1
|
Yu H, Yang W, Cao M, Lei Q, Yuan R, Xu H, Cui Y, Chen X, Su X, Zhuo H, Lin L. Mechanism study of ubiquitination in T cell development and autoimmune disease. Front Immunol 2024; 15:1359933. [PMID: 38562929 PMCID: PMC10982411 DOI: 10.3389/fimmu.2024.1359933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/04/2024] Open
Abstract
T cells play critical role in multiple immune processes including antigen response, tumor immunity, inflammation, self-tolerance maintenance and autoimmune diseases et. Fetal liver or bone marrow-derived thymus-seeding progenitors (TSPs) settle in thymus and undergo T cell-lineage commitment, proliferation, T cell receptor (TCR) rearrangement, and thymic selections driven by microenvironment composed of thymic epithelial cells (TEC), dendritic cells (DC), macrophage and B cells, thus generating T cells with diverse TCR repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg with the help of TEC and DC, serving for immune tolerance. The sequential proliferation, cell fate decision, and selection during T cell development and self-tolerance establishment are tightly regulated to ensure the proper immune response without autoimmune reaction. There are remarkable progresses in understanding of the regulatory mechanisms regarding ubiquitination in T cell development and the establishment of self-tolerance in the past few years, which holds great potential for further therapeutic interventions in immune-related diseases.
Collapse
Affiliation(s)
- Hui Yu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Wenyong Yang
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Min Cao
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Qingqiang Lei
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Renbin Yuan
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - He Xu
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Yuqian Cui
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xuerui Chen
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Xu Su
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
- College of Medicine, Southwest Jiaotong University, Chengdu, China
| | - Hui Zhuo
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| | - Liangbin Lin
- Department of Urology, Medical Research Center, Department of Neurosurgery, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, The Second Chengdu Hospital Affiliated to Chongqing Medical University, Chengdu, China
| |
Collapse
|
2
|
Peng Z, Zhang H, Hu H. The Function of Ubiquitination in T-Cell Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:135-159. [PMID: 39546141 DOI: 10.1007/978-981-97-7288-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Thymus is an important primary lymphoid organ for T cell development. After T-lineage commitment, the early thymic progenitors (ETPs) develop into CD4-CD8- (DN), CD4+CD8+ (DP) and further CD4+ SP or CD8+ SP T cells. Under the help of thymic epithelial cells (TEC), dendritic cell (DC), macrophage, and B cells, ETPs undergo proliferation, T cell receptor (TCR) rearrangement, β-selection, positive selection, and negative selection, and thus leading to the generation of T cells that are diverse repertoire immunocompetent but not self-reactive. Additionally, some self-reactive thymocytes give rise to Treg under the help of TEC and DC. The regulation of T cell development is complicated. As a post-translational modification, ubiquitination regulates signal transduction in diverse biological processes. Ubiquitination functions in T cell development through regulating key signal pathway or maturation and function of related cells. In this review, the regulation of T cell development by ubiquitination is summarized and discussed.
Collapse
Affiliation(s)
- Zhengcan Peng
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Huiyuan Zhang
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbo Hu
- Center for Immunology and Hematology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Chongqing International Institute for Immunology, Chongqing, China.
| |
Collapse
|
3
|
Lombard-Vadnais F, Chabot-Roy G, Zahn A, Rodriguez Torres S, Di Noia JM, Melichar HJ, Lesage S. Activation-induced cytidine deaminase expression by thymic B cells promotes T-cell tolerance and limits autoimmunity. iScience 2022; 26:105852. [PMID: 36654860 PMCID: PMC9840937 DOI: 10.1016/j.isci.2022.105852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/24/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Elimination of self-reactive T cells in the thymus is critical to establish T-cell tolerance. A growing body of evidence suggests a role for thymic B cells in the elimination of self-reactive thymocytes. To specifically address the role of thymic B cells in central tolerance, we investigated the phenotype of thymic B cells in various mouse strains, including non-obese diabetic (NOD) mice, a model of autoimmune diabetes. We noted that isotype switching of NOD thymic B cells is reduced as compared to other, autoimmune-resistant, mouse strains. To determine the impact of B cell isotype switching on thymocyte selection and tolerance, we generated NOD.AID-/- mice. Diabetes incidence was enhanced in these mice. Moreover, we observed reduced clonal deletion and a resulting increase in self-reactive CD4+ T cells in NOD.AID-/- mice relative to NOD controls. Together, this study reveals that AID expression in thymic B cells contributes to T-cell tolerance.
Collapse
Affiliation(s)
- Félix Lombard-Vadnais
- Immunologie-oncologie, Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada,Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 0G4, Canada
| | - Geneviève Chabot-Roy
- Immunologie-oncologie, Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada
| | - Astrid Zahn
- Unité de recherche en biologie moléculaire des cellules B, Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada
| | - Sahily Rodriguez Torres
- Immunologie-oncologie, Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada
| | - Javier M. Di Noia
- Department of Microbiology & Immunology, McGill University, Montreal, QC H3A 0G4, Canada,Unité de recherche en biologie moléculaire des cellules B, Institut de recherches cliniques de Montréal, Montréal, QC H2W 1R7, Canada,Département de médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada,Department of Experimental Medicine, McGill University, Montreal, QC H3A 0G4, Canada
| | - Heather J. Melichar
- Immunologie-oncologie, Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada,Département de médecine, Université de Montréal, Montréal, QC H3T 1J4, Canada,Corresponding author
| | - Sylvie Lesage
- Immunologie-oncologie, Centre de recherche de l’Hôpital Maisonneuve-Rosemont, Montréal, QC H1T 2M4, Canada,Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC H3T 1J4, Canada,Corresponding author
| |
Collapse
|
4
|
Central human B cell tolerance manifests with a distinctive cell phenotype and is enforced via CXCR4 signaling in hu-mice. Proc Natl Acad Sci U S A 2021; 118:2021570118. [PMID: 33850015 DOI: 10.1073/pnas.2021570118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Central B cell tolerance, the process restricting the development of many newly generated autoreactive B cells, has been intensely investigated in mouse cells while studies in humans have been hampered by the inability to phenotypically distinguish autoreactive and nonautoreactive immature B cell clones and the difficulty in accessing fresh human bone marrow samples. Using a human immune system mouse model in which all human Igκ+ B cells undergo central tolerance, we discovered that human autoreactive immature B cells exhibit a distinctive phenotype that includes lower activation of ERK and differential expression of CD69, CD81, CXCR4, and other glycoproteins. Human B cells exhibiting these characteristics were observed in fresh human bone marrow tissue biopsy specimens, although differences in marker expression were smaller than in the humanized mouse model. Furthermore, the expression of these markers was slightly altered in autoreactive B cells of humanized mice engrafted with some human immune systems genetically predisposed to autoimmunity. Finally, by treating mice and human immune system mice with a pharmacologic antagonist, we show that signaling by CXCR4 is necessary to prevent both human and mouse autoreactive B cell clones from egressing the bone marrow, indicating that CXCR4 functionally contributes to central B cell tolerance.
Collapse
|
5
|
Martínez-Riaño A, Bovolenta ER, Boccasavia VL, Ponomarenko J, Abia D, Oeste CL, Fresno M, van Santen HM, Alarcon B. RRAS2 shapes the TCR repertoire by setting the threshold for negative selection. J Exp Med 2019; 216:2427-2447. [PMID: 31324740 PMCID: PMC6781009 DOI: 10.1084/jem.20181959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/29/2019] [Accepted: 06/19/2019] [Indexed: 12/26/2022] Open
Abstract
RRAS2 is involved in setting the threshold for negative selection of T cells in the thymus. In its absence, most autoreactive T cells are eliminated, and, consequently, mice become resistant to development of autoimmune diseases in experimental models. Signal strength controls the outcome of αβ T cell selection in the thymus, resulting in death if the affinity of the rearranged TCR is below the threshold for positive selection, or if the affinity of the TCR is above the threshold for negative selection. Here we show that deletion of the GTPase RRAS2 results in exacerbated negative selection and above-normal expression of positive selection markers. Furthermore, Rras2−/− mice are resistant to autoimmunity both in a model of inflammatory bowel disease (IBD) and in a model of myelin oligodendrocyte glycoprotein (MOG)–induced experimental autoimmune encephalomyelitis (EAE). We show that MOG-specific T cells in Rras2−/− mice have reduced affinity for MOG/I-Ab tetramers, suggesting that enhanced negative selection leads to selection of TCRs with lower affinity for the self-MOG peptide. An analysis of the TCR repertoire shows alterations that mostly affect the TCRα variable (TRAV) locus with specific VJ combinations and CDR3α sequences that are absent in Rras2−/− mice, suggesting their involvement in autoimmunity.
Collapse
Affiliation(s)
- Ana Martínez-Riaño
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Elena R Bovolenta
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Viola L Boccasavia
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Julia Ponomarenko
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra, Barcelona, Spain
| | - David Abia
- Servicio de Bioinformática, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Clara L Oeste
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Manuel Fresno
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Hisse M van Santen
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| | - Balbino Alarcon
- Departamento de Biología Celular e Inmunología, Centro Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
6
|
Chen YT, Su YC, Chang ML, Tsai PF, Kung JT. Low-Level MHC Class II Expression Leads to Suboptimal Th Cell Response, Increased Autoaggression, and Heightened Cytokine Inducibility. THE JOURNAL OF IMMUNOLOGY 2017; 198:1928-1943. [DOI: 10.4049/jimmunol.1600967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 12/26/2016] [Indexed: 01/27/2023]
|
7
|
Ando M, Nakauchi H. 'Off-the-shelf' immunotherapy with iPSC-derived rejuvenated cytotoxic T lymphocytes. Exp Hematol 2016; 47:2-12. [PMID: 27826124 DOI: 10.1016/j.exphem.2016.10.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/12/2016] [Accepted: 10/18/2016] [Indexed: 02/07/2023]
Abstract
Adoptive T-cell therapy to target and kill tumor cells shows promise and induces durable remissions in selected malignancies. However, for most cancers, clinical utility is limited. Cytotoxic T lymphocytes continuously exposed to viral or tumor antigens, with long-term expansion, may become unable to proliferate ("exhausted"). To exploit fully rejuvenated induced pluripotent stem cell (iPSC)-derived antigen-specific cytotoxic T lymphocytes is a potentially powerful approach. We review recent progress in engineering iPSC-derived T cells and prospects for clinical translation. We also describe the importance of introducing a suicide gene safeguard system into adoptive T-cell therapy, including iPSC-derived T-cell therapy, to protect from unexpected events in first-in-humans clinical trials.
