1
|
Bakos T, Mészáros T, Kozma GT, Berényi P, Facskó R, Farkas H, Dézsi L, Heirman C, de Koker S, Schiffelers R, Glatter KA, Radovits T, Szénási G, Szebeni J. mRNA-LNP COVID-19 Vaccine Lipids Induce Complement Activation and Production of Proinflammatory Cytokines: Mechanisms, Effects of Complement Inhibitors, and Relevance to Adverse Reactions. Int J Mol Sci 2024; 25:3595. [PMID: 38612407 PMCID: PMC11012056 DOI: 10.3390/ijms25073595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024] Open
Abstract
A small fraction of people vaccinated with mRNA-lipid nanoparticle (mRNA-LNP)-based COVID-19 vaccines display acute or subacute inflammatory symptoms whose mechanism has not been clarified to date. To better understand the molecular mechanism of these adverse events (AEs), here, we analyzed in vitro the vaccine-induced induction and interrelations of the following two major inflammatory processes: complement (C) activation and release of proinflammatory cytokines. Incubation of Pfizer-BioNTech's Comirnaty and Moderna's Spikevax with 75% human serum led to significant increases in C5a, sC5b-9, and Bb but not C4d, indicating C activation mainly via the alternative pathway. Control PEGylated liposomes (Doxebo) also induced C activation, but, on a weight basis, it was ~5 times less effective than that of Comirnaty. Viral or synthetic naked mRNAs had no C-activating effects. In peripheral blood mononuclear cell (PBMC) cultures supplemented with 20% autologous serum, besides C activation, Comirnaty induced the secretion of proinflammatory cytokines in the following order: IL-1α < IFN-γ < IL-1β < TNF-α < IL-6 < IL-8. Heat-inactivation of C in serum prevented a rise in IL-1α, IL-1β, and TNF-α, suggesting C-dependence of these cytokines' induction, although the C5 blocker Soliris and C1 inhibitor Berinert, which effectively inhibited C activation in both systems, did not suppress the release of any cytokines. These findings suggest that the inflammatory AEs of mRNA-LNP vaccines are due, at least in part, to stimulation of both arms of the innate immune system, whereupon C activation may be causally involved in the induction of some, but not all, inflammatory cytokines. Thus, the pharmacological attenuation of inflammatory AEs may not be achieved via monotherapy with the tested C inhibitors; efficacy may require combination therapy with different C inhibitors and/or other anti-inflammatory agents.
Collapse
Affiliation(s)
- Tamás Bakos
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (T.B.); (T.M.); (G.T.K.); (P.B.); (R.F.); (L.D.); (G.S.)
| | - Tamás Mészáros
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (T.B.); (T.M.); (G.T.K.); (P.B.); (R.F.); (L.D.); (G.S.)
- SeroScience LCC., 1089 Budapest, Hungary
- Department of Cardiology, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
- Department of Surgical Research and Techniques, Heart and Vascular Center, Semmelweis University, 1089 Budapest, Hungary
| | - Gergely Tibor Kozma
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (T.B.); (T.M.); (G.T.K.); (P.B.); (R.F.); (L.D.); (G.S.)
- SeroScience LCC., 1089 Budapest, Hungary
| | - Petra Berényi
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (T.B.); (T.M.); (G.T.K.); (P.B.); (R.F.); (L.D.); (G.S.)
- SeroScience LCC., 1089 Budapest, Hungary
| | - Réka Facskó
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (T.B.); (T.M.); (G.T.K.); (P.B.); (R.F.); (L.D.); (G.S.)
- SeroScience LCC., 1089 Budapest, Hungary
- Department of Cardiology, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
- Department of Surgical Research and Techniques, Heart and Vascular Center, Semmelweis University, 1089 Budapest, Hungary
| | - Henriette Farkas
- Hungarian Center of Reference and Excellence, Department of Internal Medicine and Hematology, Semmelweis University, 1088 Budapest, Hungary;
| | - László Dézsi
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (T.B.); (T.M.); (G.T.K.); (P.B.); (R.F.); (L.D.); (G.S.)
| | - Carlo Heirman
- Etherna Biopharmaceuticals, 2845 Niel, Belgium; (C.H.); (S.d.K.)
| | - Stefaan de Koker
- Etherna Biopharmaceuticals, 2845 Niel, Belgium; (C.H.); (S.d.K.)
| | - Raymond Schiffelers
- Division of Laboratories and Pharmacy, University Medical Center, 3584 CX Utrecht, The Netherlands;
| | | | - Tamás Radovits
- Department of Cardiology, Heart and Vascular Center, Semmelweis University, 1122 Budapest, Hungary;
- Department of Surgical Research and Techniques, Heart and Vascular Center, Semmelweis University, 1089 Budapest, Hungary
| | - Gábor Szénási
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (T.B.); (T.M.); (G.T.K.); (P.B.); (R.F.); (L.D.); (G.S.)
| | - János Szebeni
- Nanomedicine Research and Education Center, Department of Translational Medicine, Semmelweis University, 1085 Budapest, Hungary; (T.B.); (T.M.); (G.T.K.); (P.B.); (R.F.); (L.D.); (G.S.)
- SeroScience LCC., 1089 Budapest, Hungary
- Department of Nanobiotechnology and Regenerative Medicine, Faculty of Health Sciences, Miskolc University, 3530 Miskolc, Hungary
- Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 06351, Republic of Korea
| |
Collapse
|
2
|
Massri M, Toonen EJ, Sarg B, Kremser L, Grasse M, Fleischer V, Torres-Quesada O, Hengst L, Skjoedt MO, Bayarri-Olmos R, Rosbjerg A, Garred P, Orth-Höller D, Prohászka Z, Würzner R. Complement C7 and clusterin form a complex in circulation. Front Immunol 2024; 15:1330095. [PMID: 38333209 PMCID: PMC10850381 DOI: 10.3389/fimmu.2024.1330095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/04/2024] [Indexed: 02/10/2024] Open
Abstract
Introduction The complement system is part of innate immunity and is comprised of an intricate network of proteins that are vital for host defense and host homeostasis. A distinct mechanism by which complement defends against invading pathogens is through the membrane attack complex (MAC), a lytic structure that forms on target surfaces. The MAC is made up of several complement components, and one indispensable component of the MAC is C7. The role of C7 in MAC assembly is well documented, however, inherent characteristics of C7 are yet to be investigated. Methods To shed light on the molecular characteristics of C7, we examined the properties of serum-purified C7 acquired using polyclonal and novel monoclonal antibodies. The properties of serum‑purified C7 were investigated through a series of proteolytic analyses, encompassing Western blot and mass spectrometry. The nature of C7 protein-protein interactions were further examined by a novel enzyme-linked immunosorbent assay (ELISA), as well as size‑exclusion chromatography. Results Protein analyses showcased an association between C7 and clusterin, an inhibitory complement regulator. The distinct association between C7 and clusterin was also demonstrated in serum-purified clusterin. Further assessment revealed that a complex between C7 and clusterin (C7-CLU) was detected. The C7-CLU complex was also identified in healthy serum and plasma donors, highlighting the presence of the complex in circulation. Discussion Clusterin is known to dissociate the MAC structure by binding to polymerized C9, nevertheless, here we show clusterin binding to the native form of a terminal complement protein in vivo. The presented data reveal that C7 exhibits characteristics beyond that of MAC assembly, instigating further investigation of the effector role that the C7-CLU complex plays in the complement cascade.
