1
|
Pinho BX, Melo FPL, Ter Braak CJF, Bauman D, Maréchaux I, Tabarelli M, Benchimol M, Arroyo-Rodriguez V, Santos BA, Hawes JE, Berenguer E, Ferreira J, Silveira JM, Peres CA, Rocha-Santos L, Souza FC, Gonçalves-Souza T, Mariano-Neto E, Faria D, Barlow J. Winner-loser plant trait replacements in human-modified tropical forests. Nat Ecol Evol 2024:10.1038/s41559-024-02592-5. [PMID: 39658586 DOI: 10.1038/s41559-024-02592-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 10/30/2024] [Indexed: 12/12/2024]
Abstract
Anthropogenic landscape modification may lead to the proliferation of a few species and the loss of many. Here we investigate mechanisms and functional consequences of this winner-loser replacement in six human-modified Amazonian and Atlantic Forest regions in Brazil using a causal inference framework. Combining floristic and functional trait data for 1,207 tree species across 271 forest plots, we find that forest loss consistently caused an increased dominance of low-density woods and small seeds dispersed by endozoochory (winner traits) and the loss of distinctive traits, such as extremely dense woods and large seeds dispersed by synzoochory (loser traits). Effects on leaf traits and maximum tree height were rare or inconsistent. The independent causal effects of landscape configuration were rare, but local degradation remained important in multivariate trait-disturbance relationships and exceeded the effects of forest loss in one Amazonian region. Our findings highlight that tropical forest loss and local degradation drive predictable functional changes to remaining tree assemblages and that certain traits are consistently associated with winners and losers across different regional contexts.
Collapse
Affiliation(s)
- Bruno X Pinho
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil.
| | - Felipe P L Melo
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Nottingham, UK
| | - Cajo J F Ter Braak
- Biometris, Wageningen University & Research, Wageningen, The Netherlands
| | - David Bauman
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
- Laboratoire d'Écologie Végétale et Biogéochimie, Université Libre de Bruxelles, Brussels, Belgium
- Environmental Change Institute, University of Oxford, Oxford, UK
| | | | - Marcelo Tabarelli
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, Brazil
| | - Maíra Benchimol
- Applied Ecology and Conservation Lab, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Victor Arroyo-Rodriguez
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Mérida, Mexico
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Mexico
| | - Bráulio A Santos
- Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, João Pessoa, Brazil
| | - Joseph E Hawes
- Institute of Science and Environment, University of Cumbria, Ambleside, UK
- Instituto Juruá, Manaus, Brazil
| | - Erika Berenguer
- Environmental Change Institute, University of Oxford, Oxford, UK
| | - Joice Ferreira
- Brazilian Agricultural Research Corporation (EMBRAPA), Belém, Brazil
| | | | - Carlos A Peres
- Instituto Juruá, Manaus, Brazil
- School of Environmental Sciences, University of East Anglia, Norwich, UK
| | - Larissa Rocha-Santos
- Applied Ecology and Conservation Lab, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Fernanda C Souza
- Departamento de Ecologia e Conservação, Instituto de Ciências Naturais, Universidade Federal de Lavras, Lavras, Brazil
| | - Thiago Gonçalves-Souza
- Institute for Global Change Biology, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | | | - Deborah Faria
- Applied Ecology and Conservation Lab, Universidade Estadual de Santa Cruz, Ilhéus, Brazil
| | - Jos Barlow
- Lancaster Environment Centre, Lancaster University, Lancaster, UK.
| |
Collapse
|
2
|
Detto M, Pacala S. Integrating conspecifics negative density dependence, successional and evolutionary dynamics: Towards a theory of forest diversity. Commun Biol 2024; 7:1572. [PMID: 39592799 PMCID: PMC11599592 DOI: 10.1038/s42003-024-07156-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/28/2024] [Indexed: 11/28/2024] Open
Abstract
Tree successional diversity is evident even to casual observers and has a well-understood physiological basis. Various life history trade-offs, driven by interspecific variation in a single trait, help maintain this diversity. Conspecific negative density dependence (CNDD) is also well-documented and reduces tree vital rates independently of succession strategies. The CNDD hypothesis is frequently justified by specialist natural enemies at a separate trophic level. We integrate these processes into an analytical demographic model, spanning short-term plant physiological responses to the dynamics of a large forest mosaic connected to a metacommunity. Surprisingly, multiple trade-offs do not necessarily increase diversity, as suboptimal trait combinations lead to strategies that cannot compete for successional niches, explaining the weak correlation between functional traits and succession position. Succession alone can sustain half of the species in the metacommunity, with diversity increasing linearly with CNDD strength. The steeper increase with larger metacommunities suggests CNDD plays a greater role in tropical forests. However, if each successional type contains multiple equivalent species, CNDD maintains diversity but becomes less effective in promoting successional diversity, consistent with some tropical forests being less successional diverse. Additionally, CNDD enhances the likelihood of successful speciation and shifts life-history trait frequency by affecting more late-successional species.
Collapse
Affiliation(s)
- Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Stephen Pacala
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Cusack DF, Christoffersen B, Smith-Martin CM, Andersen KM, Cordeiro AL, Fleischer K, Wright SJ, Guerrero-Ramírez NR, Lugli LF, McCulloch LA, Sanchez-Julia M, Batterman SA, Dallstream C, Fortunel C, Toro L, Fuchslueger L, Wong MY, Yaffar D, Fisher JB, Arnaud M, Dietterich LH, Addo-Danso SD, Valverde-Barrantes OJ, Weemstra M, Ng JC, Norby RJ. Toward a coordinated understanding of hydro-biogeochemical root functions in tropical forests for application in vegetation models. THE NEW PHYTOLOGIST 2024; 242:351-371. [PMID: 38416367 DOI: 10.1111/nph.19561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 01/10/2024] [Indexed: 02/29/2024]
Abstract
Tropical forest root characteristics and resource acquisition strategies are underrepresented in vegetation and global models, hampering the prediction of forest-climate feedbacks for these carbon-rich ecosystems. Lowland tropical forests often have globally unique combinations of high taxonomic and functional biodiversity, rainfall seasonality, and strongly weathered infertile soils, giving rise to distinct patterns in root traits and functions compared with higher latitude ecosystems. We provide a roadmap for integrating recent advances in our understanding of tropical forest belowground function into vegetation models, focusing on water and nutrient acquisition. We offer comparisons of recent advances in empirical and model understanding of root characteristics that represent important functional processes in tropical forests. We focus on: (1) fine-root strategies for soil resource exploration, (2) coupling and trade-offs in fine-root water vs nutrient acquisition, and (3) aboveground-belowground linkages in plant resource acquisition and use. We suggest avenues for representing these extremely diverse plant communities in computationally manageable and ecologically meaningful groups in models for linked aboveground-belowground hydro-nutrient functions. Tropical forests are undergoing warming, shifting rainfall regimes, and exacerbation of soil nutrient scarcity caused by elevated atmospheric CO2. The accurate model representation of tropical forest functions is crucial for understanding the interactions of this biome with the climate.