Collapse
Affiliation(s)
- Miki Ando
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Tokyo, Japan.
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
8
|
Attaf M, Holland SJ, Bartok I, Dyson J. αβ T cell receptor germline CDR regions moderate contact with MHC ligands and regulate peptide cross-reactivity. Sci Rep 2016; 6:35006. [PMID: 27775030 PMCID: PMC5075794 DOI: 10.1038/srep35006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/22/2016] [Indexed: 12/18/2022] Open
Abstract
αβ T cells respond to peptide epitopes presented by major histocompatibility complex (MHC) molecules. The role of T cell receptor (TCR) germline complementarity determining regions (CDR1 and 2) in MHC restriction is not well understood. Here, we examine T cell development, MHC restriction and antigen recognition where germline CDR loop structure has been modified by multiple glycine/alanine substitutions. Surprisingly, loss of germline structure increases TCR engagement with MHC ligands leading to excessive loss of immature thymocytes. MHC restriction is, however, strictly maintained. The peripheral T cell repertoire is affected similarly, exhibiting elevated cross-reactivity to foreign peptides. Our findings are consistent with germline TCR structure optimising T cell cross-reactivity and immunity by moderating engagement with MHC ligands. This strategy may operate alongside co-receptor imposed MHC restriction, freeing germline TCR structure to adopt this novel role in the TCR-MHC interface.
Collapse
Affiliation(s)
- Meriem Attaf
- Section of Molecular Immunology, Department of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Stephan J Holland
- Section of Molecular Immunology, Department of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Istvan Bartok
- Section of Molecular Immunology, Department of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| | - Julian Dyson
- Section of Molecular Immunology, Department of Medicine, Imperial College London, Du Cane Road, London, W12 0NN, UK
| |
Collapse
|
9
|
Gentil Dit Maurin A, Lemercier C, Collin-Faure V, Marche PN, Jouvin-Marche E, Candéias SM. Developmental regulation of p53-dependent radiation-induced thymocyte apoptosis in mice. Clin Exp Immunol 2015; 179:30-8. [PMID: 24635132 DOI: 10.1111/cei.12329] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2014] [Indexed: 12/13/2022] Open
Abstract
The production of T cell receptor αβ(+) (TCRαβ(+) ) T lymphocytes in the thymus is a tightly regulated process that can be monitored by the regulated expression of several surface molecules, including CD4, CD8, cKit, CD25 and the TCR itself, after TCR genes have been assembled from discrete V, D (for TCR-β) and J gene segments by a site-directed genetic recombination. Thymocyte differentiation is the result of a delicate balance between cell death and survival: developing thymocytes die unless they receive a positive signal to proceed to the next stage. This equilibrium is altered in response to various physiological or physical stresses such as ionizing radiation, which induces a massive p53-dependent apoptosis of CD4(+) CD8(+) double-positive (DP) thymocytes. Interestingly, these cells are actively rearranging their TCR-α chain genes. To unravel an eventual link between V(D)J recombination activity and thymocyte radio-sensitivity, we analysed the dynamics of thymocyte apoptosis and regeneration following exposure of wild-type and p53-deficient mice to different doses of γ-radiation. p53-dependent radio-sensitivity was already found to be high in immature CD4(-) CD8(-) (double-negative, DN) cKit(+) CD25(+) thymocytes, where TCR-β gene rearrangement is initiated. However, TCR-αβ(-) CD8(+) immature single-positive thymocytes, an actively cycling intermediate population between the DN and DP stages, are the most radio-sensitive cells in the thymus, even though their apoptosis is only partially p53-dependent. Within the DP population, TCR-αβ(+) thymocytes that completed TCR-α gene recombination are more radio-resistant than their TCR-αβ(-) progenitors. Finally, we found no correlation between p53 activation and thymocyte sensitivity to radiation-induced apoptosis.
Collapse
Affiliation(s)
- A Gentil Dit Maurin
- CEA, DSV, iRTSV-BGE, Grenoble, France; INSERM U1038, Grenoble, France; Grenoble Alpes Université, Grenoble, France
| | | | | | | | | | | |
Collapse
|
10
|
Desanti GE, Cowan J, Baik S, Parnell SM, White AJ, Penninger JM, Lane PJL, Jenkinson EJ, Jenkinson WE, Anderson G. Developmentally regulated availability of RANKL and CD40 ligand reveals distinct mechanisms of fetal and adult cross-talk in the thymus medulla. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2012; 189:5519-26. [PMID: 23152561 PMCID: PMC3605790 DOI: 10.4049/jimmunol.1201815] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
T cell tolerance in the thymus is a key step in shaping the developing T cell repertoire. Thymic medullary epithelial cells play multiple roles in this process, including negative selection of autoreactive thymocytes, influencing thymic dendritic cell positioning, and the generation of Foxp3(+) regulatory T cells. Previous studies show that medullary thymic epithelial cell (mTEC) development involves hemopoietic cross-talk, and numerous TNFR superfamily members have been implicated in this process. Whereas CD40 and RANK represent key examples, interplay between these receptors, and the individual cell types providing their ligands at both fetal and adult stages of thymus development, remain unclear. In this study, by analysis of the cellular sources of receptor activator for NF-κB ligand (RANKL) and CD40L during fetal and adult cross-talk in the mouse, we show that the innate immune cell system drives initial fetal mTEC development via expression of RANKL, but not CD40L. In contrast, cross-talk involving the adaptive immune system involves both RANKL and CD40L, with analysis of distinct subsets of intrathymic CD4(+) T cells revealing a differential contribution of CD40L by conventional, but not Foxp3(+) regulatory, T cells. We also provide evidence for a stepwise involvement of TNFRs in mTEC development, with CD40 upregulation induced by initial RANK signaling subsequently controlling proliferation within the mTEC compartment. Collectively, our findings show how multiple hemopoietic cell types regulate mTEC development through differential provision of RANKL/CD40L during ontogeny, revealing molecular differences in fetal and adult hemopoietic cross-talk. They also suggest a stepwise process of mTEC development, in which RANK is a master player in controlling the availability of other TNFR family members.
Collapse
Affiliation(s)
- Guillaume E. Desanti
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Jennifer Cowan
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Song Baik
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Sonia M. Parnell
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Andrea J. White
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Josef M. Penninger
- Institute of Molecular Biotechnology, Austrian Academy of Science, Austria
| | - Peter J. L. Lane
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eric J. Jenkinson
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - William E. Jenkinson
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Graham Anderson
- MRC Centre for Immune Regulation, Institute for Biomedical Research, Medical School, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
11
|
Maine CJ, Hamilton-Williams EE, Cheung J, Stanford SM, Bottini N, Wicker LS, Sherman LA. PTPN22 alters the development of regulatory T cells in the thymus. THE JOURNAL OF IMMUNOLOGY 2012; 188:5267-75. [PMID: 22539785 DOI: 10.4049/jimmunol.1200150] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
PTPN22 encodes a tyrosine phosphatase that inhibits Src-family kinases responsible for Ag receptor signaling in lymphocytes and is strongly linked with susceptibility to a number of autoimmune diseases. As strength of TCR signal is critical to the thymic selection of regulatory T cells (Tregs), we examined the effect of murine PTPN22 deficiency on Treg development and function. In the thymus, numbers of pre-Tregs and Tregs increased inversely with the level of PTPN22. This increase in Tregs persisted in the periphery and could play a key part in the reduced severity observed in the PTPN22-deficient mice of experimental autoimmune encephalomyelitis, a mouse model of multiple sclerosis. This could explain the lack of association of certain autoimmune conditions with PTPN22 risk alleles.
Collapse
Affiliation(s)
- Christian J Maine
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Gruber T, Pfeifhofer-Obermair C, Baier G. PKCtheta is necessary for efficient activation of NFkappaB, NFAT, and AP-1 during positive selection of thymocytes. Immunol Lett 2010; 132:6-11. [PMID: 20433868 PMCID: PMC2937209 DOI: 10.1016/j.imlet.2010.04.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/06/2010] [Accepted: 04/20/2010] [Indexed: 01/25/2023]
Abstract
While it has been shown in several publications that the serine-threonine kinase PKCθ is required for efficient activation of mature T lymphocytes, the role of PKCθ in T cell development in the thymus is somewhat controversial. In this study, using knockout mice, we show that PKCθ is important in positive selection. The thymus of PKCθ−/− animals contains significantly less mature single positive T cells compared to wild-type controls. Biochemically, PKCθ deficient thymocytes show defective activation of the transcription factors AP-1, NFAT and NFκB as well as impaired phosphorylation of the MAP kinase ERK after T cell receptor stimulation in vitro. Together, these results reveal a crucial role of PKCθ in positive selection of thymocytes in a pathway leading to the activation of ERK, AP-1, NFAT, and NFκB.
