1
|
Rakoczy K, Kaczor J, Sołtyk A, Jonderko L, Sędzik M, Lizon J, Lewandowska A, Saczko M, Kulbacka J. Pregnancy, abortion, and birth control methods' complicity with breast cancer occurrence. Mol Cell Endocrinol 2024; 590:112264. [PMID: 38705365 DOI: 10.1016/j.mce.2024.112264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/05/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Reproductive factors play significantly important roles in determining the breast cancer (BC) risk. The impact of pregnancy, abortion, and birth control methods on tumor development remains unclear. It has been found that early full-term pregnancies in young women can lower their lifetime risk of developing the type of cancer in question. However, having a first full-term pregnancy at an older age can increase this risk. The relationship between pregnancy and breast cancer (BC) is, however, much more complicated. Both induced and spontaneous abortions lead to sudden changes in hormonal balance, which could cause different effects on sensitive breast epithelial cells, making abortion a potential risk factor for breast cancer. The influence of hormonal contraception on carcinogenesis is not comprehensively understood, and therefore, more exhaustive analysis of existing data and further investigation is needed. This review explores how the mentioned reproductive factors affect the risk of breast cancer (BC), focusing on the molecular mechanisms that contribute to its complexity. By comprehending this intricate network of relationships, we can develop new strategies for predicting and treating the disease.
Collapse
Affiliation(s)
- Katarzyna Rakoczy
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Justyna Kaczor
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Adam Sołtyk
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Laura Jonderko
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Mikołaj Sędzik
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Julia Lizon
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Anna Lewandowska
- Faculty of Medicine, Wroclaw Medical University, J. Mikulicza-Radeckiego 5, 50-345, Wroclaw, Poland
| | - Małgorzata Saczko
- A. Falkiewicz Specialist Hospital in Wroclaw, Warszawska 2, 52-114 Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211a, 50-556 Wroclaw, Poland; Department of Immunology and Bioelectrochemistry, State Research Institute Centre for Innovative Medicine, Santariškių 5, 08410, Vilnius, Lithuania.
| |
Collapse
|
2
|
Soontara C, Uchuwittayakul A, Kayansamruaj P, Amparyup P, Wongpanya R, Srisapoome P. Adjuvant Effects of a CC Chemokine for Enhancing the Efficacy of an Inactivated Streptococcus agalactiae Vaccine in Nile Tilapia ( Oreochromis niloticus). Vaccines (Basel) 2024; 12:641. [PMID: 38932370 PMCID: PMC11209360 DOI: 10.3390/vaccines12060641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
In this study, the ability of a CC chemokine (On-CC1) adjuvant to enhance the efficacy of a formalin-killed Streptococcus agalactiae vaccine (WC) in inducing immune responses against S. agalactiae in Nile tilapia was investigated through immune-related gene expression analysis, enzyme-linked immunosorbent assay (ELISA), transcriptome sequencing, and challenge tests. Significantly higher S. agalactiae-specific IgM levels were detected in fish in the WC+CC group than in the WC alone or control groups at 8 days postvaccination (dpv). The WC vaccine group exhibited increased specific IgM levels at 15 dpv, comparable to those of the WC+CC group, with sustained higher levels observed in the latter group at 29 dpv and after challenge with S. agalactiae for 14 days. Immune-related gene expression analysis revealed upregulation of all target genes in the control group compared to those in the vaccinated groups, with notable differences between the WC and WC+CC groups at various time intervals. Additionally, transcriptome analysis revealed differential gene expression profiles between the vaccinated (24 and 96 hpv) and control groups, with notable upregulation of immune-related genes in the vaccinated fish. Differential gene expression (DGE) analysis revealed significant upregulation of immunoglobulin and other immune-related genes in the control group compared to those in the vaccinated groups (24 and 96 hpv), with distinct patterns observed between the WC and WC+CC vaccine groups. Finally, challenge with a virulent strain of S. agalactiae resulted in significantly higher survival rates for fish in the WC and WC+CC groups compared to fish in the control group, with a notable increase in survival observed in fish in the WC+CC group.
Collapse
Affiliation(s)
- Chayanit Soontara
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.S.); (A.U.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Anurak Uchuwittayakul
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.S.); (A.U.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Pattanapon Kayansamruaj
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.S.); (A.U.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand
| | - Piti Amparyup
- Marine Biotechnology Research Team, Integrative Aquaculture Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Paholyothin Road, Klong 1, Khlong Luang 12120, Thailand;
| | - Ratree Wongpanya
- Department of Biochemistry, Faculty of Science, Kasetsart University, 50 Ngamwongwan Road, Bangkok 10900, Thailand;
| | - Prapansak Srisapoome
- Laboratory of Aquatic Animal Health Management, Department of Aquaculture, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand; (C.S.); (A.U.); (P.K.)
- Center of Excellence in Aquatic Animal Health Management, Faculty of Fisheries, Kasetsart University, 50 Paholayothin Rd., Ladyao, Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Milby-Blackledge A, Farnell Y, Zhao D, Berghman L, Laino C, Muller M, Byrd JA, Farnell M. Serum cytokine profile of neonatal broiler chickens infected with Salmonella Typhimurium. Front Physiol 2024; 15:1359722. [PMID: 38465263 PMCID: PMC10920336 DOI: 10.3389/fphys.2024.1359722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/12/2024] [Indexed: 03/12/2024] Open
Abstract
The avian immune system responds to Salmonella infection by expressing cytokines and chemokines. We hypothesized that the immune status of Salmonella Typhimurium (ST) challenged neonatal broilers would differ from the uninfected treatment. The objective of this experiment was to evaluate 12 cytokines. Day of hatch male chicks were randomly allocated into a control or ST challenged group. At day three of age, sterile diluent or 5.0 × 108 CFU of ST was given orally to each chick. Blood was obtained 24 h post challenge and serum separated for later analysis (n = 30 chicks/treatment). Significant (p ≤ 0.05) increases in pro-inflammatory cytokines-interleukin-6 (IL-6), IL-16, and IL-21; anti-inflammatory cytokines- IL-10; chemokines-regulated on activation, normal T cell expressed and secreted (RANTES), macrophage inflammatory protein-1β (MIP-1β), and MIP-3α; colony stimulating factors-macrophage colony-stimulating factor (M-CSF); and growth factors-vascular endothelial growth factor (VEGF) were observed in the serum of the challenged chicks when compared to the control. No significant differences were observed in IL-2, interferon gamma (IFNγ), and IFNα. These data indicate the detection of mucosal immune responses in broiler chickens following ST infection. The heightened levels of pro-inflammatory cytokines, chemokines, and colony stimulating factors align with known inflammatory mechanisms, like the influx of immune cells. However, the elevation of IL-10 was unexpected, due to its immunoregulatory properties. Notably, the rise in VEGF levels is compelling, as it suggests the possibility of tissue repair and angiogenesis in ST infected birds.
