1
|
Markarian T, Daniel M, Guillemet K, Ajavon F, Femy F, Grandpierre RG, Feral-Pierssens AL, Bobbia X. Visual Patterns of Diaphragmatic Motion in Acute Respiratory Failure: A Prospective Pilot Study. JOURNAL OF CLINICAL ULTRASOUND : JCU 2024. [PMID: 39470416 DOI: 10.1002/jcu.23886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/02/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024]
Abstract
INTRODUCTION Right diaphragmatic excursion is a reliable and reproducible technique used in intensive care to assess diaphragmatic function. The aim of this study was to investigate the relationship between the appearance of diaphragmatic motion and the etiological diagnosis of patients admitted to the emergency department with acute respiratory failure (ARF). MATERIALS A prospective, observational, and multicenter pilot study was conducted. All adult patients admitted in the emergency department with ARF were included. The different visual patterns of diaphragmatic motion were analyzed according to the three main etiologies of ARF encountered in emergency departments. RESULTS A total of 39 adult patients were included. We observed a different visual pattern in patients with pneumonia. A sum of plateau times of less than 0.2 s predicted that the main diagnosis was pneumonia, with sensitivity = 89% 95%CI [52%; 100%], specificity = 87% 95%CI [69%; 96%]. CONCLUSION Our study seems to show that the shape of diaphragmatic motion in patients with ARF secondary to pneumonia is different from that in patients with exacerbation of chronic obstructive pulmonary disease or acute heart failure. TRIAL REGISTRATION ClinicalTrials.gov: NCT04591509.
Collapse
Affiliation(s)
- Thibaut Markarian
- Department of Emergency Medicine, Assistance publique des hôpitaux de Marseille (APHM), Timone University Hospital, Aix-Marseille University, UMR 1263 (C2VN), Marseille, France
| | - Matthieu Daniel
- Department of Emergency Medicine SAMU-SMUR 974, La Réunion University Hospital, University of La Réunion, Saint-Denis de La Réunion, France
| | - Kevin Guillemet
- Department of Emergency Medicine, Nîmes University Hospital, Montpellier University, UR UM 103 (IMAGINE), Nîmes, France
| | - Florian Ajavon
- Department of Emergency Medicine, Nîmes University Hospital, Montpellier University, UR UM 103 (IMAGINE), Nîmes, France
| | - Florent Femy
- IMPEC Federation, Paris, France
- Emergency Department, Georges Pompidou European Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
- Toxicology and Chemical Risks Department, French Armed Forces Biomedical Institute, Bretigny-Sur-Orges, France
| | - Romain Genre Grandpierre
- Department of Emergency Medicine, Nîmes University Hospital, Montpellier University, UR UM 103 (IMAGINE), Nîmes, France
| | - Anne-Laure Feral-Pierssens
- SAMU 93 - Emergency Department, Avicenne Hospital, Assistance Publique-Hôpitaux de Paris, Bobigny, France
- LEPS UR 3412, Université Sorbonne Paris Nord, Bobigny, France
| | - Xavier Bobbia
- Department of Emergency Medicine, Montpellier University Hospital, Montpellier University, UR UM 103 (IMAGINE), Montpellier, France
| |
Collapse
|
2
|
Kaneguchi A, Sakitani N, Umehara T. Histological changes in skeletal muscle induced by heart failure in human patients and animal models: A scoping review. Acta Histochem 2024; 126:152210. [PMID: 39442432 DOI: 10.1016/j.acthis.2024.152210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/15/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE This scoping review aimed to characterize the histological changes in skeletal muscle after heart failure (HF) and to identify gaps in knowledge. METHODS On April 03, 2024, systematic searches were performed for papers in which histological analyses were conducted on skeletal muscle sampled from patients with HF or animal models of HF. Screening and data extraction were conducted by two independent authors. RESULTS AND CONCLUSION A total of 118 papers were selected, including 33 human and 85 animal studies. Despite some disagreements among studies, some trends were observed. These trends included a slow-to-fast transition, a decrease in muscle fiber size, capillary to muscle fiber ratio, and mitochondrial activity and content, and an increase in apoptosis. These changes may contribute to the fatigability and decrease in muscle strength observed after HF. Although there were some disagreements between the results of human and animal studies, the results were generally similar. Animal models of HF will therefore be useful in elucidating the histological changes in skeletal muscle that occur in human patients with HF. Because the muscles subjected to histological analysis were mostly thigh muscles in humans and mostly lower leg muscles in animals, it remains uncertain whether changes similar to those seen in lower limb (hindlimb) muscles after HF also occur in upper limb (forelimb) muscles. The results of this review will consolidate the current knowledge on HF-induced histological changes in skeletal muscle and consequently aid in the rehabilitation of patients with HF and future studies.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan.
| | - Naoyoshi Sakitani
- Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, Hayashi-cho 2217-4, Takamatsu, Kagawa, 761-0395, Japan
| | - Takuya Umehara
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, 739-2695, Japan
| |
Collapse
|
3
|
Molnar T, Lehoczki A, Fekete M, Varnai R, Zavori L, Erdo-Bonyar S, Simon D, Berki T, Csecsei P, Ezer E. Mitochondrial dysfunction in long COVID: mechanisms, consequences, and potential therapeutic approaches. GeroScience 2024; 46:5267-5286. [PMID: 38668888 PMCID: PMC11336094 DOI: 10.1007/s11357-024-01165-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 04/15/2024] [Indexed: 08/22/2024] Open
Abstract
The COVID-19 pandemic, caused by the SARS-CoV-2 virus, has introduced the medical community to the phenomenon of long COVID, a condition characterized by persistent symptoms following the resolution of the acute phase of infection. Among the myriad of symptoms reported by long COVID sufferers, chronic fatigue, cognitive disturbances, and exercise intolerance are predominant, suggesting systemic alterations beyond the initial viral pathology. Emerging evidence has pointed to mitochondrial dysfunction as a potential underpinning mechanism contributing to the persistence and diversity of long COVID symptoms. This review aims to synthesize current findings related to mitochondrial dysfunction in long COVID, exploring its implications for cellular energy deficits, oxidative stress, immune dysregulation, metabolic disturbances, and endothelial dysfunction. Through a comprehensive analysis of the literature, we highlight the significance of mitochondrial health in the pathophysiology of long COVID, drawing parallels with similar clinical syndromes linked to post-infectious states in other diseases where mitochondrial impairment has been implicated. We discuss potential therapeutic strategies targeting mitochondrial function, including pharmacological interventions, lifestyle modifications, exercise, and dietary approaches, and emphasize the need for further research and collaborative efforts to advance our understanding and management of long COVID. This review underscores the critical role of mitochondrial dysfunction in long COVID and calls for a multidisciplinary approach to address the gaps in our knowledge and treatment options for those affected by this condition.
Collapse
Affiliation(s)
- Tihamer Molnar
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| | - Andrea Lehoczki
- Doctoral College, Health Sciences Program, Semmelweis University, Budapest, Hungary
- Department of Haematology and Stem Cell Transplantation, National Institute for Haematology and Infectious Diseases, South Pest Central Hospital, 1097, Budapest, Hungary
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Monika Fekete
- Department of Public Health, Semmelweis University, Budapest, Hungary
| | - Reka Varnai
- Department of Primary Health Care, Medical School University of Pecs, Pecs, Hungary
| | | | - Szabina Erdo-Bonyar
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology, Medical School, University of Pecs, Pecs, Hungary
| | - Peter Csecsei
- Department of Neurosurgery, Medical School, University of Pecs, Ret U 2, 7624, Pecs, Hungary.
| | - Erzsebet Ezer
- Department of Anaesthesiology and Intensive Care, Medical School, University of Pecs, Pecs, Hungary
| |
Collapse
|
4
|
Caminiti G, Volterrani M, Iellamo F, Marazzi G, Silvestrini M, Giamundo DM, Morsella V, Di Biasio D, Franchini A, Perrone MA. Exercise training for patients with heart failure and preserved ejection fraction. A narrative review. Monaldi Arch Chest Dis 2024. [PMID: 39058025 DOI: 10.4081/monaldi.2024.3030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 07/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) remains a significant global health challenge, accounting for up to 50% of all heart failure cases and predominantly affecting the elderly and women. Despite advancements in therapeutic strategies, HFpEF's complexity poses substantial challenges in management, particularly due to its high comorbidity burden, including renal failure, atrial fibrillation, and obesity, among others. These comorbidities not only complicate the pathophysiology of HFpEF but also exacerbate its symptoms, necessitating a personalized approach to treatment focused on comorbidity management and symptom alleviation. In heart failure with reduced ejection fraction, exercise training (ET) was effective in improving exercise tolerance, quality of life, and reducing hospitalizations. However, the efficacy of ET in HFpEF patients remains less understood, with limited studies showing mixed results. Exercise intolerance is a key symptom in HFpEF patients, and it has a multifactorial origin since both central and peripheral oxygen mechanisms of transport and utilization are often compromised. Recent evidence underscores the potential of supervised ET in enhancing exercise tolerance and quality of life among HFpEF patients; however, the literature remains sparse and predominantly consists of small-scale studies. This review highlights the critical role of exercise intolerance in HFpEF and synthesizes current knowledge on the benefits of ET. It also calls for a deeper understanding and further research into exercise-based interventions and their underlying mechanisms, emphasizing the need for larger, well-designed studies to evaluate the effectiveness of ET in improving outcomes for HFpEF patients.
Collapse
Affiliation(s)
- Giuseppe Caminiti
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University, Rome; Cardiology Rehabilitation Unit, IRCCS San Raffaele, Rome.
| | - Maurizio Volterrani
- Department of Human Science and Promotion of Quality of Life, San Raffaele Open University, Rome; Cardiology Rehabilitation Unit, IRCCS San Raffaele, Rome.
| | - Ferdinando Iellamo
- Division of Cardiology and Sports Medicine, Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Rome.
| | | | - Marco Silvestrini
- Division of Cardiology and Sports Medicine, Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Rome.
| | | | | | | | | | - Marco Alfonso Perrone
- Division of Cardiology and Sports Medicine, Department of Clinical Sciences and Translational Medicine, Tor Vergata University, Rome.
| |
Collapse
|
5
|
Vahle B, Heilmann L, Schauer A, Augstein A, Jarabo MEP, Barthel P, Mangner N, Labeit S, Bowen TS, Linke A, Adams V. Modulation of Titin and Contraction-Regulating Proteins in a Rat Model of Heart Failure with Preserved Ejection Fraction: Limb vs. Diaphragmatic Muscle. Int J Mol Sci 2024; 25:6618. [PMID: 38928324 PMCID: PMC11203682 DOI: 10.3390/ijms25126618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is characterized by biomechanically dysfunctional cardiomyocytes. Underlying cellular changes include perturbed myocardial titin expression and titin hypophosphorylation leading to titin filament stiffening. Beside these well-studied alterations at the cardiomyocyte level, exercise intolerance is another hallmark of HFpEF caused by molecular alterations in skeletal muscle (SKM). Currently, there is a lack of data regarding titin modulation in the SKM of HFpEF. Therefore, the aim of the present study was to analyze molecular alterations in limb SKM (tibialis anterior (TA)) and in the diaphragm (Dia), as a more central SKM, with a focus on titin, titin phosphorylation, and contraction-regulating proteins. This study was performed with muscle tissue, obtained from 32-week old female ZSF-1 rats, an established a HFpEF rat model. Our results showed a hyperphosphorylation of titin in limb SKM, based on enhanced phosphorylation at the PEVK region, which is known to lead to titin filament stiffening. This hyperphosphorylation could be reversed by high-intensity interval training (HIIT). Additionally, a negative correlation occurring between the phosphorylation state of titin and the muscle force in the limb SKM was evident. For the Dia, no alterations in the phosphorylation state of titin could be detected. Supported by data of previous studies, this suggests an exercise effect of the Dia in HFpEF. Regarding the expression of contraction regulating proteins, significant differences between Dia and limb SKM could be detected, supporting muscle atrophy and dysfunction in limb SKM, but not in the Dia. Altogether, these data suggest a correlation between titin stiffening and the appearance of exercise intolerance in HFpEF, as well as a differential regulation between different SKM groups.
Collapse
Affiliation(s)
- Beatrice Vahle
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Leonard Heilmann
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Schauer
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Antje Augstein
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Maria-Elisa Prieto Jarabo
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Peggy Barthel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Norman Mangner
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Siegfried Labeit
- DZHK Partner Site Mannheim-Heidelberg, Medical Faculty Mannheim, University of Heidelberg, 68169 Mannheim, Germany;
- Myomedix GmbH, 69151 Neckargemünd, Germany
| | - T. Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK;
| | - Axel Linke
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| | - Volker Adams
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (B.V.); (L.H.); (A.S.); (A.A.); (M.-E.P.J.); (P.B.); (N.M.); (A.L.)
| |
Collapse
|
6
|
Wong JJ, Ho JS, Teo LLY, Wee HN, Chua KV, Ching J, Gao F, Tan SY, Tan RS, Kovalik JP, Koh AS. Effects of short-term moderate intensity exercise on the serum metabolome in older adults: a pilot randomized controlled trial. COMMUNICATIONS MEDICINE 2024; 4:80. [PMID: 38704414 PMCID: PMC11069586 DOI: 10.1038/s43856-024-00507-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND We previously reported changes in the serum metabolome associated with impaired myocardial relaxation in an asymptomatic older community cohort. In this prospective parallel-group randomized control pilot trial, we subjected community adults without cardiovascular disease to exercise intervention and evaluated the effects on serum metabolomics. METHODS Between February 2019 to November 2019, thirty (83% females) middle-aged adults (53 ± 4 years) were randomized with sex stratification to either twelve weeks of moderate-intensity exercise training (Intervention) (n = 15) or Control (n = 15). The Intervention group underwent once-weekly aerobic and strength training sessions for 60 min each in a dedicated cardiac exercise laboratory for twelve weeks (ClinicalTrials.gov: NCT03617653). Serial measurements were taken pre- and post-intervention, including serum sampling for metabolomic analyses. RESULTS Twenty-nine adults completed the study (Intervention n = 14; Control n = 15). Long-chain acylcarnitine C20:2-OH/C18:2-DC was reduced in the Intervention group by a magnitude of 0.714 but increased in the Control group by a magnitude of 1.742 (mean difference -1.028 age-adjusted p = 0.004). Among Controls, alanine correlated with left ventricular mass index (r = 0.529, age-adjusted p = 0.018) while aspartate correlated with Lateral e' (r = -764, age-adjusted p = 0.016). C20:3 correlated with E/e' ratio fold-change in the Intervention group (r = -0.653, age-adjusted p = 0.004). Among Controls, C20:2/C18:2 (r = 0.795, age-adjusted p = 0.005) and C20:2-OH/C18:2-DC fold-change (r = 0.742, age-adjusted p = 0.030) correlated with change in E/A ratio. CONCLUSIONS Corresponding relationships between serum metabolites and cardiac function in response to exercise intervention provided pilot observations. Future investigations into cellular fuel oxidation or central carbon metabolism pathways that jointly impact the heart and related metabolic systems may be critical in preventive trials.
Collapse
Affiliation(s)
- Jie Jun Wong
- National Heart Centre Singapore, Singapore, Singapore
| | - Jien Sze Ho
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Louis L Y Teo
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | | | | | | | - Fei Gao
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Swee Yaw Tan
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Ru-San Tan
- National Heart Centre Singapore, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Jean-Paul Kovalik
- Duke-NUS Medical School, Singapore, Singapore
- Singapore General Hospital, Singapore, Singapore
| | - Angela S Koh
- National Heart Centre Singapore, Singapore, Singapore.
- Duke-NUS Medical School, Singapore, Singapore.
| |
Collapse
|
7
|
Alves PKN, Schauer A, Augstein A, Prieto Jarabo ME, Männel A, Barthel P, Vahle B, Moriscot AS, Linke A, Adams V. Leucine Supplementation Prevents the Development of Skeletal Muscle Dysfunction in a Rat Model of HFpEF. Cells 2024; 13:502. [PMID: 38534346 PMCID: PMC10969777 DOI: 10.3390/cells13060502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is associated with exercise intolerance due to alterations in the skeletal muscle (SKM). Leucine supplementation is known to alter the anabolic/catabolic balance and to improve mitochondrial function. Thus, we investigated the effect of leucine supplementation in both a primary and a secondary prevention approach on SKM function and factors modulating muscle function in an established HFpEF rat model. Female ZSF1 obese rats were randomized to an untreated, a primary prevention, and a secondary prevention group. For primary prevention, leucine supplementation was started before the onset of HFpEF (8 weeks of age) and for secondary prevention, leucine supplementation was started after the onset of HFpEF (20 weeks of age). SKM function was assessed at an age of 32 weeks, and SKM tissue was collected for the assessment of mitochondrial function and histological and molecular analyses. Leucine supplementation prevented the development of SKM dysfunction whereas it could not reverse it. In the primary prevention group, mitochondrial function improved and higher expressions of mitofilin, Mfn-2, Fis1, and miCK were evident in SKM. The expression of UCP3 was reduced whereas the mitochondrial content and markers for catabolism (MuRF1, MAFBx), muscle cross-sectional area, and SKM mass did not change. Our data show that leucine supplementation prevented the development of skeletal muscle dysfunction in a rat model of HFpEF, which may be mediated by improving mitochondrial function through modulating energy transfer.