Collapse
Affiliation(s)
- Daniela F Cusack
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Bradley Christoffersen
- School of Integrative Biological and Chemical Sciences, The University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Chris M Smith-Martin
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, 55108, USA
| | | | - Amanda L Cordeiro
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Katrin Fleischer
- Department Biogeochemical Signals, Max-Planck-Institute for Biogeochemistry, Hans-Knöll-Straße 10, Jena, 07745, Germany
| | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Nathaly R Guerrero-Ramírez
- Silviculture and Forest Ecology of Temperate Zones, Faculty of Forest Sciences and Forest Ecology, University of Göttingen, Gottingen, 37077, Germany
- Centre of Biodiversity and Sustainable Land Use (CBL), University of Göttingen, Gottingen, 37077, Germany
| | - Laynara F Lugli
- School of Life Sciences, Technical University of Munich, Freising, 85354, Germany
| | - Lindsay A McCulloch
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford St., Cambridge, MA, 02138, USA
- National Center for Atmospheric Research, National Oceanographic and Atmospheric Agency, 1850 Table Mesa Dr., Boulder, CO, 80305, USA
| | - Mareli Sanchez-Julia
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA, 70118, USA
| | - Sarah A Batterman
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- School of Geography, University of Leeds, Leeds, LS2 9JT, UK
| | - Caroline Dallstream
- Department of Biology, McGill University, 1205 Av. du Docteur-Penfield, Montreal, QC, H3A 1B1, Canada
| | - Claire Fortunel
- AMAP (Botanique et Modélisation de l'Architecture des Plantes et des Végétations), Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, 34398, France
| | - Laura Toro
- Yale Applied Science Synthesis Program, The Forest School at the Yale School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Lucia Fuchslueger
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, 1030, Austria
| | - Michelle Y Wong
- Cary Institute of Ecosystem Studies, Millbrook, NY, 12545, USA
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06511, USA
| | - Daniela Yaffar
- Functional Forest Ecology, Universität Hamburg, Barsbüttel, 22885, Germany
| | - Joshua B Fisher
- Schmid College of Science and Technology, Chapman University, 1 University Drive, Orange, CA, 92866, USA
| | - Marie Arnaud
- Institute of Ecology and Environmental Sciences (IEES), UMR 7618, CNRS-Sorbonne University-INRAE-UPEC-IRD, Paris, 75005, France
- School of Geography, Earth and Environmental Sciences & BIFOR, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Lee H Dietterich
- Department of Ecosystem Science and Sustainability, Warner College of Natural Resources, Colorado State University, 1231 Libbie Coy Way, A104, Fort Collins, CO, 80523-1476, USA
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS, 39180, USA
- Department of Biology, Haverford College, Haverford, PA, 19003, USA
| | - Shalom D Addo-Danso
- Forests and Climate Change Division, CSIR-Forestry Research Institute of Ghana, P.O Box UP 63 KNUST, Kumasi, Ghana
| | - Oscar J Valverde-Barrantes
- Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Monique Weemstra
- Department of Biological Sciences, International Center for Tropical Biodiversity, Florida International University, Miami, FL, 33199, USA
| | - Jing Cheng Ng
- Nanyang Technological University, Singapore, 639798, Singapore
| | - Richard J Norby
- Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
4
|
Henniger H, Huth A, Bohn FJ. A new approach to derive productivity of tropical forests using radar remote sensing measurements. ROYAL SOCIETY OPEN SCIENCE 2023; 10:231186. [PMID: 38026043 PMCID: PMC10663792 DOI: 10.1098/rsos.231186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
Deriving gross & net primary productivity (GPP & NPP) and carbon turnover time of forests from remote sensing remains challenging. This study presents a novel approach to estimate forest productivity by combining radar remote sensing measurements, machine learning and an individual-based forest model. In this study, we analyse the role of different spatial resolutions on predictions in the context of the Radar BIOMASS mission (by ESA). In our analysis, we use the forest gap model FORMIND in combination with a boosted regression tree (BRT) to explore how spatial biomass distributions can be used to predict GPP, NPP and carbon turnover time (τ) at different resolutions. We simulate different spatial biomass resolutions (4 ha, 1 ha and 0.04 ha) in combination with different vertical resolutions (20, 10 and 2 m). Additionally, we analysed the robustness of this approach and applied it to disturbed and mature forests. Disturbed forests have a strong influence on the predictions which leads to high correlations (R2 > 0.8) at the spatial scale of 4 ha and 1 ha. Increased vertical resolution leads generally to better predictions for productivity (GPP & NPP). Increasing spatial resolution leads to better predictions for mature forests and lower correlations for disturbed forests. Our results emphasize the value of the forthcoming BIOMASS satellite mission and highlight the potential of deriving estimates for forest productivity from information on forest structure. If applied to more and larger areas, the approach might ultimately contribute to a better understanding of forest ecosystems.
