Methods are available to infer admixture events in demographic history with extant genetic data from multiple sources. Due to the deficiency in ancient population genetic data, there lacks a method for admixture inference from a single source. Pairwise Sequentially Markovian Coalescent (PSMC) estimates the historical effective population size from lineage genomes of a single individual, based on the distribution of the most recent common ancestor between the diploid’s alleles. However, PSMC does not infer the admixture event.
Results
Here, we proposed eSMC, an extended PSMC model for admixture inference from a single source. We evaluated our model’s performance on both in silico data and real data. We simulated population admixture events at an admixture time range from 5 kya to 100 kya (5 years/generation) with population admix ratio at 1:1, 2:1, 3:1, and 4:1, respectively. The root means the square error is $$\pm 7.61$$
±
7.61
kya for all experiments. Then we implemented our method to infer the historical admixture events in human, donkey and goat populations. The estimated admixture time for both Han and Tibetan individuals range from 60 kya to 80 kya (25 years/generation), while the estimated admixture time for the domesticated donkeys and the goats ranged from 40 kya to 60 kya (8 years/generation) and 40 kya to 100 kya (6 years/generation), respectively. The estimated admixture times were concordance to the time that domestication occurred in human history.
Conclusion
Our eSMC effectively infers the time of the most recent admixture event in history from a single individual’s genomics data. The source code of eSMC is hosted at https://github.com/zachary-zzc/eSMC.
Collapse
|
36
|
Turba R, Richmond JQ, Fitz-Gibbon S, Morselli M, Fisher RN, Swift CC, Ruiz-Campos G, Backlin AR, Dellith C, Jacobs DK. Genetic structure and historic demography of endangered unarmoured threespine stickleback at southern latitudes signals a potential new management approach. Mol Ecol 2022; 31:6515-6530. [PMID: 36205603 PMCID: PMC10092051 DOI: 10.1111/mec.16722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 01/13/2023]
Abstract
Habitat loss, flood control infrastructure, and drought have left most of southern California and northern Baja California's native freshwater fish near extinction, including the endangered unarmoured threespine stickleback (Gasterosteus aculeatus williamsoni). This subspecies, an unusual morph lacking the typical lateral bony plates of the G. aculeatus complex, occurs at arid southern latitudes in the eastern Pacific Ocean and survives in only three inland locations. Managers have lacked molecular data to answer basic questions about the ancestry and genetic distinctiveness of unarmoured populations. These data could be used to prioritize conservation efforts. We sampled G. aculeatus from 36 localities and used microsatellites and whole genome data to place unarmoured populations within the broader evolutionary context of G. aculeatus across southern California/northern Baja California. We identified three genetic groups with none consisting solely of unarmoured populations. Unlike G. aculeatus at northern latitudes, where Pleistocene glaciation has produced similar historical demographic profiles across populations, we found markedly different demographics depending on sampling location, with inland unarmoured populations showing steeper population declines and lower heterozygosity compared to low armoured populations in coastal lagoons. One exception involved the only high elevation population in the region, where the demography and alleles of unarmoured fish were similar to low armoured populations near the coast, exposing one of several cases of artificial translocation. Our results suggest that the current "management-by-phenotype" approach, based on lateral plates, is incidentally protecting the most imperilled populations; however, redirecting efforts toward evolutionary units, regardless of phenotype, may more effectively preserve adaptive potential.
Collapse
Affiliation(s)
- Rachel Turba
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | | | - Sorel Fitz-Gibbon
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| | - Marco Morselli
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA
| | | | - Camm C Swift
- Emeritus, Section of Fishes, Natural History Museum of Los Angeles County, Los Angeles, California, USA
| | - Gorgonio Ruiz-Campos
- Ichthyological Collection, Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Baja California, Mexico
| | - Adam R Backlin
- U.S. Geological Survey, Western Ecological Research Center, San Diego Field Station-Santa Ana Office, Santa Ana, California, USA
| | - Chris Dellith
- U.S. Fish and Wildlife Service, Ventura, California, USA
| | - David K Jacobs
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, California, USA
| |
Collapse
|
37
|
Weist P, Jentoft S, Tørresen OK, Schade FM, Pampoulie C, Krumme U, Hanel R. The role of genomic signatures of directional selection and demographic history in the population structure of a marine teleost with high gene flow. Ecol Evol 2022; 12:e9602. [PMID: 36514551 PMCID: PMC9731920 DOI: 10.1002/ece3.9602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Recent studies have uncovered patterns of genomic divergence in marine teleosts where panmixia due to high gene flow has been the general paradigm. These signatures of divergent selection are often impacted by structural variants, acting as "supergenes" facilitating local adaptation. The highly dispersing European plaice (Pleuronectes platessa)-in which putative structural variants (i.e., inversions) have been identified-has successfully colonized the brackish water ecosystem of the Baltic Sea. Thus, the species represents an ideal opportunity to investigate how the interplay of gene flow, structural variants, natural selection, past demographic history, and gene flow impacts on population (sub)structuring in marine systems. Here, we report on the generation of an annotated draft plaice genome assembly in combination with population sequencing data-following the salinity gradient from the Baltic Sea into the North Sea together with samples from Icelandic waters-to illuminate genome-wide patterns of divergence. Neutral markers pointed at large-scale panmixia across the European continental shelf associated with high gene flow and a common postglacial colonization history of shelf populations. However, based on genome-wide outlier loci, we uncovered signatures of population substructuring among the European continental shelf populations, i.e., suggesting signs of ongoing selection. Genome-wide selection analyses (xp-EHH) and the identification of genes within genomic regions of recent selective sweeps-overlapping with the outlier loci-suggest that these represent the signs of divergent selection. Our findings provide support for genomic divergence driven by local adaptation in the face of high gene flow and elucidate the relative importance of demographic history versus adaptive divergence in shaping the contemporary population genetic structure of a marine teleost. The role of the putative inversion(s) in the substructuring-and potentially ongoing adaptation-was seemingly not substantial.