Collapse
Affiliation(s)
- Mariam Massri
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Bettina Sarg
- Institute of Medical Biochemsitry, Protein Core Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Leopold Kremser
- Institute of Medical Biochemsitry, Protein Core Facility, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Marco Grasse
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Fleischer
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Omar Torres-Quesada
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Ludger Hengst
- Institute of Medical Biochemistry, Medical University of Innsbruck, Biocenter, Innsbruck, Austria
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Institute of Immunology & Microbiology , University of Copenhagen, Copenhagen, Denmark
| | - Rafael Bayarri-Olmos
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Rosbjerg
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Dorothea Orth-Höller
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
- MB-LAB Clinical Microbiology Laboratory, Innsbruck, Austria
| | - Zoltán Prohászka
- Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
- Research Group for Immunology and Hematology, Semmelweis University-Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
3
|
Doorduijn DJ, Lukassen MV, van 't Wout MFL, Franc V, Ruyken M, Bardoel BW, Heck AJR, Rooijakkers SHM. Soluble MAC is primarily released from MAC-resistant bacteria that potently convert complement component C5. eLife 2022; 11:77503. [PMID: 35947526 PMCID: PMC9402229 DOI: 10.7554/elife.77503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 08/01/2022] [Indexed: 11/21/2022] Open
Abstract
The membrane attack complex (MAC or C5b-9) is an important effector of the immune system to kill invading microbes. MAC formation is initiated when complement enzymes on the bacterial surface convert complement component C5 into C5b. Although the MAC is a membrane-inserted complex, soluble forms of MAC (sMAC), or terminal complement complex (TCC), are often detected in sera of patients suffering from infections. Consequently, sMAC has been proposed as a biomarker, but it remains unclear when and how it is formed during infections. Here, we studied mechanisms of MAC formation on different Gram-negative and Gram-positive bacteria and found that sMAC is primarily formed in human serum by bacteria resistant to MAC-dependent killing. Surprisingly, C5 was converted into C5b more potently by MAC-resistant compared to MAC-sensitive Escherichia coli strains. In addition, we found that MAC precursors are released from the surface of MAC-resistant bacteria during MAC assembly. Although release of MAC precursors from bacteria induced lysis of bystander human erythrocytes, serum regulators vitronectin (Vn) and clusterin (Clu) can prevent this. Combining size exclusion chromatography with mass spectrometry profiling, we show that sMAC released from bacteria in serum is a heterogeneous mixture of complexes composed of C5b-8, up to three copies of C9 and multiple copies of Vn and Clu. Altogether, our data provide molecular insight into how sMAC is generated during bacterial infections. This fundamental knowledge could form the basis for exploring the use of sMAC as biomarker.
Collapse
Affiliation(s)
- Dennis J Doorduijn
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Marie V Lukassen
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, Netherlands
| | - Marije F L van 't Wout
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Vojtech Franc
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, Netherlands
| | - Maartje Ruyken
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, Netherlands
| | - Suzan H M Rooijakkers
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
4
|
Bansal L, Nichols EM, Howsmon DP, Neisen J, Bessant CM, Cunningham F, Petit-Frere S, Ludbrook S, Damian V. Mathematical Modeling of Complement Pathway Dynamics for Target Validation and Selection of Drug Modalities for Complement Therapies. Front Pharmacol 2022; 13:855743. [PMID: 35517827 PMCID: PMC9061988 DOI: 10.3389/fphar.2022.855743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Motivation: The complement pathway plays a critical role in innate immune defense against infections. Dysregulation between activation and regulation of the complement pathway is widely known to contribute to several diseases. Nevertheless, very few drugs that target complement proteins have made it to the final regulatory approval because of factors such as high concentrations and dosing requirements for complement proteins and serious side effects from complement inhibition. Methods: A quantitative systems pharmacology (QSP) model of the complement pathway has been developed to evaluate potential drug targets to inhibit complement activation in autoimmune diseases. The model describes complement activation via the alternative and terminal pathways as well as the dynamics of several regulatory proteins. The QSP model has been used to evaluate the effect of inhibiting complement targets on reducing pathway activation caused by deficiency in factor H and CD59. The model also informed the feasibility of developing small-molecule or large-molecule antibody drugs by predicting the drug dosing and affinity requirements for potential complement targets. Results: Inhibition of several complement proteins was predicted to lead to a significant reduction in complement activation and cell lysis. The complement proteins that are present in very high concentrations or have high turnover rates (C3, factor B, factor D, and C6) were predicted to be challenging to engage with feasible doses of large-molecule antibody compounds (≤20 mg/kg). Alternatively, complement fragments that have a short half-life (C3b, C3bB, and C3bBb) were predicted to be challenging or infeasible to engage with small-molecule compounds because of high drug affinity requirements (>1 nM) for the inhibition of downstream processes. The drug affinity requirements for disease severity reduction were predicted to differ more than one to two orders of magnitude than affinities needed for the conventional 90% target engagement (TE) for several proteins. Thus, the QSP model analyses indicate the importance for accounting for TE requirements for achieving reduction in disease severity endpoints during the lead optimization stage.