Collapse
Affiliation(s)
| | - Yuhua Farnell
- Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States
| | - Dan Zhao
- Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States
| | - Luc Berghman
- Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States
| | - Craig Laino
- Millipore Sigma, Saint Louis, MO, United States
| | | | - J. Allen Byrd
- United States Department of Agriculture, Southern Plains Agricultural Research Service, College Station, TX, United States
| | - Morgan Farnell
- Texas A&M AgriLife Research, Department of Poultry Science, College Station, TX, United States
| |
Collapse
|
4
|
Saito LM, Ortiz RC, Amôr NG, Lopes NM, Buzo RF, Garlet GP, Rodini CO. NK cells and the profile of inflammatory cytokines in the peripheral blood of patients with advanced carcinomas. Cytokine 2024; 174:156455. [PMID: 38043142 DOI: 10.1016/j.cyto.2023.156455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/18/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND Natural killer (NK) cells are one of the most crucial immune cells that mediate the antitumoral response due to their ability to immediately recognize and eliminate transformed cells. Because of their great cytotoxic activity, the function of NK cells must be robustly regulated to avoid tissue damage. Such regulation is mediated by a coordinated engagement of activating (NKp46) and inhibitory (CD158b) receptors, which tumor cells may use to escape from immunosurveillance. Also, NK cells are generally divided based on surface molecules, such as CD16 and CD56, and can be classified as CD56brightCD16- (regulatory) and CD56dimCD16+ (cytotoxic) NK cells. Here, we aimed to evaluate the frequency and phenotype of circulating NK cells in patients with advanced carcinomas, as well as their systemic cytokine/chemokine and growth factors production. METHODS Peripheral blood was collected from 24 patients with advanced solid cancer during or after treatment and from 10 healthy donors. The frequency and the expression of activating (NKp46) and inhibitory (CD158b) molecules of CD56brightCD16- and CD56dimCD16+ NK cells were assessed by flow cytometry and the multiplex Luminex platform was used to quantify the secreted factors in peripheral blood serum. RESULTS Cancer patients had a lower frequency of the cytotoxic CD56dim CD16+ NK cells subset in comparison with healthy controls. Also, the regulatory CD56bright CD16- NKs isolated from cancer patients exhibited a significantly lower expression of NKp46. Among 29 immunological and growth factors analyzed in the peripheral blood of oncologic patients, MCP-1, IP-10, and eotaxin, and VEGF they have presented a higher proportion. The Pearson correlation test showed that IL-12p40 positively correlates with CD56brightCD16- NK cells. We also observed a positive correlation between MCP-1 and the activating marker NKp46, as well as a negative correlation between IP-10 and TNF-α and NKp46. CD158b expression in CD56dimCD16+ was positively correlated with EGF and negatively correlated with MIP-1β. CONCLUSIONS Taken together, these results suggest that cancer patients present a shift towards a poorly cytotoxic and less activated NK profile which may contribute to tumor development and progression. The understanding of NK cell biology and soluble factors during tumor development could aid in the design of possible targeting therapeutic approaches.
Collapse
Affiliation(s)
- Luciana Mieli Saito
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Rafael Carneiro Ortiz
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil; Post-Graduation Program in Rehabilitation Sciences, Hospital for Rehabilitation of Craniofacial Anomalies, University of São Paulo (HRAC/USP), São Paulo, Brazil.
| | - Nádia Ghinelli Amôr
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Nathália Martins Lopes
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Rodrigo Fonseca Buzo
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Gustavo Pompermaier Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| | - Camila Oliveira Rodini
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, São Paulo, Brazil.
| |
Collapse
|
5
|
Leckie-Harre A, Silverman I, Wu H, Humphreys BD, Malone AF. Sequencing of Physically Interacting Cells in Human Kidney Allograft Rejection to Infer Contact-dependent Immune Cell Transcription. Transplantation 2024; 108:421-429. [PMID: 37638864 PMCID: PMC10798591 DOI: 10.1097/tp.0000000000004762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/05/2023] [Accepted: 06/25/2023] [Indexed: 08/29/2023]
Abstract
BACKGROUND Rejection requires cell-cell contact involving immune cells. Inferring the transcriptional programs of cell-cell interactions from single-cell RNA-sequencing (scRNA-seq) data is challenging as spatial information is lost. METHODS We combined a CD45 pos enrichment strategy with Cellular Indexing of Transcriptomes and Epitopes by sequencing based quantification of leukocyte surface proteins to analyze cell-cell interactions in 11 human kidney transplant biopsies encompassing a spectrum of rejection diagnoses. scRNA-seq was performed using the 10X Genomics platform. We applied the sequencing physically interacting cells computational method to deconvolute the transcriptional profiles of heterotypic physically interacting cells. RESULTS The 11 human allograft biopsies generated 31 203 high-quality single-cell libraries. Clustering was further refined by combining Cellular Indexing of Transcriptomes and Epitopes by sequencing data from 6 different leukocyte-specific surface proteins. Three of 6 doublet clusters were identified as physically interacting cell complexes; macrophages or dendritic cells bound to B cells or plasma cells; natural killer (NK) or T cells bound to macrophages or dendritic cells and NK or T cells bound to endothelial cells. Myeloid-lymphocyte physically interacting cell complexes expressed activated and proinflammatory genes. Lymphocytes physically interacting with endothelial cells were enriched for NK and CD4 T cells. NK cell-endothelial cell contact caused increased expression of endothelial proinflammatory genes CXCL9 and CXCL10 and NK cell proinflammatory genes CCL3 , CCL4 , and GNLY . CONCLUSIONS The transcriptional profiles of physically interacting cells from human kidney transplant biopsies can be inferred from scRNA-seq data using the sequencing physically interacting cells method. This approach complements previous methods that estimate cell-cell physical contact from scRNA-seq data.