Collapse
Affiliation(s)
- Hans Henniger
- Department of Ecological Modeling, Helmholtz Centre of Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany
- Institute for Environmental Systems Research, University of Osnabrück, Barbara Straße 12, Osnabrück 49074, Germany
| | - Andreas Huth
- Department of Ecological Modeling, Helmholtz Centre of Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany
- Institute for Environmental Systems Research, University of Osnabrück, Barbara Straße 12, Osnabrück 49074, Germany
- iDiv German Centre for Integrative Biodiversity Research Halle-Jena-Leipzig, Puschstraße 4, Leipzig 04103, Germany
| | - Friedrich J. Bohn
- Department of Computational Hydrosystems, Helmholtz Centre of Environmental Research (UFZ), Permoserstraße 15, Leipzig 04318, Germany
| |
Collapse
|
5
|
Rau EP, Fischer F, Joetzjer É, Maréchaux I, Sun IF, Chave J. Transferability of an individual- and trait-based forest dynamics model: A test case across the tropics. Ecol Modell 2022. [DOI: 10.1016/j.ecolmodel.2021.109801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Jucker T. Deciphering the fingerprint of disturbance on the three-dimensional structure of the world's forests. THE NEW PHYTOLOGIST 2022; 233:612-617. [PMID: 34506641 DOI: 10.1111/nph.17729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Canopy gaps and the processes that generate them play an integral role in shaping the structure and dynamics of forests. However, it is only with recent advances in remote sensing technologies such as airborne laser scanning that studying canopy gaps at scale has become a reality. Consequently, we still lack an understanding of how the size distribution and spatial organization of canopy gaps varies among forests ecosystems, nor have we determined whether these emergent properties can be reconciled with existing theories of forest dynamics. Here, I outline a roadmap for integrating remote sensing with field data and individual-based models to build a comprehensive picture of how environmental constraints and disturbance regimes shape the three-dimensional structure of the world's forests.
Collapse
Affiliation(s)
- Tommaso Jucker
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
7
|
Dantas de Paula M, Forrest M, Langan L, Bendix J, Homeier J, Velescu A, Wilcke W, Hickler T. Nutrient cycling drives plant community trait assembly and ecosystem functioning in a tropical mountain biodiversity hotspot. THE NEW PHYTOLOGIST 2021; 232:551-566. [PMID: 34228829 DOI: 10.1111/nph.17600] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Community trait assembly in highly diverse tropical rainforests is still poorly understood. Based on more than a decade of field measurements in a biodiversity hotspot of southern Ecuador, we implemented plant trait variation and improved soil organic matter dynamics in a widely used dynamic vegetation model (the Lund-Potsdam-Jena General Ecosystem Simulator, LPJ-GUESS) to explore the main drivers of community assembly along an elevational gradient. In the model used here (LPJ-GUESS-NTD, where NTD stands for nutrient-trait dynamics), each plant individual can possess different trait combinations, and the community trait composition emerges via ecological sorting. Further model developments include plant growth limitation by phosphorous (P) and mycorrhizal nutrient uptake. The new model version reproduced the main observed community trait shift and related vegetation processes along the elevational gradient, but only if nutrient limitations to plant growth were activated. In turn, when traits were fixed, low productivity communities emerged due to reduced nutrient-use efficiency. Mycorrhizal nutrient uptake, when deactivated, reduced net primary production (NPP) by 61-72% along the gradient. Our results strongly suggest that the elevational temperature gradient drives community assembly and ecosystem functioning indirectly through its effect on soil nutrient dynamics and vegetation traits. This illustrates the importance of considering these processes to yield realistic model predictions.
Collapse
Affiliation(s)
- Mateus Dantas de Paula
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, 60325, Germany
| | - Matthew Forrest
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, 60325, Germany
| | - Liam Langan
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, 60325, Germany
| | - Jörg Bendix
- Department of Geography, University of Marburg, Marburg, 35037, Germany
| | - Jürgen Homeier
- Plant Ecology and Ecosystems Research, University of Goettingen, Untere Karspüle 2, Goettingen, 37073, Germany
- Centre for Biodiversity and Sustainable Land Use (CBL), University of Goettingen, Goettingen, 37073, Germany
| | - Andre Velescu
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Reinhard-Baumeister-Platz 1, Karlsruhe, 76131, Germany
| | - Wolfgang Wilcke
- Institute of Geography and Geoecology, Karlsruhe Institute of Technology (KIT), Reinhard-Baumeister-Platz 1, Karlsruhe, 76131, Germany
| | - Thomas Hickler
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, 60325, Germany
- Department of Physical Geography, Geosciences, Johann Wolfgang Goethe University of Frankfurt, Frankfurt, 60438, Germany
| |
Collapse
|
8
|
Chitra‐Tarak R, Xu C, Aguilar S, Anderson‐Teixeira KJ, Chambers J, Detto M, Faybishenko B, Fisher RA, Knox RG, Koven CD, Kueppers LM, Kunert N, Kupers SJ, McDowell NG, Newman BD, Paton SR, Pérez R, Ruiz L, Sack L, Warren JM, Wolfe BT, Wright C, Wright SJ, Zailaa J, McMahon SM. Hydraulically-vulnerable trees survive on deep-water access during droughts in a tropical forest. THE NEW PHYTOLOGIST 2021; 231:1798-1813. [PMID: 33993520 PMCID: PMC8457149 DOI: 10.1111/nph.17464] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 04/29/2021] [Indexed: 05/24/2023]
Abstract
Deep-water access is arguably the most effective, but under-studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep-water access may delay plant dehydration. Here, we tested the role of deep-water access in enabling survival within a diverse tropical forest community in Panama using a novel data-model approach. We inversely estimated the effective rooting depth (ERD, as the average depth of water extraction), for 29 canopy species by linking diameter growth dynamics (1990-2015) to vapor pressure deficit, water potentials in the whole-soil column, and leaf hydraulic vulnerability curves. We validated ERD estimates against existing isotopic data of potential water-access depths. Across species, deeper ERD was associated with higher maximum stem hydraulic conductivity, greater vulnerability to xylem embolism, narrower safety margins, and lower mortality rates during extreme droughts over 35 years (1981-2015) among evergreen species. Species exposure to water stress declined with deeper ERD indicating that trees compensate for water stress-related mortality risk through deep-water access. The role of deep-water access in mitigating mortality of hydraulically-vulnerable trees has important implications for our predictive understanding of forest dynamics under current and future climates.