Collapse
Affiliation(s)
- Peggy Weist
- Thünen Institute of Fisheries EcologyBremerhavenGermany
| | - Sissel Jentoft
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | - Ole K. Tørresen
- Department of Biosciences, Centre for Ecological and Evolutionary SynthesisUniversity of OsloOsloNorway
| | | | | | - Uwe Krumme
- Thünen Institute of Baltic Sea FisheriesRostockGermany
| | | |
Collapse
|
38
|
Eliason CM, Hains T, McCullough J, Andersen MJ, Hackett SJ. Genomic novelty within a "great speciator" revealed by a high-quality reference genome of the collared kingfisher (Todiramphus chloris collaris). G3 (BETHESDA, MD.) 2022; 12:jkac260. [PMID: 36156134 PMCID: PMC9635628 DOI: 10.1093/g3journal/jkac260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Islands are natural laboratories for studying patterns and processes of evolution. Research on island endemic birds has revealed elevated speciation rates and rapid phenotypic evolution in several groups (e.g. white-eyes, Darwin's finches). However, understanding the evolutionary processes behind these patterns requires an understanding of how genotypes map to novel phenotypes. To date, there are few high-quality reference genomes for species found on islands. Here, we sequence the genome of one of Ernst Mayr's "great speciators," the collared kingfisher (Todiramphus chloris collaris). Utilizing high molecular weight DNA and linked-read sequencing technology, we assembled a draft high-quality genome with highly contiguous scaffolds (scaffold N50 = 19 Mb). Based on universal single-copy orthologs, we estimated a gene space completeness of 96.6% for the draft genome assembly. The population demographic history analyses reveal a distinct pattern of contraction and expansion in population size throughout the Pleistocene. Comparative genomic analysis of gene family evolution revealed that species-specific and rapidly expanding gene families in the collared kingfisher (relative to other Coraciiformes) are mainly involved in the ErbB signaling pathway and focal adhesion. Todiramphus kingfishers are a species-rich group that has become a focus of speciation research. This draft genome will be a platform for future taxonomic, phylogeographic, and speciation research in the group. For example, target genes will enable testing of changes in sensory structures associated with changes in vision and taste genes across kingfishers.
Collapse
Affiliation(s)
- Chad M Eliason
- Grainger Bioinformatics Center, Field Museum of Natural History, Chicago, IL 60605, USA
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Taylor Hains
- Department of Ecology and Evolution, Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| | - Jenna McCullough
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Michael J Andersen
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Shannon J Hackett
- Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA
- Department of Ecology and Evolution, Committee on Evolutionary Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
39
|
Lord E, Marangoni A, Baca M, Popović D, Goropashnaya AV, Stewart JR, Knul MV, Noiret P, Germonpré M, Jimenez EL, Abramson NI, Vartanyan S, Prost S, Smirnov NG, Kuzmina EA, Olsen RA, Fedorov VB, Dalén L. Population dynamics and demographic history of Eurasian collared lemmings. BMC Ecol Evol 2022; 22:126. [PMID: 36329382 PMCID: PMC9632076 DOI: 10.1186/s12862-022-02081-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Ancient DNA studies suggest that Late Pleistocene climatic changes had a significant effect on population dynamics in Arctic species. The Eurasian collared lemming (Dicrostonyx torquatus) is a keystone species in the Arctic ecosystem. Earlier studies have indicated that past climatic fluctuations were important drivers of past population dynamics in this species. RESULTS Here, we analysed 59 ancient and 54 modern mitogenomes from across Eurasia, along with one modern nuclear genome. Our results suggest population growth and genetic diversification during the early Late Pleistocene, implying that collared lemmings may have experienced a genetic bottleneck during the warm Eemian interglacial. Furthermore, we find multiple temporally structured mitogenome clades during the Late Pleistocene, consistent with earlier results suggesting a dynamic late glacial population history. Finally, we identify a population in northeastern Siberia that maintained genetic diversity and a constant population size at the end of the Pleistocene, suggesting suitable conditions for collared lemmings in this region during the increasing temperatures associated with the onset of the Holocene. CONCLUSIONS This study highlights an influence of past warming, in particular the Eemian interglacial, on the evolutionary history of the collared lemming, along with spatiotemporal population structuring throughout the Late Pleistocene.