Collapse
Affiliation(s)
- Loveleena Bansal
- Systems Modeling and Translational Biology, Computational Sciences, GSK, Upper Providence, Collegeville, PA, United States
| | | | - Daniel P Howsmon
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Jessica Neisen
- Immunology Research Unit, GSK, Stevenage, United Kingdom
| | | | | | | | - Steve Ludbrook
- Immunology Research Unit, GSK, Stevenage, United Kingdom
| | - Valeriu Damian
- Systems Modeling and Translational Biology, Computational Sciences, GSK, Upper Providence, Collegeville, PA, United States
| |
Collapse
|
5
|
Structural basis of soluble membrane attack complex packaging for clearance. Nat Commun 2021; 12:6086. [PMID: 34667172 PMCID: PMC8526713 DOI: 10.1038/s41467-021-26366-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 10/01/2021] [Indexed: 12/15/2022] Open
Abstract
Unregulated complement activation causes inflammatory and immunological pathologies with consequences for human disease. To prevent bystander damage during an immune response, extracellular chaperones (clusterin and vitronectin) capture and clear soluble precursors to the membrane attack complex (sMAC). However, how these chaperones block further polymerization of MAC and prevent the complex from binding target membranes remains unclear. Here, we address that question by combining cryo electron microscopy (cryoEM) and cross-linking mass spectrometry (XL-MS) to solve the structure of sMAC. Together our data reveal how clusterin recognizes and inhibits polymerizing complement proteins by binding a negatively charged surface of sMAC. Furthermore, we show that the pore-forming C9 protein is trapped in an intermediate conformation whereby only one of its two transmembrane β-hairpins has unfurled. This structure provides molecular details for immune pore formation and helps explain a complement control mechanism that has potential implications for how cell clearance pathways mediate immune homeostasis. To prevent unregulated complement activation, extracellular chaperones capture soluble precursors to the membrane attack complex (sMAC). Here, structural analysis of sMAC reveals how clusterin recognizes heterogeneous sMAC complexes and inhibits polymerization of complement protein C9.
Collapse
|
6
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021; 11:701362. [PMID: 34660335 PMCID: PMC8515183 DOI: 10.3389/fcimb.2021.701362] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/15/2021] [Indexed: 12/12/2022] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | | |
Collapse
|
7
|
Syed I, Wooten RM. Interactions Between Pathogenic Burkholderia and the Complement System: A Review of Potential Immune Evasion Mechanisms. Front Cell Infect Microbiol 2021. [PMID: 34660335 DOI: 10.1086/69216810.3389/fcimb.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023] Open
Abstract
The genus Burkholderia contains over 80 different Gram-negative species including both plant and human pathogens, the latter of which can be classified into one of two groups: the Burkholderia pseudomallei complex (Bpc) or the Burkholderia cepacia complex (Bcc). Bpc pathogens Burkholderia pseudomallei and Burkholderia mallei are highly virulent, and both have considerable potential for use as Tier 1 bioterrorism agents; thus there is great interest in the development of novel vaccines and therapeutics for the prevention and treatment of these infections. While Bcc pathogens Burkholderia cenocepacia, Burkholderia multivorans, and Burkholderia cepacia are not considered bioterror threats, the incredible impact these infections have on the cystic fibrosis community inspires a similar demand for vaccines and therapeutics for the prevention and treatment of these infections as well. Understanding how these pathogens interact with and evade the host immune system will help uncover novel therapeutic targets within these organisms. Given the important role of the complement system in the clearance of bacterial pathogens, this arm of the immune response must be efficiently evaded for successful infection to occur. In this review, we will introduce the Burkholderia species to be discussed, followed by a summary of the complement system and known mechanisms by which pathogens interact with this critical system to evade clearance within the host. We will conclude with a review of literature relating to the interactions between the herein discussed Burkholderia species and the host complement system, with the goal of highlighting areas in this field that warrant further investigation.
Collapse
Affiliation(s)
- Irum Syed
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - R Mark Wooten
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| |
Collapse
|
8
|
Barnum SR, Bubeck D, Schein TN. Soluble Membrane Attack Complex: Biochemistry and Immunobiology. Front Immunol 2020; 11:585108. [PMID: 33240274 PMCID: PMC7683570 DOI: 10.3389/fimmu.2020.585108] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The soluble membrane attack complex (sMAC, a.k.a., sC5b-9 or TCC) is generated on activation of complement and contains the complement proteins C5b, C6, C7, C8, C9 together with the regulatory proteins clusterin and/or vitronectin. sMAC is a member of the MACPF/cholesterol-dependent-cytolysin superfamily of pore-forming molecules that insert into lipid bilayers and disrupt cellular integrity and function. sMAC is a unique complement activation macromolecule as it is comprised of several different subunits. To date no complement-mediated function has been identified for sMAC. sMAC is present in blood and other body fluids under homeostatic conditions and there is abundant evidence documenting changes in sMAC levels during infection, autoimmune disease and trauma. Despite decades of scientific interest in sMAC, the mechanisms regulating its formation in healthy individuals and its biological functions in both health and disease remain poorly understood. Here, we review the structural differences between sMAC and its membrane counterpart, MAC, and examine sMAC immunobiology with respect to its presence in body fluids in health and disease. Finally, we discuss the diagnostic potential of sMAC for diagnostic and prognostic applications and potential utility as a companion diagnostic.
Collapse
Affiliation(s)
| | - Doryen Bubeck
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | | |
Collapse
|
9
|
Krukonis ES, Thomson JJ. Complement evasion mechanisms of the systemic pathogens Yersiniae and Salmonellae. FEBS Lett 2020; 594:2598-2620. [DOI: 10.1002/1873-3468.13771] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 01/12/2023]
Affiliation(s)
- Eric S. Krukonis
- Division of Integrated Biomedical Sciences University of Detroit Mercy School of Dentistry Detroit MI USA
| | - Joshua J. Thomson
- Division of Integrated Biomedical Sciences University of Detroit Mercy School of Dentistry Detroit MI USA
| |
Collapse
|
10
|
Lewis LA, Ram S. Complement interactions with the pathogenic Neisseriae: clinical features, deficiency states, and evasion mechanisms. FEBS Lett 2020; 594:2670-2694. [PMID: 32058583 DOI: 10.1002/1873-3468.13760] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/04/2020] [Accepted: 02/09/2020] [Indexed: 02/06/2023]
Abstract
Neisseria gonorrhoeae causes the sexually transmitted infection gonorrhea, while Neisseria meningitidis is an important cause of bacterial meningitis and sepsis. Complement is a central arm of innate immune defenses and plays an important role in combating Neisserial infections. Persons with congenital and acquired defects in complement are at a significantly higher risk for invasive Neisserial infections such as invasive meningococcal disease and disseminated gonococcal infection compared to the general population. Of note, Neisseria gonorrhoeae and Neisseria meningitidis can only infect humans, which in part may be related to their ability to evade only human complement. This review summarizes the epidemiologic and clinical aspects of Neisserial infections in persons with defects in the complement system. Mechanisms used by these pathogens to subvert killing by complement and preclinical studies showing how these complement evasion strategies may be used to counteract the global threat of meningococcal and gonococcal infections are discussed.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
11
|
Tenner AJ. Complement-Mediated Events in Alzheimer's Disease: Mechanisms and Potential Therapeutic Targets. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:306-315. [PMID: 31907273 PMCID: PMC6951444 DOI: 10.4049/jimmunol.1901068] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/18/2019] [Indexed: 12/11/2022]
Abstract
An estimated 5.7 million Americans suffer from Alzheimer's disease in the United States, with no disease-modifying treatments to prevent or treat cognitive deficits associated with the disease. Genome-wide association studies suggest that an enhancement of clearance mechanisms and/or promotion of an anti-inflammatory response may slow or prevent disease progression. Increasing awareness of distinct roles of complement components in normal brain development and function and in neurodegenerative disorders align with complement-mediated responses, and thus, thorough understanding of these molecular pathways is needed to facilitate successful therapeutic design. Both beneficial and detrimental effects of C1q as well as contributions to local inflammation by C5a-C5aR1 signaling in brain highlight the need for precision of therapeutic design. The potential benefit of β-amyloid clearance from the circulation via CR1-mediated mechanisms is also reviewed. Therapies that suppress inflammation while preserving protective effects of complement could be tested now to slow the progression of this debilitating disease.