Collapse
Affiliation(s)
- Paula Ketilly Nascimento Alves
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil;
| | - Antje Schauer
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Antje Augstein
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Maria-Elisa Prieto Jarabo
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Anita Männel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Peggy Barthel
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Beatrice Vahle
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Anselmo S. Moriscot
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, São Paulo 05508000, Brazil;
| | - Axel Linke
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| | - Volker Adams
- Heart Center Dresden, Laboratory of Molecular and Experimental Cardiology, TU Dresden, 01307 Dresden, Germany; (P.K.N.A.); (A.S.); (A.A.); (M.-E.P.J.); (A.M.); (B.V.); (A.L.)
| |
Collapse
|
8
|
Moury PH, Béhouche A, Bailly S, Durand Z, Dessertaine G, Pollet A, Jaber S, Verges S, Albaladejo P. Diaphragm thickness modifications and associated factors during VA-ECMO for a cardiogenic shock: a cohort study. Ann Intensive Care 2024; 14:38. [PMID: 38457010 PMCID: PMC10923772 DOI: 10.1186/s13613-024-01264-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/16/2024] [Indexed: 03/09/2024] Open
Abstract
BACKGROUND The incidence, causes and impact of diaphragm thickness evolution in veno-arterial extracorporeal membrane oxygenation (VA-ECMO) for cardiogenic shock are unknown. Our study investigates its evolution during the first week of VA-ECMO and its relationship with sweep gas flow settings. METHODS We conducted a prospective monocentric observational study in a 12-bed ICU in France, enrolling patients on the day of the VA-ECMO implantation. The diaphragm thickness and the diaphragm thickening fraction (as index of contractile activity, dTF; dTF < 20% defined a low contractile activity) were daily measured for one week using ultrasound. Factors associated with diaphragm thickness evolution (categorized as increased, stable, or atrophic based on > 10% modification from baseline to the last measurement), early extubation role (< day4), and patients outcome at 60 days were investigated. Changes in diaphragm thickness, the primary endpoint, was analysed using a mixed-effect linear model (MLM). RESULTS Of the 29 included patients, seven (23%) presented diaphragm atrophy, 18 remained stable (60%) and 4 exhibited an increase (17%). None of the 13 early-extubated patients experienced diaphragm atrophy, while 7 (46%) presented a decrease when extubated later (p-value = 0.008). Diaphragm thickness changes were not associated with the dTF (p-value = 0.13) but with sweep gas flow (Beta = - 3; Confidence Interval at 95% (CI) [- 4.8; - 1.2]. p-value = 0.001) and pH (Beta = - 2; CI [- 2.9; - 1]. p-value < 0.001) in MLM. The dTF remained low (< 20%) in 20 patients (69%) at the study's end and was associated with sweep gas flow evolution in MLM (Beta = - 2.8; 95% CI [- 5.2; - 0.5], p-value = 0.017). Odds ratio of death at 60 days in case of diaphragm atrophy by day 7 was 8.50 ([1.4-74], p = 0.029). CONCLUSION In our study, diaphragm thickness evolution was frequent and not associated with the diaphragm thickening fraction. Diaphragm was preserved from atrophy in case of early extubation with ongoing VA-ECMO assistance. Metabolic disorders resulting from organ failures and sweep gas flow were linked with diaphragm thickness evolution. Preserved diaphragm thickness in VA-ECMO survivors emphasizes the importance of diaphragm-protective strategies, including meticulous sweep gas flow titration.
Collapse
Affiliation(s)
- Pierre-Henri Moury
- Pôle Anesthésie-Réanimation, Grenoble Alpes University, Grenoble, France.
- Univ. Grenoble Alpes, Inserm, Grenoble Alpes University Hospital, HP2 Laboratory, Grenoble, France.
| | - Alexandre Béhouche
- Pôle Anesthésie-Réanimation, Grenoble Alpes University, Grenoble, France
| | - Sébastien Bailly
- Univ. Grenoble Alpes, Inserm, Grenoble Alpes University Hospital, HP2 Laboratory, Grenoble, France
| | - Zoé Durand
- Pôle Anesthésie-Réanimation, Grenoble Alpes University, Grenoble, France
| | | | - Angelina Pollet
- Pôle Anesthésie-Réanimation, Grenoble Alpes University, Grenoble, France
| | - Samir Jaber
- Intensive Care Unit, Anaesthesiology and Critical Care Department B, Saint Eloi Teaching Hospital, Université Montpellier 1, Centre Hospitalier Universitaire Montpellier, Montpellier, France
| | - Samuel Verges
- Univ. Grenoble Alpes, Inserm, Grenoble Alpes University Hospital, HP2 Laboratory, Grenoble, France
| | - Pierre Albaladejo
- Pôle Anesthésie-Réanimation, Grenoble Alpes University, Grenoble, France
| |
Collapse
|
9
|
Espino-Gonzalez E, Tickle PG, Altara R, Gallagher H, Cheng CW, Engman V, Wood N, Justo da Silva GJ, Scalabrin M, Yu X, Zhong Z, Colman MA, Yuldasheva NY, Booz GW, Adams V, Pereira MG, Cataliotti A, Roberts LD, Egginton S, Bowen TS. Caloric Restriction Rejuvenates Skeletal Muscle Growth in Heart Failure With Preserved Ejection Fraction. JACC Basic Transl Sci 2024; 9:223-240. [PMID: 38510717 PMCID: PMC10950401 DOI: 10.1016/j.jacbts.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 03/22/2024]
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major clinical problem, with limited treatments. HFpEF is characterized by a distinct, but poorly understood, skeletal muscle pathology, which could offer an alternative therapeutic target. In a rat model, we identified impaired myonuclear accretion as a mechanism for low myofiber growth in HFpEF following resistance exercise. Acute caloric restriction rescued skeletal muscle pathology in HFpEF, whereas cardiac therapies had no effect. Mechanisms regulating myonuclear accretion were dysregulated in patients with HFpEF. Overall, these findings may have widespread implications in HFpEF, indicating combined dietary with exercise interventions as a beneficial approach to overcome skeletal muscle pathology.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Peter G. Tickle
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Raffaele Altara
- Department of Anatomy & Embryology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
- Department of Pathology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Harrison Gallagher
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Chew W. Cheng
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine, University of Leeds, Leeds, United Kingdom
| | - Viktor Engman
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nathanael Wood
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | | | - Mattia Scalabrin
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Xinyue Yu
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Ziyi Zhong
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Michael A. Colman
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nadira Y. Yuldasheva
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine, University of Leeds, Leeds, United Kingdom
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Volker Adams
- Heart Center Dresden, TU-Dresden, Dresden, Germany
| | - Marcelo G. Pereira
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Lee D. Roberts
- Leeds Institute of Cardiovascular and Metabolic Medicine, Faculty of Medicine, University of Leeds, Leeds, United Kingdom
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - T. Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
10
|
Silva Andrade NDS, Almeida L, Noronha I, Lima JDM, Eriko Tenório de França E, Pedrosa R, Siqueira F, Onofre T. Analysis of respiratory muscle strength and its relationship with functional capacity between different field tests in patients with heart failure. Physiother Theory Pract 2023; 39:2427-2437. [PMID: 35619283 DOI: 10.1080/09593985.2022.2077270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To analyze respiratory muscle strength of patients with heart failure (HF) and correlate with functional capacity. METHODS This cross-sectional study involved patients with compensated HF of both sexes, aged above 18 years. Respiratory muscle strength was assessed by measuring maximum inspiratory (MIP) and expiratory pressures (MEP) using a manovacuometer. Patients were randomized into two groups to assess functional capacity: six-minute walk test (6MWT) and incremental shuttle walk test (ISWT). RESULTS Forty-eight patients were evaluated (23 from 6MWT and 25 from ISWT group). Most were male (67.8%), with mean age of 62.3 years and left ventricular ejection fraction of 40.8%. Mean predicted values of MIP [81.2% (74.7-87.8%)] and MEP [95.6% (88.2-103.0%)] did not indicate respiratory muscle weakness. The higher the New York Heart Association (NYHA) functional class, the lower the MIP (p = .011) and MEP (p = .016) values. Physically active patients presented higher respiratory muscle strength than those sedentary (MIP: 104.5 vs. 71.9 cmH2O, p < .001; MEP: 120.0 vs. 91.1 cmH2O, p = .004). Functional capacity was impaired [6MWT: 416.0 m (372.8-459.3 m); ISWT: 304 m (263.4-344.9 m)], and distance covered in the ISWT was shorter than 6MWT group (p < .001). Distance covered in the ISWT group presented a moderate positive correlation with MIP (r = 0.45; p = .022) and MEP (r = 0.41; p = .041). CONCLUSION Most patients with HF presented respiratory muscle strength close to predicted values; however, sedentary patients and those with high NYHA functional class, showed reduced MIP and MEP. Functional capacity was reduced, and MIP and MEP correlated with distance covered in the ISWT.
Collapse
Affiliation(s)
- Nina de Souza Silva Andrade
- Department of Biological Sciences and Health, Physiotherapy Course, Cardiovascular and Respiratory Physiotherapy Laboratory, Federal University of Amapá, Macapá - Amapá, Brazil
| | - Larisse Almeida
- Department of Biological Sciences and Health, Physiotherapy Course, Cardiovascular and Respiratory Physiotherapy Laboratory, Federal University of Amapá, Macapá - Amapá, Brazil
| | - Isis Noronha
- Department of Biological Sciences and Health, Physiotherapy Course, Cardiovascular and Respiratory Physiotherapy Laboratory, Federal University of Amapá, Macapá - Amapá, Brazil
| | - José de Morais Lima
- Department of Physiotherapy, Laboratory of Physiotherapy in Cardiorespiratory Research, Federal University of Paraíba, Campus I - Loteamento Cidade Universitária, João Pessoa - Paraíba, Brazil
| | - Eduardo Eriko Tenório de França
- Department of Physiotherapy, Laboratory of Physiotherapy in Cardiorespiratory Research, Federal University of Paraíba, Campus I - Loteamento Cidade Universitária, João Pessoa - Paraíba, Brazil
| | - Rafaela Pedrosa
- Department of Physiotherapy, Laboratory of Physiotherapy in Cardiorespiratory Research, Federal University of Paraíba, Campus I - Loteamento Cidade Universitária, João Pessoa - Paraíba, Brazil
| | - Fernanda Siqueira
- Department of Biological Sciences and Health, Physiotherapy Course, Cardiovascular and Respiratory Physiotherapy Laboratory, Federal University of Amapá, Macapá - Amapá, Brazil
| | - Tatiana Onofre
- Department of Biological Sciences and Health, Physiotherapy Course, Cardiovascular and Respiratory Physiotherapy Laboratory, Federal University of Amapá, Macapá - Amapá, Brazil
- Department of Physiotherapy, Laboratory of Physiotherapy in Cardiorespiratory Research, Federal University of Paraíba, Campus I - Loteamento Cidade Universitária, João Pessoa - Paraíba, Brazil
| |
Collapse
|
11
|
Mangner N, Winzer EB, Linke A, Adams V. Locomotor and respiratory muscle abnormalities in HFrEF and HFpEF. Front Cardiovasc Med 2023; 10:1149065. [PMID: 37965088 PMCID: PMC10641491 DOI: 10.3389/fcvm.2023.1149065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 10/02/2023] [Indexed: 11/16/2023] Open
Abstract
Heart failure (HF) is a chronic and progressive syndrome affecting worldwide billions of patients. Exercise intolerance and early fatigue are hallmarks of HF patients either with a reduced (HFrEF) or a preserved (HFpEF) ejection fraction. Alterations of the skeletal muscle contribute to exercise intolerance in HF. This review will provide a contemporary summary of the clinical and molecular alterations currently known to occur in the skeletal muscles of both HFrEF and HFpEF, and thereby differentiate the effects on locomotor and respiratory muscles, in particular the diaphragm. Moreover, current and future therapeutic options to address skeletal muscle weakness will be discussed focusing mainly on the effects of exercise training.
Collapse
Affiliation(s)
- Norman Mangner
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Ephraim B. Winzer
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Axel Linke
- Department of Internal Medicine and Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, Heart Center Dresden, Technische Universität Dresden, Dresden, Germany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| |
Collapse
|
12
|
Namai-Takahashi A, Takahashi J, Ogawa Y, Sakuyama A, Xu L, Miura T, Kohzuki M, Ito O. Effects of Exercise Training on Mitochondrial Fatty Acid β-Oxidation in the Kidneys of Dahl Salt-Sensitive Rats. Int J Mol Sci 2023; 24:15601. [PMID: 37958585 PMCID: PMC10649976 DOI: 10.3390/ijms242115601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Exercise training (Ex) has anti-hypertensive and renal protective effects. In this study, we investigate the effects of Ex on mitochondrial fatty acid metabolism in the kidneys of Dahl salt-sensitive (Dahl-S) rats fed a high-salt (HS) diet. Eight-week-old, male Dahl-S rats were divided into three groups: (1) normal-salt diet, sedentary (NS-Sed), (2) HS diet, sedentary (HS-Sed), and (3) HS-Ex. The NS and HS groups were fed a diet containing 0.6% and 8% NaCl, respectively. The HS-Ex group performed treadmill running for 8 weeks (5 days/week; 60 min/day at 16-20 m/min, 0% gradient). Renal function and the expression of enzymes and regulators of β-oxidation and electron transport chain (ETC) complexes were assessed. HS increased systolic blood pressure and proteinuria, and Ex ameliorated these defects. HS also reduced creatinine clearance, and Ex ameliorated it. HS reduced the renal expression of enzymes of β-oxidation (carnitine palmitoyltransferase type I (CPTI) and acyl-CoA dehydrogenases (CADs)) and the related transcription factors peroxisome proliferator-activated receptor α (PPARα) and PPARγ-coactivator-1α (PGC-1α), and Ex restored this. HS also reduced the renal expression of enzymes in ETC complexes, and Ex restored this expression. Ex ameliorates HS-induced renal damage by upregulating enzymes involved in fatty acid β-oxidation and ETC complexes via increases in PPAR-α and PGC-1α expressions in the kidneys of Dahl-S rats. These results suggest that Ex may have beneficial effects on HS-induced mitochondrial dysfunction in the kidney.
Collapse
Affiliation(s)
- Asako Namai-Takahashi
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical Pharmaceutical University, Sendai 981-8558, Japan
| | - Junta Takahashi
- Department of Internal Medicine and Rehabilitation Science, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Yoshiko Ogawa
- Department of Internal Medicine and Rehabilitation Science, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Akihiro Sakuyama
- Department of Internal Medicine and Rehabilitation Science, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Lusi Xu
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical Pharmaceutical University, Sendai 981-8558, Japan
| | - Takahiro Miura
- Department of Internal Medicine and Rehabilitation Science, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Masahiro Kohzuki
- Department of Internal Medicine and Rehabilitation Science, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan
| | - Osamu Ito
- Division of General Medicine and Rehabilitation, Faculty of Medicine, Tohoku Medical Pharmaceutical University, Sendai 981-8558, Japan
| |
Collapse
|
13
|
Gallagher H, Hendrickse PW, Pereira MG, Bowen TS. Skeletal muscle atrophy, regeneration, and dysfunction in heart failure: Impact of exercise training. JOURNAL OF SPORT AND HEALTH SCIENCE 2023; 12:557-567. [PMID: 37040849 PMCID: PMC10466197 DOI: 10.1016/j.jshs.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 02/20/2023] [Indexed: 05/31/2023]
Abstract
This review highlights some established and some more contemporary mechanisms responsible for heart failure (HF)-induced skeletal muscle wasting and weakness. We first describe the effects of HF on the relationship between protein synthesis and degradation rates, which determine muscle mass, the involvement of the satellite cells for continual muscle regeneration, and changes in myofiber calcium homeostasis linked to contractile dysfunction. We then highlight key mechanistic effects of both aerobic and resistance exercise training on skeletal muscle in HF and outline its application as a beneficial treatment. Overall, HF causes multiple impairments related to autophagy, anabolic-catabolic signaling, satellite cell proliferation, and calcium homeostasis, which together promote fiber atrophy, contractile dysfunction, and impaired regeneration. Although both wasting and weakness are partly rescued by aerobic and resistance exercise training in HF, the effects of satellite cell dynamics remain poorly explored.