Collapse
Affiliation(s)
- Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 10691, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden.
| | - Aurelio Marangoni
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 10691, Stockholm, Sweden
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden
| | - Mateusz Baca
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097, Warsaw, Poland
| | - Danijela Popović
- Centre of New Technologies, University of Warsaw, S. Banacha 2C, 02-097, Warsaw, Poland
| | - Anna V Goropashnaya
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775-7000, USA
| | - John R Stewart
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, BH12 5BB, Dorset, UK
| | - Monika V Knul
- Department of Archaeology, Anthropology and Geography, University of Winchester, Winchester, SO22 4NR, UK
| | - Pierre Noiret
- Service de Préhistoire, Université de Liège, Place du 20 Août 7, 4000, Liège, Belgium
| | - Mietje Germonpré
- OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, Belgium
| | - Elodie-Laure Jimenez
- OD Earth and History of Life, Royal Belgian Institute of Natural Sciences, Vautierstraat 29, Brussels, Belgium
- School of Geosciences, University of Aberdeen, Aberdeen, Scotland
| | - Natalia I Abramson
- Department of Molecular Systematics, Zoological Institute RAS, St Petersburg, Russia
| | - Sergey Vartanyan
- Far East Branch, N.A. Shilo North-East Interdisciplinary Scientific Research Institute Russian Academy of Sciences (NEISRI FEB RAS), 685000, Magadan, Russia
| | - Stefan Prost
- Central Research Laboratories, Natural History Museum Vienna, 1010, Vienna, Austria
- Department of Cognitive Biology, University of Vienna, 1090, Vienna, Austria
- Konrad Lorenz Institute of Ethology, 1160, Vienna, Austria
- South African National Biodiversity Institute, National Zoological Garden, Pretoria, South Africa
| | - Nickolay G Smirnov
- Institute of Plant and Animal Ecology UB RAS, Russian Academy of Sciences, 202 8 Marta Street, 620144, Ekaterinburg, Russia
| | - Elena A Kuzmina
- Institute of Plant and Animal Ecology UB RAS, Russian Academy of Sciences, 202 8 Marta Street, 620144, Ekaterinburg, Russia
| | - Remi-André Olsen
- Science for Life Laboratory (SciLifeLab), Dept of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Vadim B Fedorov
- Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK, 99775-7000, USA
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius Väg 20C, 10691, Stockholm, Sweden.
- Department of Zoology, Stockholm University, 10691, Stockholm, Sweden.
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Box 50007, 10405, Stockholm, Sweden.
| |
Collapse
|
40
|
Strugnell JM, McGregor HV, Wilson NG, Meredith KT, Chown SL, Lau SCY, Robinson SA, Saunders KM. Emerging biological archives can reveal ecological and climatic change in Antarctica. GLOBAL CHANGE BIOLOGY 2022; 28:6483-6508. [PMID: 35900301 PMCID: PMC9826052 DOI: 10.1111/gcb.16356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Anthropogenic climate change is causing observable changes in Antarctica and the Southern Ocean including increased air and ocean temperatures, glacial melt leading to sea-level rise and a reduction in salinity, and changes to freshwater water availability on land. These changes impact local Antarctic ecosystems and the Earth's climate system. The Antarctic has experienced significant past environmental change, including cycles of glaciation over the Quaternary Period (the past ~2.6 million years). Understanding Antarctica's paleoecosystems, and the corresponding paleoenvironments and climates that have shaped them, provides insight into present day ecosystem change, and importantly, helps constrain model projections of future change. Biological archives such as extant moss beds and peat profiles, biological proxies in lake and marine sediments, vertebrate animal colonies, and extant terrestrial and benthic marine invertebrates, complement other Antarctic paleoclimate archives by recording the nature and rate of past ecological change, the paleoenvironmental drivers of that change, and constrain current ecosystem and climate models. These archives provide invaluable information about terrestrial ice-free areas, a key location for Antarctic biodiversity, and the continental margin which is important for understanding ice sheet dynamics. Recent significant advances in analytical techniques (e.g., genomics, biogeochemical analyses) have led to new applications and greater power in elucidating the environmental records contained within biological archives. Paleoecological and paleoclimate discoveries derived from biological archives, and integration with existing data from other paleoclimate data sources, will significantly expand our understanding of past, present, and future ecological change, alongside climate change, in a unique, globally significant region.