Collapse
Affiliation(s)
- Andrea J Tenner
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA 92697;
- Department of Neurobiology and Behavior, University of California Irvine, Irvine, CA 92697;
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA 92697; and
- Institute for Memory Impairment and Neurological Disorders, University of California Irvine, Irvine, CA 92697
| |
Collapse
|
12
|
Thomson JJ, Plecha SC, Krukonis ES. Ail provides multiple mechanisms of serum resistance to Yersinia pestis. Mol Microbiol 2018; 111:82-95. [PMID: 30260060 DOI: 10.1111/mmi.14140] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2018] [Indexed: 02/06/2023]
Abstract
Ail, a multifunctional outer membrane protein of Yersinia pestis, confers cell binding, Yop delivery and serum resistance activities. Resistance to complement proteins in serum is critical for the survival of Y. pestis during the septicemic stage of plague infections. Bacteria employ a variety of tactics to evade the complement system, including recruitment of complement regulatory factors, such as factor H, C4b-binding protein (C4BP) and vitronectin (Vn). Y. pestis Ail interacts with the regulatory factors Vn and C4BP, and Ail homologs from Y. enterocolitica and Y. pseudotuberculosis recruit factor H. Using co-sedimentation assays, we demonstrate that two surface-exposed amino acids, F80 and F130, are required for the interaction of Y. pestis Ail with Vn, factor H and C4BP. However, although Ail-F80A/F130A fails to interact with these complement regulatory proteins, it still confers 10,000-fold more serum resistance than a Δail strain and prevents C9 polymerization, potentially by directly interfering with MAC assembly. Using site-directed mutagenesis, we further defined this additional mechanism of complement evasion conferred by Ail. Finally, we find that at Y. pestis concentrations reflective of early-stage septicemic plague, Ail weakly recruits Vn and fails to recruit factor H, suggesting that this alternative mechanism of serum resistance may be essential during plague infection.
Collapse
Affiliation(s)
- Joshua J Thomson
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI, USA
| | - Sarah C Plecha
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI, USA
| | - Eric S Krukonis
- Division of Integrated Biomedical Sciences, University of Detroit Mercy School of Dentistry, Detroit, MI, USA.,Department of Immunology, Microbiology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109, USA
| |
Collapse
|
13
|
Podack ER, Munson GP. Killing of Microbes and Cancer by the Immune System with Three Mammalian Pore-Forming Killer Proteins. Front Immunol 2016; 7:464. [PMID: 27857713 PMCID: PMC5093134 DOI: 10.3389/fimmu.2016.00464] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022] Open
Abstract
Immunology is the science of biological warfare between the defenses of our immune systems and offensive pathogenic microbes and cancers. Over the course of his scientific career, Eckhard R. Podack made several seminal discoveries that elucidated key aspects of this warfare at a molecular level. When Eckhard joined the complement laboratory of Müller-Eberhard in 1974, he was fascinated by two questions: (1) what is the molecular mechanism by which complement kills invasive bacteria? and (2) which one of the complement components is the killer molecule? Eckhard’s quest to answer these questions would lead to the discovery C9 and later, two additional pore-forming killer molecules of the immune system. Here is a brief account of how he discovered poly-C9, the pore-forming protein of complement in blood and interstitial fluids: Perforin-1, expressed by natural killer cells and cytotoxic T lymphocytes; and Perforin-2 (MPEG1), expressed by all cell types examined to date. All the three killing systems are crucial for our survival and health.
Collapse
Affiliation(s)
- Eckhard R Podack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| | - George P Munson
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| |
Collapse
|
14
|
Morgan BP, Walters D, Serna M, Bubeck D. Terminal complexes of the complement system: new structural insights and their relevance to function. Immunol Rev 2016; 274:141-151. [PMID: 27782334 DOI: 10.1111/imr.12461] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Complement is a key component of innate immunity in health and a powerful driver of inflammation and tissue injury in disease. The biological and pathological effects of complement activation are mediated by activation products. These come in two flavors: (i) proteolytic fragments of complement proteins (C3, C4, C5) generated during activation that bind specific receptors on target cells to mediate effects; (ii) the multimolecular membrane attack complex generated from the five terminal complement proteins that directly binds to and penetrates target cell membranes. Several recent publications have described structural insights that have changed perceptions of the nature of this membrane attack complex. This review will describe these recent advances in understanding of the structure of the membrane attack complex and its by-product the fluid-phase terminal complement complex and relate these new structural insights to functional consequences and cell responses to complement membrane attack.