Collapse
|
9
|
Crawford MS, Barry KE, Clark AT, Farrior CE, Hines J, Ladouceur E, Lichstein JW, Maréchaux I, May F, Mori AS, Reineking B, Turnbull LA, Wirth C, Rüger N. The function-dominance correlation drives the direction and strength of biodiversity-ecosystem functioning relationships. Ecol Lett 2021; 24:1762-1775. [PMID: 34157796 DOI: 10.1111/ele.13776] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Accepted: 04/21/2021] [Indexed: 11/29/2022]
Abstract
Community composition is a primary determinant of how biodiversity change influences ecosystem functioning and, therefore, the relationship between biodiversity and ecosystem functioning (BEF). We examine the consequences of community composition across six structurally realistic plant community models. We find that a positive correlation between species' functioning in monoculture versus their dominance in mixture with regard to a specific function (the "function-dominance correlation") generates a positive relationship between realised diversity and ecosystem functioning across species richness treatments. However, because realised diversity declines when few species dominate, a positive function-dominance correlation generates a negative relationship between realised diversity and ecosystem functioning within species richness treatments. Removing seed inflow strengthens the link between the function-dominance correlation and BEF relationships across species richness treatments but weakens it within them. These results suggest that changes in species' identities in a local species pool may more strongly affect ecosystem functioning than changes in species richness.
Collapse
Affiliation(s)
- Michael S Crawford
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Economics, Institute of Empirical Economic Research, University of Leipzig, Leipzig, Germany.,Department of Land-Use Management, Potsdam Institute for Climate Impact Research (PIK), Potsdam, Germany
| | - Kathryn E Barry
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, University of Leipzig, Leipzig, Germany.,Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Adam T Clark
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.,Institute of Biology, University of Graz, Graz, Austria
| | - Caroline E Farrior
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Jes Hines
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,University of Leipzig, Leipzig, Germany
| | - Emma Ladouceur
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Physiological Diversity, Helmholtz Centre for Environmental Research (UFZ), Leipzig, Germany.,Biodiversity Synthesis, Institute of Computer Science, Martin Luther University Halle-Wittenberg, Halle, Germany
| | | | - Isabelle Maréchaux
- AMAP, University of Montpellier, CIRAD, CNRS, INRAE, Montpellier, IRD, France.,Laboratoire Évolution et Diversité Biologique, UMR 5174 (CNRS/IRD/UPS), Toulouse Cedex, France
| | - Felix May
- Institute of Biology, Freie Universität Berlin, Gartenhaus, Berlin, Germany
| | - Akira S Mori
- Graduate School of Environment and Information Sciences, Yokohama National University, Yokohama, Japan
| | - Björn Reineking
- University of Grenoble Alpes, INRAE, LESSEM, Grenoble, France
| | | | - Christian Wirth
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Institute of Biology, University of Leipzig, Leipzig, Germany.,University of Grenoble Alpes, INRAE, LESSEM, Grenoble, France.,Max-Planck-Institute for Biogeochemistry, Jena, Germany
| | - Nadja Rüger
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany.,Department of Economics, Institute of Empirical Economic Research, University of Leipzig, Leipzig, Germany.,Smithsonian Tropical Research Institute, Balboa, Ancón, Panama
| |
Collapse
|
10
|
Maréchaux I, Langerwisch F, Huth A, Bugmann H, Morin X, Reyer CP, Seidl R, Collalti A, Dantas de Paula M, Fischer R, Gutsch M, Lexer MJ, Lischke H, Rammig A, Rödig E, Sakschewski B, Taubert F, Thonicke K, Vacchiano G, Bohn FJ. Tackling unresolved questions in forest ecology: The past and future role of simulation models. Ecol Evol 2021; 11:3746-3770. [PMID: 33976773 PMCID: PMC8093733 DOI: 10.1002/ece3.7391] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
Understanding the processes that shape forest functioning, structure, and diversity remains challenging, although data on forest systems are being collected at a rapid pace and across scales. Forest models have a long history in bridging data with ecological knowledge and can simulate forest dynamics over spatio-temporal scales unreachable by most empirical investigations.We describe the development that different forest modelling communities have followed to underpin the leverage that simulation models offer for advancing our understanding of forest ecosystems.Using three widely applied but contrasting approaches - species distribution models, individual-based forest models, and dynamic global vegetation models - as examples, we show how scientific and technical advances have led models to transgress their initial objectives and limitations. We provide an overview of recent model applications on current important ecological topics and pinpoint ten key questions that could, and should, be tackled with forest models in the next decade.Synthesis. This overview shows that forest models, due to their complementarity and mutual enrichment, represent an invaluable toolkit to address a wide range of fundamental and applied ecological questions, hence fostering a deeper understanding of forest dynamics in the context of global change.
Collapse
Affiliation(s)
| | - Fanny Langerwisch
- Department of Ecology and Environmental SciencesPalacký University OlomoucOlomoucCzech Republic
- Department of Water Resources and Environmental ModelingCzech University of Life SciencesPragueCzech Republic
| | - Andreas Huth
- Helmholtz Centre for Environmental Research ‐ UFZLeipzigGermany
- German Centre for Integrative Biodiversity Research (iDiv) Halle‐Jena‐LeipzigLeipzigGermany
- Institute of Environmental Systems ResearchOsnabrück UniversityOsnabrückGermany
| | - Harald Bugmann
- Forest EcologyInstitute of Terrestrial EcosystemsETH ZürichZurichSwitzerland
| | - Xavier Morin
- EPHECEFECNRSUniv MontpellierUniv Paul Valéry MontpellierIRDMontpellierFrance
| | - Christopher P.O. Reyer
- Potsdam Institute for Climate Impact Research (PIK)Member of the Leibniz AssociationPotsdamGermany
| | - Rupert Seidl
- Institute of SilvicultureUniversity of Natural Resources and Life Sciences (BOKU)ViennaAustria
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Alessio Collalti
- Forest Modelling LabInstitute for Agriculture and Forestry Systems in the MediterraneanNational Research Council of Italy (CNR‐ISAFOM)Perugia (PG)Italy
- Department of Innovation in Biological, Agro‐food and Forest SystemsUniversity of TusciaViterboItaly
| | | | - Rico Fischer
- Helmholtz Centre for Environmental Research ‐ UFZLeipzigGermany
| | - Martin Gutsch
- Potsdam Institute for Climate Impact Research (PIK)Member of the Leibniz AssociationPotsdamGermany
| | | | - Heike Lischke
- Dynamic MacroecologyLand Change ScienceSwiss Federal Institute for Forest, Snow and Landscape Research WSLBirmensdorfSwitzerland