Collapse
Affiliation(s)
- Aidan Leckie-Harre
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Isabel Silverman
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Haojia Wu
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Benjamin D. Humphreys
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO
- Department of Developmental Biology, Washington University in St. Louis School of Medicine, St. Louis, MO
| | - Andrew F. Malone
- Division of Nephrology, Department of Medicine, Washington University in St. Louis School of Medicine, St. Louis, MO
| |
Collapse
|
6
|
Xu L, Hao F, Jeong DG, Chen R, Gan Y, Zhang L, Yeom M, Lim JW, Yu Y, Bai Y, Zeng Z, Liu Y, Xiong Q, Shao G, Wu Y, Feng Z, Song D, Xie X. Mucosal and cellular immune responses elicited by nasal and intramuscular inoculation with ASFV candidate immunogens. Front Immunol 2023; 14:1200297. [PMID: 37720232 PMCID: PMC10502713 DOI: 10.3389/fimmu.2023.1200297] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
African swine fever (ASF) is an infectious disease caused by African swine fever virus (ASFV) that is highly contagious and has an extremely high mortality rate (infected by virulent strains) among domestic and wild pigs, causing huge economic losses to the pig industry globally. In this study, SDS-PAGE gel bands hybridized with ASFV whole virus protein combined with ASFV-convalescent and ASFV-positive pig serum were identified by mass spectrometry. Six antigens were detected by positive serum reaction bands, and eight antigens were detected in ASFV-convalescent serum. In combination with previous literature reports and proteins corresponding to MHC-II presenting peptides screened from ASFV-positive pig urine conducted in our lab, seven candidate antigens, including KP177R (p22), K78R (p10), CP204L (p30), E183L (p54), B602L (B602L), EP402R-N (CD2V-N) and F317L (F317L), were selected. Subunit-Group 1 was prepared by mixing above-mentioned seven ASFV recombinant proteins with MONTANIDETM1313 VG N mucosal adjuvant and immunizing pigs intranasally and intramuscularly. Subunit-Group 2 was prepared by mixing four ASFV recombinant proteins (p22, p54, CD2V-N1, B602L) with Montanide ISA 51 VG adjuvant and immunizing pigs by intramuscular injection. Anticoagulated whole blood, serum, and oral fluid were collected during immunization for flow cytometry, serum IgG as well as secretory sIgA antibody secretion, and cytokine expression testing to conduct a comprehensive immunogenicity assessment. Both immunogen groups can effectively stimulate the host to produce ideal humoral, mucosal, and cellular immune responses, providing a theoretical basis for subsequent functional studies, such as immunogens challenge protection and elucidation of the pathogenic mechanism of ASFV.
Collapse
Affiliation(s)
- Lulu Xu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Fei Hao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Rong Chen
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yuan Gan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Lei Zhang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Minjoo Yeom
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jong-Woo Lim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Yanfei Yu
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yun Bai
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Guoqing Shao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yuzi Wu
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Zhixin Feng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Daesub Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Xing Xie
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
7
|
Schmied L, Luu TT, Søndergaard JN, Hald SH, Meinke S, Mohammad DK, Singh SB, Mayer C, Perinetti Casoni G, Chrobok M, Schlums H, Rota G, Truong HM, Westerberg LS, Guarda G, Alici E, Wagner AK, Kadri N, Bryceson YT, Saeed MB, Höglund P. SHP-1 localization to the activating immune synapse promotes NK cell tolerance in MHC class I deficiency. Sci Signal 2023; 16:eabq0752. [PMID: 37040441 DOI: 10.1126/scisignal.abq0752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Natural killer (NK) cells recognize virally infected cells and tumors. NK cell function depends on balanced signaling from activating receptors, recognizing products from tumors or viruses, and inhibitory receptors (such as KIR/Ly49), which recognize major histocompatibility complex class I (MHC-I) molecules. KIR/Ly49 signaling preserves tolerance to self but also conveys reactivity toward MHC-I-low target cells in a process known as NK cell education. Here, we found that NK cell tolerance and education were determined by the subcellular localization of the tyrosine phosphatase SHP-1. In mice lacking MHC-I molecules, uneducated, self-tolerant Ly49A+ NK cells showed accumulation of SHP-1 in the activating immune synapse, where it colocalized with F-actin and the signaling adaptor protein SLP-76. Education of Ly49A+ NK cells by the MHC-I molecule H2Dd led to reduced synaptic accumulation of SHP-1, accompanied by augmented signaling from activating receptors. Education was also linked to reduced transcription of Ptpn6, which encodes SHP-1. Moreover, synaptic SHP-1 accumulation was reduced in NK cells carrying the H2Dd-educated receptor Ly49G2 but not in those carrying the noneducating receptor Ly49I. Colocalization of Ly49A and SHP-1 outside of the synapse was more frequent in educated compared with uneducated NK cells, suggesting a role for Ly49A in preventing synaptic SHP-1 accumulation in NK cell education. Thus, distinct patterning of SHP-1 in the activating NK cell synapse may determine NK cell tolerance.