Collapse
Affiliation(s)
- Bryan Paul Morgan
- Systems Immunity Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| | - David Walters
- Systems Immunity Research Institute, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Marina Serna
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London, UK
| | - Doryen Bubeck
- Faculty of Natural Sciences, Department of Life Sciences, Imperial College, London, UK
| |
Collapse
|
15
|
Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol 2015; 6:262. [PMID: 26082779 PMCID: PMC4451739 DOI: 10.3389/fimmu.2015.00262] [Citation(s) in RCA: 1019] [Impact Index Per Article: 113.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022] Open
Abstract
Complement is a complex innate immune surveillance system, playing a key role in defense against pathogens and in host homeostasis. The complement system is initiated by conformational changes in recognition molecular complexes upon sensing danger signals. The subsequent cascade of enzymatic reactions is tightly regulated to assure that complement is activated only at specific locations requiring defense against pathogens, thus avoiding host tissue damage. Here, we discuss the recent advances describing the molecular and structural basis of activation and regulation of the complement pathways and their implication on physiology and pathology. This article will review the mechanisms of activation of alternative, classical, and lectin pathways, the formation of C3 and C5 convertases, the action of anaphylatoxins, and the membrane-attack-complex. We will also discuss the importance of structure-function relationships using the example of atypical hemolytic uremic syndrome. Lastly, we will discuss the development and benefits of therapies using complement inhibitors.
Collapse
Affiliation(s)
- Nicolas S Merle
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| | - Sarah Elizabeth Church
- UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; UMR_S 1138, Cordeliers Research Center, Integrative Cancer Immunology Team, INSERM , Paris , France
| | - Veronique Fremeaux-Bacchi
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France ; Service d'Immunologie Biologique, Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges-Pompidou , Paris , France
| | - Lubka T Roumenina
- UMR_S 1138, Cordeliers Research Center, Complement and Diseases Team, INSERM , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Paris Cité, Université Paris Descartes , Paris , France ; UMR_S 1138, Centre de Recherche des Cordeliers, Sorbonne Universités, Université Pierre et Marie Curie-Paris , Paris , France
| |
Collapse
|
16
|
Liu K, Mao YF, Zheng J, Peng ZY, Liu WW, Liu Y, Xu WG, Sun XJ, Jiang CL, Jiang L. SC5b-9-induced pulmonary microvascular endothelial hyperpermeability participates in ventilator-induced lung injury. Cell Biochem Biophys 2014; 67:1421-31. [PMID: 23760612 DOI: 10.1007/s12013-013-9675-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mechanical ventilation with large tidal volumes can increase lung alveolar permeability and initiate inflammatory responses, termed ventilator-induced lung injury (VILI). VILI is characterized by an influx of inflammatory cells, increased pulmonary permeability, and endothelial and epithelial cell death. But the underlying molecular mechanisms that regulate VILI remain unclear. The purpose of this study was to investigate the mechanisms that regulate pulmonary endothelial barrier in an animal model of VILI. These data suggest that SC5b-9, as the production of the complement activation, causes increase in rat pulmonary microvascular permeability by inducing activation of RhoA and subsequent phosphorylation of myosin light chain and contraction of endothelial cells, resulting in gap formation. In general, the complement-mediated increase in pulmonary microvascular permeability may participate in VILI.
Collapse
Affiliation(s)
- Kan Liu
- Department of Diving Medicine, Faculty of Nautical Medicine, Second Military Medical University, Shanghai, 200433, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The complement terminal pathway clears pathogens by generating cytotoxic membrane attack complex (MAC) pores on target cells. For more than 40 years, biochemical and cellular assays have been used to characterize the lytic nature of the MAC and to define its protein composition. Although models for pore formation have been inferred from structures of bacterial cytolysins, it was only recently that we were able to visualize how complement components come together during MAC assembly. This review highlights structural analyses of terminal pathway complexes to explore molecular mechanisms underlying MAC formation.
Collapse
Affiliation(s)
- Doryen Bubeck
- Department of Life Sciences, Sir Ernst Chain Building, South Kensington Campus, Imperial College London , London SW7 2AZ, U.K
| |
Collapse
|
18
|
Moskovich O, Fishelson Z. Quantification of complement C5b-9 binding to cells by flow cytometry. Methods Mol Biol 2014; 1100:103-108. [PMID: 24218253 DOI: 10.1007/978-1-62703-724-2_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Interaction of the complement system, directly or indirectly (e.g., via antibodies), with cells activates the early and late complement components and culminates in the deposition of a membrane-spanning C5b-9 complex on the cell surface. At a high copy number, this C5b-9 will activate cell death, whereas at a low copy number, it will transmit various signals into cells. Quantification of C5b-9 deposition is useful for assessments of the capacity of cells and antibodies to activate complement. By using an antibody that identifies a novel antigen of the C5b-9 complex, the amount of C5b-9 complexes on cells can be quantified by flow cytometry. The detailed protocol is described in this chapter.
Collapse
Affiliation(s)
- Oren Moskovich
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
19
|
Abstract
The complement system is an intricate network of serum proteins that mediates humoral innate immunity through an amplification cascade that ultimately leads to recruitment of inflammatory cells or opsonisation or killing of pathogens. One effector arm of this network is the terminal pathway of complement, which leads to the formation of the membrane attack complex (MAC) composed of complement components C5b, C6, C7, C8 and C9. Upon formation of C5 convertases via the classical or alternative pathways of complement activation, C5b is generated from C5 by proteolytic cleavage, nucleating a series of association and polymerisation reactions of the MAC-constituting complement components that culminate in pore formation of pathogenic membranes. Recent structures of MAC components and homologous proteins significantly increased our understanding of oligomerisation, membrane association and integration, shedding light onto the molecular mechanism of this important branch of the innate immune system.
Collapse
|
20
|
Abstract
Despite considerable advances in the understanding of the pathogenesis of meningococcal disease, this infection remains a major cause of morbidity and mortality globally. The role of the complement system in innate immune defenses against invasive meningococcal disease is well established. Individuals deficient in components of the alternative and terminal complement pathways are highly predisposed to invasive, often recurrent meningococcal infections. Genome-wide analysis studies also point to a central role for complement in disease pathogenesis. Here we review the pathophysiologic events pertinent to the complement system that accompany meningococcal sepsis in humans. Meningococci use several often redundant mechanisms to evade killing by human complement. Capsular polysaccharide and lipooligosaccharide glycan composition play critical roles in complement evasion. Some of the newly described protein vaccine antigens interact with complement components and have sparked considerable research interest.
Collapse
Affiliation(s)
- Lisa A Lewis
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| | - Sanjay Ram
- Division of Infectious Diseases and Immunology; University of Massachusetts Medical School; Worcester, MA USA
| |
Collapse
|
21
|
Dunstone MA, Tweten RK. Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins. Curr Opin Struct Biol 2012; 22:342-9. [PMID: 22658510 DOI: 10.1016/j.sbi.2012.04.008] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/26/2012] [Accepted: 04/26/2012] [Indexed: 11/29/2022]
Abstract
The bacterial cholesterol dependent cytolysins (CDCs) and membrane attack complex/perforin-like proteins (MACPF) represent two major branches of a large, exceptionally diverged superfamily. Most characterized CDC/MACPF proteins form large pores that function in immunity, venoms, and pathogenesis. Extensive structural, biochemical and biophysical studies have started to address some of the questions surrounding how the soluble, monomeric form of these remarkable molecules recognize diverse targets and assemble into oligomeric membrane embedded pores. This review explores mechanistic similarities and differences in how CDCs and MACPF proteins form pores.