| | - Anja Rammig
- TUM School of Life SciencesTechnical University of MunichFreisingGermany
| | - Edna Rödig
- Helmholtz Centre for Environmental Research ‐ UFZLeipzigGermany
| | - Boris Sakschewski
- Potsdam Institute for Climate Impact Research (PIK)Member of the Leibniz AssociationPotsdamGermany
| | | | - Kirsten Thonicke
- Potsdam Institute for Climate Impact Research (PIK)Member of the Leibniz AssociationPotsdamGermany
| | | | | |
Collapse
|
11
|
Clark JS, Andrus R, Aubry-Kientz M, Bergeron Y, Bogdziewicz M, Bragg DC, Brockway D, Cleavitt NL, Cohen S, Courbaud B, Daley R, Das AJ, Dietze M, Fahey TJ, Fer I, Franklin JF, Gehring CA, Gilbert GS, Greenberg CH, Guo Q, HilleRisLambers J, Ibanez I, Johnstone J, Kilner CL, Knops J, Koenig WD, Kunstler G, LaMontagne JM, Legg KL, Luongo J, Lutz JA, Macias D, McIntire EJB, Messaoud Y, Moore CM, Moran E, Myers JA, Myers OB, Nunez C, Parmenter R, Pearse S, Pearson S, Poulton-Kamakura R, Ready E, Redmond MD, Reid CD, Rodman KC, Scher CL, Schlesinger WH, Schwantes AM, Shanahan E, Sharma S, Steele MA, Stephenson NL, Sutton S, Swenson JJ, Swift M, Veblen TT, Whipple AV, Whitham TG, Wion AP, Zhu K, Zlotin R. Continent-wide tree fecundity driven by indirect climate effects. Nat Commun 2021; 12:1242. [PMID: 33623042 PMCID: PMC7902660 DOI: 10.1038/s41467-020-20836-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/01/2020] [Indexed: 01/31/2023] Open
Abstract
Indirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Collapse
Affiliation(s)
- James S. Clark
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA ,grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Andrus
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Melaine Aubry-Kientz
- grid.266096.d0000 0001 0049 1282School of Natural Sciences, University of California, Merced, Merced, CA USA
| | - Yves Bergeron
- grid.265695.bForest Research Institute, University of Quebec in Abitibi-Temiscamingue, Rouyn-Noranda, QC Canada
| | - Michal Bogdziewicz
- grid.5633.30000 0001 2097 3545Department of Systematic Zoology, Faculty of Biology, Adam Mickiewicz University, Poznan, Poland
| | - Don C. Bragg
- grid.497399.90000 0001 2106 5338USDA Forest Service, Southern Research Station, Monticello, AR USA
| | - Dale Brockway
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Natalie L. Cleavitt
- grid.5386.8000000041936877XNatural Resources, Cornell University, Ithaca, NY USA
| | - Susan Cohen
- grid.10698.360000000122483208Institute for the Environment, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Benoit Courbaud
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Robert Daley
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Adrian J. Das
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Michael Dietze
- grid.189504.10000 0004 1936 7558Earth and Environment, Boston University, Boston, MA USA
| | - Timothy J. Fahey
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Auburn, AL USA
| | - Istem Fer
- grid.8657.c0000 0001 2253 8678Finnish Meteorological Institute, Helsinki, Finland
| | - Jerry F. Franklin
- grid.34477.330000000122986657Forest Resources, University of Washington, Seattle, WA USA
| | - Catherine A. Gehring
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Gregory S. Gilbert
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Cathryn H. Greenberg
- grid.472551.00000 0004 0404 3120USDA Forest Service, Bent Creek Experimental Forest, Asheville, NC USA
| | - Qinfeng Guo
- grid.472551.00000 0004 0404 3120USDA Forest Service Southern Research Station, Eastern Forest Environmental Threat Assessment Center, Research Triangle Park, NC USA
| | - Janneke HilleRisLambers
- grid.34477.330000000122986657Department of Biology, University of Washington, Seattle, WA USA
| | - Ines Ibanez
- grid.214458.e0000000086837370School for Environment and Sustainability, University of Michigan, Ann Arbor, MI USA
| | - Jill Johnstone
- grid.25152.310000 0001 2154 235XDepartment of Biology, University of Saskatchewan, Saskatoon, SK Canada
| | - Christopher L. Kilner
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Johannes Knops
- grid.440701.60000 0004 1765 4000Health and Environmental Sciences Department, Xian Jiaotong-Liverpool University, Suzhou, China
| | - Walter D. Koenig
- grid.47840.3f0000 0001 2181 7878Hastings Reservation, University of California Berkeley, Carmel Valley, CA USA
| | - Georges Kunstler
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Jalene M. LaMontagne
- grid.254920.80000 0001 0707 2013Department of Biological Sciences, DePaul University, Chicago, IL USA
| | - Kristin L. Legg
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Jordan Luongo
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - James A. Lutz
- grid.53857.3c0000 0001 2185 8768Department of Wildland Resources, Utah State University Ecology Center, Logan, UT USA
| | - Diana Macias
- grid.266832.b0000 0001 2188 8502Department of Biology, University of New Mexico, Albuquerque, NM USA
| | | | - Yassine Messaoud
- grid.265704.20000 0001 0665 6279Université du Québec en Abitibi-Témiscamingue, Rouyn-Noranda, Quebec Canada
| | - Christopher M. Moore
- grid.254333.00000 0001 2296 8213Department of Biology, Colby College, Waterville, ME USA
| | - Emily Moran
- grid.266190.a0000000096214564Department of Geography, University of Colorado Boulder, Boulder, CO USA
| | - Jonathan A. Myers
- grid.4367.60000 0001 2355 7002Department of Biology, Washington University in St. Louis, St. Louis, MO USA
| | - Orrin B. Myers
- grid.266832.b0000 0001 2188 8502University of New Mexico, Albuquerque, NM USA
| | - Chase Nunez
- grid.507516.00000 0004 7661 536XDepartment for the Ecology of Animal Societies, Max Planck Institute of Animal Behavior, Konstanz, Germany
| | - Robert Parmenter
- grid.454846.f0000 0001 2331 3972Valles Caldera National Preserve, National Park Service, Jemez Springs, NM USA
| | - Sam Pearse
- grid.2865.90000000121546924Fort Collins Science Center, Fort Collins, CO USA
| | - Scott Pearson
- grid.435676.50000 0000 8528 5973Department of Natural Sciences, Mars Hill University, Mars Hill, NC USA
| | - Renata Poulton-Kamakura
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Ethan Ready
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Miranda D. Redmond
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Chantal D. Reid
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Kyle C. Rodman
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - C. Lane Scher
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - William H. Schlesinger
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Amanda M. Schwantes
- grid.17063.330000 0001 2157 2938Ecology and Evolutionary Biology, University of Toronto, Toronto, ON Canada
| | - Erin Shanahan
- grid.454846.f0000 0001 2331 3972Greater Yellowstone Network, National Park Service, Bozeman, MT USA
| | - Shubhi Sharma
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Michael A. Steele
- grid.268256.d0000 0000 8510 1943Department of Biology, Wilkes University, Wilkes-Barre, PA USA
| | - Nathan L. Stephenson