Collapse
Affiliation(s)
- Laurent Schmied
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Thuy T Luu
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Jonas N Søndergaard
- Center for Infectious Disease Education and Research (CIDER), Osaka University, Suita 565-0871, Japan
| | - Sophia H Hald
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Stephan Meinke
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Dara K Mohammad
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
- Department of Food Technology, College of Agricultural Engineering Sciences, Salahaddin University-Erbil, Erbil KRG-Kurdistan Region, Iraq
| | - Sunitha B Singh
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, S-171 65 Stockholm, Sweden
| | - Corinna Mayer
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Giovanna Perinetti Casoni
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Michael Chrobok
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Heinrich Schlums
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Giorgia Rota
- Department of Biochemistry, University of Lausanne, 1066 Epalinges, Switzerland
| | - Hieu M Truong
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, S-171 65 Stockholm, Sweden
| | - Greta Guarda
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, 6500 Bellinzona, Switzerland
| | - Evren Alici
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Arnika K Wagner
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Nadir Kadri
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
| | - Yenan T Bryceson
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Huddinge C2:66, S-141 86 Stockholm, Sweden
- Broegelmann Research Laboratory, Department of Clinical Sciences, University of Bergen, Jonas Lies vei 87, Laboratory Building 5th floor, N-5021 Bergen, Norway
| | - Mezida B Saeed
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Solnavägen 9, S-171 65 Stockholm, Sweden
| | - Petter Höglund
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine Huddinge, Karolinska Institutet, NEO building, Blickagången 16, S-141 57 Stockholm, Sweden
- Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Huddinge C2:66, S-141 86 Stockholm, Sweden
| |
Collapse
|
8
|
Franzoni G, Pedrera M, Sánchez-Cordón PJ. African Swine Fever Virus Infection and Cytokine Response In Vivo: An Update. Viruses 2023; 15:233. [PMID: 36680273 PMCID: PMC9864779 DOI: 10.3390/v15010233] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
African swine fever (ASF) is a hemorrhagic viral disease of domestic pigs and wild suids (all Sus scrofa) caused by the ASF virus (ASFV). The disease is spreading worldwide without control, threatening pig production due to the absence of licensed vaccine or commercially available treatments. A thorough understanding of the immunopathogenic mechanisms behind ASFV infection is required to better fight the disease. Cytokines are small, non-structural proteins, which play a crucial role in many aspects of the immune responses to viruses, including ASFV. Infection with virulent ASFV isolates often results in exacerbated immune responses, with increased levels of serum pro-inflammatory interleukins (IL-1α, IL-1β, IL-6), TNF and chemokines (CCL2, CCL5, CXCL10). Increased levels of IL-1, IL-6 and TNF are often detected in several tissues during acute ASFV infections and associated with lymphoid depletion, hemorrhages and oedemas. IL-1Ra is frequently released during ASFV infection to block further IL-1 activity, with its implication in ASFV immunopathology having been suggested. Increased levels of IFN-α and of the anti-inflammatory IL-10 seem to be negatively correlated with animal survival, whereas some correlation between virus-specific IFN-γ-producing cells and protection has been suggested in different studies where different vaccine candidates were tested, although future works should elucidate whether IFN-γ release by specific cell types is related to protection or disease development.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Miriam Pedrera
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
9
|
Lenz M, Schönbauer R, Stojkovic S, Lee J, Gatterer C, Lichtenauer M, Paar V, Emich M, Fritzer-Szekeres M, Strametz-Juranek J, Graf S, Sponder M. RANTES and CD40L under Conditions of Long-Term Physical Exercise: A Potential Link to Adaptive Immunity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148658. [PMID: 35886510 PMCID: PMC9316936 DOI: 10.3390/ijerph19148658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022]
Abstract
Regular physical exercise was found to be associated with an improved immune response in previous studies. RANTES and CD40L play a pivotal role in host defense, and individuals lacking adequate expression are prone to virus and opportunistic infections. A total of 98 participants were enrolled in this study. The probands were asked to perform moderate physical activity, and bicycle stress tests were performed at the baseline and after 8 months of training to evaluate individual performance. RANTES and CD40L were found to be increased by long-term physical exercise. In particular, probands with a performance gain of ≥3% displayed a pronounced elevation of both markers, paired with a decrease in circulating IL6 levels and an improved lipid profile. In summary, we were able to highlight rising levels of serum RANTES and CD40L under the conditions of physical exercise. Taking their role in host defense into account, a conjunction of physical activity and the adaptive immune system could therefore be assumed. Furthermore, low inflammatory profiles in probands with a significant performance gain suggest a modulation through exercise rather than a generalized pro-inflammatory status.
Collapse
Affiliation(s)
- Max Lenz
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (R.S.); (S.S.); (J.L.); (C.G.); (S.G.)
- Ludwig Boltzmann Cluster for Cardiovascular Research, 1090 Vienna, Austria
| | - Robert Schönbauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (R.S.); (S.S.); (J.L.); (C.G.); (S.G.)
| | - Stefan Stojkovic
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (R.S.); (S.S.); (J.L.); (C.G.); (S.G.)
| | - Jonghui Lee
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (R.S.); (S.S.); (J.L.); (C.G.); (S.G.)
| | - Constantin Gatterer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (R.S.); (S.S.); (J.L.); (C.G.); (S.G.)
| | - Michael Lichtenauer
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.L.); (V.P.)
| | - Vera Paar
- Clinic of Internal Medicine II, Department of Cardiology, Paracelsus Medical University of Salzburg, 5020 Salzburg, Austria; (M.L.); (V.P.)
| | - Michael Emich
- Austrian Federal Ministry of Defence, Austrian Armed Forces, 1090 Vienna, Austria;
| | - Monika Fritzer-Szekeres
- Chemical Laboratory Analysis, Department of Medical, Medical University of Vienna, 1090 Vienna, Austria;
| | | | - Senta Graf
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (R.S.); (S.S.); (J.L.); (C.G.); (S.G.)
| | - Michael Sponder
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.L.); (R.S.); (S.S.); (J.L.); (C.G.); (S.G.)
- Correspondence: ; Tel.: +43-1-40400-46300; Fax: +43-1-40400-42160
| |
Collapse
|
10
|
Scales MK, Velez-Delgado A, Steele NG, Schrader HE, Stabnick AM, Yan W, Mercado Soto NM, Nwosu ZC, Johnson C, Zhang Y, Salas-Escabillas DJ, Menjivar RE, Maurer HC, Crawford HC, Bednar F, Olive KP, Pasca di Magliano M, Allen BL. Combinatorial Gli activity directs immune infiltration and tumor growth in pancreatic cancer. PLoS Genet 2022; 18:e1010315. [PMID: 35867772 PMCID: PMC9348714 DOI: 10.1371/journal.pgen.1010315] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 08/03/2022] [Accepted: 06/27/2022] [Indexed: 01/16/2023] Open
Abstract
Proper Hedgehog (HH) signaling is essential for embryonic development, while aberrant HH signaling drives pediatric and adult cancers. HH signaling is frequently dysregulated in pancreatic cancer, yet its role remains controversial, with both tumor-promoting and tumor-restraining functions reported. Notably, the GLI family of HH transcription factors (GLI1, GLI2, GLI3), remain largely unexplored in pancreatic cancer. We therefore investigated the individual and combined contributions of GLI1-3 to pancreatic cancer progression. At pre-cancerous stages, fibroblast-specific Gli2/Gli3 deletion decreases immunosuppressive macrophage infiltration and promotes T cell infiltration. Strikingly, combined loss of Gli1/Gli2/Gli3 promotes macrophage infiltration, indicating that subtle changes in Gli expression differentially regulate immune infiltration. In invasive tumors, Gli2/Gli3 KO fibroblasts exclude immunosuppressive myeloid cells and suppress tumor growth by recruiting natural killer cells. Finally, we demonstrate that fibroblasts directly regulate macrophage and T cell migration through the expression of Gli-dependent cytokines. Thus, the coordinated activity of GLI1-3 directs the fibroinflammatory response throughout pancreatic cancer progression.