Collapse
Affiliation(s)
- Jan M. Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Securing Antarctica's Environmental FutureJames Cook UniversityTownsvilleQueenslandAustralia
| | - Helen V. McGregor
- Securing Antarctica's Environmental Future, School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Nerida G. Wilson
- Securing Antarctica's Environmental FutureWestern Australian MuseumWestern AustraliaAustralia
- Research and CollectionsWestern Australian MuseumWestern AustraliaAustralia
- School of Biological SciencesUniversity of Western AustraliaCrawleyWestern AustraliaAustralia
| | - Karina T. Meredith
- Securing Antarctica's Environmental FutureAustralian Nuclear Science and Technology OrganisationLucas HeightsNew South WalesAustralia
| | - Steven L. Chown
- Securing Antarctica's Environmental Future, School of Biological SciencesMonash UniversityMelbourneVictoriaAustralia
| | - Sally C. Y. Lau
- Centre for Sustainable Tropical Fisheries and Aquaculture and College of Science and EngineeringJames Cook UniversityTownsvilleQueenslandAustralia
- Securing Antarctica's Environmental FutureJames Cook UniversityTownsvilleQueenslandAustralia
| | - Sharon A. Robinson
- Securing Antarctica's Environmental Future, School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
| | - Krystyna M. Saunders
- Securing Antarctica's Environmental Future, School of Earth, Atmospheric and Life SciencesUniversity of WollongongWollongongNew South WalesAustralia
- Securing Antarctica's Environmental FutureAustralian Nuclear Science and Technology OrganisationLucas HeightsNew South WalesAustralia
- Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartTasmaniaAustralia
| |
Collapse
|
41
|
Ericson PGP, Irestedt M, Qu Y. Demographic history, local adaptation and vulnerability to climate change in a tropical mountain bird in New Guinea. DIVERS DISTRIB 2022. [DOI: 10.1111/ddi.13614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Per G. P. Ericson
- Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden
| | - Martin Irestedt
- Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden
| | - Yanhua Qu
- Department of Bioinformatics and Genetics Swedish Museum of Natural History Stockholm Sweden
- Key Laboratory of Zoological Systematics and Evolution Institute of Zoology, Chinese Academy of Sciences Beijing China
| |
Collapse
|
42
|
Berdan EL, Blanckaert A, Butlin RK, Flatt T, Slotte T, Wielstra B. Mutation accumulation opposes polymorphism: supergenes and the curious case of balanced lethals. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210199. [PMID: 35694750 PMCID: PMC9189497 DOI: 10.1098/rstb.2021.0199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/24/2022] [Indexed: 12/26/2022] Open
Abstract
Supergenes offer spectacular examples of long-term balancing selection in nature, but their origin and maintenance remain a mystery. Reduced recombination between arrangements, a critical aspect of many supergenes, protects adaptive multi-trait phenotypes but can lead to mutation accumulation. Mutation accumulation can stabilize the system through the emergence of associative overdominance (AOD), destabilize the system, or lead to new evolutionary outcomes. One outcome is the formation of maladaptive balanced lethal systems, where only heterozygotes remain viable and reproduce. We investigated the conditions under which these different outcomes occur, assuming a scenario of introgression after divergence. We found that AOD aided the invasion of a new supergene arrangement and the establishment of a polymorphism. However, this polymorphism was easily destabilized by further mutation accumulation, which was often asymmetric, disrupting the quasi-equilibrium state. Mechanisms that accelerated degeneration tended to amplify asymmetric mutation accumulation between the supergene arrangements and vice-versa. As the evolution of balanced lethal systems requires symmetric degeneration of both arrangements, this leaves only restricted conditions for their evolution, namely small population sizes and low rates of gene conversion. The dichotomy between the persistence of polymorphism and degeneration of supergene arrangements likely underlies the rarity of balanced lethal systems in nature. This article is part of the theme issue 'Genomic architecture of supergenes: causes and evolutionary consequences'.
Collapse
Affiliation(s)
- Emma L. Berdan
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
- Tjarnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, 45296 Stromstad, Sweden
| | - Alexandre Blanckaert
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, USA
- cE3c – Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016, Lisboa, Portugal
| | - Roger K. Butlin
- Tjarnö Marine Laboratory, Department of Marine Sciences, University of Gothenburg, 45296 Stromstad, Sweden
- Ecology and Evolutionary Biology, School of Biosciences, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Thomas Flatt
- Department of Biology, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Tanja Slotte
- Department of Ecology, Environment and Plant Sciences, Science for Life Laboratory, Stockholm University, 106 91 Stockholm, Sweden
| | - Ben Wielstra
- Naturalis Biodiversity Center, PO Box 9517, 2300 RA, Leiden, The Netherlands
- Institute of Biology Leiden, Leiden University, PO Box 9505, 2300 RA, Leiden, The Netherlands
| |
Collapse
|
43
|
Crossley MS, Latimer CE, Kennedy CM, Snyder WE. Past and recent farming degrades aquatic insect genetic diversity. Mol Ecol 2022. [PMID: 35771845 DOI: 10.1111/mec.16590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 04/07/2022] [Accepted: 06/27/2022] [Indexed: 11/28/2022]
Abstract
Recent declines in once-common species are triggering concern that an environmental crisis point has been reached. Yet, the lack of long abundance time series data for most species can make it difficult to attribute these changes to anthropogenic causes, and to separate them from normal cycles. Genetic diversity, on the other hand, is sensitive to past and recent environmental changes, and reflects a measure of a populations' potential to adapt to future stressors. Here, we consider whether patterns of genetic diversity among aquatic insects can be linked to historical and recent patterns of land use change. We collated mitochondrial cytochrome c oxidase subunit I (COI) variation for >700 aquatic insect species across the United States, where patterns of agricultural expansion and intensification have been documented since the 1800s. We found that genetic diversity was lowest in regions where cropland was historically (pre-1950) most extensive, suggesting a legacy of past environmental harm. Genetic diversity further declined where cropland has since expanded, even after accounting for climate and sampling effects. Notably though, genetic diversity also appeared to rebound where cropland has diminished. Our study suggests that genetic diversity at the community level can be a powerful tool to infer potential population declines and rebounds over longer time spans than is typically possible with ecological data. For the aquatic insects that we considered, patterns of land use many decades ago appear to have left long-lasting damage to genetic diversity that could threaten evolutionary responses to rapid global change.