- grid.2865.90000000121546924USGS Western Ecological Research Center, Three Rivers, CA USA
| | - Samantha Sutton
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Jennifer J. Swenson
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Margaret Swift
- grid.26009.3d0000 0004 1936 7961Nicholas School of the Environment, Duke University, Durham, NC USA
| | - Thomas T. Veblen
- grid.450307.5INRAE, LESSEM, University Grenoble Alpes, Saint-Martin-d’Heres, France
| | - Amy V. Whipple
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Thomas G. Whitham
- grid.261120.60000 0004 1936 8040Department of Biological Science, Northern Arizona University, Flagstaff, AZ USA
| | - Andreas P. Wion
- grid.47894.360000 0004 1936 8083Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, CO USA
| | - Kai Zhu
- grid.205975.c0000 0001 0740 6917University of California, Santa Cruz, Santa Cruz, CA USA
| | - Roman Zlotin
- grid.411377.70000 0001 0790 959XGeography Department and Russian and East European Institute, Bloomington, IN USA
| |
Collapse
|
12
|
Morin X, Bugmann H, Coligny F, Martin‐StPaul N, Cailleret M, Limousin J, Ourcival J, Prevosto B, Simioni G, Toigo M, Vennetier M, Catteau E, Guillemot J. Beyond forest succession: A gap model to study ecosystem functioning and tree community composition under climate change. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13760] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xavier Morin
- CEFECNRSUniv. MontpellierEPHEIRDUniv. Paul Valéry Montpellier 3 Montpellier France
| | - Harald Bugmann
- Forest Ecology Institute of Terrestrial Ecosystems ETH Zürich Zürich Switzerland
| | - François Coligny
- AMAP UMR931, Botany and Computational Plant Architecture Université de Montpellier – CIRAD – CNRS – INRAE – IRD Montpellier Cedex 5 France
| | - Nicolas Martin‐StPaul
- INRAEURFMDomaine Saint PaulINRAE Centre de recherche PACADomaine Saint‐Paul Site Agroparc France
| | - Maxime Cailleret
- INRAE Aix‐en‐ProvenceAix Marseille UniversitéUMR RECOVER Aix‐en‐Provence Cedex 5 France
| | - Jean‐Marc Limousin
- CEFECNRSUniv. MontpellierEPHEIRDUniv. Paul Valéry Montpellier 3 Montpellier France
| | - Jean‐Marc Ourcival
- CEFECNRSUniv. MontpellierEPHEIRDUniv. Paul Valéry Montpellier 3 Montpellier France
| | - Bernard Prevosto
- INRAE Aix‐en‐ProvenceAix Marseille UniversitéUMR RECOVER Aix‐en‐Provence Cedex 5 France
| | - Guillaume Simioni
- INRAEURFMDomaine Saint PaulINRAE Centre de recherche PACADomaine Saint‐Paul Site Agroparc France
| | - Maude Toigo
- CEFECNRSUniv. MontpellierEPHEIRDUniv. Paul Valéry Montpellier 3 Montpellier France
| | - Michel Vennetier
- INRAE Aix‐en‐ProvenceAix Marseille UniversitéUMR RECOVER Aix‐en‐Provence Cedex 5 France
| | | | - Joannès Guillemot
- CIRADUMR Eco&Sols Montpellier France
- Eco&SolsUniv MontpellierCIRADINRAE, MontpellierSupAgro Montpellier France
- Department of Forest Sciences ESALQUniversity of São Paulo Piracicaba Brazil
| |
Collapse
|
13
|
Zhang B, DeAngelis DL. An overview of agent-based models in plant biology and ecology. ANNALS OF BOTANY 2020; 126:539-557. [PMID: 32173742 PMCID: PMC7489105 DOI: 10.1093/aob/mcaa043] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/12/2020] [Indexed: 05/22/2023]
Abstract
Agent-based modelling (ABM) has become an established methodology in many areas of biology, ranging from the cellular to the ecological population and community levels. In plant science, two different scales have predominated in their use of ABM. One is the scale of populations and communities, through the modelling of collections of agents representing individual plants, interacting with each other and with the environment. The other is the scale of the individual plant, through the modelling, by functional-structural plant models (FSPMs), of agents representing plant building blocks, or metamers, to describe the development of plant architecture and functions within individual plants. The purpose of this review is to show key results and parallels in ABM for growth, mortality, carbon allocation, competition and reproduction across the scales from the plant organ to populations and communities on a range of spatial scales to the whole landscape. Several areas of application of ABMs are reviewed, showing that some issues are addressed by both population-level ABMs and FSPMs. Continued increase in the relevance of ABM to environmental science and management will be helped by greater integration of ABMs across these two scales.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | - Donald L DeAngelis
- U. S. Geological Survey, Wetland and Aquatic Research Center, Davie, FL, USA
| |
Collapse
|
14
|
Martínez Cano I, Shevliakova E, Malyshev S, Wright SJ, Detto M, Pacala SW, Muller-Landau HC. Allometric constraints and competition enable the simulation of size structure and carbon fluxes in a dynamic vegetation model of tropical forests (LM3PPA-TV). GLOBAL CHANGE BIOLOGY 2020; 26:4478-4494. [PMID: 32463934 DOI: 10.1111/gcb.15188] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 04/24/2020] [Indexed: 06/11/2023]
Abstract
Tropical forests are a key determinant of the functioning of the Earth system, but remain a major source of uncertainty in carbon cycle models and climate change projections. In this study, we present an updated land model (LM3PPA-TV) to improve the representation of tropical forest structure and dynamics in Earth system models (ESMs). The development and parameterization of LM3PPA-TV drew on extensive datasets on tropical tree traits and long-term field censuses from Barro Colorado Island (BCI), Panama. The model defines a new plant functional type (PFT) based on the characteristics of shade-tolerant, tropical tree species, implements a new growth allocation scheme based on realistic tree allometries, incorporates hydraulic constraints on biomass accumulation, and features a new compartment for tree branches and branch fall dynamics. Simulation experiments reproduced observed diurnal and seasonal patterns in stand-level carbon and water fluxes, as well as mean canopy and understory tree growth rates, tree size distributions, and stand-level biomass on BCI. Simulations at multiple sites captured considerable variation in biomass and size structure across the tropical forest biome, including observed responses to precipitation and temperature. Model experiments suggested a major role of water limitation in controlling geographic variation forest biomass and structure. However, the failure to simulate tropical forests under extreme conditions and the systematic underestimation of forest biomass in Paleotropical locations highlighted the need to incorporate variation in hydraulic traits and multiple PFTs that capture the distinct floristic composition across tropical domains. The continued pressure on tropical forests from global change demands models which are able to simulate alternative successional pathways and their pace to recovery. LM3PPA-TV provides a tool to investigate geographic variation in tropical forests and a benchmark to continue improving the representation of tropical forests dynamics and their carbon storage potential in ESMs.