Collapse
Affiliation(s)
- Thomas Gruber
- Department of Medical Genetics, Clinical and Molecular Pharmacology, Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck, Austria.
| | | | | |
Collapse
|
13
|
Kim YM, Kim HK, Kim HJ, Lee HW, Ju SA, Choi BK, Kwon BS, Kim BS, Kim JB, Lim YT, Yoon S. Expression of 4-1BB and 4-1BBL in thymocytes during thymus regeneration. Exp Mol Med 2010; 41:896-911. [PMID: 19745604 DOI: 10.3858/emm.2009.41.12.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
4-1BB, a member of the tumor necrosis factor receptor (TNFR) superfamily, is a major costimulatory receptor that is rapidly expressed on the surface of CD4(+) and CD8(+) T cells after antigen- or mitogen-induced activation. The interaction of 4-1BB with 4-1BBL regulates immunity and promotes the survival and expansion of activated T cells. In this study, the expression of 4-1BB and 4-1BBL was examined during regeneration of the murine thymus following acute cyclophosphamide- induced involution. Four-color flow cytometry showed that 4-1BB and 4-1BBL were present in the normal thymus and were preferentially expressed in the regenerating thymus, mainly in CD4(+)CD8(+) double-positive (DP) thymocytes. Furthermore, the CD4(lo)CD8(lo), CD4(+)CD8(lo) and CD4(lo)CD8(+) thymocyte subsets, representing stages of thymocyte differentiation intermediate between DP and single-positive (SP) thymocytes, also expressed 4-1BB and 4-1BBL during thymus regeneration but to a lesser degree. Interestingly, the 4-1BB and 4-1BBL positive cells among the CD4(+)CD8(+) DP thymocytes present during thymus regeneration were TCR(hi) and CD69(+) unlike the corresponding controls. Moreover, the 4-1BB and 4-1BBL positive cells among the intermediate subsets present during thymus regeneration also exhibited TCR(hi/int+) and CD69(+/int) phenotypes, indicating that 4-1BB and 4-1BBL are predominantly expressed by the positively selected population of the CD4(+)CD8(+) DP and the intermediate thymocytes during thymus regeneration. RT-PCR and Western blot analyses confirmed the presence and elevated levels of 4-1BB and 4-1BBL mRNA and protein in thymocytes during thymus regeneration. We also found that the interaction of 4-1BB with 4-1BBL promoted thymocyte adhesion to thymic epithelial cells. Our results suggest that 4-1BB and 4-1BBL participate in T lymphopoiesis associated with positive selection during recovery from acute thymic involution.
Collapse
Affiliation(s)
- Young-Mi Kim
- Department of Pediatrics, Pusan National University School of Medicine, Yangsan 626-870, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
T-cell receptor (TCR) revision is a process of tolerance induction by which peripheral T cells lose surface expression of an autoreactive TCR, reinduce expression of the recombinase machinery, rearrange genes encoding extrathymically generated TCRs for antigen, and express these new receptors on the cell surface. We discuss the evidence for this controversial tolerance mechanism below. Despite the apparent heresy of post-thymic gene rearrangement, we argue here that TCR revision follows the rules obeyed by maturing thymocytes undergoing gene recombination. Expression of the recombinase is carefully controlled both spatially and temporally, and may be initiated by loss of signals through surface TCRs. The resulting TCR repertoire is characterized by its diversity, self major histocompatibility complex restriction, self tolerance, and ability to mount productive immune responses specific for foreign antigens. Hence, TCR revision is a carefully regulated process of tolerance induction that can contribute to the protection of the individual against invading pathogens while preserving the integrity of self tissue.
Collapse
Affiliation(s)
- J Scott Hale
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
15
|
Ladi E, Schwickert TA, Chtanova T, Chen Y, Herzmark P, Yin X, Aaron H, Chan SW, Lipp M, Roysam B, Robey EA. Thymocyte-dendritic cell interactions near sources of CCR7 ligands in the thymic cortex. THE JOURNAL OF IMMUNOLOGY 2008; 181:7014-23. [PMID: 18981121 DOI: 10.4049/jimmunol.181.10.7014] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Little is known about the dynamics of the interactions between thymocytes and other cell types, as well as the spatiotemporal distribution of thymocytes during positive selection in the microenvironment of the cortex. We used two-photon laser scanning microscopy of the mouse thymus to visualize thymocytes and dendritic cells (DCs) and to characterize their interactions in the cortex. We show that thymocytes make frequent contacts with DCs in the thymic cortex and that these associations increase when thymocytes express T cell receptors that mediate positive selection. We also show that cortical DCs and the chemokine CCL21 expression are closely associated with capillaries throughout the cortex. The overexpression of the chemokine receptor CCR7 in thymocytes results in an increase in DC-thymocyte interactions, while the loss of CCR7 in the background of a positive-selecting TCR reduces the extent of DC-thymocyte interactions. These observations identify a vasculature-associated microenvironment within the thymic cortex that promotes interactions between DCs and thymocytes that are receiving positive selection signals.
Collapse
Affiliation(s)
- Ena Ladi
- Division of Immunology, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Laronne-Bar-On A, Zipori D, Haran-Ghera N. Increased regulatory versus effector T cell development is associated with thymus atrophy in mouse models of multiple myeloma. THE JOURNAL OF IMMUNOLOGY 2008; 181:3714-24. [PMID: 18714048 DOI: 10.4049/jimmunol.181.5.3714] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CD4(+)CD25(+)Foxp3(+) regulatory T cells (Tregs) play a central role in cancer tolerance. However, mechanisms leading to their accumulation in cancer remain unknown. Although the thymus is the main site of Treg development, thymic contribution to Treg expansion in cancer has not been directly examined. Herein, we used two murine models of multiple myeloma (MM), 5T2 MM and 5T33 MM, to examine Treg accumulation in peripheral lymphoid organs, including spleen, lymph nodes, bone marrow, and blood, and to explore thymic Treg development during malignancy. We found that peripheral ratios of suppressive-functional Tregs increased in both models of MM-inflicted mice. We found that thymic ratios of Treg development in MM increased, in strong association with thymus atrophy and altered developmental processes in the thymus. The CD4(+)CD8(+) double-positive population, normally the largest thymocyte subset, is significantly decreased, whereas the CD4(-)CD8(-) double-negative population is increased. Administration of thymocytes from MM-inflicted mice compared with control thymocytes resulted in increased progression of the disease, and this effect was shown to be mediated by Tregs in the thymus of MM-inflicted mice. Our data suggest that increased ratios of Treg development in the thymus may contribute to disease progression in MM-inflicted mice.
Collapse
Affiliation(s)
- Ayelet Laronne-Bar-On
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
17
|
Nepomnaschy I, Lombardi G, Bekinschtein P, Berguer P, Francisco V, De Almeida J, Buggiano V, Pasqualini C, Piazzon I. Alterations during Positive Selection in the Thymus of nackt CD4-Deficient Mice. Scand J Immunol 2008. [DOI: 10.1111/j.1365-3083.2000.00818.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Schram BR, Tze LE, Ramsey LB, Liu J, Najera L, Vegoe AL, Hardy RR, Hippen KL, Farrar MA, Behrens TW. B cell receptor basal signaling regulates antigen-induced Ig light chain rearrangements. THE JOURNAL OF IMMUNOLOGY 2008; 180:4728-41. [PMID: 18354197 DOI: 10.4049/jimmunol.180.7.4728] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BCR editing in the bone marrow contributes to B cell tolerance by orchestrating secondary Ig rearrangements in self-reactive B cells. We have recently shown that loss of the BCR or a pharmacologic blockade of BCR proximal signaling pathways results in a global "back-differentiation" response in which immature B cells down-regulate genes important for the mature B cell program and up-regulate genes characteristic of earlier stages of B cell development. These observations led us to test the hypothesis that self-Ag-induced down-regulation of the BCR, and not self-Ag-induced positive signals, lead to Rag induction and hence receptor editing. Supporting this hypothesis, we found that immature B cells from xid (x-linked immunodeficiency) mice induce re-expression of a Rag2-GFP bacterial artificial chromosome reporter as well as wild-type immature B cells following Ag incubation. Incubation of immature B cells with self-Ag leads to a striking reversal in differentiation to the pro-/pre-B stage of development, consistent with the idea that back-differentiation results in the reinduction of genes required for L chain rearrangement and receptor editing. Importantly, Rag induction, the back-differentiation response to Ag, and editing in immature and pre-B cells are inhibited by a combination of phorbol ester and calcium ionophore, agents that bypass proximal signaling pathways and mimic BCR signaling. Thus, mimicking positive BCR signals actually inhibits receptor editing. These findings support a model whereby Ag-induced receptor editing is inhibited by BCR basal signaling on developing B cells; BCR down-regulation removes this basal signal, thereby initiating receptor editing.
Collapse
Affiliation(s)
- Brian R Schram
- Center for Immunology, Department of Medicine, University of Minnesota Medical School, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Yin X, Ladi E, Chan SW, Li O, Killeen N, Kappes DJ, Robey EA. CCR7 expression in developing thymocytes is linked to the CD4 versus CD8 lineage decision. THE JOURNAL OF IMMUNOLOGY 2008; 179:7358-64. [PMID: 18025179 DOI: 10.4049/jimmunol.179.11.7358] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
During thymic development, T cell progenitors undergo positive selection based on the ability of their T cell Ag receptors (TCR) to bind MHC ligands on thymic epithelial cells. Positive selection determines T cell fate, in that thymocytes whose TCR bind MHC class I (MHC-I) develop as CD8-lineage T cells, whereas those that bind MHC class II (MHC-II) develop as CD4 T cells. Positive selection also induces migration from the cortex to the medulla driven by the chemokine receptor CCR7. In this study, we show that CCR7 is up-regulated in a larger proportion of CD4(+)CD8(+) thymocytes undergoing positive selection on MHC-I compared with MHC-II. Mice bearing a mutation of Th-POK, a key CD4/CD8-lineage regulator, display increased expression of CCR7 among MHC-II-specific CD4(+)CD8(+) thymocytes. In addition, overexpression of CCR7 results in increased development of CD8 T cells bearing MHC-II-specific TCR. These findings suggest that the timing of CCR7 expression relative to coreceptor down-regulation is regulated by lineage commitment signals.