Collapse
Affiliation(s)
- Harrison Gallagher
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Paul W Hendrickse
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Marcelo G Pereira
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
14
|
Kosiborod MN, Abildstrøm SZ, Borlaug BA, Butler J, Christensen L, Davies M, Hovingh KG, Kitzman DW, Lindegaard ML, Møller DV, Shah SJ, Treppendahl MB, Verma S, Petrie MC. Design and Baseline Characteristics of STEP-HFpEF Program Evaluating Semaglutide in Patients With Obesity HFpEF Phenotype. JACC. HEART FAILURE 2023; 11:1000-1010. [PMID: 37294245 DOI: 10.1016/j.jchf.2023.05.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
BACKGROUND The majority of patients with heart failure with preserved ejection fraction (HFpEF) have the obesity phenotype, but no therapies specifically targeting obesity in HFpEF exist. OBJECTIVES The aim of this study was to describe the design and baseline characteristics of 2 trials of semaglutide, a glucagon-like peptide-1 receptor agonist, in patients with the obesity HFpEF phenotype: STEP-HFpEF (Semaglutide Treatment Effect in People with obesity and HFpEF; NCT04788511) and STEP-HFpEF DM (Semaglutide Treatment Effect in People with obesity and HFpEF and type 2 diabetes; NCT04916470). METHODS Both STEP-HFpEF and STEP-HFpEF DM are international multicenter, double-blind, placebo-controlled trials that randomized adults with HFpEF and a body mass index ≥30 kg/m2 to once-weekly semaglutide at a dose of 2.4 mg or placebo. Participants were eligible if they had a left ventricular ejection fraction (LVEF) ≥45%; NYHA functional class II to IV; a Kansas City Cardiomyopathy Questionnaire (KCCQ)-Clinical Summary Score (CSS) <90 points; and ≥1 of the following: elevated filling pressures, elevated natriuretic peptides plus structural echocardiographic abnormalities, recent heart failure hospitalization plus ongoing diuretic use, and/or structural abnormalities. The dual primary endpoints are the 52-week change in the KCCQ-CSS and body weight. RESULTS In STEP-HFpEF and STEP-HFpEF DM (N = 529 and N = 617, respectively), nearly half were women, and most had severe obesity (median body mass index of 37 kg/m2) with typical features of HFpEF (median LVEF of 57%, frequent comorbidities, and elevated natriuretic peptides). Most participants received diuretic agents and renin-angiotensin blockers at baseline, and approximately one-third were on mineralocorticoid receptor antagonists. Sodium-glucose cotransporter-2 inhibitor use was rare in STEP-HFpEF but not in STEP HFpEF DM (32%). Patients in both trials had marked symptomatic and functional impairments (KCCQ-CSS ∼59 points, 6-minute walking distance ∼300 m). CONCLUSIONS In total, STEP-HFpEF program randomized 1,146 participants with the obesity phenotype of HFpEF and will determine whether semaglutide improves symptoms, physical limitations, and exercise function in addition to weight loss in this vulnerable group.
Collapse
Affiliation(s)
- Mikhail N Kosiborod
- Department of Cardiovascular Disease, Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City School of Medicine, Kansas City, Missouri, USA.
| | | | - Barry A Borlaug
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Javed Butler
- Baylor Scott and White Research Institute, Dallas, Texas, USA; Department of Medicine, University of Mississippi, Jackson, Mississippi, USA. https://twitter.com/JavedButler1
| | | | - Melanie Davies
- Diabetes Research Centre, University of Leicester, Leicester, United Kingdom; National Institute for Health Care and Research, Leicester Biomedical Research Centre, Leicester, United Kingdom
| | | | - Dalane W Kitzman
- Department of Internal Medicine, Sections of Cardiovascular Medicine and Geriatrics and Gerontology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | - Sanjiv J Shah
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA. https://twitter.com/HFpEF
| | | | - Subodh Verma
- Division of Cardiac Surgery, Li Ka Shing Knowledge Institute of St Michael's Hospital, Unity Health Toronto, University of Toronto, Toronto, Ontario, Canada
| | - Mark C Petrie
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, United Kingdom. https://twitter.com/markcpetrie20
| |
Collapse
|
15
|
Drummond SE, Burns DP, El Maghrani S, Ziegler O, Healy V, O'Halloran KD. Chronic Intermittent Hypoxia-Induced Diaphragm Muscle Weakness Is NADPH Oxidase-2 Dependent. Cells 2023; 12:1834. [PMID: 37508499 PMCID: PMC10377874 DOI: 10.3390/cells12141834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023] Open
Abstract
Chronic intermittent hypoxia (CIH)-induced redox alterations underlie diaphragm muscle dysfunction. We sought to establish if NADPH oxidase 2 (NOX2)-derived reactive oxygen species (ROS) underpin CIH-induced changes in diaphragm muscle, which manifest as impaired muscle performance. Adult male mice (C57BL/6J) were assigned to one of three groups: normoxic controls (sham); chronic intermittent hypoxia-exposed (CIH, 12 cycles/hour, 8 h/day for 14 days); and CIH + apocynin (NOX2 inhibitor, 2 mM) administered in the drinking water throughout exposure to CIH. In separate studies, we examined sham and CIH-exposed NOX2-null mice (B6.129S-CybbTM1Din/J). Apocynin co-treatment or NOX2 deletion proved efficacious in entirely preventing diaphragm muscle dysfunction following exposure to CIH. Exposure to CIH had no effect on NOX2 expression. However, NOX4 mRNA expression was increased following exposure to CIH in wild-type and NOX2 null mice. There was no evidence of overt CIH-induced oxidative stress. A NOX2-dependent increase in genes related to muscle regeneration, antioxidant capacity, and autophagy and atrophy was evident following exposure to CIH. We suggest that NOX-dependent CIH-induced diaphragm muscle weakness has the potential to affect ventilatory and non-ventilatory performance of the respiratory system. Therapeutic strategies employing NOX2 blockade may function as an adjunct therapy to improve diaphragm muscle performance and reduce disease burden in diseases characterised by exposure to CIH, such as obstructive sleep apnoea.
Collapse
Affiliation(s)
- Sarah E Drummond
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Sarah El Maghrani
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Oscar Ziegler
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Vincent Healy
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, T12 XF62 Cork, Ireland
| |
Collapse
|
16
|
Gortan Cappellari G, Aleksova A, Dal Ferro M, Cannatà A, Semolic A, Guarnaccia A, Zanetti M, Giacca M, Sinagra G, Barazzoni R. n-3 PUFA-Enriched Diet Preserves Skeletal Muscle Mitochondrial Function and Redox State and Prevents Muscle Mass Loss in Mice with Chronic Heart Failure. Nutrients 2023; 15:3108. [PMID: 37513526 PMCID: PMC10383889 DOI: 10.3390/nu15143108] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Rationale and Methods: Skeletal muscle derangements, potentially including mitochondrial dysfunction with altered mitochondrial dynamics and high reactive oxygen species (ROS) generation, may lead to protein catabolism and muscle wasting, resulting in low exercise capacity and reduced survival in chronic heart failure (CHF). We hypothesized that 8-week n-3-PUFA isocaloric partial dietary replacement (Fat = 5.5% total cal; EPA + DHA = 27% total fat) normalizes gastrocnemius muscle (GM) mitochondrial dynamics regulators, mitochondrial and tissue pro-oxidative changes, and catabolic derangements, resulting in preserved GM mass in rodent CHF [Myocardial infarction (MI)-induced CHF by coronary artery ligation, left-ventricular ejection fraction <50%]. Results: Compared to control animals (Sham), CHF had a higher GM mitochondrial fission-fusion protein ratio, with low ATP and high ROS production, pro-inflammatory changes, and low insulin signalling. n-3-PUFA normalized all mitochondrial derangements and the pro-oxidative state (oxidized to total glutathione ratio), associated with normalized GM cytokine profile, and enhanced muscle-anabolic insulin signalling and prevention of CHF-induced GM weight loss (all p < 0.05 vs. CHF and p = NS vs. S). Conclusions:n-3-PUFA isocaloric partial dietary replacement for 8 weeks normalizes CHF-induced derangements of muscle mitochondrial dynamics regulators, ROS production and function. n-3-PUFA mitochondrial effects result in preserved skeletal muscle mass, with potential to improve major patient outcomes in clinical settings.
Collapse
Affiliation(s)
- Gianluca Gortan Cappellari
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34149 Trieste, Italy
| | - Aneta Aleksova
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Matteo Dal Ferro
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Antonio Cannatà
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Annamaria Semolic
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34149 Trieste, Italy
| | - Alberto Guarnaccia
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Michela Zanetti
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34149 Trieste, Italy
| | - Mauro Giacca
- School of Cardiovascular and Metabolic Medicine & Sciences, King's College London, London WC2R 2LS, UK
- Molecular Medicine Laboratory, International Centre for Genetic, Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Gianfranco Sinagra
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cardiothoracovascular Department, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34128 Trieste, Italy
| | - Rocco Barazzoni
- Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy
- Cattinara Hospital, Azienda Sanitaria Universitaria Giuliano Isontina (ASUGI), 34149 Trieste, Italy
| |
Collapse
|
17
|
Ispoglou T, Wilson O, McCullough D, Aldrich L, Ferentinos P, Lyall G, Stavropoulos-Kalinoglou A, Duckworth L, Brown MA, Sutton L, Potts AJ, Archbold V, Hargreaves J, McKenna J. A Narrative Review of Non-Pharmacological Strategies for Managing Sarcopenia in Older Adults with Cardiovascular and Metabolic Diseases. BIOLOGY 2023; 12:892. [PMID: 37508325 PMCID: PMC10376679 DOI: 10.3390/biology12070892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 07/30/2023]
Abstract
This narrative review examines the mechanisms underlying the development of cardiovascular disease (CVD) and metabolic diseases (MDs), along with their association with sarcopenia. Furthermore, non-pharmacological interventions to address sarcopenia in patients with these conditions are suggested. The significance of combined training in managing metabolic disease and secondary sarcopenia in type II diabetes mellitus is emphasized. Additionally, the potential benefits of resistance and aerobic training are explored. This review emphasises the role of nutrition in addressing sarcopenia in patients with CVD or MDs, focusing on strategies such as optimising protein intake, promoting plant-based protein sources, incorporating antioxidant-rich foods and omega-3 fatty acids and ensuring sufficient vitamin D levels. Moreover, the potential benefits of targeting gut microbiota through probiotics and prebiotic fibres in sarcopenic individuals are considered. Multidisciplinary approaches that integrate behavioural science are explored to enhance the uptake and sustainability of behaviour-based sarcopenia interventions. Future research should prioritise high-quality randomized controlled trials to refine exercise and nutritional interventions and investigate the incorporation of behavioural science into routine practices. Ultimately, a comprehensive and multifaceted approach is essential to improve health outcomes, well-being and quality of life in older adults with sarcopenia and coexisting cardiovascular and metabolic diseases.
Collapse
Affiliation(s)
| | - Oliver Wilson
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | | | - Luke Aldrich
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | | | - Gemma Lyall
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | | | - Lauren Duckworth
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Meghan A Brown
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Louise Sutton
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Alexandra J Potts
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Victoria Archbold
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Jackie Hargreaves
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| | - Jim McKenna
- Carnegie School of Sport, Leeds Beckett University, Leeds LS6 3QQ, UK
| |
Collapse
|
18
|
Janini Gomes M, Sabela AK, Ferreira ITP, de Souza SLB, Mota GAF, da Silva VL, de Campos DHS, Lima ARR, Carvalho MR, Bazan SGZ, Corrêa CR, Cicogna AC, Okoshi MP, Pacagnelli FL. Effects of aerobic exercise on cardiac function and gene expression of NADPH oxidases in diaphragm muscle of rats with aortic stenosis-induced heart failure. Front Physiol 2023; 14:1182303. [PMID: 37362442 PMCID: PMC10285051 DOI: 10.3389/fphys.2023.1182303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023] Open
Abstract
We evaluated the influence of aerobic physical exercise (EX) on gene-encoding proteins associated with oxidative stress in diaphragm muscle of rats with aortic stenosis-induced heart failure (HF). Wistar male rats were divided into four groups: Control sedentary (C); Control exercise (C-Ex); Sedentary aortic stenosis (AS); Aortic stenosis exercise (AS-Ex). Exercised rats trained 5 times a week for 10 weeks on a treadmill. Statistical analysis was performed by ANOVA or Kruskal-Wallis test. In the final echocardiogram, animals with aortic stenosis subjected to exercise demonstrated improvement in systolic function compared to the sedentary aortic stenosis group. In diaphragm muscle, the activity of antioxidant enzymes, malondialdehyde malondialdehyde concentration, protein carbonylation, and protein expression of p65 and its inhibitor IκB did not differ between groups. Alterations in gene expression of sources that generate reactive species of oxygen were observed in AS-Ex group, which showed decreased mRNA abundance of NOX2 and NOX4 compared to the aortic stenosis group (p < 0.05). We concluded that aerobic exercise has a positive impact during heart failure, ameliorating systolic dysfunction and biomarkers of oxidative stress in diaphragm muscle of rats with aortic stenosis-induced heart failure.
Collapse
Affiliation(s)
- Mariana Janini Gomes
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
| | - Ana Karenina Sabela
- Physiotherapy Department, UNOESTE, Presidente Prudente, Brazil
- Post-graduate Program, Animal Science, UNOESTE, Presidente Prudente, Brazil
| | | | | | | | | | | | | | | | | | | | | | | | - Francis Lopes Pacagnelli
- Department of Kinesiology and Sport Management, Texas A&M University, College Station, TX, United States
- Physiotherapy Department, UNOESTE, Presidente Prudente, Brazil
| |
Collapse
|
19
|
Scandalis L, Kitzman DW, Nicklas BJ, Lyles M, Brubaker P, Nelson MB, Gordon M, Stone J, Bergstrom J, Neufer PD, Gnaiger E, Molina AJA. Skeletal Muscle Mitochondrial Respiration and Exercise Intolerance in Patients With Heart Failure With Preserved Ejection Fraction. JAMA Cardiol 2023; 8:575-584. [PMID: 37163294 PMCID: PMC10173105 DOI: 10.1001/jamacardio.2023.0957] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/17/2023] [Indexed: 05/11/2023]
Abstract
Importance The pathophysiology of exercise intolerance in patients with heart failure with preserved ejection fraction (HFpEF) remains incompletely understood. Multiple lines of evidence suggest that abnormal skeletal muscle metabolism is a key contributor, but the mechanisms underlying metabolic dysfunction remain unresolved. Objective To evaluate the associations of skeletal muscle mitochondrial function using respirometric analysis of biopsied muscle fiber bundles from patients with HFpEF with exercise performance. Design, Setting, and Participants In this cross-sectional study, muscle fiber bundles prepared from fresh vastus lateralis biopsies were analyzed by high-resolution respirometry to provide detailed analyses of mitochondrial oxidative phosphorylation, including maximal capacity and the individual contributions of complex I-linked and complex II-linked respiration. These bioenergetic data were compared between patients with stable chronic HFpEF older than 60 years and age-matched healthy control (HC) participants and analyzed for intergroup differences and associations with exercise performance. All participants were treated at a university referral center, were clinically stable, and were not undergoing regular exercise or diet programs. Data were collected from March 2016 to December 2017, and data were analyzed from November 2020 to May 2021. Main Outcomes and Measures Skeletal muscle mitochondrial function, including maximal capacity and respiration linked to complex I and complex II. Exercise performance was assessed by peak exercise oxygen consumption, 6-minute walk distance, and the Short Physical Performance Battery. Results Of 72 included patients, 50 (69%) were women, and the mean (SD) age was 69.6 (6.1) years. Skeletal muscle mitochondrial function measures were all markedly lower in skeletal muscle fibers obtained from patients with HFpEF compared with HCs, even when adjusting for age, sex, and body mass index. Maximal capacity was strongly and significantly correlated with peak exercise oxygen consumption (R = 0.69; P < .001), 6-minute walk distance (R = 0.70; P < .001), and Short Physical Performance Battery score (R = 0.46; P < .001). Conclusions and Relevance In this study, patients with HFpEF had marked abnormalities in skeletal muscle mitochondrial function. Severely reduced maximal capacity and complex I-linked and complex II-linked respiration were associated with exercise intolerance and represent promising therapeutic targets.
Collapse
Affiliation(s)
- Lina Scandalis
- Division of Geriatrics, Gerontology, and Palliative Care, UC San Diego School of Medicine, University of California, San Diego
| | - Dalane W. Kitzman
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Barbara J. Nicklas
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mary Lyles
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Peter Brubaker
- Department of Health and Exercise Science at Wake Forest University, Winston-Salem, North Carolina
| | - M. Benjamin Nelson
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michelle Gordon
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - John Stone
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jaclyn Bergstrom
- Division of Geriatrics, Gerontology, and Palliative Care, UC San Diego School of Medicine, University of California, San Diego
| | - P. Darrell Neufer
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | - Anthony J. A. Molina
- Division of Geriatrics, Gerontology, and Palliative Care, UC San Diego School of Medicine, University of California, San Diego
| |
Collapse
|
20
|
Nogueira-Ferreira R, Santos I, Ferreira R, Fontoura D, Sousa-Mendes C, Falcão-Pires I, Lourenço A, Leite-Moreira A, Duarte IF, Moreira-Gonçalves D. Exercise training impacts skeletal muscle remodelling induced by metabolic syndrome in ZSF1 rats through metabolism regulation. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166709. [PMID: 37030522 DOI: 10.1016/j.bbadis.2023.166709] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/10/2023]
Abstract
Metabolic syndrome (MetS), characterized by a set of conditions that include obesity, hypertension, and dyslipidemia, is associated with increased cardiovascular risk. Exercise training (EX) has been reported to improve MetS management, although the underlying metabolic adaptations that drive its benefits remain poorly understood. This work aims to characterize the molecular changes induced by EX in skeletal muscle in MetS, focusing on gastrocnemius metabolic remodelling. 1H NMR metabolomics and molecular assays were employed to assess the metabolic profile of skeletal muscle tissue from lean male ZSF1 rats (CTL), obese sedentary male ZSF1 rats (MetS-SED), and obese male ZF1 rats submitted to 4 weeks of treadmill EX (5 days/week, 60 min/day, 15 m/min) (MetS-EX). EX did not counteract the significant increase of body weight and circulating lipid profile, but had an anti-inflammatory effect and improved exercise capacity. The decreased gastrocnemius mass observed in MetS was paralleled with glycogen degradation into small glucose oligosaccharides, with the release of glucose-1-phosphate, and an increase in glucose-6-phosphate and glucose levels. Moreover, sedentary MetS animals' muscle exhibited lower AMPK expression levels and higher amino acids' metabolism such as glutamine and glutamate, compared to lean animals. In contrast, the EX group showed changes suggesting an increase in fatty acid oxidation and oxidative phosphorylation. Additionally, EX mitigated MetS-induced fiber atrophy and fibrosis in the gastrocnemius muscle. EX had a positive effect on gastrocnemius metabolism by enhancing oxidative metabolism and, consequently, reducing susceptibility to fatigue. These findings reinforce the importance of prescribing EX programs to patients with MetS.