Collapse
Affiliation(s)
- Michael K. Scales
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Ashley Velez-Delgado
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nina G. Steele
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Hannah E. Schrader
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Anna M. Stabnick
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Yan
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nayanna M. Mercado Soto
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zeribe C. Nwosu
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Craig Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yaqing Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | | | - Rosa E. Menjivar
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, United States of America
| | - H. Carlo Maurer
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York city, New York, United States of America
- Internal Medicine II, School of Medicine, Technische Universität München, Munich, Germany
| | - Howard C. Crawford
- Department of Surgery, Henry Ford Health System, Detroit, Michigan, United States of America
| | - Filip Bednar
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kenneth P. Olive
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York city, New York, United States of America
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York city, New York, United States of America
| | - Marina Pasca di Magliano
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Benjamin L. Allen
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
- Rogel Cancer Center, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
11
|
Déméautis T, Delles M, Tomaz S, Monneret G, Glehen O, Devouassoux G, George C, Bentaher A. Pathogenic Mechanisms of Secondary Organic Aerosols. Chem Res Toxicol 2022; 35:1146-1161. [PMID: 35737464 DOI: 10.1021/acs.chemrestox.1c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Air pollution represents a major health problem and an economic burden. In recent years, advances in air pollution research has allowed particle fractionation and identification of secondary organic aerosol (SOA). SOA is formed from either biogenic or anthropogenic emissions, through a mass transfer from the gaseous mass to the particulate phase in the atmosphere. They can have deleterious impact on health and the mortality of individuals with chronic inflammatory diseases. The pleiotropic effects of SOA could involve different and interconnected pathogenic mechanisms ranging from oxidative stress, inflammation, and immune system dysfunction. The purpose of this review is to present recent findings about SOA pathogenic roles and potential underlying mechanisms focusing on the lungs; the latter being the primary exposed organ to atmospheric pollutants.
Collapse
Affiliation(s)
- Tanguy Déméautis
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Marie Delles
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| | - Sophie Tomaz
- University of Lyon, Lyon 1 Claude Bernard University, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Guillaume Monneret
- Pathophysiology of Immunosuppression Associated with Systemic Inflammatory Responses, EA7426 (PI3), Edouard Herriot Hospital, 5 Place d'Arsonval, 69003 Lyon, France
| | - Olivier Glehen
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France.,Digestive and Endocrine Surgery Department, University Hospital of Lyon, Lyon South Hospital,165 Chemin du Grand Revoyet 69495 Pierre-Benite, France
| | - Gilles Devouassoux
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France.,Pulmonology Department, Croix Rousse Hospital, Lyon Civil Hospices, Lyon 1 Claude Bernard University, 103 Grande Rue de la Croix-Rousse, 69004 Lyon, France
| | - Christian George
- University of Lyon, Lyon 1 Claude Bernard University, CNRS, IRCELYON, 2 Avenue Albert Einstein, 69626 Villeurbanne, France
| | - Abderrazzak Bentaher
- Inflammation and Immunity of the Respiratory Epithelium, EA3738 (CICLY), South Medical University Hospital, Lyon 1 Claude Bernard University, 165 Chemin du grand Revoyet, 69395 Pierre-Bénite, France
| |
Collapse
|
12
|
da Silva LHR, Catharino LCC, da Silva VJ, Evangelista GCM, Barbuto JAM. The War Is on: The Immune System against Glioblastoma—How Can NK Cells Drive This Battle? Biomedicines 2022; 10:biomedicines10020400. [PMID: 35203609 PMCID: PMC8962431 DOI: 10.3390/biomedicines10020400] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that play an important role in immunosurveillance, acting alongside other immune cells in the response against various types of malignant tumors and the prevention of metastasis. Since their discovery in the 1970s, they have been thoroughly studied for their capacity to kill neoplastic cells without the need for previous sensitization, executing rapid and robust cytotoxic activity, but also helper functions. In agreement with this, NK cells are being exploited in many ways to treat cancer. The broad arsenal of NK-based therapies includes adoptive transfer of in vitro expanded and activated cells, genetically engineered cells to contain chimeric antigen receptors (CAR-NKs), in vivo stimulation of NK cells (by cytokine therapy, checkpoint blockade therapies, etc.), and tumor-specific antibody-guided NK cells, among others. In this article, we review pivotal aspects of NK cells’ biology and their contribution to immune responses against tumors, as well as providing a wide perspective on the many antineoplastic strategies using NK cells. Finally, we also discuss those approaches that have the potential to control glioblastoma—a disease that, currently, causes inevitable death, usually in a short time after diagnosis.
Collapse
Affiliation(s)
- Lucas Henrique Rodrigues da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Luana Correia Croda Catharino
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - Viviane Jennifer da Silva
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
| | - Gabriela Coeli Menezes Evangelista
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
| | - José Alexandre Marzagão Barbuto
- Departamento de Imunologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo 05508000, Brazil; (L.H.R.d.S.); (L.C.C.C.); (V.J.d.S.); (G.C.M.E.)
- Laboratory of Medical Investigation in Pathogenesis and Targeted Therapy in Onco-Immuno-Hematology (LIM-31), Departamento de Hematologia, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, Universidade de Sao Paulo, Sao Paulo 0124690, Brazil
- Correspondence: ; Tel.: +55-11-3091-7375
| |
Collapse
|
13
|
Khare VM, Saxena VK, Pasternak MA, Nyinawabera A, Singh KB, Ashby CR, Tiwari AK, Tang Y. The expression profiles of chemokines, innate immune and apoptotic genes in tumors caused by Rous Sarcoma Virus (RSV-A) in chickens. Genes Immun 2021; 23:12-22. [PMID: 34934184 DOI: 10.1038/s41435-021-00158-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 11/18/2021] [Accepted: 12/07/2021] [Indexed: 11/09/2022]
Abstract
Innate immune genes play an important role in the immune responses to Rous sarcoma virus (RSV)-induced tumor formation and metastasis. Here, we determined in vivo expression of chemokines, innate immune and apoptotic genes in Synthetic Broiler Dam Line (SDL) chickens following RSV-A infection. The mRNA expression of genes was determined at the primary site of infection and in different organs of progressor, regressor and non-responder chicks, using RT-qPCR. Our results indicated a significant upregulation of: (1) chemokines, such as MIP1β and RANTES, (2) the innate immune gene TLR4, and (3) p53, a tumor-suppressor gene, at the site of primary infection in progressor chickens. In contrast, inducible nitric oxide synthase (iNOS) gene expression was significantly downregulated in progressor chicks compared to uninfected, control chicks. All of the innate immune genes were significantly upregulated in the lungs and liver of the progressor and regressor chicks compared to control chicks. In the spleen of progressor chicks, RANTES, iNOS and p53 gene expression were significantly increased, whereas MIP1β and TLR4 gene expression was significantly downregulated, compared to control chicks. The lungs and livers of non-responder chicks expressed a low level of iNOS and MIP1β, whereas RANTES, TLR4, and p53 gene expression were significantly upregulated compared to uninfected control chicks. In addition, there was a significant downregulation of RANTES, MIP1β, and TLR4 gene expression in non-responder chicks. These results suggest the different response to infection of chicks with RSV-A is due to differential changes in the expression of innate immune genes in different organs.