Collapse
Affiliation(s)
- Xinye Yin
- Department of Molecular and Cell Biology, Division of Immunology, University of California, Berkeley, CA 94720, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Fritsch Fredin M, Elgbratt K, Svensson D, Jansson L, Melgar S, Hultgren Hörnquist E. Dextran sulfate sodium-induced colitis generates a transient thymic involution--impact on thymocyte subsets. Scand J Immunol 2007; 65:421-9. [PMID: 17444952 DOI: 10.1111/j.1365-3083.2007.01923.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
One of the most widely used animal models for inflammatory bowel disease (IBD) is the dextran sulfate sodium (DSS)-induced colitis. We have previously reported that 5 days administration of DSS in C57Bl/6J mice induces a colonic inflammation that progresses into chronicity after DSS removal, whereas in BALB/cJ mice the inflammation resolves within 4 weeks post-DSS. Here we show that both thymic size and thymocyte numbers dramatically decreased in the acute phase of inflammation in C57Bl/6 mice, 7 days after DSS withdrawal. Mature, CD4(+) and CD8(+) single positive (SP) CD69(lo) CD62L(hi) thymocytes were enriched in these mice, accompanied by a major decrease in the number of immature double positive (DP) thymocytes. However, the different maturation stages within the DP thymocyte subset were unchanged between healthy and inflamed C57Bl/6J mice. Interestingly, as the inflammation progressed into the chronic phase, the thymus recovered and 2 weeks after the acute inflammatory phase all the thymic parameters investigated in this study were restored to normal. In contrast, BALB/cJ mice only develop mild thymic alterations. Nevertheless, we found that within the double negative (DN) thymocytes an increased frequency and also total numbers of CD44(+) CD25(-) (DN1) cells correlated with the severity of colitis, and that the frequency of CD44(-) CD25(-) (DN4) thymocytes decreased proportionally in the acute phase in BALB/cJ mice. Our observations suggest that the thymic effects are intimately connected to the intestinal inflammatory response in colitis regardless of the inflammatory stimuli.
Collapse
Affiliation(s)
- M Fritsch Fredin
- Department of Integrative Pharmacology, AstraZeneca R&D Mölndal, Mölndal, Sweden
| | | | | | | | | | | |
Collapse
|
21
|
Ling KW, van Hamburg JP, de Bruijn MJW, Kurek D, Dingjan GM, Hendriks RW. GATA3 controls the expression of CD5 and the T cell receptor during CD4 T cell lineage development. Eur J Immunol 2007; 37:1043-52. [PMID: 17357106 DOI: 10.1002/eji.200636485] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The transcription factor GATA3 is essential at multiple stages of T cell development, including the earliest double-negative stages, beta-selection and CD4 single-positive thymocytes. Here, we show that in CD2-GATA3 transgenic mice, with enforced GATA3 expression driven by the CD2 promoter, thymocytes have reduced levels of CD5, which is a negative regulator of TCR signaling participating in TCR repertoire fine-tuning. Reduction of CD5 expression was most prominent in CD4(+)CD8(+) double-positive (DP) cells and was associated with increased levels of the transcription factor E2A. Conversely, GATA3-deficient DP thymocytes showed consistently higher CD5 levels and defective TCR up-regulation during their development towards the CD4(lo)CD8(lo) subpopulation. CD2-GATA3 transgenic mice carrying the MHC class II-restricted TCR DO11.10 also manifested decreased CD5 levels. As in these TCR-transgenic mice reduced CD5 expression cannot result from an effect of GATA3 on repertoire selection, we conclude that enforced GATA3 interferes with the developmentally regulated increase of CD5 levels. Enforced GATA3 expression in DO11.10 transgenic mice was also accompanied by enhanced TCR expression during CD4 positive selection. Because GATA3 is induced by TCR signaling in DP thymocytes, our findings indicate that GATA3 establishes a positive feedback loop that increases TCR surface expression in developing CD4 lineage cells.
Collapse
Affiliation(s)
- Kam-Wing Ling
- Department of Immunology, Erasmus MC Rotterdam, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
22
|
Elgbratt K, Bjursten M, Willén R, Bland PW, Hörnquist EH. Aberrant T-cell ontogeny and defective thymocyte and colonic T-cell chemotactic migration in colitis-prone Galphai2-deficient mice. Immunology 2007; 122:199-209. [PMID: 17490434 PMCID: PMC2265997 DOI: 10.1111/j.1365-2567.2007.02629.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Galphai2-deficient mice, which spontaneously develop colitis, have previously been reported to have an increased frequency of mature, single positive thymocytes compared to wild-type mice. In this study we further characterized the intrathymic changes in these mice before and during overt colitis. Even before the onset of colitis, Galphai2(-/-) thymi weighed less and contained fewer thymocytes, and this was exacerbated with colitis development. Whereas precolitic Galphai2(-/-) mice had unchanged thymocyte density compared to Galphai2(+/-) mice of the same age, this was significantly decreased in mice with colitis. Thymic atrophy in Galphai2(-/-) mice involved mainly the cortex. Using a five-stage phenotypic characterization of thymocyte maturation based on expression of CD4, CD8, TCRalphabeta, CD69 and CD62L, we found that both precolitic and colitic Galphai2(-/-) mice had significantly increased frequencies of mature single-positive CD4(+) and CD8(+) medullary thymocytes, and significantly reduced frequencies and total numbers of immature CD4(+) CD8(+) double-positive thymocytes compared to Galphai2(+/-) mice. Furthermore, cortical and transitional precolitic Galphai2(-/-) thymocytes showed significantly reduced chemotactic migration towards CXCL12, and a trend towards reduced migration to CCL25, compared to wild-type thymocytes, a feature even more pronounced in colitic mice. This impaired chemotactic migration of Galphai2(-/-) thymocytes could not be reversed by increased chemokine concentrations. Galphai2(-/-) thymocytes also showed reduced expression of the CCL25 receptor CCR9, but not CXCR4, the receptor, for CXCL12. Finally, wild-type colonic lamina propria lymphocytes migrated in response to CXCL12, but not CCL25 and, as with thymocytes, the chemokine responsiveness was significantly reduced in Galphai2(-/-) mucosal lymphocytes.
Collapse
MESH Headings
- Animals
- Chemokine CXCL12
- Chemokines/immunology
- Chemokines, CXC/immunology
- Chemotaxis, Leukocyte/immunology
- Colitis/immunology
- Colitis/pathology
- Colon/immunology
- Disease Models, Animal
- Disease Progression
- Female
- GTP-Binding Protein alpha Subunit, Gi2/deficiency
- GTP-Binding Protein alpha Subunit, Gi2/genetics
- Intestinal Mucosa/immunology
- Lymphocyte Count
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Organ Size
- Receptors, CCR
- Receptors, CXCR4/metabolism
- Receptors, Chemokine/metabolism
- T-Lymphocyte Subsets/immunology
- Thymus Gland/immunology
- Thymus Gland/pathology
Collapse
Affiliation(s)
- Kristina Elgbratt
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy at Göteborg University, Sweden
| | | | | | | | | |
Collapse
|
23
|
Abstract
The generation of CD4 and CD8 alphabeta T-cell lineages from CD4+ CD8+ double-positive (DP) thymocyte precursors is a complex process initiated by engagement of major histocompatibility complex (MHC) by T-cell receptor (TCR) and coreceptor. Quantitative differences in TCR signaling induced by this interaction impose an instructional bias on CD4/CD8 lineage commitment that must be reinforced by MHC recognition and TCR signaling over subsequent selection steps in order for the thymocyte to progress and mature in the adopted lineage. Our studies show that the transmembrane receptor Notch plays a role in this process by modifying TCR signal transduction in DP thymocytes. In this review, we consider the functional relationship of TCR and Notch signaling pathways in the selection and specification of CD4 and CD8 T-cell lineages.
Collapse
Affiliation(s)
- Karen Laky
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892-0420, USA
| | | | | |
Collapse
|
24
|
Laky K, Fowlkes BJ. Receptor signals and nuclear events in CD4 and CD8 T cell lineage commitment. Curr Opin Immunol 2005; 17:116-21. [PMID: 15766669 DOI: 10.1016/j.coi.2005.02.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MHC specificity in positive selection is a major determinant in the CD4/CD8 T cell lineage decision. Previous studies support the view that quantitative differences in T cell receptor (TCR) signaling in immature CD4+CD8+ double positive thymocytes leads to an instructive bias in CD4/CD8 T cell lineage commitment that must be re-inforced in subsequent selection steps to ensure that MHC-restricted antigen recognition is linked to appropriate effector functions in mature T cells. Recent work has further defined the TCR signaling pathways involved in this process, but a major effort has been made to identify transcription factors and other regulators of CD4 and CD8 T cell lineage commitment. Methods and screens for detecting changes in gene expression, associated with TCR signaling in positive selection and lineage determination, are starting to provide a better understanding of these complex developmental processes.