Collapse
Affiliation(s)
- Michelle A Dunstone
- Department of Biochemistry and Molecular Biology, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | | |
Collapse
|
22
|
Hadders MA, Bubeck D, Roversi P, Hakobyan S, Forneris F, Morgan BP, Pangburn MK, Llorca O, Lea SM, Gros P. Assembly and regulation of the membrane attack complex based on structures of C5b6 and sC5b9. Cell Rep 2012; 1:200-7. [PMID: 22832194 PMCID: PMC3314296 DOI: 10.1016/j.celrep.2012.02.003] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 02/09/2012] [Accepted: 02/10/2012] [Indexed: 12/23/2022] Open
Abstract
Activation of the complement system results in formation of membrane attack complexes (MACs), pores that disrupt lipid bilayers and lyse bacteria and other pathogens. Here, we present the crystal structure of the first assembly intermediate, C5b6, together with a cryo-electron microscopy reconstruction of a soluble, regulated form of the pore, sC5b9. Cleavage of C5 to C5b results in marked conformational changes, distinct from those observed in the homologous C3-to-C3b transition. C6 captures this conformation, which is preserved in the larger sC5b9 assembly. Together with antibody labeling, these structures reveal that complement components associate through sideways alignment of the central MAC-perforin (MACPF) domains, resulting in a C5b6-C7-C8β-C8α-C9 arc. Soluble regulatory proteins below the arc indicate a potential dual mechanism in protection from pore formation. These results provide a structural framework for understanding MAC pore formation and regulation, processes important for fighting infections and preventing complement-mediated tissue damage.
Collapse
Affiliation(s)
- Michael A. Hadders
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Doryen Bubeck
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Pietro Roversi
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Svetlana Hakobyan
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Federico Forneris
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - B. Paul Morgan
- Department of Medical Biochemistry and Immunology, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| | - Michael K. Pangburn
- Department of Biochemistry, Center for Biomedical Research, University of Texas Science Center, 11937 US Highway 271, Tyler, TX 75708-3154, USA
| | - Oscar Llorca
- Centro de Investigaciones Biológicas (CIB), Spanish National Research Council (CSIC), Ramiro de Maeztu, 9. 28040 Madrid, Spain
| | - Susan M. Lea
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK
| | - Piet Gros
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Department of Chemistry, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
23
|
Marioli DJ, Zarkadis IK. The vitronectin gene in rainbow trout: cloning, expression and phylogenetic analysis. FISH & SHELLFISH IMMUNOLOGY 2008; 24:18-25. [PMID: 17981477 DOI: 10.1016/j.fsi.2007.07.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Revised: 06/19/2007] [Accepted: 07/01/2007] [Indexed: 05/25/2023]
Abstract
Vitronectin is a major cell adhesion glycoprotein that is found in plasma and the extracellular matrix. Vitronectin consists of an N-terminal somatomedin B domain and two hemopexin-like domains and controls functions including cell adhesion, migration, haemostasis and immune defence. In order to study the molecular evolution of the complement lytic pathway regulation, we have cloned and characterized the vitronectin gene from rainbow trout (Oncorhynchus mykiss). The deduced amino acid sequence of trout vitronectin exhibits 45%, 46%, 47% and 63% identity with human, chicken, Xenopus and zebrafish orthologs, respectively. The domain architecture of the trout vitronectin, consisting of a somatomedin B domain and two hemopexin-like domains, resembles that of mammalian vitronectins. Analysis of partial genomic clones shows that trout vitronectin gene exhibits the same exon-intron organization profile as the human ortholog gene. The trout vitronectin gene is probably present as a single copy in the trout genome, showing a differential expression pattern among tissues investigated.
Collapse
Affiliation(s)
- Dimitra J Marioli
- Department of Biology, School of Medicine, University of Patras, Rion 26500, Patras, Greece
| | | |
Collapse
|
24
|
Seger D, Gechtman Z, Shaltiel S. Phosphorylation of vitronectin by casein kinase II. Identification of the sites and their promotion of cell adhesion and spreading. J Biol Chem 1998; 273:24805-13. [PMID: 9733784 DOI: 10.1074/jbc.273.38.24805] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell adhesion protein vitronectin (Vn) was previously shown to be the major target in human blood for an extracellular protein kinase A, which is released from platelets upon their physiological stimulation with thrombin and also prevails as an ectoenzyme in several other types of blood cells. Because plasma Vn was shown to have only one protein kinase A phosphorylation site (Ser378) but to contain approximately 3 mol of covalently bound phosphate, and because human serum and blood cells were shown to contain also a casein kinase II (CKII) on their surface, we studied the phosphorylation of Vn by CKII attempting to find out whether such phosphorylation modulates Vn function, an acid test for its having a physiological relevance. Here we show (i) that the CKII phosphorylation of Vn has a Km of 0.5-2 microM (lower than the Vn concentration in blood, 3-6 microM), (ii) that it is targeted to Thr50 and Thr57, which are vicinal to the RGD site of Vn, and (iii) that the phosphorylation of Thr57 facilitates the phosphorylation of Thr50. The maximal stoichiometry of the CKII phosphorylation of plasma Vn was found to be low, which, in principle, could be due to its partial prephosphorylation in vivo. However, for the detection of a functional modulation, we needed a comparison between a fully phosphorylated Vn (at Thr57 and Thr50) and a nonphosphorylated Vn. Therefore, we expressed Vn in a baculovirus system and show (i) that the CKII phosphorylation of wt-Vn enhances the adhesion of bovine aorta endothelial cells; (ii) that the double mutant T50E/T57E (in which the neutral Thr residues are replaced by the negatively charged Glu residues considered analogs of Thr-P) has a significantly enhanced capacity to promote cell adhesion and to accelerate cell spreading when compared with either wild-type Vn or to the neutral T50A/T57A mutant; and (iii) that, at least in the case of bovine aorta endothelial cells, the T50E/T57E mutant exhibits an enhanced adhesion, which seems to be due to an increased affinity toward the alphav beta3 Vn receptors.