Collapse
Affiliation(s)
- Rita Nogueira-Ferreira
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal.
| | - Inês Santos
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Rita Ferreira
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Dulce Fontoura
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Cláudia Sousa-Mendes
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Inês Falcão-Pires
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - André Lourenço
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal
| | - Adelino Leite-Moreira
- UnIC@RISE, Department of Surgery and Physiology, Cardiovascular R&D Center, Faculty of Medicine of the University of Porto, Porto, Portugal; Department of Cardiothoracic Surgery, Centro Hospitalar Universitário São João, Porto, Portugal
| | - Iola F Duarte
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Daniel Moreira-Gonçalves
- CIAFEL, Faculty of Sport, University of Porto, Porto, Portugal; ITR - Laboratory for Integrative and Translational Research in Population Health, Porto, Portugal.
| |
Collapse
|
21
|
Md MA, Parrott CF, Ph D MJH, Ph D PHB, Md FY, Md BU. Skeletal muscle abnormalities in heart failure with preserved ejection fraction. Heart Fail Rev 2023; 28:157-168. [PMID: 35353269 DOI: 10.1007/s10741-022-10219-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/02/2022] [Indexed: 02/07/2023]
Abstract
Almost half of all heart failure (HF) disease burden is due to HF with preserved ejection fraction (HFpEF). The primary symptom in patients with HFpEF, even when well compensated, is severe exercise intolerance and is associated with their reduced quality of life. Recently, studies showed that HFpEF patients have multiple skeletal muscle (SM) abnormalities, and these are associated with decreased exercise intolerance. The SM abnormalities are likely intrinsic to the HFpEF syndrome, not a secondary consequence of an epiphenomenon. These abnormalities are decreased muscle mass, reduced type I (oxidative) muscle fibers, and reduced type I-to-type II fiber ratio as well as a reduced capillary-to-fiber ratio, abnormal fat infiltration into the thigh SM, increased levels of atrophy genes and proteins, reduction in mitochondrial content, and rapid depletion of high-energy phosphate during exercise with markedly delayed repletion of high-energy phosphate during recovery in mitochondria. In addition, patients with HFpEF have impaired nitric oxide bioavailability, particularly in the microvasculature. These SM abnormalities may be responsible for impaired diffusive oxygen transport and/or impaired SM oxygen extraction. To date, exercise training (ET) and caloric restriction are some of the interventions shown to improve outcomes in HFpEF patients. Improvements in exercise tolerance following aerobic ET are largely mediated through peripheral SM adaptations with minimal change in central hemodynamics and highlight the importance of targeting SM to improve exercise intolerance in HFpEF. Focusing on the abnormalities mentioned above may improve the clinical condition of patients with HFpEF.
Collapse
Affiliation(s)
- Matthew Anderson Md
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1045, USA
| | - Clifton Forrest Parrott
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1045, USA
| | - Mark J Haykowsky Ph D
- Faculty of Nursing, College of Health Sciences, University of Alberta, Edmonton, AB, Canada
| | - Peter H Brubaker Ph D
- Department of Health and Exercise Science, Wake Forest School of Medicine, Winston-Salem, USA
| | - Fan Ye Md
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1045, USA
| | - Bharathi Upadhya Md
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Medical Center Boulevard, Winston-Salem, NC, 27157-1045, USA.
| |
Collapse
|
22
|
Hammer SM, Bruhn EJ, Bissen TG, Muer JD, Villarraga N, Borlaug BA, Olson TP, Smith JR. Inspiratory and leg muscle blood flows during inspiratory muscle metaboreflex activation in heart failure with preserved ejection fraction. J Appl Physiol (1985) 2022; 133:1202-1211. [PMID: 36227167 PMCID: PMC9639766 DOI: 10.1152/japplphysiol.00141.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/29/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022] Open
Abstract
The purpose of this study was to determine the cardiovascular consequences elicited by activation of the inspiratory muscle metaboreflex in patients with heart failure with preserved ejection fraction (HFpEF) and controls. Patients with HFpEF (n = 15; 69 ± 10 yr; 33 ± 4 kg/m2) and controls (n = 14; 70 ± 8 yr; 28 ± 4 kg/m2) performed an inspiratory loading trial at 60% maximal inspiratory pressure (PIMAX) until task failure. Mean arterial pressure (MAP) was measured continuously. Near-infrared spectroscopy and bolus injections of indocyanine green dye were used to determine the percent change in blood flow index (%ΔBFI) from baseline to the final minute of inspiratory loading in the vastus lateralis and sternocleidomastoid muscles. Vascular resistance index (VRI) was calculated. Time to task failure was shorter in HFpEF than in controls (339 ± 197 s vs. 626 ± 403 s; P = 0.02). Compared with controls, patients with HFpEF had a greater increase from baseline in MAP (16 ± 7 vs. 10 ± 6 mmHg) and vastus lateralis VRI (76 ± 45 vs. 32 ± 19%) as well as a greater decrease in vastus lateralis %ΔBFI (-32 ± 14 vs. -17 ± 9%) (all, P < 0.05). Sternocleidomastoid %ΔBFI normalized to absolute inspiratory pressure was higher in HFpEF compared with controls (8.0 ± 5.0 vs. 4.0 ± 1.9% per cmH2O·s; P = 0.03). These data indicate that patients with HFpEF exhibit exaggerated cardiovascular responses with inspiratory muscle metaboreflex activation compared with controls.NEW & NOTEWORTHY Respiratory muscle dysfunction is thought to contribute to exercise intolerance in heart failure with preserved ejection fraction (HFpEF); however, the underlying mechanisms are unknown. In the present study, patients with HFpEF had greater increases in leg muscle vascular resistance index and greater decreases in leg muscle blood flow index compared with controls during inspiratory resistive breathing (to activate the metaboreflex). Furthermore, respiratory muscle blood flow index responses normalized to pressure generation during inspiratory resistive breathing were exaggerated in HFpEF compared with controls.
Collapse
Affiliation(s)
- Shane M Hammer
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
- School of Kinesiology, Applied Health and Recreation, Oklahoma State University, Stillwater, Oklahoma
| | - Eric J Bruhn
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
| | - Thomas G Bissen
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
| | - Jessica D Muer
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
| | - Nicolas Villarraga
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
| | - Barry A Borlaug
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
| | - Thomas P Olson
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
| | - Joshua R Smith
- Department of Cardiovascular Medicine, https://ror.org/03zzw1w08Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
23
|
Bohmke NJ, Billingsley HE, Kirkman DL, Carbone S. Nonpharmacological Strategies in Heart Failure with Preserved Ejection Fraction. Cardiol Clin 2022; 40:491-506. [PMID: 36210133 PMCID: PMC10280381 DOI: 10.1016/j.ccl.2022.06.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Patients with heart failure with preserved ejection fraction (HFpEF) suffer from a high rate of cardiometabolic comorbidities with limited pharmaceutical therapies proven to improve clinical outcomes and cardiorespiratory fitness (CRF). Nonpharmacologic therapies, such as exercise training and dietary interventions, are promising strategies for this population. The aim of this narrative review is to present a summary of the literature published to date and future directions related to the efficacy of nonpharmacologic, lifestyle-related therapies in HFpEF, with a focus on exercise training and dietary interventions.
Collapse
Affiliation(s)
- Natalie J Bohmke
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, 500 Academic Centre, Room 113C 1020 W Grace Street, Richmond, VA 23220, USA; Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital 6th Floor, North Wing Box, 980036 Richmond, VA 23298, USA
| | - Hayley E Billingsley
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, 500 Academic Centre, Room 113C 1020 W Grace Street, Richmond, VA 23220, USA; Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital 6th Floor, North Wing Box, 980036 Richmond, VA 23298, USA
| | - Danielle L Kirkman
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, 500 Academic Centre, Room 113C 1020 W Grace Street, Richmond, VA 23220, USA; Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital 6th Floor, North Wing Box, 980036 Richmond, VA 23298, USA.
| | - Salvatore Carbone
- Department of Kinesiology & Health Sciences, College of Humanities & Sciences, Virginia Commonwealth University, 500 Academic Centre, Room 113C 1020 W Grace Street, Richmond, VA 23220, USA; Division of Cardiology, Department of Internal Medicine, VCU Pauley Heart Center, Virginia Commonwealth University, West Hospital 6th Floor, North Wing Box, 980036 Richmond, VA 23298, USA.
| |
Collapse
|
24
|
Winzer EB, Augstein A, Schauer A, Mueller S, Fischer-Schaepmann T, Goto K, Hommel J, van Craenenbroeck EM, Wisløff U, Pieske B, Halle M, Linke A, Adams V. Impact of Different Training Modalities on Molecular Alterations in Skeletal Muscle of Patients With Heart Failure With Preserved Ejection Fraction: A Substudy of the OptimEx Trial. Circ Heart Fail 2022; 15:e009124. [DOI: 10.1161/circheartfailure.121.009124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Background:
Exercise intolerance is a cardinal feature of heart failure with preserved ejection fraction and so far exercise training (ET) is the most effective treatment. Since the improvement in exercise capacity is only weakly associated with changes in diastolic function other mechanisms, like changes in the skeletal muscle, contribute to improvement in peak oxygen consumption. The aim of the present study was to analyze molecular changes in skeletal muscle of patients with heart failure with preserved ejection fraction performing different ET modalities.
Methods:
Skeletal muscle biopsies were taken at study begin and after 3 and 12 months from patients with heart failure with preserved ejection fraction randomized either into a control group (guideline based advice for ET), a high-intensity interval training group (HIIT) or a moderate continuous training group. The first 3 months of ET were supervised in-hospital followed by 9 months home-based ET. Protein and mRNA expression of atrophy-related proteins, enzyme activities of enzymes linked to energy metabolism and satellite cells (SCs) were quantified.
Results:
Exercise capacity improved 3 months after moderate continuous exercise training and HIIT. This beneficial effect was lost after 12 months. HIIT mainly improved markers of energy metabolism and the amount and function of SC, with minor changes in markers for muscle atrophy. Only slight changes were observed after moderate continuous exercise training. The molecular changes were no longer detectable after 12 months.
Conclusions:
Despite similar improvements in exercise capacity by HIIT and moderate continuous exercise training after 3 months, only HIIT altered proteins related to energy metabolism and amount/function of SC. These effects were lost after switching from in-hospital to at-home-based ET.
Registration:
URL:
https://www.clinicaltrials.gov
; Unique identifier: NCT02078947.
Collapse
Affiliation(s)
- Ephraim B. Winzer
- Laboratory of Molecular and Experimental Cardiology, Technische Universität Dresden, Heart Center Dresden, Germany (E.B.W., A.A., A.S., K.G., J.H., A.L., V.A.)
| | - Antje Augstein
- Laboratory of Molecular and Experimental Cardiology, Technische Universität Dresden, Heart Center Dresden, Germany (E.B.W., A.A., A.S., K.G., J.H., A.L., V.A.)
| | - Antje Schauer
- Laboratory of Molecular and Experimental Cardiology, Technische Universität Dresden, Heart Center Dresden, Germany (E.B.W., A.A., A.S., K.G., J.H., A.L., V.A.)
| | - Stephan Mueller
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Germany (S.M., M.H.)
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (S.M., M.H.)
| | - Tina Fischer-Schaepmann
- Department of Internal Medicine/Cardiology, Heart Center Leipzig – University Hospital, Helios Stiftungsprofessur, Germany (T.F.-S.)
| | - Keita Goto
- Laboratory of Molecular and Experimental Cardiology, Technische Universität Dresden, Heart Center Dresden, Germany (E.B.W., A.A., A.S., K.G., J.H., A.L., V.A.)
| | - Jennifer Hommel
- Laboratory of Molecular and Experimental Cardiology, Technische Universität Dresden, Heart Center Dresden, Germany (E.B.W., A.A., A.S., K.G., J.H., A.L., V.A.)
| | - Emeline M. van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR, University of Antwerp, Belgium (E.M.v.C.)
- Department of Cardiology, Antwerp University Hospital, Belgium (E.M.v.C.)
| | - Ulrik Wisløff
- Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway (U.W.)
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Germany (B.P.)
| | - Martin Halle
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Germany (S.M., M.H.)
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany (S.M., M.H.)
| | - Axel Linke
- Laboratory of Molecular and Experimental Cardiology, Technische Universität Dresden, Heart Center Dresden, Germany (E.B.W., A.A., A.S., K.G., J.H., A.L., V.A.)
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, Technische Universität Dresden, Heart Center Dresden, Germany (E.B.W., A.A., A.S., K.G., J.H., A.L., V.A.)
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Germany (V.A.)
| |
Collapse
|
25
|
Zhan Q, Peng W, Wang S, Gao J. Heart Failure with Preserved Ejection Fraction: Pathogenesis, Diagnosis, Exercise, and Medical Therapies. J Cardiovasc Transl Res 2022; 16:310-326. [PMID: 36171526 DOI: 10.1007/s12265-022-10324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022]
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for more than one-half of total heart failure cases, with a high prevalence and poor prognosis, especially in older and female patients. Patients with HFpEF are characterized by hypertension, left ventricular hypertrophy, and diastolic dysfunction, and the main symptoms are dyspnea and exercise intolerance. HFpEF is currently poorly studied, and pharmacological treatment for HFpEF is still underexplored. Accumulating clinical trials have shown that exercise could exert benefits on diastolic dysfunction and quality of life in patients with HFpEF. However, there is a high limitation for applying exercise therapy due to exercise intolerance in patients with HFpEF. Key effectors of exercise-protection could be novel therapeutic targets for developing drugs to prevent and treat HFpEF. In this review article, we provide an overview of the pathogenic factors, diagnostic methods, research animal models, the mechanisms of exercise-mediated cardiac protection, and current treatments for HFpEF.
Collapse
Affiliation(s)
- Qingyi Zhan
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Wenjing Peng
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Siqi Wang
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China
| | - Juan Gao
- Cardiac Regeneration and Ageing Lab, Institute of Cardiovascular Sciences, School of Life Science, Shanghai University, Shanghai, 200444, China. .,Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
26
|
Empagliflozin Preserves Skeletal Muscle Function in a HFpEF Rat Model. Int J Mol Sci 2022; 23:ijms231910989. [PMID: 36232292 PMCID: PMC9570453 DOI: 10.3390/ijms231910989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/09/2022] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Besides structural alterations in the myocardium, heart failure with preserved ejection fraction (HFpEF) is also associated with molecular and physiological alterations of the peripheral skeletal muscles (SKM) contributing to exercise intolerance often seen in HFpEF patients. Recently, the use of Sodium-Glucose-Transporter 2 inhibitors (SGLT2i) in clinical studies provided evidence for a significant reduction in the combined risk of cardiovascular death or hospitalization for HFpEF. The present study aimed to further elucidate the impact of Empagliflozin (Empa) on: (1) SKM function and metabolism and (2) mitochondrial function in an established HFpEF rat model. At the age of 24 weeks, obese ZSF1 rats were randomized either receiving standard care or Empa in the drinking water. ZSF1 lean animals served as healthy controls. After 8 weeks of treatment, echocardiography and SKM contractility were performed. Mitochondrial function was assessed in saponin skinned fibers and SKM tissue was snap frozen for molecular analyses. HFpEF was evident in the obese animals when compared to lean—increased E/é and preserved left ventricular ejection fraction. Empa treatment significantly improved E/é and resulted in improved SKM contractility with reduced intramuscular lipid content. Better mitochondrial function (mainly in complex IV) with only minor modulation of atrophy-related proteins was seen after Empa treatment. The results clearly documented a beneficial effect of Empa on SKM function in the present HFpEF model. These effects were accompanied by positive effects on mitochondrial function possibly modulating SKM function.