Collapse
Affiliation(s)
- Karen Laky
- Laboratory of Cellular and Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | |
Collapse
|
25
|
Darrasse-Jèze G, Marodon G, Salomon BL, Catala M, Klatzmann D. Ontogeny of CD4+CD25+ regulatory/suppressor T cells in human fetuses. Blood 2005; 105:4715-21. [PMID: 15731180 DOI: 10.1182/blood-2004-10-4051] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Little is known about the ontogeny of naturally occurring CD4+CD25+ regulatory/suppressor T cells that play a major role in maintaining self-tolerance in mice and humans. In rodents, thymectomy on day 3 of life leads to multiple organ-specific autoimmune diseases that can be prevented by adoptive transfer of regulatory T cells, suggesting their neonatal development. We investigated regulatory T-cell ontogeny in 11 human fetuses. Together with the first mature T cells, thymic CD4+CD25+ cells were detected as early as 13 weeks of gestation. Thymic CD25+ cells appeared to be positively selected at the CD4+CD8+CD3hi differentiation stage, as assessed by CD1a and CD69 expression. The proportion of thymic CD4+CD25+ cells appeared quite stable with age, around 6% to 7%, similar to the proportion observed in infant thymi. Extrathymic CD4+CD25+ T cells could hardly be detected at 13 weeks of gestation but were present from week 14 onwards. As adult regulatory T cells, purified CD4+CD25+ fetal cells were anergic and suppressed T-cell proliferative responses; they expressed intracellular cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4) and Foxp3 mRNA. Altogether, our results indicate that the generation of regulatory/suppressor T cells is consubstantial to the generation of a functional and self-tolerant immune system. (Blood. 2005;105:4715-4721)
Collapse
Affiliation(s)
- Guillaume Darrasse-Jèze
- Laboratoire de Biologie et Thérapeutique des Pathologies Immunitaires, Université Pierre et Marie Curie /Centre National de la Recherche Scientifique, Unité Mixte de Recherche, Paris, France
| | | | | | | | | |
Collapse
|
26
|
Tze LE, Schram BR, Lam KP, Hogquist KA, Hippen KL, Liu J, Shinton SA, Otipoby KL, Rodine PR, Vegoe AL, Kraus M, Hardy RR, Schlissel MS, Rajewsky K, Behrens TW. Basal immunoglobulin signaling actively maintains developmental stage in immature B cells. PLoS Biol 2005; 3:e82. [PMID: 15752064 PMCID: PMC1059451 DOI: 10.1371/journal.pbio.0030082] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2004] [Accepted: 12/30/2004] [Indexed: 02/07/2023] Open
Abstract
In developing B lymphocytes, a successful V(D)J heavy chain (HC) immunoglobulin (Ig) rearrangement establishes HC allelic exclusion and signals pro-B cells to advance in development to the pre-B stage. A subsequent functional light chain (LC) rearrangement then results in the surface expression of IgM at the immature B cell stage. Here we show that interruption of basal IgM signaling in immature B cells, either by the inducible deletion of surface Ig via Cre-mediated excision or by incubating cells with the tyrosine kinase inhibitor herbimycin A or the phosphatidylinositol 3-kinase inhibitor wortmannin, led to a striking “back-differentiation” of cells to an earlier stage in B cell development, characterized by the expression of pro-B cell genes. Cells undergoing this reversal in development also showed evidence of new LC gene rearrangements, suggesting an important role for basal Ig signaling in the maintenance of LC allelic exclusion. These studies identify a previously unappreciated level of plasticity in the B cell developmental program, and have important implications for our understanding of central tolerance mechanisms. Gene rearrangement is a hallmark of B cell maturation. By interrupting basal cell signaling through the rearranged IgM receptor, immature B cells "back-differentiate" to an earlier stage in their development
Collapse
Affiliation(s)
- Lina E Tze
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| | - Brian R Schram
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| | | | - Kristin A Hogquist
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| | - Keli L Hippen
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| | - Jiabin Liu
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| | - Susan A Shinton
- 3Fox Chase Cancer Center, PhiladelphiaPennsylvaniaUnited States of America
| | - Kevin L Otipoby
- 4Center for Blood Research, Harvard Medical SchoolBoston, MassachusettsUnited States of America
| | - Peter R Rodine
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| | - Amanda L Vegoe
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| | - Manfred Kraus
- 4Center for Blood Research, Harvard Medical SchoolBoston, MassachusettsUnited States of America
| | - Richard R Hardy
- 3Fox Chase Cancer Center, PhiladelphiaPennsylvaniaUnited States of America
| | - Mark S Schlissel
- 5Department of Molecular and Cell Biology, University of CaliforniaBerkeley, CaliforniaUnited States of America
| | - Klaus Rajewsky
- 4Center for Blood Research, Harvard Medical SchoolBoston, MassachusettsUnited States of America
| | - Timothy W Behrens
- 1Center for Immunology, University of Minnesota Medical SchoolMinneapolis, MinnesotaUnited States of America
| |
Collapse
|
27
|
Li J, Rabinovich BA, Hurren R, Cosman D, Miller RG. Survival versus neglect: redefining thymocyte subsets based on expression of NKG2D ligand(s) and MHC class?I. Eur J Immunol 2005; 35:439-48. [PMID: 15682455 DOI: 10.1002/eji.200425621] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BALB/c thymocytes can be divided into three distinct subsets according to the expression of a ligand for the NK activation receptor NKG2D (NKG2D-L) and the expression of MHC class I (MHC-I). The first subset (MHC-Imid/NKG2D-Lhigh or "N+") is predominately CD4+CD8+ double positive (DP), comprises approximately 35% of thymocytes in a 6-8-week-old adult and contains uncommitted cells that have neither undergone selection nor are committed to death by neglect. The second subset (MHC-Ilow/NKG2D-Llow or "M-"), also mostly DP cells, comprises approximately 50% of thymocytes and consists of cells committed to death by apoptosis, likely due to neglect. By contrast, the third subset (MHC-Ihigh/NKG2D-Llow or "M+") is largely single positive (SP), represents approximately 15% of thymocytes and mostly contains more mature cells that have undergone successful positive selection. The major advantage of the analysis is that it splits DP cells into two subpopulations, one committed to death by apoptosis and the other subjected to selection. The analysis also suggests that NKG2D-L may play a role in thymocyte development.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, Differentiation, T-Lymphocyte/immunology
- Biomarkers
- Caspases/metabolism
- Down-Regulation
- Flow Cytometry
- Histocompatibility Antigens Class I/genetics
- Histocompatibility Antigens Class I/immunology
- Lectins, C-Type
- Ligands
- Mice
- Mice, Inbred BALB C
- NK Cell Lectin-Like Receptor Subfamily K
- Receptors, Antigen, T-Cell/immunology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Natural Killer Cell
- T-Lymphocyte Subsets/enzymology
- T-Lymphocyte Subsets/immunology
- Thymus Gland/cytology
- Thymus Gland/immunology
- Thymus Gland/metabolism
- Time Factors
Collapse
Affiliation(s)
- Jennifer Li
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
28
|
Grebe KM, Clarke RL, Potter TA. Ligation of CD8 leads to apoptosis of thymocytes that have not undergone positive selection. Proc Natl Acad Sci U S A 2004; 101:10410-5. [PMID: 15232005 PMCID: PMC478585 DOI: 10.1073/pnas.0402079101] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Thymocytes that are not positively selected are said to undergo "death by neglect." We have found that ligation of CD8, either by antibodies or MHC class I molecules, induces apoptosis of CD4(+)CD8+ double-positive (DP) thymocytes. The susceptibility of thymocytes to CD8-mediated apoptosis is developmentally regulated and confined to a subpopulation of DP thymocytes. Stimulation through CD3 protects thymocytes from CD8-mediated apoptosis. We suggest that during thymocyte development, binding of CD8 to MHC class I molecules without T cell receptor engagement induces apoptosis in immature DP thymocytes. Our data are consistent with a model in which thymocytes that do not survive positive selection undergo "death by instruction" instead of death by neglect.
Collapse
Affiliation(s)
- Kristie M Grebe
- Integtrated Department of Immunology, National Jewish Medical and Research Center and University of Colorado Health Science Center, Denver, CO 80206, USA
| | | | | |
Collapse
|
29
|
Canelles M, Park ML, Schwartz OM, Fowlkes BJ. The influence of the thymic environment on the CD4-versus-CD8 T lineage decision. Nat Immunol 2003; 4:756-64. [PMID: 12858172 DOI: 10.1038/ni953] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2003] [Accepted: 06/13/2003] [Indexed: 01/22/2023]
Abstract
T cell receptor signaling is an essential factor regulating thymocyte selection, but the function of the thymic environment in this process is not clear. In mice transgenic for major histocompatibility complex class II-restricted T cell receptors, every thymocyte is potentially selectable for maturation in the CD4 lineage. To address whether selection frequency affects positive selection, we created hematopoietic chimeras with mixtures of selectable and nonselectable precursors. With increased proportions of nonselectable thymocytes, positive selection of MHC class II-specific precursors was enhanced, generating not only CD4 but also CD8 thymocytes. These results indicate that the CD4 versus CD8 fate of selectable precursors can be influenced by the selection potential of its neighbors.
Collapse
Affiliation(s)
- Matilde Canelles
- Laboratory of Cellular and Molecular Immunology, Building 4, Room 111, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-0420, USA
| | | | | | | |
Collapse
|
30
|
Nemazee D, Hogquist KA. Antigen receptor selection by editing or downregulation of V(D)J recombination. Curr Opin Immunol 2003; 15:182-9. [PMID: 12633668 DOI: 10.1016/s0952-7915(03)00008-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Clonal selection is central to immune function, but it is complemented by "receptor selection", which regulates the immune repertoire not by cell death or proliferation but through the control of antigen receptor gene recombination. Inappropriate receptors, such as those that are autoreactive, underexpressed, or that fail to promote positive selection of thymocytes or B cells, stimulate secondary V-to-J recombinations that destroy and replace receptor genes. These processes play a central role in lymphocyte repertoire development. Recent work on the role of receptor selection in B and T cells has uncovered evidence for and against antigen-induced editing in thymocytes. Many studies suggest that editing plays a central role in B and T lymphocyte repertoire development. Important recent evidence has been uncovered addressing the role of tolerance-induced editing in thymocytes.