Collapse
Affiliation(s)
- Isabel Martínez Cano
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | | - Sergey Malyshev
- NOAA/Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA
| | | | - Matteo Detto
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | - Stephen W Pacala
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
15
|
Longo M, Saatchi S, Keller M, Bowman K, Ferraz A, Moorcroft PR, Morton DC, Bonal D, Brando P, Burban B, Derroire G, dos‐Santos MN, Meyer V, Saleska S, Trumbore S, Vincent G. Impacts of Degradation on Water, Energy, and Carbon Cycling of the Amazon Tropical Forests. JOURNAL OF GEOPHYSICAL RESEARCH. BIOGEOSCIENCES 2020; 125:e2020JG005677. [PMID: 32999796 PMCID: PMC7507752 DOI: 10.1029/2020jg005677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 05/31/2023]
Abstract
Selective logging, fragmentation, and understory fires directly degrade forest structure and composition. However, studies addressing the effects of forest degradation on carbon, water, and energy cycles are scarce. Here, we integrate field observations and high-resolution remote sensing from airborne lidar to provide realistic initial conditions to the Ecosystem Demography Model (ED-2.2) and investigate how disturbances from forest degradation affect gross primary production (GPP), evapotranspiration (ET), and sensible heat flux (H). We used forest structural information retrieved from airborne lidar samples (13,500 ha) and calibrated with 817 inventory plots (0.25 ha) across precipitation and degradation gradients in the eastern Amazon as initial conditions to ED-2.2 model. Our results show that the magnitude and seasonality of fluxes were modulated by changes in forest structure caused by degradation. During the dry season and under typical conditions, severely degraded forests (biomass loss ≥66%) experienced water stress with declines in ET (up to 34%) and GPP (up to 35%) and increases of H (up to 43%) and daily mean ground temperatures (up to 6.5°C) relative to intact forests. In contrast, the relative impact of forest degradation on energy, water, and carbon cycles markedly diminishes under extreme, multiyear droughts, as a consequence of severe stress experienced by intact forests. Our results highlight that the water and energy cycles in the Amazon are driven by not only climate and deforestation but also the past disturbance and changes of forest structure from degradation, suggesting a much broader influence of human land use activities on the tropical ecosystems.
Collapse
Affiliation(s)
- Marcos Longo
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Sassan Saatchi
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- Institute of Environment and SustainabilityUniversity of CaliforniaLos AngelesCAUSA
| | - Michael Keller
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- International Institute of Tropical ForestryUSDA Forest ServiceRio PiedrasPuerto Rico
- Embrapa Informática AgropecuáriaCampinasBrazil
| | - Kevin Bowman
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - António Ferraz
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
- Institute of Environment and SustainabilityUniversity of CaliforniaLos AngelesCAUSA
| | - Paul R. Moorcroft
- Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeMAUSA
| | | | - Damien Bonal
- Université de Lorraine, INRAE, AgroParisTech, UMR SilvaNancyFrance
| | - Paulo Brando
- Department of Earth System ScienceUniversity of CaliforniaIrvineCAUSA
- Woods Hole Research CenterWoods HoleMAUSA
- Instituto de Pesquisa Ambiental da AmazôniaBrasíliaBrazil
| | - Benoît Burban
- Institut National de Recherche en Agriculture, Alimentation et Environnement (INRAE), UMR 0745 EcoFoG, Campus AgronomiqueKourouFrance
| | - Géraldine Derroire
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR EcoFoG (Agroparistech, CNRS, INRAE, Université des Antilles, Université de Guyane), Campus AgronomiqueKourouFrance
| | | | - Victoria Meyer
- Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaCAUSA
| | - Scott Saleska
- Ecology and Evolutionary BiologyUniversity of ArizonaTucsonAZUSA
| | | | - Grégoire Vincent
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAEMontpellierFrance
| |
Collapse
|
16
|
Chave J, Piponiot C, Maréchaux I, de Foresta H, Larpin D, Fischer FJ, Derroire G, Vincent G, Hérault B. Slow rate of secondary forest carbon accumulation in the Guianas compared with the rest of the Neotropics. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2020; 30:e02004. [PMID: 31520573 DOI: 10.1002/eap.2004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 06/18/2019] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Secondary forests are a prominent component of tropical landscapes, and they constitute a major atmospheric carbon sink. Rates of carbon accumulation are usually inferred from chronosequence studies, but direct estimates of carbon accumulation based on long-term monitoring of stands are rarely reported. Recent compilations on secondary forest carbon accumulation in the Neotropics are heavily biased geographically as they do not include estimates from the Guiana Shield. We analysed the temporal trajectory of aboveground carbon accumulation and floristic composition at one 25-ha secondary forest site in French Guiana. The site was clear-cut in 1976, abandoned thereafter, and one large plot (6.25 ha) has been monitored continuously since. We used Bayesian modeling to assimilate inventory data and simulate the long-term carbon accumulation trajectory. Canopy change was monitored using two aerial lidar surveys conducted in 2009 and 2017. We compared the dynamics of this site with that of a surrounding old-growth forest. Finally, we compared our results with that from secondary forests in Costa Rica, which is one of the rare long-term monitoring programs reaching a duration comparable to our study. Twenty years after abandonment, aboveground carbon stock was 64.2 (95% credibility interval 46.4, 89.0) Mg C/ha, and this stock increased to 101.3 (78.7, 128.5) Mg C/ha 20 yr later. The time to accumulate one-half of the mean aboveground carbon stored in the nearby old-growth forest (185.6 [155.9, 200.2] Mg C/ha) was estimated at 35.0 [20.9, 55.9] yr. During the first 40 yr, the contribution of the long-lived pioneer species Xylopia nitida, Goupia glabra, and Laetia procera to the aboveground carbon stock increased continuously. Secondary forest mean-canopy height measured by lidar increased by 1.14 m in 8 yr, a canopy-height increase consistent with an aboveground carbon accumulation of 7.1 Mg C/ha (or 0.89 Mg C·ha-1 ·yr-1 ) during this period. Long-term AGC accumulation rate in Costa Rica was almost twice as fast as at our site in French Guiana. This may reflect higher fertility of Central American forest communities or a better adaptation of the forest tree community to intense and frequent disturbances. This finding may have important consequences for scaling-up carbon uptake estimates to continental scales.