Collapse
Affiliation(s)
- Michael S Crossley
- Department of Entomology and Wildlife Ecology, University of Delaware, Newark, DE, USA
| | | | - Christina M Kennedy
- Global Protect Oceans, Lands and Waters Program, The Nature Conservancy, Fort Collins, CO, USA
| | - William E Snyder
- Department of Entomology, University of Georgia, Athens, GA, USA
| |
Collapse
|
44
|
Robin M, Ferrari G, Akgül G, Münger X, von Seth J, Schuenemann VJ, Dalén L, Grossen C. Ancient mitochondrial and modern whole genomes unravel massive genetic diversity loss during near extinction of Alpine ibex. Mol Ecol 2022; 31:3548-3565. [PMID: 35560856 PMCID: PMC9328357 DOI: 10.1111/mec.16503] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/13/2022] [Accepted: 05/04/2022] [Indexed: 11/27/2022]
Abstract
Population bottlenecks can have dramatic consequences for the health and long-term survival of a species. Understanding of historic population size and standing genetic variation prior to a contraction allows estimating the impact of a bottleneck on the species genetic diversity. Although historic population sizes can be modelled based on extant genomics, uncertainty is high for the last 10-20 millenia. Hence, integrating ancient genomes provides a powerful complement to retrace the evolution of genetic diversity through population fluctuations. Here, we recover 15 high-quality mitogenomes of the once nearly extinct Alpine ibex spanning 8601 BP to 1919 CE and combine these with 60 published modern whole genomes. Coalescent demography simulations based on modern whole genomes indicate population fluctuations coinciding with the last major glaciation period. Using our ancient and historic mitogenomes, we investigate the more recent demographic history of the species and show that mitochondrial haplotype diversity was reduced to a fifth of the pre-bottleneck diversity with several highly differentiated mitochondrial lineages having co-existed historically. The main collapse of mitochondrial diversity coincides with elevated human population growth during the last 1-2 kya. After recovery, one lineage was spread and nearly fixed across the Alps due to recolonization efforts. Our study highlights that a combined approach integrating genomic data of ancient, historic and extant populations unravels major long-term population fluctuations from the emergence of a species through its near extinction up to the recent past.
Collapse
Affiliation(s)
- Mathieu Robin
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland.,Institute of Evolutionary Medicine, University of Zurich, Zürich, Switzerland
| | - Giada Ferrari
- Institute of Evolutionary Medicine, University of Zurich, Zürich, Switzerland
| | - Gülfirde Akgül
- Institute of Evolutionary Medicine, University of Zurich, Zürich, Switzerland
| | - Xenia Münger
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| | - Johanna von Seth
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | | | - Love Dalén
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,Centre for Palaeogenetics, Stockholm, Sweden
| | - Christine Grossen
- Institute of Evolutionary Biology and Environmental Studies, University of Zurich, Zürich, Switzerland
| |
Collapse
|
45
|
Bakker VJ, Finkelstein ME, D'Elia J, Doak DF, Kirkland S. Genetically based demographic reconstructions require careful consideration of generation time. Curr Biol 2022; 32:R356-R357. [PMID: 35472420 DOI: 10.1016/j.cub.2022.03.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Bakker et al. use Robinson et al.'s reconstruction of three species of vulture to illustrate how incorrect generation time estimates can yield inaccurate results, underscoring the importance of generation time specification for genetically based reconstructions, especially for comparisons and species of conservation concern.