Collapse
MESH Headings
- Animals
- Down-Regulation/immunology
- Gene Rearrangement/immunology
- Genes, Immunoglobulin/genetics
- Humans
- Models, Biological
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
Collapse
Affiliation(s)
- David Nemazee
- Department of Immunology, The Scripps Research Institute, 10550 North Torrey Pines Road, Mail Drop IM-29, La Jolla, CA 92037, USA.
| | | |
Collapse
|
31
|
Hsu SC, Wu CC, Han J, Lai MZ. Involvement of p38 mitogen-activated protein kinase in different stages of thymocyte development. Blood 2003; 101:970-6. [PMID: 12393706 DOI: 10.1182/blood-2002-03-0744] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive selection of thymocytes during T-cell development is mediated by T-cell receptor (TCR)-activated signals. For different mitogen-activated protein kinases (MAPKs) activated by TCR complex, a selective involvement of extracellular signal-regulated kinase, but not p38 MAPK, in positive selection has been suggested. Using transgenic mice with dominant-negative mutation of both MAP kinase kinase 3 (MMK3) and MKK6, we obtained mice with different extents of inhibition of p38 MAPK activation. Partial inhibition of p38 MAPK impaired CD4(-)CD8(-) thymocyte development and T-cell proliferation, but not positive selection. Interference with thymocyte positive selection was observed in mice with effective suppression of p38 MAPK. Our results suggest that, in addition to early thymocyte development, p38 is involved in positive selection.
Collapse
Affiliation(s)
- Shu-Ching Hsu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
32
|
Tiong Ong S, Ly C, Nguyen M, Kay Brightman B, Fan H. Expression profiling of a transformed thymocyte cell line undergoing maturation in vitro identifies multiple genes involved in positive selection. Cell Immunol 2003; 221:64-79. [PMID: 12742383 DOI: 10.1016/s0008-8749(03)00065-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Biochemical and genetic studies of thymocyte maturation would be facilitated by the development of cultured cell lines that reflect stages of positive selection. We have derived a CD4(+)CD8(+)TCR(+) T-lymphoid cell line (M20) from a murine thymic tumor induced by a retrovirus carrying the v-myc oncogene (M-MuLV(myc)). M20 subclones undergo several aspects of positive selection in response to co-culture with a thymic stromal cell line (St3), including down-regulation of CD4 and CD8, and up-regulation of CD5 and TCR. M20 possesses a functional TCR complex, and ligation of this complex produces changes similar to co-culture with St3 stroma. Expression profiling of M20 cells in this system identified 23 genes previously shown to be important in thymocyte maturation, as well as several novel candidate genes. This system provides a new model to elucidate the molecular mechanisms of thymocyte maturation and TCR-mediated cell signaling in double-positive thymocytes.
Collapse
Affiliation(s)
- S Tiong Ong
- Division of Hematology/Oncology, Department of Medicine, College of Medicine, Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
33
|
Abstract
The thymus is the main producer of alphabeta T cells and is, therefore, crucial for a normal immune system. The intrathymic developmental pathway of human alphabeta T cells has now been delineated. The production of new T cells by the thymus decreases with age, and the thymus was thought to be redundant in adults once the peripheral T-cell pool has been formed early in life. However, recent work has shown that the thymus can function even at an advanced age. Research into the production of T cells in clinical settings that are associated with loss of T cells in the periphery has sparked renewed interest in the function of the human thymus.
Collapse
Affiliation(s)
- Hergen Spits
- Department of Immunology, Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| |
Collapse
|
34
|
Yu CT, Feng MHL, Shih HM, Lai MZ. Increased p300 expression inhibits glucocorticoid receptor-T-cell receptor antagonism but does not affect thymocyte positive selection. Mol Cell Biol 2002; 22:4556-66. [PMID: 12052865 PMCID: PMC133898 DOI: 10.1128/mcb.22.13.4556-4566.2002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Positive selection of T cells is postulated to be dependent on the counterinteraction between glucocorticoid receptor (GR)- and T-cell-receptor (TCR)-induced death signals. In this study we used T-cell-specific expression of p300 to investigate whether GR-TCR cross talk between thymocytes was affected. Activation of the p300-transgenic T cells led to enhanced thymocyte proliferation and increased interleukin 2 production. Thymocyte death, induced by TCR engagement, was no longer prevented by dexamethasone in p300-transgenic mice, indicating an absence of GR-TCR cross-inhibition. This was accompanied by a 50% reduction in the number of thymocytes in p300-transgenic mice. However, the CD4/CD8 profile of thymocytes remained unchanged in p300-transgenic mice. There was no effect on positive selection of the bulk thymocytes or thymocytes with transgenic TCR in p300-transgenic mice. In addition, there was no apparent TCR repertoire "hole" in the selected antigens examined. Our results illustrate a critical role of CBP/p300 in thymic GR-TCR counterinteraction yet do not support the involvement of GR-TCR antagonism in thymocyte positive selection.
Collapse
Affiliation(s)
- Cheng-Tai Yu
- Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
35
|
Feng C, Woodside KJ, Vance BA, El-Khoury D, Canelles M, Lee J, Gress R, Fowlkes BJ, Shores EW, Love PE. A potential role for CD69 in thymocyte emigration. Int Immunol 2002; 14:535-44. [PMID: 12039905 DOI: 10.1093/intimm/dxf020] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The early activation marker, CD69, is transiently expressed on activated mature T cells and on thymocytes that are undergoing positive or negative selection in the thymus. CD69 is a member of the NK gene complex family of C-type lectin-like signaling receptors; however, its function is unknown. In this report, we describe the characterization of mice that constitutively express high levels of surface CD69 on immature and mature T cells throughout development. Constitutive surface expression of CD69 did not affect T cell maturation, signaling through the TCR or thymocyte selection. However, phenotypically and functionally mature thymocytes accumulated in the medulla of CD69 transgenic mice and failed to be exported from the thymus. The retention of mature thymocytes correlated with transgene dose and CD69 surface levels. These results identify a potential role for CD69 in controlling thymocyte export, and suggest that the transient expression of CD69 on thymocytes and T cells may function to regulate thymocyte and T cell trafficking.
Collapse
MESH Headings
- Animals
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Cell Differentiation
- Cell Movement/immunology
- Cell Survival
- Humans
- Kinetics
- Lectins, C-Type
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Phenotype
- T-Lymphocyte Subsets/cytology
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/physiology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- T-Lymphocytes/physiology
- Thymus Gland/cytology
- Thymus Gland/immunology
Collapse
Affiliation(s)
- Chiguang Feng
- Laboratory of Mammalian Genes and Development, National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Yanagawa Y, Iwabuchi K, Onoé K. Enhancement of stromal cell-derived factor-1alpha-induced chemotaxis for CD4/8 double-positive thymocytes by fibronectin and laminin in mice. Immunology 2001; 104:43-9. [PMID: 11576219 PMCID: PMC1783275 DOI: 10.1046/j.1365-2567.2001.01292.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stromal cell-derived factor-1alpha (SDF-1alpha) is a chemokine abundantly expressed in the thymus. However, a potential role of SDF-1alpha in the thymus has been under consideration, since no appreciable difference was detected in the migratory responsiveness to the SDF-1alpha between cortical and medullary thymocytes. In the present study, we examined the effects of extracellular matrix (ECM) on the responsiveness of murine thymocytes to several chemokines including SDF-1alpha. In the absence of ECM, chemotactic activity of SDF-1alpha for cortical (CD4/8 double-positive) thymocytes was almost same as that for medullary (CD4 or CD8 single-positive) thymocytes. In contrast, the chemotactic activity of SDF-1alpha for cortical thymocytes was considerably (more than 10-fold) enhanced by laminin or fibronectin as compared with that for medullary thymocytes. Chemotactic activities of macrophage-derived chemokine and macrophage inflammatory protein-3beta for both cortical and medullary thymocytes were only slightly enhanced by fibronectin or laminin. Thus, fibronectin and laminin appear to enhance the chemotactic activity of SDF-1alpha for cortical thymocytes selectively. Addition of a monoclonal antibody against CD29 showed no inhibitory effect on the enhanced chemotactic activity of SDF-1alpha, suggesting that the other unknown receptor(s) is involved in this enhancement. Our present data demonstrate that SDF-1alpha in the presence of fibronectin or laminin is involved in the distribution of developing thymocytes.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/metabolism
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Chemokine CCL19
- Chemokine CCL22
- Chemokine CXCL12
- Chemokines, CC/immunology
- Chemokines, CXC/immunology
- Chemotaxis, Leukocyte/immunology
- Extracellular Matrix/immunology
- Female
- Fibronectins/immunology
- Integrin beta1/immunology
- Integrin beta4
- Laminin/immunology
- Lectins, C-Type
- Mice
- Mice, Inbred C57BL
- Stromal Cells/immunology
- T-Lymphocyte Subsets/immunology
- Virulence Factors, Bordetella/immunology
Collapse
Affiliation(s)
- Y Yanagawa
- Division of Immunobiology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | | | | |
Collapse
|
37
|
Yannoutsos N, Wilson P, Yu W, Chen HT, Nussenzweig A, Petrie H, Nussenzweig MC. The role of recombination activating gene (RAG) reinduction in thymocyte development in vivo. J Exp Med 2001; 194:471-80. [PMID: 11514603 PMCID: PMC2193494 DOI: 10.1084/jem.194.4.471] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Assembly of T cell receptor (TCR)alpha/beta genes by variable/diversity/joining (V[D]J) rearrangement is an ordered process beginning with recombination activating gene (RAG) expression and TCRbeta recombination in CD4(-)CD8(-)CD25(+) thymocytes. In these cells, TCRbeta expression leads to clonal expansion, RAG downregulation, and TCRbeta allelic exclusion. At the subsequent CD4(+)CD8(+) stage, RAG expression is reinduced and V(D)J recombination is initiated at the TCRalpha locus. This second wave of RAG expression is terminated upon expression of a positively selected alpha/beta TCR. To examine the physiologic role of the second wave of RAG expression, we analyzed mice that cannot reinduce RAG expression in CD4(+)CD8(+) T cells because the transgenic locus that directs RAG1 and RAG2 expression in these mice is missing a distal regulatory element essential for reinduction. In the absence of RAG reinduction we find normal numbers of CD4(+)CD8(+) cells but a 50-70% reduction in the number of mature CD4(+)CD8(-) and CD4(-)CD8(+) thymocytes. TCRalpha rearrangement is restricted to the 5' end of the Jalpha cluster and there is little apparent secondary TCRalpha recombination. Comparison of the TCRalpha genes expressed in wild-type or mutant mice shows that 65% of all alpha/beta T cells carry receptors that are normally assembled by secondary TCRalpha rearrangement. We conclude that RAG reinduction in CD4(+)CD8(+) thymocytes is not required for initial TCRalpha recombination but is essential for secondary TCRalpha recombination and that the majority of TCRalpha chains expressed in mature T cells are products of secondary recombination.