Collapse
Affiliation(s)
- D Seger
- Department of Biological Regulation, Weizmann Institute of Science, IL-76100 Rehovot, Israel
| | | | | |
Collapse
|
25
|
Liang OD, Rosenblatt S, Chhatwal GS, Preissner KT. Identification of novel heparin-binding domains of vitronectin. FEBS Lett 1997; 407:169-72. [PMID: 9166893 DOI: 10.1016/s0014-5793(97)00330-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Vitronectin is a multifunctional serum protein which provides a unique regulatory link between cell adhesion, humoral defense mechanism and the hemostatic system, and the heparin-binding properties of vitronectin are thought to have participated in various functional aspects. In addition to the carboxy-terminal glycosaminoglycan-binding motif, we report on two novel heparin-binding domains which were identified using phage display technique. One heparin-binding domain is located between amino acids Asp82 and Cys137 at the end of the connector region, while the other is in the second hemopexin-type repeat, between amino acids Lys175 and Asp219 of the vitronectin molecule. Our findings may shed new light to the activities of vitronectin and its binding to cells, which could not be explained solely on the basis of the known heparin-binding domain.
Collapse
Affiliation(s)
- O D Liang
- GBF-National Research Center for Biotechnology/Technical University Braunschweig, Germany
| | | | | | | |
Collapse
|
26
|
Tsukada H, Ying X, Fu C, Ishikawa S, McKeown-Longo P, Albelda S, Bhattacharya S, Bray BA, Bhattacharya J. Ligation of endothelial alpha v beta 3 integrin increases capillary hydraulic conductivity of rat lung. Circ Res 1995; 77:651-9. [PMID: 7554109 DOI: 10.1161/01.res.77.4.651] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Complement-mediated pulmonary edema results from increases in lung capillary hydraulic conductivity (Lp), possibly by receptor-mediated mechanisms. We considered the Lp effects of vitronectin and the vitronectin-containing complement complex SC5b-9, which ligate the integrin alpha v beta 3. Vitronectin, SC5b-9, and SC5b-9-enriched zymosan-activated serum all rapidly increased Lp, as determined by the split-drop technique in single lung capillaries of rat lung. The Lp increases were inhibited by a monospecific (LM609) and a polyclonal (R838) antibody against the alpha v beta 3 integrin but not by an irrelevant monoclonal antibody isotype matched with LM609, by a monoclonal antibody against the alpha v beta 5 integrin, or by preimmune rabbit serum. Vitronectin monomers failed to increase Lp. The tyrosine kinase blockers genistein and methyl 2,5-dihydroxycinnamate caused significant concentration-dependent inhibitions of Lp increases due to vitronectin and zymosan-activated serum. By contrast, the protein kinase C blocker calphostin C had no major effect. We conclude that (1) multivalent ligation of the luminally located alpha v beta 3 integrin of lung capillary endothelium increases transcapillary liquid flux, and (2) the dominant signal transduction pathway for this effect occurs through tyrosine kinase activation.
Collapse
Affiliation(s)
- H Tsukada
- Department of Medicine, College of Physicians & Surgeons, Columbia University, St. Luke's-Roosevelt Hospital Center, New York, NY 10019, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bhattacharya S, Fu C, Bhattacharya J, Greenberg S. Soluble ligands of the alpha v beta 3 integrin mediate enhanced tyrosine phosphorylation of multiple proteins in adherent bovine pulmonary artery endothelial cells. J Biol Chem 1995; 270:16781-7. [PMID: 7542653 DOI: 10.1074/jbc.270.28.16781] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Binding of substrate-bound extracellular matrix proteins to cell surface integrins results in a variety of cellular responses including adhesion, cytoskeletal reorganization, and gene expression. We have previously shown that addition of soluble SC5b-9, the complement-vitronectin complex, resulted in an RGD-dependent increase in lung venular hydraulic conductivity (Ishikawa, S., Tsukada, H., and Bhattacharya, J. (1993) J. Clin. Invest. 91, 103-109). To identify specific integrin(s) and signal transduction pathways that are responsive to soluble vitronectin-containing ligands, we exposed confluent bovine pulmonary artery cells to purified soluble human mono- or multimeric vitronectin, or SC5b-9, and determined the extent of endothelial cell protein tyrosine phosphorylation. Monomeric vitronectin (Vn) did not induce enhanced protein tyrosine phosphorylation. However, multimeric Vn and SC5b-9 elicited time- and concentration-dependent increases in tyrosine phosphorylation of numerous proteins. Antiserum against vitronectin, RGD peptides, and monoclonal and polyclonal antibodies against the alpha v beta 3 integrin blocked the vitronectin- or SC5b-9-induced enhanced accumulation of tyrosine phosphoproteins, while antibodies against beta 1 integrins and the alpha v beta 5 integrin did not. Clustering of the alpha v beta 3 integrin using monoclonal antibody LM609 caused a pattern of enhanced tyrosine phosphorylation similar to that caused by multimeric Vn and SC5b-9, suggesting that aggregation of alpha v beta 3 was critical for signaling. Among the proteins that underwent enhanced tyrosine phosphorylation in response to vitronectin were the cytoskeletal proteins paxillin, cortactin, and ezrin, as well as the SH2 domain-containing protein Shc, and p125FAK. We conclude that ligation of the alpha v beta 3 integrin by soluble ligands promotes enhanced phosphorylation of several proteins implicated in tyrosine kinase signaling and suggest that this pathway may be important in inflammatory states which are accompanied by accumulation of SC5b-9.
Collapse
Affiliation(s)
- S Bhattacharya
- St. Luke's-Roosevelt Hospital Center, New York, New York 10019, USA
| | | | | | | |
Collapse
|
28
|
Bittorf SV, Williams EC, Mosher DF. Alteration of vitronectin. Characterization of changes induced by treatment with urea. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74541-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
29
|
Abstract
The complement system mediates a wide range of important biological functions. The use of modern techniques in protein chemistry and molecular biology has greatly facilitated our understanding of the interactions between the fluid phase and cell-bound components of the system. Structural and genetic analysis has shown that while many of these components are polymorphic, there are major similarities between many of the proteins serving enzymatic and regulatory roles in both the alternative and classical pathways. The regulation of complement activation and Class III genes, on chromosomes 1 and 6 respectively, encode nine of the major proteins in the system. The genetic basis of C4 and C3 polymorphisms is now well established, and further study may reveal functional differences between polymorphic variants of other components. The study of individuals with either genetic or acquired deficiencies of complement proteins and receptors has provided insight into the function of these components, leukocyte adherence deficiency (LAD) providing the best example. An appreciation of the genetics, structure and functions of the regulatory proteins decay-accelerating factor (DAF) and homologous restriction factor has enhanced our understanding of the pathogenesis of paroxysmal nocturnal haemoglobinuria. The full importance of CD59 glycoprotein, the newest member of the complement family, remains to be determined.