Collapse
Affiliation(s)
| | - Myra E Finkelstein
- Microbiology and Environmental Toxicology Department, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Jesse D'Elia
- U.S. Fish and Wildlife Service, Portland, OR, USA
| | - Daniel F Doak
- Department of Environmental Studies, University of Colorado, Boulder, CO, USA
| | | |
Collapse
|
46
|
Hoban S, Archer FI, Bertola LD, Bragg JG, Breed MF, Bruford MW, Coleman MA, Ekblom R, Funk WC, Grueber CE, Hand BK, Jaffé R, Jensen E, Johnson JS, Kershaw F, Liggins L, MacDonald AJ, Mergeay J, Miller JM, Muller-Karger F, O'Brien D, Paz-Vinas I, Potter KM, Razgour O, Vernesi C, Hunter ME. Global genetic diversity status and trends: towards a suite of Essential Biodiversity Variables (EBVs) for genetic composition. Biol Rev Camb Philos Soc 2022; 97:1511-1538. [PMID: 35415952 PMCID: PMC9545166 DOI: 10.1111/brv.12852] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022]
Abstract
Biodiversity underlies ecosystem resilience, ecosystem function, sustainable economies, and human well‐being. Understanding how biodiversity sustains ecosystems under anthropogenic stressors and global environmental change will require new ways of deriving and applying biodiversity data. A major challenge is that biodiversity data and knowledge are scattered, biased, collected with numerous methods, and stored in inconsistent ways. The Group on Earth Observations Biodiversity Observation Network (GEO BON) has developed the Essential Biodiversity Variables (EBVs) as fundamental metrics to help aggregate, harmonize, and interpret biodiversity observation data from diverse sources. Mapping and analyzing EBVs can help to evaluate how aspects of biodiversity are distributed geographically and how they change over time. EBVs are also intended to serve as inputs and validation to forecast the status and trends of biodiversity, and to support policy and decision making. Here, we assess the feasibility of implementing Genetic Composition EBVs (Genetic EBVs), which are metrics of within‐species genetic variation. We review and bring together numerous areas of the field of genetics and evaluate how each contributes to global and regional genetic biodiversity monitoring with respect to theory, sampling logistics, metadata, archiving, data aggregation, modeling, and technological advances. We propose four Genetic EBVs: (i) Genetic Diversity; (ii) Genetic Differentiation; (iii) Inbreeding; and (iv) Effective Population Size (Ne). We rank Genetic EBVs according to their relevance, sensitivity to change, generalizability, scalability, feasibility and data availability. We outline the workflow for generating genetic data underlying the Genetic EBVs, and review advances and needs in archiving genetic composition data and metadata. We discuss how Genetic EBVs can be operationalized by visualizing EBVs in space and time across species and by forecasting Genetic EBVs beyond current observations using various modeling approaches. Our review then explores challenges of aggregation, standardization, and costs of operationalizing the Genetic EBVs, as well as future directions and opportunities to maximize their uptake globally in research and policy. The collection, annotation, and availability of genetic data has made major advances in the past decade, each of which contributes to the practical and standardized framework for large‐scale genetic observation reporting. Rapid advances in DNA sequencing technology present new opportunities, but also challenges for operationalizing Genetic EBVs for biodiversity monitoring regionally and globally. With these advances, genetic composition monitoring is starting to be integrated into global conservation policy, which can help support the foundation of all biodiversity and species' long‐term persistence in the face of environmental change. We conclude with a summary of concrete steps for researchers and policy makers for advancing operationalization of Genetic EBVs. The technical and analytical foundations of Genetic EBVs are well developed, and conservation practitioners should anticipate their increasing application as efforts emerge to scale up genetic biodiversity monitoring regionally and globally.
Collapse
Affiliation(s)
- Sean Hoban
- Center for Tree Science, The Morton Arboretum, 4100 Illinois Rt 53, Lisle, IL, 60532, USA
| | - Frederick I Archer
- Southwest Fisheries Science Center, NOAA/NMFS, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
| | - Laura D Bertola
- City College of New York, 160 Convent Avenue, New York, NY, 10031, USA
| | - Jason G Bragg
- Research Centre for Ecosystem Resilience, Australian Institute of Botanical Science, The Royal Botanic Garden Sydney, Mrs Macquaries Rd, Sydney, NSW, 2000, Australia
| | - Martin F Breed
- College of Science and Engineering, Flinders University, University Drive, Bedford Park, SA, 5042, Australia
| | - Michael W Bruford
- School of Biosciences, Cardiff University, Cathays Park, Cardiff, CF10 3AX, Wales, UK