Collapse
|
27
|
Büttner P, Adams V, Werner S, Ossmann S, Besler C, Schwedhelm E, Thiele H. Effects of homoarginine supplementation on heart and skeletal muscle of rats with heart failure with preserved ejection fraction. ESC Heart Fail 2022; 9:4348-4351. [PMID: 36043453 PMCID: PMC9773648 DOI: 10.1002/ehf2.14110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 08/04/2022] [Indexed: 01/19/2023] Open
Abstract
AIM Heart failure with preserved ejection fraction (HFpEF) is associated with left ventricular stiffness, impaired diastolic relaxation, and severe exercise intolerance. Decreased homoarginine (hArg) levels are an independent predictor of mortality in cardiovascular disease and correlate with impaired exercise performance. We recently reported alterations in arginine, hArg, and related amino acids in obese ZSF1 rats (O-ZSF1), with a HFpEF phenotype. Although low hArg is associated with diastolic dysfunction in humans, potential effects of hArg supplementation were not tested yet. METHODS AND RESULTS At an age of 6 weeks, 12 O-ZSF1 were randomized into two groups: (1) O-ZSF1 rats supplemented with hArg in their drinking water (sO-ZSF1) or (2) O-ZSF1 rats receiving no hArg supplementation (O-ZSF1). At an age of 32 weeks, effects of primary prevention by hArg supplementation on echocardiographic, histological, and functional parameters of heart and skeletal muscle were determined. Lean ZSF1 rats (L-ZSF1) served as controls. hArg supplementation did not prevent impairment of diastolic relaxation (E/e': O-ZSF1 21 ± 3 vs. sO-ZSF1 22 ± 3, P = 0.954, L-ZSF1 18 ± 5) but resulted in more cardiac fibrosis (histological collagen staining: +57% in sO-ZSF1 vs. O-ZSF1, P = 0.027) and increased collagen gene expression (Col1a1: +48% in sO-ZSF1 vs. O-ZSF1, P = 0.026). In contrary, right ventricular function was preserved by hArg supplementation (TAPSE (mm): O-ZSF1 1.2 ± 0.3 vs. sO-ZSF1 1.7 ± 0.3, P = 0.020, L-ZSF1 1.8 ± 0.4). Musculus soleus maximal specific muscle force (N/cm2 ) in O-ZSF1 (30.4 ± 0.8) and sO-ZSF1 (31.9 ± 0.9) was comparable but significantly reduced compared with L-ZSF1 (36.4 ± 0.7; both P < 0.05). Maximal absolute muscle force (g) (O-ZSF1: 177.6 ± 7.8, sO-ZSF1: 187.8 ± 5.0, L-ZSF1: 181.5 ± 7.9, all P > 0.05) and cross-sectional fibre area (arbitrary units) (O-ZSF1: 1697 ± 57, sO-ZSF1: 1965 ± 121, L-ZSF1: 1691 ± 104, all P > 0.05) were not altered. CONCLUSIONS Preservation of physiological hArg level in HFpEF may not be suited to prevent alterations in left ventricular and skeletal muscle function and structure. However, hArg supplementation may be beneficial for right ventricular function especially in pulmonary hypertension in HFpEF. We may speculate that clinically observed decreased hArg level are not the cause but the consequence of a yet unrecognized pathomechanism that underpins HFpEF.
Collapse
Affiliation(s)
- Petra Büttner
- Department of CardiologyHeart Center Leipzig at University LeipzigLeipzigGermany
| | - Volker Adams
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Sarah Werner
- Department of CardiologyHeart Center Leipzig at University LeipzigLeipzigGermany
| | - Susann Ossmann
- Department of Cardiac SurgeryHeart Center Leipzig at University LeipzigLeipzigGermany
| | - Christian Besler
- Department of CardiologyHeart Center Leipzig at University LeipzigLeipzigGermany
| | - Edzard Schwedhelm
- Institute of Clinical Pharmacology and ToxicologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany,DZHK (German Centre for Cardiovascular Research), partner site Hamburg/Kiel/LübeckHamburgGermany
| | - Holger Thiele
- Department of CardiologyHeart Center Leipzig at University LeipzigLeipzigGermany
| |
Collapse
|
28
|
Holder ER, Alibhai FJ, Caudle SL, McDermott JC, Tobin SW. The importance of biological sex in cardiac cachexia. Am J Physiol Heart Circ Physiol 2022; 323:H609-H627. [PMID: 35960634 DOI: 10.1152/ajpheart.00187.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cardiac cachexia is a catabolic muscle wasting syndrome observed in approximately 1 in 10 heart failure patients. Increased skeletal muscle atrophy leads to frailty and limits mobility which impacts quality of life, exacerbates clinical care, and is associated with higher rates of mortality. Heart failure is known to exhibit a wide range of prevalence and severity when examined across individuals of different ages and with co-morbidities related to diabetes, renal failure and pulmonary dysfunction. It is also recognized that men and women exhibit striking differences in the pathophysiology of heart failure as well as skeletal muscle homeostasis. Given that both skeletal muscle and heart failure physiology are in-part sex dependent, the diagnosis and treatment of cachexia in heart failure patients may depend on a comprehensive examination of how these organs interact. In this review we explore the potential for sex-specific differences in cardiac cachexia. We summarize advantages and disadvantages of clinical methods used to measure muscle mass and function and provide alternative measurements that should be considered in preclinical studies. Additionally, we summarize sex-dependent effects on muscle wasting in preclinical models of heart failure, disuse, and cancer. Lastly, we discuss the endocrine function of the heart and outline unanswered questions that could directly impact patient care.
Collapse
|
29
|
Drummond SE, Burns DP, Maghrani SE, Ziegler O, Healy V, O'Halloran KD. NADPH oxidase-2 is necessary for chronic intermittent hypoxia-induced sternohyoid muscle weakness in adult male mice. Exp Physiol 2022; 107:946-964. [PMID: 35728802 PMCID: PMC9542769 DOI: 10.1113/ep090536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/13/2022] [Indexed: 11/14/2022]
Abstract
New Findings What is the central question of this study? Exposure to chronic intermittent hypoxia (CIH) evokes redox changes, culminating in impaired upper airway muscle function: what is the specific source of CIH‐induced reactive oxygen species? What is the main finding and its importance? Profound sternohyoid muscle dysfunction following exposure to CIH was entirely prevented by apocynin co‐treatment or NADPH oxidase 2 (NOX2) deletion. The results have implications for human obstructive sleep apnoea syndrome and point to antioxidant intervention, potentially targeting NOX2 blockade, as a therapeutic strategy.
Abstract Exposure to chronic intermittent hypoxia (CIH) evokes redox changes, culminating in impaired upper airway muscle function. We sought to determine if NADPH oxidase 2 (NOX2)‐derived reactive oxygen species underpin CIH‐induced maladaptive changes in upper airway (sternohyoid) muscle performance. Adult male mice (C57BL/6J) were assigned to one of three groups: normoxic controls (sham); CIH‐exposed (CIH, 12 cycles/hour, 8 h/day for 14 days); and CIH + apocynin (NOX2 inhibitor, 2 mM) given in the drinking water throughout exposure to CIH. In addition, we studied sham and CIH‐exposed NOX2‐null mice (B6.129S‐CybbTM1Din/J). Profound sternohyoid muscle dysfunction following exposure to CIH was entirely prevented by apocynin co‐treatment or NOX2 deletion. Exposure to CIH increased sternohyoid muscle NOX enzyme activity, with no alteration to the gene or protein expression of NOX subunits. There was no evidence of overt oxidative stress, muscle regeneration, inflammation or atrophy following exposure to CIH. We suggest that NOX‐dependent CIH‐induced upper airway muscle weakness increases vulnerability to upper airway obstruction. Our results have implications for human obstructive sleep apnoea syndrome and point to antioxidant intervention, potentially targeting NOX2 blockade, as a therapeutic strategy.
Collapse
Affiliation(s)
- Sarah E Drummond
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - David P Burns
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Sarah El Maghrani
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Oscar Ziegler
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Vincent Healy
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine & Health, University College Cork, Cork, Ireland
| |
Collapse
|
30
|
Adams V, Schauer A, Augstein A, Kirchhoff V, Draskowski R, Jannasch A, Goto K, Lyall G, Männel A, Barthel P, Mangner N, Winzer EB, Linke A, Labeit S. Targeting MuRF1 by small molecules in a HFpEF rat model improves myocardial diastolic function and skeletal muscle contractility. J Cachexia Sarcopenia Muscle 2022; 13:1565-1581. [PMID: 35301823 PMCID: PMC9178400 DOI: 10.1002/jcsm.12968] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND About half of heart failure (HF) patients, while having preserved left ventricular function, suffer from diastolic dysfunction (so-called HFpEF). No specific therapeutics are available for HFpEF in contrast to HF where reduced ejection fractions (HFrEF) can be treated pharmacologically. Myocardial titin filament stiffening, endothelial dysfunction, and skeletal muscle (SKM) myopathy are suspected to contribute to HFpEF genesis. We previously described small molecules interfering with MuRF1 target recognition thereby attenuating SKM myopathy and dysfunction in HFrEF animal models. The aim of the present study was to test the efficacy of one small molecule (MyoMed-205) in HFpEF and to describe molecular changes elicited by MyoMed-205. METHODS Twenty-week-old female obese ZSF1 rats received the MuRF1 inhibitor MyoMed-205 for 12 weeks; a comparison was made to age-matched untreated ZSF1-lean (healthy) and obese rats as controls. LV (left ventricle) function was assessed by echocardiography and by invasive haemodynamic measurements until week 32. At week 32, SKM and endothelial functions were measured and tissues collected for molecular analyses. Proteome-wide analysis followed by WBs and RT-PCR was applied to identify specific genes and affected molecular pathways. MuRF1 knockout mice (MuRF1-KO) SKM tissues were included to validate MuRF1-specificity. RESULTS By week 32, untreated obese rats had normal LV ejection fraction but augmented E/e' ratios and increased end diastolic pressure and myocardial fibrosis, all typical features of HFpEF. Furthermore, SKM myopathy (both atrophy and force loss) and endothelial dysfunction were detected. In contrast, MyoMed-205 treated rats had markedly improved diastolic function, less myocardial fibrosis, reduced SKM myopathy, and increased SKM function. SKM extracts from MyoMed-205 treated rats had reduced MuRF1 content and lowered total muscle protein ubiquitination. In addition, proteomic profiling identified eight proteins to respond specifically to MyoMed-205 treatment. Five out of these eight proteins are involved in mitochondrial metabolism, dynamics, or autophagy. Consistent with the mitochondria being a MyoMed-205 target, the synthesis of mitochondrial respiratory chain complexes I + II was increased in treated rats. MuRF1-KO SKM controls also had elevated mitochondrial complex I and II activities, also suggesting mitochondrial activity regulation by MuRF1. CONCLUSIONS MyoMed-205 improved myocardial diastolic function and prevented SKM atrophy/function in the ZSF1 animal model of HFpEF. Mechanistically, SKM benefited from an attenuated ubiquitin proteasome system and augmented synthesis/activity of proteins of the mitochondrial respiratory chain while the myocardium seemed to benefit from reduced titin modifications and fibrosis.
Collapse
Affiliation(s)
- Volker Adams
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbHDresdenGermany
| | - Antje Schauer
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Antje Augstein
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Virginia Kirchhoff
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Runa Draskowski
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Anett Jannasch
- Department of Cardiac SurgeryTU Dresden, Heart Center DresdenDresdenGermany
| | - Keita Goto
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Gemma Lyall
- School of Biomedical SciencesUniversity of LeedsLeedsUK
| | - Anita Männel
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Peggy Barthel
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Norman Mangner
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Ephraim B. Winzer
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
| | - Axel Linke
- Laboratory of Molecular and Experimental CardiologyTU Dresden, Heart Center DresdenDresdenGermany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbHDresdenGermany
| | - Siegfried Labeit
- Myomedix GmbHNeckargemündGermany
- DZHK (German Center for Cardiovascular Research), partner site Heidelberg/MannheimMannheimGermany
| |
Collapse
|
31
|
Moturi S, Ghosh-Choudhary SK, Finkel T. Cardiovascular disease and the biology of aging. J Mol Cell Cardiol 2022; 167:109-117. [PMID: 35421400 DOI: 10.1016/j.yjmcc.2022.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 10/18/2022]
Abstract
The incidence and prevalence of a wide range of cardiovascular diseases increases as a function of age. This well-established epidemiological relationship suggests that chronological aging might contribute or increase susceptibility to varied conditions such as atherosclerosis, vascular stiffening or heart failure. Here, we explore the mechanistic links that connect both rare and common cardiovascular conditions to the basic biology of aging. These links provide a rational basis to begin to develop a new set of therapeutics targeting the fundamental mechanisms underlying the aging process and suggest that in the near future, age itself might become a modifiable cardiovascular risk factor.
Collapse
Affiliation(s)
- Shria Moturi
- Aging Institute, University of Pittsburgh School of Medicine/UPMC, Pittsburgh, PA 15219, United States of America
| | - Shohini K Ghosh-Choudhary
- Aging Institute, University of Pittsburgh School of Medicine/UPMC, Pittsburgh, PA 15219, United States of America
| | - Toren Finkel
- Aging Institute, University of Pittsburgh School of Medicine/UPMC, Pittsburgh, PA 15219, United States of America.
| |
Collapse
|
32
|
Kelley RC, Betancourt L, Noriega AM, Brinson SC, Curbelo-Bermudez N, Hahn D, Kumar RA, Balazic E, Muscato DR, Ryan TE, van der Pijl RJ, Shen S, Ottenheijm CAC, Ferreira LF. Skeletal myopathy in a rat model of postmenopausal heart failure with preserved ejection fraction. J Appl Physiol (1985) 2022; 132:106-125. [PMID: 34792407 PMCID: PMC8742741 DOI: 10.1152/japplphysiol.00170.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 01/03/2023] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) accounts for ∼50% of all patients with heart failure and frequently affects postmenopausal women. The HFpEF condition is phenotype-specific, with skeletal myopathy that is crucial for disease development and progression. However, most of the current preclinical models of HFpEF have not addressed the postmenopausal phenotype. We sought to advance a rodent model of postmenopausal HFpEF and examine skeletal muscle abnormalities therein. Female, ovariectomized, spontaneously hypertensive rats (SHRs) were fed a high-fat, high-sucrose diet to induce HFpEF. Controls were female sham-operated Wistar-Kyoto rats on a lean diet. In a complementary, longer-term cohort, controls were female sham-operated SHRs on a lean diet to evaluate the effect of strain difference in the model. Our model developed key features of HFpEF that included increased body weight, glucose intolerance, hypertension, cardiac hypertrophy, diastolic dysfunction, exercise intolerance, and elevated plasma cytokines. In limb skeletal muscle, HFpEF decreased specific force by 15%-30% (P < 0.05) and maximal mitochondrial respiration by 40%-55% (P < 0.05), increased oxidized glutathione by approximately twofold (P < 0.05), and tended to increase mitochondrial H2O2 emission (P = 0.10). Muscle fiber cross-sectional area, markers of mitochondrial content, and indices of capillarity were not different between control and HFpEF in our short-term cohort. Overall, our preclinical model of postmenopausal HFpEF recapitulates several key features of the disease. This new model reveals contractile and mitochondrial dysfunction and redox imbalance that are potential contributors to abnormal metabolism, exercise intolerance, and diminished quality of life in patients with postmenopausal HFpEF.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is a condition with phenotype-specific features highly prevalent in postmenopausal women and skeletal myopathy contributing to disease development and progression. We advanced a rat model of postmenopausal HFpEF with key cardiovascular and systemic features of the disease. Our study shows that the skeletal myopathy of postmenopausal HFpEF includes loss of limb muscle-specific force independent of atrophy, mitochondrial dysfunction, and oxidized shift in redox balance.
Collapse
Affiliation(s)
- Rachel C Kelley
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Lauren Betancourt
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Andrea M Noriega
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Suzanne C Brinson
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Nuria Curbelo-Bermudez
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Dongwoo Hahn
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Ravi A Kumar
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Eliza Balazic
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Derek R Muscato
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Terence E Ryan
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| | - Robbert J van der Pijl
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Shengyi Shen
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | - Coen A C Ottenheijm
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
- Department of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | - Leonardo F Ferreira
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida
| |
Collapse
|
33
|
Krueger KJ, Rahman FK, Shen Q, Vacek J, Hiebert JB, Pierce JD. Mitochondrial bioenergetics and D-ribose in HFpEF: a brief narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1504. [PMID: 34805366 PMCID: PMC8573443 DOI: 10.21037/atm-21-2291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 08/15/2021] [Indexed: 11/24/2022]
Abstract
Objective In this review article, we briefly describe the status of treatment options for HFpEF and the role of mitochondrial dysfunction in the pathogenesis of HFpEF as an alternative therapeutic target. We also examine the mechanisms of D-ribose in cellular energy production and discuss the potential disadvantages and benefits of supplemental use of D-ribose in patients with HFpEF. Background Heart failure is a major cardiovascular disease that impacts over 6 million Americans and is one of the leading causes for morbidity and mortality. Patients with heart failure often experience shortness of breath and fatigue along with impaired physical capacity, all leading to poor quality of life. As a subtype of heart failure, heart failure with preserved ejection fraction (HFpEF) is characterized with impaired diastolic function. Currently, there are no effective treatments specifically for HFpEF, thus clinicians and researchers are searching for therapies to improve cardiac function. Emerging evidence indicate that mitochondrial dysfunction and impaired cardiac bioenergetics are among the underlying mechanisms for HFpEF. There is increased interest in investigating the use of supplements such as D-ribose to enhance mitochondrial function and improve production of adenosine triphosphate (ATP). Methods For this narrative review, more than 100 relevant scientific articles were considered from various databases (e.g., PubMed, Web of Science, CINAHL, and Google Scholar) using the keywords “Heart Failure”, “HFpEF”, “D-ribose”, “ATP”, “Mitochondria”, Bioenergetics”, and “Cellular Respiration”. Conclusions It is essential to find potential targeted therapeutic treatments for HFpEF. Since there is evidence that the HFpEF is related to impaired myocardial bioenergetics, enhancing mitochondrial function could augment cardiac function. Using a supplement such as D-ribose could improve mitochondrial function by increasing ATP and enhancing cardiac performance for patients with HFpEF. There is a recently completed clinical trial with HFpEF patients that indicates D-ribose increases ATP production and improves cardiac ejection fraction.