Collapse
Affiliation(s)
- N Yannoutsos
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
38
|
Wong P, Barton GM, Forbush KA, Rudensky AY. Dynamic tuning of T cell reactivity by self-peptide-major histocompatibility complex ligands. J Exp Med 2001; 193:1179-87. [PMID: 11369789 PMCID: PMC2193333 DOI: 10.1084/jem.193.10.1179] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intrathymic self-peptide–major histocompatibility complex class II (MHC) molecules shape the T cell repertoire through positive and negative selection of immature CD4+CD8+ thymocytes. By analyzing the development of MHC class II–restricted T cell receptor (TCR) transgenic T cells under conditions in which the endogenous peptide repertoire is altered, we show that self-peptide–MHC complexes are also involved in setting T cell activation thresholds. This occurs through changes in the expression level of molecules on thymocytes that influence the sensitivity of TCR signaling. Our results suggest that the endogenous peptide repertoire modulates T cell responsiveness in the thymus in order to enforce tolerance to self-antigens.
Collapse
Affiliation(s)
- Phillip Wong
- Department of Immunology and Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle,Washington 98195
| | - Gregory M. Barton
- Department of Immunology and Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle,Washington 98195
| | - Katherine A. Forbush
- Department of Immunology and Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle,Washington 98195
| | - Alexander Y. Rudensky
- Department of Immunology and Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle,Washington 98195
| |
Collapse
|
39
|
Jordan MS, Boesteanu A, Reed AJ, Petrone AL, Holenbeck AE, Lerman MA, Naji A, Caton AJ. Thymic selection of CD4+CD25+ regulatory T cells induced by an agonist self-peptide. Nat Immunol 2001; 2:301-6. [PMID: 11276200 DOI: 10.1038/86302] [Citation(s) in RCA: 1243] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Despite accumulating evidence that regulatory T cells play a crucial role in preventing autoimmunity, the processes underlying their generation during immune repertoire formation are unknown. We show here that interactions with a single self-peptide can induce thymocytes that bear an autoreactive T cell receptor (TCR) to undergo selection to become CD4+CD25+ regulatory T cells. Selection of CD4+CD25+ thymocytes appears to require a TCR with high affinity for a self peptide because thymocytes that bear TCRs with low affinity do not undergo selection into this pathway. Our findings indicate that specificity for self-peptides directs the selection of CD4+CD25+ regulatory thymocytes by a process that is distinct from positive selection and deletion.
Collapse
Affiliation(s)
- M S Jordan
- The Wistar Institute, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Nepomnaschy I, Lombardi G, Bekinschtein P, Berguer P, Francisco V, de Almeida J, Buggiano V, Pasqualini CD, Piazzon I. Alterations during positive selection in the thymus of nackt CD4-deficient mice. Scand J Immunol 2000; 52:555-62. [PMID: 11119260 DOI: 10.1046/j.1365-3083.2000.00818.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The T-cell repertoire is shaped by the positive and negative selection of immature CD4(+) CD8(+) double positive (DP) thymocytes. Positive selection of DP T cells to the CD4(+) CD8(-) and CD4(-) CD8(+) simple positive (SP) lineages is a multistep process which involves cellular interactions between thymocytes and stromal cells. Mutant nackt (nkt/nkt) mice have been shown to have a deficiency in the CD4(+) CD8(-) T-cell subset both in the thymus and in the periphery. The present report suggests that nkt/nkt mice present alterations in early steps of positive selection because they show decreases in the percentages of CD69(+) and CD5(+) cells within the DP subset. Experiments involving bone marrow transfer and thymic chimeras demonstrate that the thymic epithelium of nkt/nkt mice is involved in the alterations registered during positive selection and dictates the ultimate fate of CD4(+) SP cells.
Collapse
Affiliation(s)
- I Nepomnaschy
- ILEX-CONICET, División Medicina Experimental, Instituto de Investigaciones Hematológicas, Academia Nacional de Medicina, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
During thymus development, prothymocytes home to the thymus where they migrate as maturing thymocytes from the cortex to the medulla. Chemotaxis assays show that developing T cells of newborn mice respond to certain chemokines depending on their differentiation state. In situ expression analyses indicate that the same chemokines are expressed in distinct microenvironments within the thymic stroma. Expression of chemokines is regulated temporally during embryogenesis; in the alymphoid early thymic anlage, only TECK, SDF-1 and SLC but not ELC, MDC or TARC are expressed. Fetal blood prothymocytes destined to colonize the thymus respond to the embryonic chemokines TECK and SDF-1 in chemotaxis assays with high efficacy. The in vivo significance of this finding is demonstrated by studies in the nude mouse where the thymic anlage lacks TECK and SDF-1 expression and prothymocytes home to the parathyroid anlage rather than to the thymic anlage. Developing thymocytes respond to chemokines expressed in distinct microenvironments within the thymic stroma in a way that correlates well with the previously observed migration pattern from cortex to medulla. The complexity of these chemokine-defined microenvironments increases as the thymic anlage develops to a mature thymus.
Collapse
Affiliation(s)
- C C Bleul
- Max Planck-Institut für Immunbiologie, Freiburg, Germany
| | | |
Collapse
|
42
|
Affiliation(s)
- M A McGargill
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis 55455, USA
| | | |
Collapse
|
43
|
Abstract
A central tenet of T cell development postulates that if a developing thymocyte encounters self-antigen, it is induced to die via apoptosis, thereby protecting the organism from autoreactive T cells. We created transgenic mice that expressed a peptide antigen in the cortical epithelial cells of the thymus. This did not, however, result in deletion of specific T cells. Instead, antigen presentation by epithelial cells caused T cell receptor (TCR) internalization and increased gene rearrangement at the endogenous TCR alpha locus, or receptor editing. This editing mechanism in immature T cells parallels that which occurs in immature B cells, and has important implications for understanding positive and negative selection signaling in the thymus, and the limits of self-tolerance.
Collapse
Affiliation(s)
- M A McGargill
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
44
|
Tsujino S, Di Santo JP, Takaoka A, McKernan TL, Noguchi S, Taya C, Yonekawa H, Saito T, Taniguchi T, Fujii H. Differential requirement of the cytoplasmic subregions of gamma c chain in T cell development and function. Proc Natl Acad Sci U S A 2000; 97:10514-9. [PMID: 10962026 PMCID: PMC27056 DOI: 10.1073/pnas.180063297] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The common cytokine receptor gamma chain (gammac), a shared component of the receptors for IL-2, IL-4, IL-7, IL-9, and IL-15, is critical for the development and function of lymphocytes. The cytoplasmic domain of gammac consists of 85 aa, in which the carboxyl-terminal 48 aa are essential for its interaction with and activation of the Janus kinase, Jak3. Evidence has been provided that Jak3-independent signals might be transmitted via the residual membrane-proximal region; however, its role in vivo remains totally unknown. In the present study, we expressed mutant forms of gammac, which lack either most of the cytoplasmic domain or only the membrane-distal Jak3-binding region, on a gammac null background. We demonstrate that, unlike gammac or Jak3 null mice, expression of the latter, but not the former mutant, restores T lymphopoiesis in vivo, accompanied by strong expression of Bcl-2. On the other hand, the in vitro functions of the restored T cells still remained impaired. These results not only reveal the hitherto unknown role of the gammac membrane-proximal region, but also suggest the differential requirement of the cytoplasmic subregions of gammac in T cell development and function.
Collapse
Affiliation(s)
- S Tsujino
- Department of Immunology, Graduate School of Medicine and Faculty of Medicine, University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Rivera RR, Johns CP, Quan J, Johnson RS, Murre C. Thymocyte selection is regulated by the helix-loop-helix inhibitor protein, Id3. Immunity 2000; 12:17-26. [PMID: 10661402 DOI: 10.1016/s1074-7613(00)80155-7] [Citation(s) in RCA: 177] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
E2A, HEB, E2-2, and daughterless are basic helix-loop-helix (bHLH) proteins that play key roles in multiple developmental pathways. The DNA binding activity of E2A, HEB, and E2-2 is regulated by a distinct class of inhibitor HLH proteins, the Id gene products. Here, we show that Id3 is required for major histocompatability (MHC) class I- and class II-restricted thymocyte positive selection. Additionally, H-Y TCR-mediated negative selection is severely perturbed in Id3 null mutant mice. Finally, we show that E2A and Id3 interact genetically to regulate thymocyte development. These observations identify the HLH inhibitory protein Id3 as an essential component required for proper thymocyte maturation.