Collapse
Affiliation(s)
- Vishwa M Khare
- Eurofins Lancaster Laboratories, Philadelphia, PA, 19104, USA. .,Disease Genetics and Biotechnology Lab, CARI, Izatnagar, UP, 243 122, India.
| | - Vishesh K Saxena
- Disease Genetics and Biotechnology Lab, CARI, Izatnagar, UP, 243 122, India
| | - Mariah A Pasternak
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, 43614, USA
| | - Angelique Nyinawabera
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, 43614, USA
| | - Kunwar B Singh
- Animal Science Department, Rohilkhand University, Bareilly, UP, India
| | - Charles R Ashby
- Department of Pharmaceutical Sciences, St. John's University, Queens, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, The University of Toledo, Toledo, OH, 43614, USA.
| | - Yuan Tang
- Department of Bioengineering, The University of Toledo, Toledo, OH, 43614, USA.
| |
Collapse
|
14
|
Morgan P, Arnold SJ, Hsiao NW, Shu CW. A Closer Look at Dexamethasone and the SARS-CoV-2-Induced Cytokine Storm: In Silico Insights of the First Life-Saving COVID-19 Drug. Antibiotics (Basel) 2021; 10:antibiotics10121507. [PMID: 34943719 PMCID: PMC8698520 DOI: 10.3390/antibiotics10121507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
The term cytokine storm refers to an uncontrolled overproduction of soluble inflammatory markers known as cytokines and chemokines. Autoimmune destruction of the lungs triggered by the release of these inflammatory markers often induces acute respiratory distress syndrome (ARDS). ARDS is an emergency condition with a high mortality rate in COVID-19 patients. Dexamethasone is the first repurposed corticosteroid with life-saving efficacy in patients with severe SARS-CoV-2 infection. Dexamethasone has traditionally been known to suppress the production of inflammatory markers at the transcriptional level, but its role as a direct therapeutic to neutralize cytokines, chemokines, their receptors, and functionally critical SARS-CoV-2 proteins has not yet been explored. Herein, we demonstrated that dexamethasone binds with high affinity to interlukin-1 (IL-1), IL-6, IL-8, IL-12, IL-21, INF2, TGFβ-1, INF-γ, CXCL8, some of the receptors, IL-1R, IL-21R, IFNGR, INFAR, IL-6αR-gp130, ST2 and the SARS-CoV-2 protein NSP macro X, and 3CLpro, forming stable drug–protein complexes. Our work implied that dexamethasone has the potential to directly neutralize inflammatory markers, further supporting its life-saving potential in patients with severe manifestations of COVID-19.
Collapse
Affiliation(s)
- Paul Morgan
- Faculty of Science and Technology, University of Belize, Belmopan 501, Belize; (P.M.); (S.J.A.)
| | - Shareen J. Arnold
- Faculty of Science and Technology, University of Belize, Belmopan 501, Belize; (P.M.); (S.J.A.)
| | - Nai-Wan Hsiao
- Department of Biology, National Changhua University of Education, Changhua 50007, Taiwan;
| | - Chih-Wen Shu
- Institute of BioPharmaceutical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Department of Biomedical Science and Environmental Biology, PhD Program in Life Science, College of Life Science, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-75252000 (ext. 5828)
| |
Collapse
|
15
|
Devalraju KP, Neela VSK, Krovvidi SS, Vankayalapati R, Valluri VL. Defective expansion and function of memory like natural killer cells in HIV+ individuals with latent tuberculosis infection. PLoS One 2021; 16:e0257185. [PMID: 34516566 PMCID: PMC8437280 DOI: 10.1371/journal.pone.0257185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 08/25/2021] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Tuberculosis (TB) is the leading cause of infectious disease related mortality, and only 10% of the infected individuals develop active disease. The likelihood of progression of latent tuberculosis infection (LTBI) to active TB disease is high in HIV infected individuals. Identification of HIV+ individuals at risk would allow treating targeted population, facilitating completion of therapy for LTBI and prevention of TB development. NK cells have an important role in T cell independent immunity against TB, but the exact role of NK cell subsets in LTBI and HIV is not well characterized. METHODS In this study, we compared the expansion and function of memory like NK cells from HIV-LTBI+ individuals and treatment naïve HIV+LTBI+ patients in response to Mtb antigens ESAT-6 and CFP-10. RESULTS In freshly isolated PBMCs, percentages of CD3-CD56+ NK cells were similar in HIV+LTBI+ patients and healthy HIV-LTBI+ individuals. However, percentages of CD3-CD56+CD16+ NK cells were higher in healthy HIV-LTBI+ individuals compared to HIV+LTBI+ patients. HIV infection also inhibited the expansion of memory like NK cells, production of IL-32α, IL-15 and IFN-γ in response to Mtb antigens in LTBI+ individuals. CONCLUSION We studied phenotypic, functional subsets and activation of memory like-NK cells during HIV infection and LTBI. We observed that HIV+LTBI+ patients demonstrated suboptimal NK cell and monocyte interactions in response to Mtb, leading to reduced IL-15, IFN-γ and granzyme B and increased CCL5 production. Our study highlights the effect of HIV and LTBI on modulation of NK cell activity to understand their role in development of interventions to prevent progression to TB in high risk individuals.