Collapse
|
30
|
Mehringer JH, Weigel CJ, Tollefsen DM. Cyclic AMP-dependent protein kinase phosphorylates serine378 in vitronectin. Biochem Biophys Res Commun 1991; 179:655-60. [PMID: 1715701 DOI: 10.1016/0006-291x(91)91422-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We previously observed that Ser378 in the heparin-binding domain of vitronectin becomes phosphorylated by a protein kinase in plasma upon addition of ATP and divalent cations. We now report that purified plasma vitronectin contains approximately 2.5 mol of phosphate per mol of protein and that vitronectin becomes phosphorylated during biosynthesis in human hepatoma (HepG2) cells. In vitro, rabbit muscle cAMP-dependent protein kinase specifically phosphorylates Ser378 in single-chain (75 kDa) vitronectin but does not phosphorylate the two-chain (65/10 kDa) form cleaved at Arg379. Heparin affects neither the time course nor the extent of phosphorylation of Ser378 at neutral pH. The extent of phosphorylation of Ser378 achieved with cAMP-dependent protein kinase (greater than or equal to 0.3 mol phosphate per mol vitronectin) is greater than that obtainable in plasma and should enable comparisons to be made of the activities of the native and phosphorylated forms.
Collapse
Affiliation(s)
- J H Mehringer
- Department of Internal Medicine, Washington University, St. Louis, Missouri 63110
| | | | | |
Collapse
|
31
|
Akiyama H, Kawamata T, Dedhar S, McGeer PL. Immunohistochemical localization of vitronectin, its receptor and beta-3 integrin in Alzheimer brain tissue. J Neuroimmunol 1991; 32:19-28. [PMID: 1705945 DOI: 10.1016/0165-5728(91)90067-h] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The vitronectin receptor (VNR) is an integrin which consists of an alpha-subunit which can associate with multiple beta-subunits. A polyclonal antibody to this integrin weakly stained resting microglia in white matter of control brain and strongly stained reactive microglia in both gray and white matter of Alzheimer brain. This antibody, as well as a monoclonal antibody to beta 3, stained some platelets in capillaries of both control and Alzheimer tissue. When the antiserum was immunoabsorbed with a preparation enriched in the alpha-chain of the vitronectin receptor, it failed to stain microglial cells, but continued to stain platelets. When it was immunoabsorbed with a peripheral blood platelet preparation, all immunostaining was abolished. These results indicate that the vitronectin receptor of microglia is associated with a beta-chain different from beta 3, but that beta 3 is expressed by some platelets in brain capillaries. An antibody to vitronectin itself stained senile plaques and neurofibrillary tangles in Alzheimer entorhinal cortex, but only residual plasma in control tissue. Senile plaques positive for vitronectin had microglial cores strongly positive for the vitronectin receptor. The high levels of vitronectin receptor on reactive microglia in areas containing extracellular vitronectin suggest the possibility that vitronectin is serving an opsonizing function for microglial phagocytosis.
Collapse
Affiliation(s)
- H Akiyama
- Kinsmen Laboratory of Neurological Research, Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | | | | | | |
Collapse
|
32
|
Arko RJ, Chen CY, Schalla WO, Sarafian SK, Taylor CL, Knapp JS, Morse SA. Binding of S protein by Neisseria gonorrhoeae and potential role in invasion. J Clin Microbiol 1991; 29:70-5. [PMID: 1704384 PMCID: PMC269705 DOI: 10.1128/jcm.29.1.70-75.1991] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
An agglutination assay was used to examine the binding of purified human S protein (vitronectin, serum spreading factor) to 201 clinical isolates of Neisseria gonorrhoeae. Strains belonging to the protein IA serovars were significantly (P less than 0.001) more reactive in agglutination tests with human S protein and were more serum resistant than strains belonging to the protein IB serovars. The strains from patients with disseminated infections belonged predominantly to the IA serovar (19 of 23) and, with the exception of IA-4 and certain IB serovars, avidly agglutinated with S protein. The serovar IA-4 and IB strains isolated from joint or cerebrospinal fluid failed to agglutinate with S protein and appeared to be less serum resistant than most other IA isolates. Cysteine hydrochloride or 2-mercaptoethanol inhibited agglutination of S protein and a more than twofold increase in resistance to killing by fresh human serum following preincubation with S protein; the serum-sensitive parent strain did not agglutinate S protein, and serum resistance was not increased following preincubation with this protein. Binding of S protein by gonococci may represent a novel pathogenic mechanism that can contribute to serum resistance.
Collapse
Affiliation(s)
- R J Arko
- Division of Sexually Transmitted Diseases Laboratory Research, Centers for Disease Control, Atlanta, Georgia 30333
| | | | | | | | | | | | | |
Collapse
|
33
|
Tollefsen DM, Weigel CJ, Kabeer MH. The presence of methionine or threonine at position 381 in vitronectin is correlated with proteolytic cleavage at arginine 379. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)38738-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
34
|
Preissner KT. The role of vitronectin as multifunctional regulator in the hemostatic and immune systems. BLUT 1989; 59:419-31. [PMID: 2479432 DOI: 10.1007/bf00349063] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Vitronectin (= complement S-protein) belongs to the group of structurally and functionally homologous adhesive proteins (fibrinogen, fibronectin, von Willebrand factor) which are essential in the procoagulant phase of the hemostatic system, interacting with platelets and the vessel wall. In addition to a structural motif in vitronectin responsible for this interaction (cell attachment domain) other functional domains in the protein molecule exist that contribute to its multifunctional role as regulator in the immune system (complement) as well as in fibrinolysis. These various activities and the ubiquitous distribution of vitronectin in the organism are discussed with regard to structure-function relationships of the protein molecule. Vitronectin may thus provide a conceptual molecular link between cell adhesion, humoral immune response and the hemostatic system, particularly at the blood-vessel wall interphase.
Collapse
Affiliation(s)
- K T Preissner
- Clinical Research Unit for Blood Coagulation and Thrombosis of the Max-Planck-Gesellschaft, Giessen, Federal Republic of Germany
| |
Collapse
|