Collapse
Affiliation(s)
- Jérôme Chave
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université Paul Sabatier-IRD, Bâtiment 4R1, 118 route de Narbonne, F-31062, Toulouse Cedex 9, France
| | - Camille Piponiot
- Cirad, UMR 'Ecologie des Forêts de Guyane' (AgroparisTech, CNRS, Inra, Université des Antilles, Université de la Guyane), F-97379, Kourou Cedex, French Guiana
| | - Isabelle Maréchaux
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université Paul Sabatier-IRD, Bâtiment 4R1, 118 route de Narbonne, F-31062, Toulouse Cedex 9, France
- AgroParisTech-ENGREF, 19 Avenue du Maine, F-75015, Paris, France
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRA, F-34000, Montpellier, France
| | - Hubert de Foresta
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRA, F-34000, Montpellier, France
| | - Denis Larpin
- Direction Générale Déléguée aux Musées, Jardins et Zoos, Muséum National d'Histoire Naturelle, 57 rue Cuvier, F-75005, Paris, France
| | - Fabian Jörg Fischer
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université Paul Sabatier-IRD, Bâtiment 4R1, 118 route de Narbonne, F-31062, Toulouse Cedex 9, France
| | - Géraldine Derroire
- Cirad, UMR 'Ecologie des Forêts de Guyane' (AgroparisTech, CNRS, Inra, Université des Antilles, Université de la Guyane), F-97379, Kourou Cedex, French Guiana
| | - Grégoire Vincent
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRA, F-34000, Montpellier, France
| | - Bruno Hérault
- Cirad, Univ Montpellier, UR Forests & Societies, F-34000, Montpellier, France
- INPHB, Institut National Polytechnique Félix Houphouët-Boigny, Yamoussoukro, Ivory Coast
| |
Collapse
|
17
|
Fischer FJ, Maréchaux I, Chave J. Improving plant allometry by fusing forest models and remote sensing. THE NEW PHYTOLOGIST 2019; 223:1159-1165. [PMID: 30897214 DOI: 10.1111/nph.15810] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
Allometry determines how tree shape and function scale with each other, related through size. Allometric relationships help scale processes from the individual to the global scale and constitute a core component of vegetation models. Allometric relationships have been expected to emerge from optimisation theory, yet this does not suitably predict empirical data. Here we argue that the fusion of high-resolution data, such as those derived from airborne laser scanning, with individual-based forest modelling offers insight into how plant size contributes to large-scale biogeochemical processes. We review the challenges in allometric scaling, how they can be tackled by advances in data-model fusion, and how individual-based models can serve as data integrators for dynamic global vegetation models.
Collapse
Affiliation(s)
- Fabian Jörg Fischer
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université Paul Sabatier-IRD, Bâtiment 4R1, 118 route de Narbonne, F-31062, Toulouse Cedex 9, France
| | - Isabelle Maréchaux
- AMAP, INRA, IRD, CIRAD, CNRS, University of Montpellier, F-34000, Montpellier, France
| | - Jérôme Chave
- Laboratoire Evolution et Diversité Biologique, UMR5174, CNRS-Université Paul Sabatier-IRD, Bâtiment 4R1, 118 route de Narbonne, F-31062, Toulouse Cedex 9, France
| |
Collapse
|
18
|
Zuidema PA, Poulter B, Frank DC. A Wood Biology Agenda to Support Global Vegetation Modelling. TRENDS IN PLANT SCIENCE 2018; 23:1006-1015. [PMID: 30209023 DOI: 10.1016/j.tplants.2018.08.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 05/06/2023]
Abstract
Realistic forecasting of forest responses to climate change critically depends on key advancements in global vegetation modelling. Compared with traditional 'big-leaf' models that simulate forest stands, 'next-generation' vegetation models aim to track carbon-, light-, water-, and nutrient-limited growth of individual trees. Wood biology can play an important role in delivering the required knowledge at tissue-to-individual levels, at minute-to-century scales and for model parameterization and benchmarking. We propose a wood biology research agenda that contributes to filling six knowledge gaps: sink versus source limitation, drivers of intra-annual growth, drought impacts, functional wood traits, dynamic biomass allocation, and nutrient cycling. Executing this agenda will expedite model development and increase the ability of models to forecast global change impact on forest dynamics.
Collapse
Affiliation(s)
- Pieter A Zuidema
- Forest Ecology and Forest Management, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands.
| | | | - David C Frank
- Laboratory of Tree-Ring Research, University of Arizona, 1215 E Lowell Street, Tucson, AZ 85721, USA
| |
Collapse
|