Collapse
Affiliation(s)
- Kamakshi Prudhula Devalraju
- Immunology and Molecular Biology Division, Blue Peter Public Health and Research Centre, LEPRA Society, Cherlapally, Hyderabad, Telangana, India
| | - Venkata Sanjeev Kumar Neela
- Immunology and Molecular Biology Division, Blue Peter Public Health and Research Centre, LEPRA Society, Cherlapally, Hyderabad, Telangana, India
| | - Siva Sai Krovvidi
- Department of Biotechnology, Sreenidhi Institute of Science and Technology, Yamnampet, Ghatkesar, Hyderabad, Telangana, India
| | - Ramakrishna Vankayalapati
- Department of Pulmonary Immunology, Center for Biomedical Research, The University of Texas Health Center at Tyler, Texas, TX, United States of America
| | - Vijaya Lakshmi Valluri
- Immunology and Molecular Biology Division, Blue Peter Public Health and Research Centre, LEPRA Society, Cherlapally, Hyderabad, Telangana, India
| |
Collapse
|
16
|
Singh AJ, Gray JW. Chemokine signaling in cancer-stroma communications. J Cell Commun Signal 2021; 15:361-381. [PMID: 34086259 PMCID: PMC8222467 DOI: 10.1007/s12079-021-00621-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/25/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a multi-faceted disease in which spontaneous mutation(s) in a cell leads to the growth and development of a malignant new organ that if left undisturbed will grow in size and lead to eventual death of the organism. During this process, multiple cell types are continuously releasing signaling molecules into the microenvironment, which results in a tangled web of communication that both attracts new cell types into and reshapes the tumor microenvironment as a whole. One prominent class of molecules, chemokines, bind to specific receptors and trigger directional, chemotactic movement in the receiving cell. Chemokines and their receptors have been demonstrated to be expressed by almost all cell types in the tumor microenvironment, including epithelial, immune, mesenchymal, endothelial, and other stromal cells. This results in chemokines playing multifaceted roles in facilitating context-dependent intercellular communications. Recent research has started to shed light on these ligands and receptors in a cancer-specific context, including cell-type specificity and drug targetability. In this review, we summarize the latest research with regards to chemokines in facilitating communication between different cell types in the tumor microenvironment.
Collapse
Affiliation(s)
- Arun J Singh
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA.
| | - Joe W Gray
- OHSU Center for Spatial Systems Biomedicine, Oregon Health and Science University, Portland, OR, 97201, USA
| |
Collapse
|
17
|
Tunable heat shock protein-mediated NK cell responses are orchestrated by STAT1 in Antigen Presenting Cells. Sci Rep 2021; 11:16106. [PMID: 34373574 PMCID: PMC8352880 DOI: 10.1038/s41598-021-95578-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 07/27/2021] [Indexed: 11/30/2022] Open
Abstract
The release of Heat Shock Proteins (HSPs) from aberrant cells can initiate immune responses following engagement of the HSPs with antigen presenting cells (APCs). This is an important mechanism for cancer immunosurveillance and can also be modeled by vaccination with HSPs through various routes, targeting specific APCs expressing the HSP receptor CD91. Immunological outcomes can be varied as a result of the broad expression of CD91 in different dendritic cell and macrophage populations. We investigated the cellular response of different APCs to the prototypical immunogenic HSP, gp96, in the context of Th1 immunity. Although APCs generally express similar levels of the HSP receptor CD91, we uncovered APC-distinct, downstream signaling pathways activating STAT1, and differential STAT1 induced genes. As a result of this differential and unique signaling we determined that gp96-activated macrophages, but not DCs are capable of activating NK cells to produce IFN-\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$\gamma$$\end{document}γ. These data demonstrate that different APC subsets elicit unique intracellular signaling responses to HSPs which result in different patterns of downstream cellular activation and immune responses. Collectively this provides a novel tunable and autochthonous immune response to extracellular HSPs which has important implications on the development of immunity to cancer and infectious disease, as well as homeostasis.
Collapse
|
18
|
Chu Y, Nayyar G, Jiang S, Rosenblum JM, Soon-Shiong P, Safrit JT, Lee DA, Cairo MS. Combinatorial immunotherapy of N-803 (IL-15 superagonist) and dinutuximab with ex vivo expanded natural killer cells significantly enhances in vitro cytotoxicity against GD2 + pediatric solid tumors and in vivo survival of xenografted immunodeficient NSG mice. J Immunother Cancer 2021; 9:jitc-2020-002267. [PMID: 34244307 PMCID: PMC8268924 DOI: 10.1136/jitc-2020-002267] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/23/2021] [Indexed: 11/18/2022] Open
Abstract
Background Children with recurrent and/or metastatic osteosarcoma (OS), neuroblastoma (NB) and
glioblastoma multiforme (GBM) have a dismal event-free survival (<25%).
The majority of these solid tumors highly express GD2. Dinutuximab, an anti-GD2
monoclonal antibody, significantly improved event-free survival in children with
GD2+ NB post autologous stem cell transplantation and enhanced natural
killer (NK) cell-mediated antibody-dependent cell cytotoxicity. Thus, approaches to
increase NK cell number and activity, improve persistence and trafficking, and enhance
tumor targeting may further improve the clinical benefit of dinutuximab. N-803 is a
superagonist of an interleukin-15 (IL-15) variant bound to an IL-15 receptor alpha Su-Fc
fusion with enhanced biological activity. Methods The anti-tumor combinatorial effects of N-803, dinutuximab and ex vivo expanded
peripheral blood NK cells (exPBNK) were performed in vitro using cytoxicity assays
against GD2+ OS, NB and GBM cells. Perforin and interferon (IFN)-γ
levels were measured by ELISA assays. Multiple cytokines/chemokines/growth factors
released were measured by multiplex assays. Human OS, GBM or NB xenografted
NOD/SCID/IL2rγnull (NSG) mice were used to investigate the anti-tumor
combinatorial effects in vivo. Results N-803 increased the viability and proliferation of exPBNK. The increased viability and
proliferation are associated with increased phosphorylation of Stat3, Stat5, AKT,
p38MAPK and the expression of NK activating receptors. The combination of dinutuximab
and N-803 significantly enhanced in vitro cytotoxicity of exPBNK with enhanced perforin
and IFN-γ release against OS, GBM and NB. The combination of
exPBNK+N-803+dinutuximab significantly reduced the secretion of tumor necrosis
factor-related apoptosis-inducing ligand (TRAIL), platelet-derived growth factor-BB
(PDGF-BB), and stem cell growth factor beta (SCGF-β) from OS or GBM tumor cells.
Furthermore, OS or GBM significantly inhibited the secretion of regulated on activation,
normal T cell expressed and presumably secreted (RANTES) and stromal cell-derived
factor-1 alpha (SDF-1α) from exPBNK cells (p<0.001) but significantly
enhanced monokine induced by gamma interferon (MIG) secretion from exPBNK cells
(p<0.001). N-803 combined with dinutuximab and exPBNK cells significantly
extended the survival of OS, GBM or NB xenografted NSG mice. Conclusions Our results provide the rationale for the development of a clinical trial of N-803 in
combination with dinutuximab and ex vivo exPBNK cells in patients with recurrent or
metastatic GD2+ solid tumors.