| | - Melinda A Coleman
- Department of Primary Industries, New South Wales Fisheries, National Marine Science Centre, 2 Bay Drive, Coffs Harbour, NSW, 2450, Australia
| | - Robert Ekblom
- Wildlife Analysis Unit, Swedish Environmental Protection Agency, Blekholmsterrassen 36, Stockholm, SE-106 48, Sweden
| | - W Chris Funk
- Department of Biology, Graduate Degree in Ecology, Colorado State University, 1878 Campus Delivery, Fort Collins, CO, 80523-1878, USA
| | - Catherine E Grueber
- School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, Carslaw Building, Sydney, NSW, 2006, Australia
| | - Brian K Hand
- Flathead Lake Biological Station, 32125 Bio Station Ln, Polson, MT, 59860, USA
| | - Rodolfo Jaffé
- Exponent, 15375 SE 30th Place, Suite 250, Bellevue, WA, 98007, USA
| | - Evelyn Jensen
- School of Natural and Environmental Sciences, Newcastle University, Agriculture Building, Newcastle Upon Tyne, NE1 7RU, UK
| | - Jeremy S Johnson
- Department of Environmental Studies, Prescott College, 220 Grove Avenue, Prescott, AZ, 86303, USA
| | - Francine Kershaw
- Natural Resources Defense Council, 40 West 20th Street, New York, NY, 10011, USA
| | - Libby Liggins
- School of Natural Sciences, Massey University, Ōtehā Rohe campus, Gate 4 Albany Highway, Auckland, Aotearoa, 0745, New Zealand
| | - Anna J MacDonald
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
| | - Joachim Mergeay
- Research Institute for Nature and Forest, Gaverstraat 4, 9500, Geraardsbergen, Belgium.,Aquatic Ecology, Evolution and Conservation, KULeuven, Charles Deberiotstraat 32, box 2439, 3000, Leuven, Belgium
| | - Joshua M Miller
- Department of Biological Sciences, MacEwan University, 10700 104 Avenue, Edmonton, AB, T5J 4S2, Canada
| | - Frank Muller-Karger
- College of Marine Science, University of South Florida, 140 7th Avenue South, Saint Petersburg, Florida, 33701, USA
| | - David O'Brien
- NatureScot, Great Glen House, Leachkin Road, Inverness, IV3 8NW, UK
| | - Ivan Paz-Vinas
- Laboratoire Evolution et Diversité Biologique, Université de Toulouse, CNRS, IRD, UPS, UMR-5174 EDB, 118 route de Narbonne, Toulouse, 31062, France
| | - Kevin M Potter
- Department of Forestry and Environmental Resources, North Carolina State University, 3041 Cornwallis Road, Research Triangle Park, NC, 27709, USA
| | - Orly Razgour
- Biosciences, University of Exeter, Streatham Campus, Hatherly Laboratories, Prince of Wales Road, Exeter, EX4 4PS, UK
| | - Cristiano Vernesi
- Forest Ecology Unit, Research and Innovation Centre- Fondazione Edmund Mach, Via E. Mach, 1, San Michele all'Adige, 38010, (TN), Italy
| | - Margaret E Hunter
- U.S. Geological Survey, Wetland and Aquatic Research Center, 7920 NW 71st Street, Gainesville, FL, 32653, USA
| |
Collapse
|
47
|
Robledo-Ruiz DA, Gan HM, Kaur P, Dudchenko O, Weisz D, Khan R, Lieberman Aiden E, Osipova E, Hiller M, Morales HE, Magrath MJL, Clarke RH, Sunnucks P, Pavlova A. Chromosome-length genome assembly and linkage map of a critically endangered Australian bird: the helmeted honeyeater. Gigascience 2022; 11:giac025. [PMID: 35348671 PMCID: PMC8963300 DOI: 10.1093/gigascience/giac025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND The helmeted honeyeater (Lichenostomus melanops cassidix) is a Critically Endangered bird endemic to Victoria, Australia. To aid its conservation, the population is the subject of genetic rescue. To understand, monitor, and modulate the effects of genetic rescue on the helmeted honeyeater genome, a chromosome-length genome and a high-density linkage map are required. RESULTS We used a combination of Illumina, Oxford Nanopore, and Hi-C sequencing technologies to assemble a chromosome-length genome of the helmeted honeyeater, comprising 906 scaffolds, with length of 1.1 Gb and scaffold N50 of 63.8 Mb. Annotation comprised 57,181 gene models. Using a pedigree of 257 birds and 53,111 single-nucleotide polymorphisms, we obtained high-density linkage and recombination maps for 25 autosomes and Z chromosome. The total sex-averaged linkage map was 1,347 cM long, with the male map being 6.7% longer than the female map. Recombination maps revealed sexually dimorphic recombination rates (overall higher in males), with average recombination rate of 1.8 cM/Mb. Comparative analyses revealed high synteny of the helmeted honeyeater genome with that of 3 passerine species (e.g., 32 Hi-C scaffolds mapped to 30 zebra finch autosomes and Z chromosome). The genome assembly and linkage map suggest that the helmeted honeyeater exhibits a fission of chromosome 1A into 2 chromosomes relative to zebra finch. PSMC analysis showed a ∼15-fold decline in effective population size to ∼60,000 from mid- to late Pleistocene. CONCLUSIONS The annotated chromosome-length genome and high-density linkage map provide rich resources for evolutionary studies and will be fundamental in guiding conservation efforts for the helmeted honeyeater.