Collapse
Affiliation(s)
- Kathryn J Krueger
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Faith K Rahman
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Qiuhua Shen
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - James Vacek
- The University of Kansas Health System, Kansas City, KS, USA
| | - John B Hiebert
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| | - Janet D Pierce
- School of Nursing, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
34
|
Ciccarelli M, Dawson D, Falcao-Pires I, Giacca M, Hamdani N, Heymans S, Hooghiemstra A, Leeuwis A, Hermkens D, Tocchetti CG, van der Velden J, Zacchigna S, Thum T. Reciprocal organ interactions during heart failure: a position paper from the ESC Working Group on Myocardial Function. Cardiovasc Res 2021; 117:2416-2433. [PMID: 33483724 PMCID: PMC8562335 DOI: 10.1093/cvr/cvab009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/20/2021] [Accepted: 01/08/2021] [Indexed: 12/13/2022] Open
Abstract
Heart failure-either with reduced or preserved ejection fraction (HFrEF/HFpEF)-is a clinical syndrome of multifactorial and gender-dependent aetiology, indicating the insufficiency of the heart to pump blood adequately to maintain blood flow to meet the body's needs. Typical symptoms commonly include shortness of breath, excessive fatigue with impaired exercise capacity, and peripheral oedema, thereby alluding to the fact that heart failure is a syndrome that affects multiple organ systems. Patients suffering from progressed heart failure have a very limited life expectancy, lower than that of numerous cancer types. In this position paper, we provide an overview regarding interactions between the heart and other organ systems, the clinical evidence, underlying mechanisms, potential available or yet-to-establish animal models to study such interactions and finally discuss potential new drug interventions to be developed in the future. Our working group suggests that more experimental research is required to understand the individual molecular mechanisms underlying heart failure and reinforces the urgency for tailored therapeutic interventions that target not only the heart but also other related affected organ systems to effectively treat heart failure as a clinical syndrome that affects and involves multiple organs.
Collapse
Affiliation(s)
- Michele Ciccarelli
- University of Salerno, Department of Medicine, Surgery and Dentistry, Via S. Allende 1, 84081, Baronissi(Salerno), Italy
| | - Dana Dawson
- School of Medicine and Dentistry, University of Aberdeen, Aberdeen AB25 2DZ, UK
| | - Inês Falcao-Pires
- Department of Surgery and Physiology, Cardiovascular Research and Development Center, Faculty of Medicine of the University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal
| | - Mauro Giacca
- King’s College London, Molecular Medicine Laboratory, 125 Caldharbour Lane, London WC2R2LS, United Kingdom
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34129 Trieste, Italy
| | - Nazha Hamdani
- Department of Clinical Pharmacology and Molecular Cardiology, Institute of Physiology, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
- Department of Cardiology, St. Josef-Hospital, Ruhr University Bochum, Universitätsstraße 150, D-44801 Bochum, Germany
| | - Stéphane Heymans
- Centre for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Bus 911, 3000 Leuven, Belgium
- Department of Cardiology, Maastricht University, CARIM School for Cardiovascular Diseases, Universiteitssingel 50, 6229 ER Maastricht, the Netherlands
- ICIN-Netherlands Heart Institute, Holland Heart House, Moreelsepark 1, 3511 EP Utrecht, the Netherlands
| | - Astrid Hooghiemstra
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081HZ, Amsterdam, The Netherlands
- Department of Medical Humanities, Amsterdam Public Health Research Institute, Amsterdam UMC, Location VUmc, De Boelelaan 1089a, 1081HV, Amsterdam, The Netherlands
| | - Annebet Leeuwis
- Department of Neurology, Alzheimer Center Amsterdam, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, De Boelelaan 1118, 1081HZ, Amsterdam, The Netherlands
| | - Dorien Hermkens
- Department of Pathology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, Meibergdreef 9, 1105AZ, Amsterdam, the Netherlands
| | - Carlo Gabriele Tocchetti
- Department of Translational Medical Sciences and Interdepartmental Center of Clinical and Translational Research (CIRCET), Federico II University, Naples, Italy
| | - Jolanda van der Velden
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Physiology, Amsterdam Cardiovascular Sciences, De Boelelaan 1118, 1081HZ Amsterdam, the Netherlands
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Strada di Fiume, 447, 34129 Trieste, Italy
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Padriciano, 99, 34149 Trieste, Italy
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies (IMTTS), Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
- REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, D-30625 Hannover, Germany
- Fraunhofer Institute of Toxicology and Experimental Medicine, Nicolai-Fuchs-Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
35
|
Li P, Zhao H, Zhang J, Ning Y, Tu Y, Xu D, Zeng Q. Similarities and Differences Between HFmrEF and HFpEF. Front Cardiovasc Med 2021; 8:678614. [PMID: 34616777 PMCID: PMC8488158 DOI: 10.3389/fcvm.2021.678614] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022] Open
Abstract
The new guidelines classify heart failure (HF) into three subgroups based on the ejection fraction (EF): HF with reduced EF (HFrEF), HF with mid-range EF (HFmrEF), and HF with preserved EF (HFpEF). The new guidelines regarding the declaration of HFmrEF as a unique phenotype have achieved the goal of stimulating research on the basic characteristics, pathophysiology, and treatment of HF patients with a left ventricular EF of 40-49%. Patients with HFmrEF have more often been described as an intermediate population between HFrEF and HFpEF patients; however, with regard to etiology and clinical indicators, they are more similar to the HFrEF population. Concerning clinical prognosis, they are closer to HFpEF because both populations have a good prognosis and quality of life. Meanwhile, growing evidence indicates that HFmrEF and HFpEF show heterogeneity in presentation and pathophysiology, and the emergence of this heterogeneity often plays a crucial role in the prognosis and treatment of the disease. To date, the exact mechanisms and effective treatment strategies of HFmrEF and HFpEF are still poorly understood, but some of the current evidence, from observational studies and post-hoc analyses of randomized controlled trials, have shown that patients with HFmrEF may benefit more from HFrEF treatment strategies, such as beta-blockers, angiotensin-converting enzyme inhibitors, angiotensin receptor blockers, mineralocorticoid receptor antagonists, and sacubitril/valsartan. This review summarizes available data from current clinical practice and mechanistic studies in terms of epidemiology, etiology, clinical indicators, mechanisms, and treatments to discuss the potential association between HFmrEF and HFpEF patients.
Collapse
Affiliation(s)
- Peixin Li
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Hengli Zhao
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jianyu Zhang
- Department of Cardiology, Foshan First People's Hospital, Foshan, Guangdong, China
| | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yan Tu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dingli Xu
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| | - Qingchun Zeng
- State Key Laboratory of Organ Failure Research, Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Shock and Microcirculation, Southern Medical University, Guangzhou, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, China
| |
Collapse
|
36
|
Loai S, Zhou YQ, Vollett KDW, Cheng HLM. Skeletal Muscle Microvascular Dysfunction Manifests Early in Diabetic Cardiomyopathy. Front Cardiovasc Med 2021; 8:715400. [PMID: 34355034 PMCID: PMC8329089 DOI: 10.3389/fcvm.2021.715400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 12/03/2022] Open
Abstract
Aim: To perform a deep cardiac phenotyping of type II diabetes in a rat model, with the goal of gaining new insight into the temporality of microvascular dysfunction, cardiac dysfunction, and exercise intolerance at different stages of diabetes. Methods and Results: Diabetes was reproduced using a non-obese, diet-based, low-dose streptozotocin model in male rats (29 diabetic, 11 control). Time-course monitoring over 10 months was performed using echocardiography, treadmill exercise, photoacoustic perfusion imaging in myocardial and leg skeletal muscle, flow-mediated dilation, blood panel, and histology. Diabetic rats maintained a normal weight throughout. At early times (4 months), a non-significant reduction (30%) emerged in skeletal muscle perfusion and in exercise tolerance. At the same time, diabetic rats had a normal, slightly lower ejection fraction (63 vs. 71% control, p < 0.01), grade 1 diastolic dysfunction (E/A = 1.1 vs. 1.5, isovolumetric relaxation time = 34 vs. 27 ms; p < 0.01), mild systolic dysfunction (ejection time = 69 vs. 57 ms, isovolumetric contraction time = 21 vs. 17 ms; p < 0.01), and slightly enlarged left ventricle (8.3 vs. 7.6 mm diastole; p < 0.01). Diastolic dysfunction entered grade 3 at Month 8 (E/A = 1.7 vs. 1.3, p < 0.05). Exercise tolerance remained low in diabetic rats, with running distance declining by 60%; in contrast, control rats ran 60% farther by Month 5 (p < 0.05) and always remained above baseline. Leg muscle perfusion remained low in diabetic rats, becoming significantly lower than control by Month 10 (33% SO2 vs. 57% SO2, p < 0.01). Myocardial perfusion remained normal throughout. Femoral arterial reactivity was normal, but baseline velocity was 25% lower than control (p < 0.05). High blood pressure appeared late in diabetes (8 months). Histology confirmed absence of interstitial fibrosis, cardiomyocyte hypertrophy, or microvascular rarefaction in the diabetic heart. Rarefaction was also absent in leg skeletal muscle. Conclusion: Reduced skeletal muscle perfusion from microvascular dysfunction emerged early in diabetic rats, but myocardial perfusion remained normal throughout the study. At the same time, diabetic rats exhibited exercise intolerance and early cardiac dysfunction, in which changes related to heart failure with preserved ejection fraction (HFpEF) were seen. Importantly, skeletal muscle microvascular constriction advanced significantly before the late appearance of hypertension. HFpEF phenotypes such as cardiac hypertrophy, fibrosis, and rarefaction, which are typically associated with hypertension, were absent over the 10 month time-course of diabetes-related heart failure.
Collapse
Affiliation(s)
- Sadi Loai
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Yu-Qing Zhou
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Kyle D W Vollett
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada
| | - Hai-Ling Margaret Cheng
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.,Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, Toronto, ON, Canada.,The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
37
|
Maiuolo J, Carresi C, Gliozzi M, Musolino V, Scarano F, Coppoletta AR, Guarnieri L, Nucera S, Scicchitano M, Bosco F, Ruga S, Zito MC, Macri R, Cardamone A, Serra M, Mollace R, Tavernese A, Mollace V. Effects of Bergamot Polyphenols on Mitochondrial Dysfunction and Sarcoplasmic Reticulum Stress in Diabetic Cardiomyopathy. Nutrients 2021; 13:nu13072476. [PMID: 34371986 PMCID: PMC8308586 DOI: 10.3390/nu13072476] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022] Open
Abstract
Cardiovascular disease is the leading cause of death and disability in the Western world. In order to safeguard the structure and the functionality of the myocardium, it is extremely important to adequately support the cardiomyocytes. Two cellular organelles of cardiomyocytes are essential for cell survival and to ensure proper functioning of the myocardium: mitochondria and the sarcoplasmic reticulum. Mitochondria are responsible for the energy metabolism of the myocardium, and regulate the processes that can lead to cell death. The sarcoplasmic reticulum preserves the physiological concentration of the calcium ion, and triggers processes to protect the structural and functional integrity of the proteins. The alterations of these organelles can damage myocardial functioning. A proper nutritional balance regarding the intake of macronutrients and micronutrients leads to a significant improvement in the symptoms and consequences of heart disease. In particular, the Mediterranean diet, characterized by a high consumption of plant-based foods, small quantities of red meat, and high quantities of olive oil, reduces and improves the pathological condition of patients with heart failure. In addition, nutritional support and nutraceutical supplementation in patients who develop heart failure can contribute to the protection of the failing myocardium. Since polyphenols have numerous beneficial properties, including anti-inflammatory and antioxidant properties, this review gathers what is known about the beneficial effects of polyphenol-rich bergamot fruit on the cardiovascular system. In particular, the role of bergamot polyphenols in mitochondrial and sarcoplasmic dysfunctions in diabetic cardiomyopathy is reported.
Collapse
Affiliation(s)
- Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Anna Rita Coppoletta
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Lorenza Guarnieri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macri
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Antonio Cardamone
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Maria Serra
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Rocco Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| | - Annamaria Tavernese
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (J.M.); (C.C.); (M.G.); (V.M.); (F.S.); (A.R.C.); (L.G.); (S.N.); (M.S.); (F.B.); (S.R.); (M.C.Z.); (R.M.); (A.C.); (M.S.); (R.M.); (A.T.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-327-475-8006
| |
Collapse
|
38
|
Bode D, Rolim NPL, Guthof T, Hegemann N, Wakula P, Primessnig U, Berre AMO, Adams V, Wisløff U, Pieske BM, Heinzel FR, Hohendanner F. Effects of different exercise modalities on cardiac dysfunction in heart failure with preserved ejection fraction. ESC Heart Fail 2021; 8:1806-1818. [PMID: 33768692 PMCID: PMC8120378 DOI: 10.1002/ehf2.13308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 01/13/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is an increasingly prevalent disease. Physical exercise has been shown to alter disease progression in HFpEF. We examined cardiomyocyte Ca2+ homeostasis and left ventricular function in a metabolic HFpEF model in sedentary and trained rats following 8 weeks of moderate-intensity continuous training (MICT) or high-intensity interval training (HIIT). METHODS AND RESULTS Left ventricular in vivo function (echocardiography) and cardiomyocyte Ca2+ transients (CaTs) (Fluo-4, confocal) were compared in ZSF-1 obese (metabolic syndrome, HFpEF) and ZSF-1 lean (control) 21- and 28-week-old rats. At 21 weeks, cardiomyocytes from HFpEF rats showed prolonged Ca2+ reuptake in cytosolic and nuclear CaTs and impaired Ca2+ release kinetics in nuclear CaTs. At 28 weeks, HFpEF cardiomyocytes had depressed CaT amplitudes, decreased sarcoplasmic reticulum (SR) Ca2+ content, increased SR Ca2+ leak, and elevated diastolic [Ca2+ ] following increased pacing rate (5 Hz). In trained HFpEF rats (HIIT or MICT), cardiomyocyte SR Ca2+ leak was significantly reduced. While HIIT had no effects on the CaTs (1-5 Hz), MICT accelerated early Ca2+ release, reduced the amplitude, and prolonged the CaT without increasing diastolic [Ca2+ ] or cytosolic Ca2+ load at basal or increased pacing rate (1-5 Hz). MICT lowered pro-arrhythmogenic Ca2+ sparks and attenuated Ca2+ -wave propagation in cardiomyocytes. MICT was associated with increased stroke volume in HFpEF. CONCLUSIONS In this metabolic rat model of HFpEF at an advanced stage, Ca2+ release was impaired under baseline conditions. HIIT and MICT differentially affected Ca2+ homeostasis with positive effects of MICT on stroke volume, end-diastolic volume, and cellular arrhythmogenicity.
Collapse
Affiliation(s)
- David Bode
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Natale P L Rolim
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Tim Guthof
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany
| | - Niklas Hegemann
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Paulina Wakula
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany
| | - Uwe Primessnig
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Anne Marie Ormbostad Berre
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Volker Adams
- Laboratory of Molecular and Experimental Cardiology, TU Dresden, Heart Center Dresden, Dresden, Germany
| | - Ulrik Wisløff
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.,School of Human Movement and Nutrition Science, University of Queensland, Brisbane, Australia
| | - Burkert M Pieske
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany.,Department of Internal Medicine and Cardiology, German Heart Center Berlin, Berlin, Germany
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Felix Hohendanner
- Department of Internal Medicine and Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow-Klinikum, Augustenburgerplatz 1, Berlin, 13353, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | | |
Collapse
|
39
|
Mangner N, Garbade J, Heyne E, van den Berg M, Winzer EB, Hommel J, Sandri M, Jozwiak-Nozdrzykowska J, Meyer AL, Lehmann S, Schmitz C, Malfatti E, Schwarzer M, Ottenheijm CAC, Bowen TS, Linke A, Adams V. Molecular Mechanisms of Diaphragm Myopathy in Humans With Severe Heart Failure. Circ Res 2021; 128:706-719. [PMID: 33535772 DOI: 10.1161/circresaha.120.318060] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Norman Mangner
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
| | - Jens Garbade
- Department of Cardiac Surgery (J.G., S.L.), Heart Center Leipzig - University Hospital, Germany
| | - Estelle Heyne
- Department of Cardiothoracic Surgery, Jena University Hospital - Friedrich Schiller University of Jena, Germany (E.H., M.S.)
| | | | - Ephraim B Winzer
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
| | - Jennifer Hommel
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
| | - Marcus Sandri
- Department of Cardiology (M.S., J.J.-N.), Heart Center Leipzig - University Hospital, Germany
- Department of Cardiothoracic Surgery, Jena University Hospital - Friedrich Schiller University of Jena, Germany (E.H., M.S.)
| | | | - Anna L Meyer
- Cardiac Surgery, Heart and Marfan Center, University of Heidelberg, Germany (A.L.M.)
| | - Sven Lehmann
- Department of Cardiac Surgery (J.G., S.L.), Heart Center Leipzig - University Hospital, Germany
| | - Clara Schmitz
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
| | - Edoardo Malfatti
- Neurology, Centre de Référence Maladies Neuromusculaires Nord-Est-Ile-de-France, CHU Raymond-Poincaré, Garches, France (E.M.). U1179 UVSQ-INSERM, Université Versailles-Saint-Quentin-en-Yvelines, France
| | | | - Coen A C Ottenheijm
- Physiology, Amsterdam UMC (location VUmc), the Netherlands (M.v.d.B., C.A.C.O.)