Collapse
MESH Headings
- Animals
- B-Lymphocytes/cytology
- Cell Differentiation
- Female
- Gene Expression
- Helix-Loop-Helix Motifs
- Histocompatibility Antigens Class I/immunology
- Histocompatibility Antigens Class II/immunology
- Inhibitor of Differentiation Proteins
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Transgenic
- Neoplasm Proteins
- Receptors, Antigen/genetics
- Receptors, Antigen/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/immunology
- Thymus Gland/cytology
- Transcription Factors/genetics
- Transcription Factors/physiology
Collapse
Affiliation(s)
- R R Rivera
- Department of Biology, 0366 University of California, San Diego, La Jolla 92093, USA
| | | | | | | | | |
Collapse
|
46
|
Salmon P, Mong M, Kang XJ, Cado D, Robey E. The Role of CD8α′ in the CD4 Versus CD8 Lineage Choice. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.10.5312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
During thymic development the recognition of MHC proteins by developing thymocytes influences their lineage commitment, such that recognition of class I MHC leads to CD8 T cell development, whereas recognition of class II MHC leads to CD4 T cell development. The coreceptors CD8 and CD4 may contribute to these different outcomes through interactions with class I and class II MHC, respectively, and through interactions with the tyrosine kinase p56lck (Lck) via their cytoplasmic domains. In this paper we provide evidence that an alternatively spliced form of CD8 that cannot interact with Lck (CD8α′) can influence the CD4 vs CD8 lineage decision. Constitutive expression of a CD8 minigene transgene that encodes both CD8α and CD8α′ restores CD8 T cell development in CD8α mutant mice, but fails to permit the development of mismatched CD4 T cells bearing class I-specific TCRs. These results indicate that CD8α′ favors the development of CD8-lineage T cells, perhaps by reducing Lck activity upon class I MHC recognition in the thymus.
Collapse
Affiliation(s)
- Patrick Salmon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Mimi Mong
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Xiao-Jun Kang
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Dragana Cado
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Ellen Robey
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
47
|
Campbell JJ, Pan J, Butcher EC. Cutting Edge: Developmental Switches in Chemokine Responses During T Cell Maturation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We show that developmental transitions during thymocyte maturation are associated with dramatic changes in chemotactic responses to chemokines. Macrophage-derived chemokine, a chemokine expressed in the thymic medulla, attracts thymocytes only during a brief window of development, between the late cortical and early medullary stages. All medullary phenotypes (CD4 or CD8 single positive) but not immature thymocytes respond to the medullary stroma-expressed (and secondary lymphoid tissue-associated) chemokines secondary lymphoid-tissue chemokine and macrophage inflammatory protein-3β. The appearance of these responses is associated with the phenotypic stage of cortex to medulla migration and with up-regulation of mRNA for the receptors CCR4 (for macrophage-derived chemokine and thymus and activation-regulated chemokine) and CCR7 (for secondary lymphoid-tissue chemokine and macrophage inflammatory protein-3β). In contrast, most immature and medullary thymocytes migrate to thymus-expressed chemokine, an ability that is lost only with up-regulation of the peripheral homing receptor L-selectin during the latest stages of thymocyte maturation associated with export to the periphery. Developmental switches in chemokine responses may help regulate critical migratory events during T cell development.
Collapse
Affiliation(s)
- James J. Campbell
- *Laboratory of Immunology and Vascular Biology, Department of Pathology, and the Digestive Disease Center, Department of Medicine, Stanford University Medical School, Stanford, CA, 94305; and
- †Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Junliang Pan
- *Laboratory of Immunology and Vascular Biology, Department of Pathology, and the Digestive Disease Center, Department of Medicine, Stanford University Medical School, Stanford, CA, 94305; and
- †Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| | - Eugene C. Butcher
- *Laboratory of Immunology and Vascular Biology, Department of Pathology, and the Digestive Disease Center, Department of Medicine, Stanford University Medical School, Stanford, CA, 94305; and
- †Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304
| |
Collapse
|
48
|
Kirchner J, Bevan MJ. ITM2A is induced during thymocyte selection and T cell activation and causes downregulation of CD8 when overexpressed in CD4(+)CD8(+) double positive thymocytes. J Exp Med 1999; 190:217-28. [PMID: 10432285 PMCID: PMC2195576 DOI: 10.1084/jem.190.2.217] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/1999] [Accepted: 05/10/1999] [Indexed: 11/04/2022] Open
Abstract
To identify novel genes that are involved in positive selection of thymocytes, we performed polymerase chain reaction (PCR)-based subtractive hybridization between selecting and nonselecting thymi. OT-1 T cell receptor (TCR) transgenic thymocytes on a recombination activating gene (RAG) null background are efficiently selected into the CD8 lineage in H-2(b) mice (RAG-2(-/-)OT-1, selecting thymi), but are not selected on a transporter associated with antigen processing (TAP) null background (RAG-2(-/-)TAP-1(-/-)OT-1, nonselecting thymi). We report here our studies of one gene, ITM2A, whose expression is dramatically higher in T cells in the selecting thymus. The expression pattern of ITM2A in thymocyte subsets correlates with upregulation during positive selection. In addition, ITM2A expression is higher in the thymus than in either the spleen or lymph nodes, but can be upregulated in peripheral T cells upon activation. ITM2A expression was also induced in RAG-2(-/-) thymocytes in vivo upon CD3 cross-linking. We demonstrate that ITM2A is a type II membrane glycoprotein that exists as two species with apparent M(r) of 45 and 43 kD and appears to localize primarily to large cytoplasmic vesicles and the Golgi apparatus, but is also expressed on the cell surface. Expression on the surface of EL4 cells increases with activation by phorbol myristate acetate (PMA) and ionomycin. Finally, overexpression of ITM2A under control of the lck proximal promoter in mice results in partial downregulation of CD8 in CD4(+)CD8(+) double positive (DP) thymocytes, and a corresponding increase in the number of CD4(+)CD8(lo) thymocytes. Possible roles for this novel activation marker in thymocyte development are discussed.
Collapse
Affiliation(s)
- Jacqueline Kirchner
- From the Howard Hughes Medical Institute and the Department of Immunology, University of Washington, Seattle, Washington 98195
| | - Michael J. Bevan
- From the Howard Hughes Medical Institute and the Department of Immunology, University of Washington, Seattle, Washington 98195
| |
Collapse
|
49
|
Baldwin KK, Trenchak BP, Altman JD, Davis3 MM. Negative Selection of T Cells Occurs Throughout Thymic Development. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.2.689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Thymic positive and negative selections govern the development of a self-MHC-reactive, yet self-tolerant, T cell repertoire. Whether these processes occur independently or sequentially remains controversial. To investigate these issues, we have employed tetrameric peptide-MHC complexes to fluorescently label and monitor polyclonal populations of thymocytes that are specific for moth cytochrome c (MCC)/I-Ek. In TCR β mice tetramer-positive thymocytes are detectable even in the most immature TCR-expressing cells. In the presence of MCC peptide, thymocytes that bind strongly to MCC/I-Ek tetramers are deleted earlier in development and more extensively than cells that bind weakly. This negative selection of the MCC/I-Ek-specific cells occurs continuously throughout development and before any evidence of positive selection. Thus, positive and negative selections are independent processes that need not occur sequentially.
Collapse
Affiliation(s)
| | - Brian P. Trenchak
- †Department of Microbiology and Immunology, and
- ‡Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305; and
| | - John D. Altman
- §Department of Microbiology and Immunology, Emory University, Atlanta, GA 30322
| | - Mark M. Davis3
- †Department of Microbiology and Immunology, and
- ‡Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305; and
| |
Collapse
|
50
|
Berzins SP, Davey GM, Randle-Barrett ES, Malin MA, Classon BJ, Fraser S, Boyd RL. Thymic Shared Antigen-2: A Novel Cell Surface Marker Associated with T Cell Differentiation and Activation. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.162.9.5119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
Thymic shared Ag-2 (TSA-2) is a 28-kDa, glycophosphatidylinitosol-linked cell surface molecule expressed on various T cell and thymic stromal cell subsets. It is expressed on most CD3−CD4−CD8−, CD4+CD8+, and CD3highCD4−CD8+ thymocytes but is down-regulated on ∼40% of CD3highCD4+CD8− thymocytes. Expression on peripheral TCR-αβ+ T cells is similar to that of CD3+ thymocytes, although a transient down-regulation occurs with cell activation. Consistent with the recent hypothesis that emigration from the thymus is an active process, recent thymic emigrants are primarily TSA-2−/low. TSA-2 expression reveals heterogeneity among subpopulations of CD3highCD4+CD8− thymocytes and TCR-γδ+ T cell previously regarded as homogenous. The functional importance of TSA-2 was illustrated by the severe block in T cell differentiation caused by adding purified anti-TSA-2 mAb to reconstituted fetal thymic organ culture. While each CD25/CD44-defined triple-negative subset was present, differentiation beyond the TN stage was essentially absent, and cell numbers of all subsets were significantly below those of control cultures. Cross-linking TSA-2 on thymocytes caused a significant Ca2+ influx but no increase in apoptosis, unless anti-TSA-2 was used in conjunction with suboptimal anti-CD3 mAb. Similar treatment of mature TSA-2+ T cells had no effect on cell survival or proliferation. This study reveals TSA-2 to be a functionally important molecule in T cell development and a novel indicator of heterogeneity among a variety of developing and mature T cell populations.
Collapse
Affiliation(s)
- Stuart P. Berzins
- Department of Pathology and Immunology, Monash Medical School, Prahran, Australia
| | - Gayle M. Davey
- Department of Pathology and Immunology, Monash Medical School, Prahran, Australia
| | | | - Mark A. Malin
- Department of Pathology and Immunology, Monash Medical School, Prahran, Australia
| | - Brendan J. Classon
- Department of Pathology and Immunology, Monash Medical School, Prahran, Australia
| | - Stuart Fraser
- Department of Pathology and Immunology, Monash Medical School, Prahran, Australia
| | - Richard L. Boyd
- Department of Pathology and Immunology, Monash Medical School, Prahran, Australia
| |
Collapse
|