Collapse
Affiliation(s)
| | - Han Ming Gan
- Deakin Genomics Centre, Deakin University, Geelong, VIC 3220, Australia
- GeneSEQ Sdn Bhd, 48300 Rawang, Selangor, Malaysia
| | - Parwinder Kaur
- UWA School of Agriculture and Environment, The University of Western Australia, Perth WA 6009,Australia
| | - Olga Dudchenko
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, TX 77030, USA
| | - David Weisz
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ruqayya Khan
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Erez Lieberman Aiden
- UWA School of Agriculture and Environment, The University of Western Australia, Perth WA 6009,Australia
- The Center for Genome Architecture, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, TX 77030, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech, Pudong 201210, China
| | - Ekaterina Osipova
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 101307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
- Goethe-University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr 108, 101307 Dresden, Germany
- LOEWE Centre for Translational Biodiversity Genomics, Senckenberganlage 25, 60325 Frankfurt, Germany
- Senckenberg Research Institute, Senckenberganlage 25, 60325 Frankfurt, Germany
- Goethe-University, Faculty of Biosciences, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Hernán E Morales
- Section for Evolutionary Genomics, GLOBE Institute, University of Copenhagen, Denmark
| | - Michael J L Magrath
- Department of Wildlife Conservation and Science, Zoos Victoria, Parkville, VIC 3052, Australia
| | - Rohan H Clarke
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Paul Sunnucks
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - Alexandra Pavlova
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
48
|
Comparative population genomics in Tabebuia alliance shows evidence of adaptation in Neotropical tree species. Heredity (Edinb) 2022; 128:141-153. [PMID: 35132209 PMCID: PMC8897506 DOI: 10.1038/s41437-021-00491-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 11/08/2022] Open
Abstract
The role of natural selection in shaping spatial patterns of genetic diversity in the Neotropics is still poorly understood. Here, we perform a genome scan with 24,751 probes targeting 11,026 loci in two Neotropical Bignoniaceae tree species: Handroanthus serratifolius from the seasonally dry tropical forest (SDTF) and Tabebuia aurea from savannas, and compared with the population genomics of H. impetiginosus from SDTF. OutFLANK detected 29 loci in 20 genes with selection signal in H. serratifolius and no loci in T. aurea. Using BayPass, we found evidence of selection in 335 loci in 312 genes in H. serratifolius, 101 loci in 92 genes in T. aurea, and 448 loci in 416 genes in H. impetiginosus. All approaches evidenced several genes affecting plant response to environmental stress and primary metabolic processes. The three species shared no SNPs with selection signal, but we found SNPs affecting the same gene in pair of species. Handroanthus serratifolius showed differences in allele frequencies at SNPs with selection signal among ecosystems, mainly between Caatinga/Cerrado and Atlantic Forest, while H. impetiginosus had one allele fixed across all populations, and T. aurea had similar allele frequency distribution among ecosystems and polymorphism across populations. Taken together, our results indicate that natural selection related to environmental stress shaped the spatial pattern of genetic diversity in the three species. However, the three species have different geographical distribution and niches, which may affect tolerances and adaption, and natural selection may lead to different signatures due to the differences in adaptive landscapes in different niches.
Collapse
|
49
|
Zhang C, Hansen MEB, Tishkoff SA. Advances in integrative African genomics. Trends Genet 2022; 38:152-168. [PMID: 34740451 PMCID: PMC8752515 DOI: 10.1016/j.tig.2021.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022]
Abstract
There has been a rapid increase in human genome sequencing in the past two decades, resulting in the identification of millions of previously unknown genetic variants. However, African populations are under-represented in sequencing efforts. Additional sequencing from diverse African populations and the construction of African-specific reference genomes is needed to better characterize the full spectrum of variation in humans. However, sequencing alone is insufficient to address the molecular and cellular mechanisms underlying variable phenotypes and disease risks. Determining functional consequences of genetic variation using multi-omics approaches is a fundamental post-genomic challenge. We discuss approaches to close the knowledge gaps about African genomic diversity and review advances in African integrative genomic studies and their implications for precision medicine.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew E B Hansen
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sarah A Tishkoff
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
50
|
Zhang WP, Cao L, Lin XR, Ding YM, Liang Y, Zhang DY, Pang EL, Renner SS, Bai WN. Dead-End Hybridization in Walnut Trees Revealed by Large-Scale Genomic Sequence Data. Mol Biol Evol 2022; 39:msab308. [PMID: 34687315 PMCID: PMC8760940 DOI: 10.1093/molbev/msab308] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Although hybridization plays a large role in speciation, some unknown fraction of hybrid individuals never reproduces, instead remaining as genetic dead-ends. We investigated a morphologically distinct and culturally important Chinese walnut, Juglans hopeiensis, suspected to have arisen from hybridization of Persian walnut (J. regia) with Asian butternuts (J. cathayensis, J. mandshurica, and hybrids between J. cathayensis and J. mandshurica). Based on 151 whole-genome sequences of the relevant taxa, we discovered that all J. hopeiensis individuals are first-generation hybrids, with the time for the onset of gene flow estimated as 370,000 years, implying both strong postzygotic barriers and the presence of J. regia in China by that time. Six inversion regions enriched for genes associated with pollen germination and pollen tube growth may be involved in the postzygotic barriers that prevent sexual reproduction in the hybrids. Despite its long-recurrent origination and distinct traits, J. hopeiensis does not appear on the way to speciation.
Collapse
Affiliation(s)
- Wei-Ping Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Lei Cao
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Xin-Rui Lin
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Ya-Mei Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Yu Liang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Da-Yong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Er-Li Pang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Susanne S Renner
- Department of Biology, Washington University, Saint Louis, MO, USA
| | - Wei-Ning Bai
- State Key Laboratory of Earth Surface Processes and Resource Ecology and Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|