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, United Kingdom (T.S.B.)
| | - Axel Linke
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany (A.L., V.A.)
| | - Volker Adams
- Department of Internal Medicine and Cardiology (N.M., E.B.W., J.H., C.S., A.L. V.A.), Herzzentrum Dresden, Technische Universität Dresden, Germany
- Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany (A.L., V.A.)
| |
Collapse
|
40
|
Langlo KAR, Silva GJJ, Overrein TS, Adams V, Wisløff U, Dalen H, Rolim N, Hallan SI. Circulating microRNAs May Serve as Biomarkers for Hypertensive Emergency End-Organ Injuries and Address Underlying Pathways in an Animal Model. Front Cardiovasc Med 2021; 7:626699. [PMID: 33644125 PMCID: PMC7906971 DOI: 10.3389/fcvm.2020.626699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/31/2020] [Indexed: 11/20/2022] Open
Abstract
There is an incomplete understanding of the underlying pathophysiology in hypertensive emergencies, where severely elevated blood pressure causes acute end-organ injuries, as opposed to the long-term manifestations of chronic hypertension. Furthermore, current biomarkers are unable to detect early end-organ injuries like hypertensive encephalopathy and renal thrombotic microangiopathy. We hypothesized that circulating microRNAs (c-miRs) could identify acute and chronic complications of severe hypertension, and that combinations of c-miRs could elucidate important pathways involved. We studied the diagnostic accuracy of 145 c-miRs in Dahl salt-sensitive rats fed either a low-salt (N = 20: 0.3% NaCl) or a high-salt (N = 60: 8% NaCl) diet. Subclinical hypertensive encephalopathy and thrombotic microangiopathy were diagnosed by histopathology. In addition, heart failure with preserved ejection fraction was evaluated with echocardiography and N-terminal pro-brain natriuretic peptide; and endothelial dysfunction was studied using acetylcholine-induced aorta ring relaxation. Systolic blood pressure increased severely in animals on a high-salt diet (high-salt 205 ± 20 mm Hg vs. low-salt 152 ± 18 mm Hg, p < 0.001). Partial least squares discriminant analysis revealed 68 c-miRs discriminating between animals with and without hypertensive emergency complications. Twenty-nine c-miRs were strongly associated with hypertensive encephalopathy, 24 c-miRs with thrombotic microangiopathy, 30 c-miRs with heart failure with preserved ejection fraction, and 28 c-miRs with endothelial dysfunction. Hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction were associated with deviations in many of the same c-miRs, whereas endothelial dysfunction was associated with a different set of c-miRs. Several of these c-miRs demonstrated fair to good diagnostic accuracy for a composite outcome of hypertensive encephalopathy, thrombotic microangiopathy and heart failure with preserved ejection fraction in receiver-operating-curve analyses (area-under-curve 0.75–0.88). Target prediction revealed an enrichment of genes related to several pathways relevant for cardiovascular disease (e.g., mucin type O-glycan biosynthesis, MAPK, Wnt, Hippo, and TGF-beta signaling). C-miRs could potentially serve as biomarkers of severe hypertensive end-organ injuries and elucidate important pathways involved.
Collapse
Affiliation(s)
- Knut Asbjørn Rise Langlo
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Department of Nephrology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gustavo Jose Justo Silva
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Tina Syvertsen Overrein
- Division of Pathology and Medical Genetics, Department of Laboratory Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Volker Adams
- Department of Cardiology, Heart Center Dresden, TU Dresden, Dresden, Germany
| | - Ulrik Wisløff
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,School of Human Movement & Nutrition Sciences, University of Queensland, Brisbane, QLD, Australia
| | - Håvard Dalen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway.,Clinic of Cardiology, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Natale Rolim
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Stein Ivar Hallan
- Department of Nephrology, Clinic of Medicine, St. Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
41
|
Mueller S, Winzer EB, Duvinage A, Gevaert AB, Edelmann F, Haller B, Pieske-Kraigher E, Beckers P, Bobenko A, Hommel J, Van de Heyning CM, Esefeld K, von Korn P, Christle JW, Haykowsky MJ, Linke A, Wisløff U, Adams V, Pieske B, van Craenenbroeck EM, Halle M. Effect of High-Intensity Interval Training, Moderate Continuous Training, or Guideline-Based Physical Activity Advice on Peak Oxygen Consumption in Patients With Heart Failure With Preserved Ejection Fraction: A Randomized Clinical Trial. JAMA 2021; 325:542-551. [PMID: 33560320 PMCID: PMC7873782 DOI: 10.1001/jama.2020.26812] [Citation(s) in RCA: 155] [Impact Index Per Article: 51.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IMPORTANCE Endurance exercise is effective in improving peak oxygen consumption (peak V̇o2) in patients with heart failure with preserved ejection fraction (HFpEF). However, it remains unknown whether differing modes of exercise have different effects. OBJECTIVE To determine whether high-intensity interval training, moderate continuous training, and guideline-based advice on physical activity have different effects on change in peak V̇o2 in patients with HFpEF. DESIGN, SETTING, AND PARTICIPANTS Randomized clinical trial at 5 sites (Berlin, Leipzig, and Munich, Germany; Antwerp, Belgium; and Trondheim, Norway) from July 2014 to September 2018. From 532 screened patients, 180 sedentary patients with chronic, stable HFpEF were enrolled. Outcomes were analyzed by core laboratories blinded to treatment groups; however, the patients and staff conducting the evaluations were not blinded. INTERVENTIONS Patients were randomly assigned (1:1:1; n = 60 per group) to high-intensity interval training (3 × 38 minutes/week), moderate continuous training (5 × 40 minutes/week), or guideline control (1-time advice on physical activity according to guidelines) for 12 months (3 months in clinic followed by 9 months telemedically supervised home-based exercise). MAIN OUTCOMES AND MEASURES Primary end point was change in peak V̇o2 after 3 months, with the minimal clinically important difference set at 2.5 mL/kg/min. Secondary end points included changes in metrics of cardiorespiratory fitness, diastolic function, and natriuretic peptides after 3 and 12 months. RESULTS Among 180 patients who were randomized (mean age, 70 years; 120 women [67%]), 166 (92%) and 154 (86%) completed evaluation at 3 and 12 months, respectively. Change in peak V̇o2 over 3 months for high-intensity interval training vs guideline control was 1.1 vs -0.6 mL/kg/min (difference, 1.5 [95% CI, 0.4 to 2.7]); for moderate continuous training vs guideline control, 1.6 vs -0.6 mL/kg/min (difference, 2.0 [95% CI, 0.9 to 3.1]); and for high-intensity interval training vs moderate continuous training, 1.1 vs 1.6 mL/kg/min (difference, -0.4 [95% CI, -1.4 to 0.6]). No comparisons were statistically significant after 12 months. There were no significant changes in diastolic function or natriuretic peptides. Acute coronary syndrome was recorded in 4 high-intensity interval training patients (7%), 3 moderate continuous training patients (5%), and 5 guideline control patients (8%). CONCLUSIONS AND RELEVANCE Among patients with HFpEF, there was no statistically significant difference in change in peak V̇o2 at 3 months between those assigned to high-intensity interval vs moderate continuous training, and neither group met the prespecified minimal clinically important difference compared with the guideline control. These findings do not support either high-intensity interval training or moderate continuous training compared with guideline-based physical activity for patients with HFpEF. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT02078947.
Collapse
Affiliation(s)
- Stephan Mueller
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Ephraim B. Winzer
- Heart Center Dresden–University Hospital, Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Germany
| | - André Duvinage
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Andreas B. Gevaert
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Frank Edelmann
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Bernhard Haller
- Institute of Medical Informatics, Statistics and Epidemiology, Technical University of Munich, Munich, Germany
| | - Elisabeth Pieske-Kraigher
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Paul Beckers
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Anna Bobenko
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Jennifer Hommel
- Heart Center Dresden–University Hospital, Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Germany
| | - Caroline M. Van de Heyning
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Katrin Esefeld
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Pia von Korn
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Jeffrey W. Christle
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Mark J. Haykowsky
- Faculty of Nursing, University of Alberta, Edmonton, Alberta, Canada
| | - Axel Linke
- Heart Center Dresden–University Hospital, Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Germany
| | - Ulrik Wisløff
- The Cardiac Exercise Research Group at Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Volker Adams
- Heart Center Dresden–University Hospital, Department of Internal Medicine and Cardiology, Technische Universität Dresden, Dresden, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology, Campus Virchow Klinikum, Charité Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Center for Cardiovascular Research), partner site Berlin, Berlin, Germany
| | - Emeline M. van Craenenbroeck
- Research Group Cardiovascular Diseases, GENCOR Department, University of Antwerp, Antwerp, Belgium
- Department of Cardiology, Antwerp University Hospital, Edegem, Belgium
| | - Martin Halle
- Department of Prevention and Sports Medicine, University Hospital Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Center for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
42
|
Espino-Gonzalez E, Tickle PG, Benson AP, Kissane RWP, Askew GN, Egginton S, Bowen TS. Abnormal skeletal muscle blood flow, contractile mechanics and fibre morphology in a rat model of obese-HFpEF. J Physiol 2021; 599:981-1001. [PMID: 33347612 PMCID: PMC7898698 DOI: 10.1113/jp280899] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/04/2020] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS Heart failure is characterised by limb and respiratory muscle impairments that limit functional capacity and quality of life. However, compared with heart failure with reduced ejection fraction (HFrEF), skeletal muscle alterations induced by heart failure with preserved ejection fraction (HFpEF) remain poorly explored. Here we report that obese-HFpEF induces multiple skeletal muscle alterations in the rat hindlimb, including impaired muscle mechanics related to shortening velocity, fibre atrophy, capillary loss, and an impaired blood flow response to contractions that implies a perfusive oxygen delivery limitation. We also demonstrate that obese-HFpEF is characterised by diaphragmatic alterations similar to those caused by denervation - atrophy in Type IIb/IIx (fast/glycolytic) fibres and hypertrophy in Type I (slow/oxidative) fibres. These findings extend current knowledge in HFpEF skeletal muscle physiology, potentially underlying exercise intolerance, which may facilitate future therapeutic approaches. ABSTRACT Peripheral skeletal muscle and vascular alterations induced by heart failure with preserved ejection fraction (HFpEF) remain poorly identified, with limited therapeutic targets. This study used a cardiometabolic obese-HFpEF rat model to comprehensively phenotype skeletal muscle mechanics, blood flow, microvasculature and fibre atrophy. Lean (n = 8) and obese-HFpEF (n = 8) ZSF1 rats were compared. Skeletal muscles (soleus and diaphragm) were assessed for in vitro contractility (isometric and isotonic properties) alongside indices of fibre-type cross-sectional area, myosin isoform, and capillarity, and estimated muscle PO2 . In situ extensor digitorum longus (EDL) contractility and femoral blood flow were assessed. HFpEF soleus demonstrated lower absolute maximal force by 22%, fibre atrophy by 24%, a fibre-type shift from I to IIa, and a 17% lower capillary-to-fibre ratio despite increased capillary density (all P < 0.05) with preserved muscle PO2 (P = 0.115) and isometric specific force (P > 0.05). Soleus isotonic properties (shortening velocity and power) were impaired by up to 17 and 22%, respectively (P < 0.05), while the magnitude of the exercise hyperaemia was attenuated by 73% (P = 0.012) in line with higher muscle fatigue by 26% (P = 0.079). Diaphragm alterations (P < 0.05) included Type IIx fibre atrophy despite Type I/IIa fibre hypertrophy, with increased indices of capillarity alongside preserved contractile properties during isometric, isotonic, and cyclical contractions. In conclusion, obese-HFpEF rats demonstrated blunted skeletal muscle blood flow during contractions in parallel to microvascular structural remodelling, fibre atrophy, and isotonic contractile dysfunction in the locomotor muscles. In contrast, diaphragm phenotype remained well preserved. This study identifies numerous muscle-specific impairments that could exacerbate exercise intolerance in obese-HFpEF.
Collapse
Affiliation(s)
- Ever Espino-Gonzalez
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Peter G Tickle
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alan P Benson
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Roger W P Kissane
- Department of Musculoskeletal & Ageing Science, University of Liverpool, Liverpool, UK
| | - Graham N Askew
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Stuart Egginton
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - T Scott Bowen
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| |
Collapse
|
43
|
Bisaccia G, Ricci F, Gallina S, Di Baldassarre A, Ghinassi B. Mitochondrial Dysfunction and Heart Disease: Critical Appraisal of an Overlooked Association. Int J Mol Sci 2021; 22:ijms22020614. [PMID: 33435429 PMCID: PMC7827742 DOI: 10.3390/ijms22020614] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/03/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022] Open
Abstract
The myocardium is among the most energy-consuming tissues in the body, burning from 6 to 30 kg of ATP per day within the mitochondria, the so-called powerhouse of the cardiomyocyte. Although mitochondrial genetic disorders account for a small portion of cardiomyopathies, mitochondrial dysfunction is commonly involved in a broad spectrum of heart diseases, and it has been implicated in the development of heart failure via maladaptive circuits producing and perpetuating mitochondrial stress and energy starvation. In this bench-to-bedside review, we aimed to (i) describe the key functions of the mitochondria within the myocardium, including their role in ischemia/reperfusion injury and intracellular calcium homeostasis; (ii) examine the contribution of mitochondrial dysfunction to multiple cardiac disease phenotypes and their transition to heart failure; and (iii) discuss the rationale and current evidence for targeting mitochondrial function for the treatment of heart failure, including via sodium-glucose cotransporter 2 inhibitors.
Collapse
Affiliation(s)
- Giandomenico Bisaccia
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
| | - Fabrizio Ricci
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
- Department of Clinical Sciences, Lund University, E-205 02 Malmö, Sweden
- Casa di Cura Villa Serena, Città Sant’Angelo, 65013 Pescara, Italy
- Correspondence: ; Tel./Fax: +39-871-355-6922
| | - Sabina Gallina
- MIUR Department of Excellence, Department of Neuroscience, Imaging and Clinical Sciences, University “G.d’Annunzio” of Chieti-Pescara, Via Luigi Polacchi, 11-66100 Chieti, Italy; (G.B.); (S.G.)
| | - Angela Di Baldassarre
- Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.B.); (B.G.)
| | - Barbara Ghinassi
- Department of Medicine and Aging Sciences, University “G.d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (A.D.B.); (B.G.)
| |
Collapse
|
44
|
Goto K, Schauer A, Augstein A, Methawasin M, Granzier H, Halle M, Craenenbroeck EMV, Rolim N, Gielen S, Pieske B, Winzer EB, Linke A, Adams V. Muscular changes in animal models of heart failure with preserved ejection fraction: what comes closest to the patient? ESC Heart Fail 2020; 8:139-150. [PMID: 33350094 PMCID: PMC7835579 DOI: 10.1002/ehf2.13142] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 10/31/2020] [Accepted: 11/15/2020] [Indexed: 12/16/2022] Open
Abstract
AIMS Heart failure with preserved ejection fraction (HFpEF) is associated with reduced exercise capacity elicited by skeletal muscle (SM) alterations. Up to now, no clear medical treatment advice for HFpEF is available. Identification of the ideal animal model mimicking the human condition is a critical step in developing and testing treatment strategies. Several HFpEF animals have been described, but the most suitable in terms of comparability with SM alterations in HFpEF patients is unclear. The aim of the present study was to investigate molecular changes in SM of three different animal models and to compare them with alterations of muscle biopsies obtained from human HFpEF patients. METHODS AND RESULTS Skeletal muscle tissue was obtained from HFpEF and control patients and from three different animal models including the respective controls-ZSF1 rat, Dahl salt-sensitive rat, and transverse aortic constriction surgery/deoxycorticosterone mouse. The development of HFpEF was verified by echocardiography. Protein expression and enzyme activity of selected markers were assessed in SM tissue homogenates. Protein expression between SM tissue obtained from HFpEF patients and the ZSF1 rats revealed similarities for protein markers involved in muscle atrophy (MuRF1 expression, protein ubiquitinylation, and LC3) and mitochondrial metabolism (succinate dehydrogenase and malate dehydrogenase activity, porin expression). The other two animal models exhibited far less similarities to the human samples. CONCLUSIONS None of the three tested animal models mimics the condition in HFpEF patients completely, but among the animal models tested, the ZSF1 rat (ZSF1-lean vs. ZSF1-obese) shows the highest overlap to the human condition. Therefore, when studying therapeutic interventions to treat HFpEF and especially alterations in the SM, we suggest that the ZSF1 rat is a suitable model.
Collapse
Affiliation(s)
- Keita Goto
- Laboratory for Experimental and Molecular Cardiology, Department of Internal Medicine and Cardiology, TU Dresden, Heart Center Dresden University Hospital, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Antje Schauer
- Laboratory for Experimental and Molecular Cardiology, Department of Internal Medicine and Cardiology, TU Dresden, Heart Center Dresden University Hospital, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Antje Augstein
- Laboratory for Experimental and Molecular Cardiology, Department of Internal Medicine and Cardiology, TU Dresden, Heart Center Dresden University Hospital, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Mei Methawasin
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, USA
| | - Martin Halle
- Prevention and Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | | | - Natale Rolim
- Department of Circulation and Medical Imaging, Faculty of Medicine, NTNU, K.G. Jebsen Center of Exercise in Medicine, Trondheim, Norway
| | - Stephan Gielen
- Department of Cardiology, Angiology and Intensive Care, Klinikum Lippe, Detmold, Germany
| | - Burkert Pieske
- Department of Internal Medicine and Cardiology Campus Virchow-Klinikum, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ephraim B Winzer
- Laboratory for Experimental and Molecular Cardiology, Department of Internal Medicine and Cardiology, TU Dresden, Heart Center Dresden University Hospital, Fetscherstrasse 76, Dresden, 01307, Germany
| | - Axel Linke
- Laboratory for Experimental and Molecular Cardiology, Department of Internal Medicine and Cardiology, TU Dresden, Heart Center Dresden University Hospital, Fetscherstrasse 76, Dresden, 01307, Germany.,Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| | - Volker Adams
- Laboratory for Experimental and Molecular Cardiology, Department of Internal Medicine and Cardiology, TU Dresden, Heart Center Dresden University Hospital, Fetscherstrasse 76, Dresden, 01307, Germany.,Dresden Cardiovascular Research Institute and Core Laboratories GmbH, Dresden, Germany
| |
Collapse
|
45
|
Spiesshoefer J, Henke C, Kabitz HJ, Bengel P, Schütt K, Nofer JR, Spieker M, Orwat S, Diller GP, Strecker JK, Giannoni A, Dreher M, Randerath WJ, Boentert M, Tuleta I. Heart Failure Results in Inspiratory Muscle Dysfunction Irrespective of Left Ventricular Ejection Fraction. Respiration 2020; 100:96-108. [PMID: 33171473 DOI: 10.1159/000509940] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/04/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Exercise intolerance in heart failure with reduced ejection fraction (HFrEF) or heart failure with preserved ejection fraction (HFpEF) results from both cardiac dysfunction and skeletal muscle weakness. Respiratory muscle dysfunction with restrictive ventilation disorder may be present irrespective of left ventricular ejection fraction and might be mediated by circulating pro-inflammatory cytokines. OBJECTIVE To determine lung and respiratory muscle function in patients with HFrEF/HFpEF and to determine its associations with exercise intolerance and markers of systemic inflammation. METHODS Adult patients with HFrEF (n = 22, 19 male, 61 ± 14 years) and HFpEF (n = 8, 7 male, 68 ± 8 years) and 19 matched healthy control subjects underwent spirometry, measurement of maximum mouth occlusion pressures, diaphragm ultrasound, and recording of transdiaphragmatic and gastric pressures following magnetic stimulation of the phrenic nerves and the lower thoracic nerve roots. New York Heart Association (NYHA) class and 6-min walking distance (6MWD) were used to quantify exercise intolerance. Levels of circulating interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) were measured using ELISAs. RESULTS Compared with controls, both patient groups showed lower forced vital capacity (FVC) (p < 0.05), maximum inspiratory pressure (PImax), maximum expiratory pressure (PEmax) (p < 0.05), diaphragm thickening ratio (p = 0.01), and diaphragm strength (twitch transdiaphragmatic pressure in response to supramaximal cervical magnetic phrenic nerve stimulation) (p = 0.01). In patients with HFrEF, NYHA class and 6MWD were both inversely correlated with FVC, PImax, and PEmax. In those with HFpEF, there was an inverse correlation between amino terminal pro B-type natriuretic peptide levels and FVC (r = -0.77, p = 0.04). In all HF patients, IL-6 and TNF-α were statistically related to FVC. CONCLUSIONS Irrespective of left ventricular ejection fraction, HF is associated with respiratory muscle dysfunction, which is associated with increased levels of circulating IL-6 and TNF-α.
Collapse
Affiliation(s)
- Jens Spiesshoefer
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy, .,Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany, .,Department of Neurology with Institute for Translational Neurology, University of Muenster, Muenster, Germany,
| | - Carolin Henke
- Department of Neurology, Herz-Jesu-Krankenhaus Hiltrup, Muenster, Germany
| | - Hans Joachim Kabitz
- Department of Pneumology, Cardiology and Intensive Care Medicine, Klinikum Konstanz, Konstanz, Germany
| | - Philipp Bengel
- Clinic for Cardiology and Pneumology/Heart Center, University Medical Center Goettingen, DZHK (German Centre for Cardiovascular Research), Goettingen, Germany
| | - Katharina Schütt
- Department of Internal Medicine I, University Hospital Aachen, RWTH Aachen University, Aachen, Germany
| | - Jerzy-Roch Nofer
- Center for Laboratory Medicine, University Hospital Muenster, University of Muenster, Muenster, Germany and Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maximilian Spieker
- Division of Cardiology, Pulmonology and Vascular Medicine, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Stefan Orwat
- Department of Cardiology III, University Hospital Muenster, Muenster, Germany
| | - Gerhard Paul Diller
- Department of Cardiology III, University Hospital Muenster, Muenster, Germany
| | - Jan Kolia Strecker
- Department of Neurology with Institute for Translational Neurology, University of Muenster, Muenster, Germany
| | - Alberto Giannoni
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Michael Dreher
- Department of Pneumology and Intensive Care Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Winfried Johannes Randerath
- Institute for Pneumology at the University of Cologne, Solingen, Germany.,Bethanien Hospital gGmbH Solingen, Solingen, Germany
| | - Matthias Boentert
- Department of Neurology with Institute for Translational Neurology, University of Muenster, Muenster, Germany.,Department of Medicine, UKM Marienhospital Steinfurt, Steinfurt, Germany
| | - Izabela Tuleta
- Department of Cardiology I, University Hospital Muenster, Muenster, Germany
| |
Collapse
|
46
|
Chaanine AH, LeJemtel TH, Delafontaine P. Mitochondrial Pathobiology and Metabolic Remodeling in Progression to Overt Systolic Heart Failure. J Clin Med 2020; 9:jcm9113582. [PMID: 33172082 PMCID: PMC7694785 DOI: 10.3390/jcm9113582] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/04/2022] Open
Abstract
The mitochondria are mostly abundant in the heart, a beating organ of high- energy demands. Their function extends beyond being a power plant of the cell including redox balance, ion homeostasis and metabolism. They are dynamic organelles that are tethered to neighboring structures, especially the endoplasmic reticulum. Together, they constitute a functional unit implicated in complex physiological and pathophysiological processes. Their topology in the cell, the cardiac myocyte in particular, places them at the hub of signaling and calcium homeostasis, making them master regulators of cell survival or cell death. Perturbations in mitochondrial function play a central role in the pathophysiology of myocardial remodeling and progression of heart failure. In this minireview, we summarize important pathophysiological mechanisms, pertaining to mitochondrial morphology, dynamics and function, which take place in compensated hypertrophy and in progression to overt systolic heart failure. Published work in the last few years has expanded our understanding of these important mechanisms; a key prerequisite to identifying therapeutic strategies targeting mitochondrial dysfunction in heart failure.
Collapse
Affiliation(s)
- Antoine H. Chaanine
- Department of Medicine/Heart and Vascular Institute, Tulane University, New Orleans, LA 70112, USA; (T.H.L.); (P.D.)
- Department of Physiology, Tulane University, New Orleans, LA 70112, USA
- Correspondence: ; Tel.: +504-988-1612; Fax: +504-995-2771
| | - Thierry H. LeJemtel
- Department of Medicine/Heart and Vascular Institute, Tulane University, New Orleans, LA 70112, USA; (T.H.L.); (P.D.)
| | - Patrice Delafontaine
- Department of Medicine/Heart and Vascular Institute, Tulane University, New Orleans, LA 70112, USA; (T.H.L.); (P.D.)
- Department of Physiology, Tulane University, New Orleans, LA 70112, USA
- Department of Pharmacology, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
47
|
Preserved Skeletal Muscle Mitochondrial Function, Redox State, Inflammation and Mass in Obese Mice with Chronic Heart Failure. Nutrients 2020; 12:nu12113393. [PMID: 33158222 PMCID: PMC7694273 DOI: 10.3390/nu12113393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 10/30/2020] [Accepted: 10/31/2020] [Indexed: 12/18/2022] Open
Abstract
Background: Skeletal muscle (SM) mitochondrial dysfunction, oxidative stress, inflammation and muscle mass loss may worsen prognosis in chronic heart failure (CHF). Diet-induced obesity may also cause SM mitochondrial dysfunction as well as oxidative stress and inflammation, but obesity per se may be paradoxically associated with high SM mass and mitochondrial adenosine triphosphate (ATP) production, as well as with enhanced survival in CHF. Methods: We investigated interactions between myocardial infarction(MI)-induced CHF and diet-induced obesity (12-wk 60% vs. standard 10% fat) in modulating gastrocnemius muscle (GM) mitochondrial ATP and tissue superoxide generation, oxidized glutathione (GSSG), cytokines and insulin signalling activation in 10-wk-old mice in the following groups: lean sham-operated, lean CHF (LCHF), obese CHF (ObCHF; all n = 8). The metabolic impact of obesity per se was investigated by pair-feeding ObCHF to standard diet with stabilized excess body weight until sacrifice at wk 8 post-MI. Results: Compared to sham, LCHF had low GM mass, paralleled by low mitochondrial ATP production and high mitochondrial reative oxygen species (ROS) production, pro-oxidative redox state, pro-inflammatory cytokine changes and low insulin signaling (p < 0.05). In contrast, excess body weight in pair-fed ObCHF was associated with high GM mass, preserved mitochondrial ATP and mitochondrial ROS production, unaltered redox state, tissue cytokines and insulin signaling (p = non significant vs. Sham, p < 0.05 vs. LCHF) despite higher superoxide generation from non-mitochondrial sources. Conclusions: CHF disrupts skeletal muscle mitochondrial function in lean rodents with low ATP and high mitochondrial ROS production, associated with tissue pro-inflammatory cytokine profile, low insulin signaling and muscle mass loss. Following CHF onset, obesity per se is associated with high skeletal muscle mass and preserved tissue ATP production, mitochondrial ROS production, redox state, cytokines and insulin signaling. These paradoxical and potentially favorable obesity-associated metabolic patterns could contribute to reported obesity-induced survival advantage in CHF.
Collapse
|
48
|
Fukuta H. Effects of Exercise Training on Cardiac Function in Heart Failure with Preserved Ejection Fraction. Card Fail Rev 2020; 6:e27. [PMID: 33133641 PMCID: PMC7592458 DOI: 10.15420/cfr.2020.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 08/20/2020] [Indexed: 12/29/2022] Open
Abstract
Nearly half of patients with heart failure in the community have heart failure with preserved ejection fraction (HFpEF). Patients with HFpEF are often elderly and their primary chronic symptom is severe exercise intolerance. Left ventricular diastolic dysfunction is associated with the pathophysiology of HFpEF and is an important contributor to exercise intolerance in HFpEF patients. The effects of exercise training on left ventricular diastolic function in HFpEF patients have been examined in several randomised clinical trials. Meta-analysis of the trials indicates that exercise training can provide clinically relevant improvements in exercise capacity without significant change in left ventricular structure or function in HFpEF patients. Further studies are necessary to elucidate the exact mechanisms of exercise intolerance in HFpEF patients and to develop recommendations regarding the most effective type, intensity, frequency, and duration of training in this group.
Collapse
Affiliation(s)
- Hidekatsu Fukuta
- Core Laboratory, Nagoya City University Graduate School of Medical Sciences Nagoya, Japan
| |
Collapse
|
49
|
Carbone S, Billingsley HE, Rodriguez-Miguelez P, Kirkman DL, Garten R, Franco RL, Lee DC, Lavie CJ. Lean Mass Abnormalities in Heart Failure: The Role of Sarcopenia, Sarcopenic Obesity, and Cachexia. Curr Probl Cardiol 2020; 45:100417. [PMID: 31036371 PMCID: PMC11146283 DOI: 10.1016/j.cpcardiol.2019.03.006] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 03/24/2019] [Indexed: 02/07/2023]
Abstract
The role of body composition in patients with heart failure (HF) has been receiving much attention in the last few years. Particularly, reduced lean mass (LM), the best surrogate for skeletal muscle mass, is independently associated with abnormal cardiorespiratory fitness (CRF) and muscle strength, ultimately leading to reduced quality of life and worse prognosis. While in the past, reduced CRF in patients with HF was thought to result exclusively from cardiac dysfunction leading to reduced cardiac output at peak exercise, current evidence supports the concept that abnormalities in LM may also play a critical role. Abnormalities in the LM body composition compartment are associated with the development of sarcopenia, sarcopenic obesity, and cachexia. Such conditions have been implicated in the pathophysiology and progression of HF. However, identification of such conditions remains challenging, as universal definitions for sarcopenia, sarcopenic obesity, and cachexia are lacking. In this review article, we describe the most common body composition abnormalities related to the LM compartment, including skeletal and respiratory muscle mass abnormalities, and the consequences of such anomalies on CRF and muscle strength in patients with HF. Finally, we discuss the potential nonpharmacologic therapeutic strategies such as exercise training (ie, aerobic exercise and resistance exercise) and dietary interventions (ie, dietary supplementation and dietary patterns) that have been implemented to target body composition, with a focus on HF.
Collapse
|
50
|
Moury PH, Zunarelli R, Bailly S, Durand Z, Béhouche A, Garein M, Durand M, Vergès S, Albaladejo P. Diaphragm Thickening During Venoarterial Extracorporeal Membrane Oxygenation Weaning: An Observational Prospective Study. J Cardiothorac Vasc Anesth 2020; 35:1981-1988. [PMID: 33218955 DOI: 10.1053/j.jvca.2020.10.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/01/2020] [Accepted: 10/23/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVES The respiratory workload, according to the diaphragm thickening fraction (TF) during sweep gas flow (SGF), decrease during weaning from venoarterial extracorporeal membrane oxygenation (VA ECMO) was evaluated for the present study. DESIGN Prospective observational study. SETTING Monocentric. PARTICIPANTS Patients were included if they were suitable for a first VA ECMO weaning trial and were breathing spontaneously. INTERVENTIONS SGF was set for 15 minutes when the TF was measured at 4 L/min, 2 L/min, and 1 L/min, with a 10-minute return to baseline between each step. Mechanical ventilation, when required, was set to pressure-support ventilation mode with 7 cmH2O (pressure support) and a positive end-expiratory pressure of 0 cmH2O. Diaphragm ultrasound was used to assess the TF at the end of each step. Demographics, left ventricular ejection fraction (LVEF), and outcome were collected. MEASUREMENTS AND MAIN RESULTS Fifteen patients were included. Ten patients were extubated, and five were ventilated. TF values were 6.3% [0-10] at 4 L/min, 13.3% [10-26] at 2 L/min, and 26.7% [22-44] at 1 L/min (analysis of variance: p < 0.001 between 4 L/min and 2 L/min and p = 0.03 between 2 L/min and 1 L/min). TF did not differ whether patients were or were not ventilated or whether they were or were not weaned successfully from ECMO. TF was correlated with LVEF at 1 L/min SGF (Pearson R 0.67 [0.21-0.88]; p = 0.009) and at 2 L/min (R 0.7 [0.27-0.89]; p = 0.005) but not at 4 L/min. SGF mitigated the relationship between LVEF and TF (analysis of covariance: p < 0.005). CONCLUSIONS Diaphragm TF was related to the SGF of the venoarterial ECMO settings and LVEF at the time of weaning.
Collapse
Affiliation(s)
- Pierre Henri Moury
- Pôle Anesthésie-Réanimation, CHU Grenoble Alpes, Grenoble, France; HP2 Laboratory, Grenoble Alpes University, Grenoble, France; Réanimation, CHT Gaston-Bourret Nouméa, Nouvelle-Calédonie, France.
| | - Romain Zunarelli
- Pôle Anesthésie-Réanimation, CHU Grenoble Alpes, Grenoble, France
| | - Sébastien Bailly
- HP2 Laboratory, Grenoble Alpes University, Grenoble, France; EFCR Laboratory, CHU Grenoble Alpes, Grenoble, France
| | - Zoé Durand
- Pôle Anesthésie-Réanimation, CHU Grenoble Alpes, Grenoble, France
| | | | - Marina Garein
- Pôle Anesthésie-Réanimation, CHU Grenoble Alpes, Grenoble, France
| | - Michel Durand
- Pôle Anesthésie-Réanimation, CHU Grenoble Alpes, Grenoble, France
| | - Samuel Vergès
- HP2 Laboratory, Grenoble Alpes University, Grenoble, France
| | | |
Collapse
|