Collapse
Affiliation(s)
- Yaya Chu
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Gaurav Nayyar
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Susiyan Jiang
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | - Jeremy M Rosenblum
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA
| | | | | | - Dean A Lee
- Department of Hem/Onc/BMT, Nationwide Children's Hospital, Columbus, Ohio, USA
| | - Mitchell S Cairo
- Department of Pediatrics, New York Medical College, Valhalla, New York, USA .,Department of Medicine, New York Medical College, Valhalla, New York, USA.,Department of Pathology, New York Medical College, Valhalla, New York, USA.,Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA.,Department of Cell Biology and Anatomy, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
19
|
Fradico JRB, Campi-Azevedo AC, Peruhype-Magalhães V, Coelho-Dos-Reis JGA, Faria ES, Drumond BP, de Rezende IM, Almeida JF, da Silva RB, Gusmão JD, Arcoverde Medeiros EL, Rodrigues RCM, Ribeiro JGL, Pereira MA, Silva MVF, Rocha MLC, Adelino TER, de Melo Iani FC, Pereira GC, Fernandes EG, Auxiliadora-Martins M, Valim V, de Souza Gomes M, Amaral LR, Romano APM, Ramos DG, Carvalho SMD, Fantinato FFST, do Carmo Said RF, Teixeira-Carvalho A, Martins-Filho OA. CCL3, CCL5, IL-15, IL-1Ra and VEGF compose a reliable algorithm to discriminate classes of adverse events following 17DD-YF primary vaccination according to cause-specific definitions. Vaccine 2021; 39:4359-4372. [PMID: 34147295 DOI: 10.1016/j.vaccine.2021.05.101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/09/2021] [Accepted: 05/29/2021] [Indexed: 11/24/2022]
Abstract
In the present study, a range of serum biomarkers were quantified in suspected cases of adverse events following YF immunization (YEL-AEFI) to propose a reliable laboratorial algorithm to discriminate confirmed YEL-AEFI ("A1" class) from cases with other illnesses ("C" class). Our findings demonstrated that increased levels of CXCL8, CCL2, CXCL10, IL-1β, IL-6 and TNF-α were observed in YEL-AEFI ("A1" and "C" classes) as compared to primary vaccines without YEL-AEFI [PV(day 3-28)] and reference range (RR) controls. Notably, increased levels of CCL3, CCL4, CCL2, CCL5, IL-1β, IL-15, IL-1Ra and G-CSF were found in "A1" as compared to "C" class. Venn diagrams analysis allowed the pre-selection of biomarkers for further analysis of performance indices. Data demonstrated that CCL3, CCL5, IL-15 and IL-1Ra presented high global accuracy (AUC = 1.00) to discriminate "A1" from "C". Decision tree was proposed with a reliable algorithm to discriminate YEL-AEFI cases according to cause-specific definitions with outstanding overall accuracy (91%). CCL3, CCL5, IL-15 and IL-1Ra appears as root attributes to identify "A1" followed by VEGF as branch nodes to discriminate Wild Type YFV infection ("C(WT-YFV)") from cases with other illnesses ("C*"). Together, these results demonstrated the applicability of serum biomarker measurements as putative parameters towards the establishment of accurate laboratorial tools for complementary differential diagnosis of YEL-AEFI cases.
Collapse
Affiliation(s)
- Jordana Rodrigues Barbosa Fradico
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil.
| | - Ana Carolina Campi-Azevedo
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil.
| | - Vanessa Peruhype-Magalhães
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Jordana Grazziela Alves Coelho-Dos-Reis
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil; Laboratório de Virologia Básica e Aplicada, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Elaine Spezialli Faria
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Betânia Paiva Drumond
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Izabela Maurício de Rezende
- Laboratório de Vírus, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | | | | | | | | | | | | | - Maira Alves Pereira
- Laboratório Central de Saúde Pública, Fundação Ezequiel Dias - FUNED, Belo Horizonte, MG, Brazil
| | | | - Marília Lima Cruz Rocha
- Laboratório Central de Saúde Pública, Fundação Ezequiel Dias - FUNED, Belo Horizonte, MG, Brazil
| | | | | | - Glauco Carvalho Pereira
- Laboratório Central de Saúde Pública, Fundação Ezequiel Dias - FUNED, Belo Horizonte, MG, Brazil
| | - Eder Gatti Fernandes
- Divisão de Imunização, Centro de Vigilância Epidemiológica Professor Alexandre Vranjac. Coordenadoria de Controle de Doenças. Secretaria de Estado de Saúde de São Paulo, São Paulo, SP, Brazil
| | - Maria Auxiliadora-Martins
- Hospital das Clínicas - HC, Faculdade de Medicina de Ribeirão Preto - FMRP, Universidade de São Paulo - USP, Ribeirão Preto, SP, Brazil
| | - Valéria Valim
- Divisão de Reumatologia, Hospital Universitário Cassiano Antônio de Moraes, Universidade Federal do Espírito Santo - UFES, Vitória, ES, Brazil
| | - Matheus de Souza Gomes
- Laboratório de Bioinformática e Análises Moleculares, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia, Campus Patos de Minas, MG, Brazil
| | - Laurence Rodrigues Amaral
- Laboratório de Bioinformática e Análises Moleculares, Rede Multidisciplinar de Pesquisa, Ciência e Tecnologia, Universidade Federal de Uberlândia, Campus Patos de Minas, MG, Brazil
| | - Alessandro Pecego Martins Romano
- Departamento de Imunização e Vigilância das Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | - Daniel Garkauskas Ramos
- Departamento de Imunização e Vigilância das Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | - Sandra Maria Deotti Carvalho
- Departamento de Imunização e Vigilância das Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | | | - Rodrigo Fabiano do Carmo Said
- Secretaria de Estado de Saúde de Minas Gerais, Belo Horizonte, MG, Brazil; Departamento de Imunização e Vigilância das Doenças Transmissíveis, Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| | - Olindo Assis Martins-Filho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz - FIOCRUZ-Minas, Belo Horizonte, MG, Brazil
| |
Collapse
|
20
|
Is There An Explanation for How An Irritant Causes A Nonallergic Asthmatic Disorder Such as Reactive Airways Dysfunction Syndrome (RADS)? J Occup Environ Med 2021; 62:e139-e141. [PMID: 31934909 DOI: 10.1097/jom.0000000000001814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Udhaya Kumar S, Madhana Priya N, Thirumal Kumar D, Anu Preethi V, Kumar V, Nagarajan D, Magesh R, Younes S, Zayed H, George Priya Doss C. An integrative analysis to distinguish between emphysema (EML) and alpha-1 antitrypsin deficiency-related emphysema (ADL)-A systems biology approach. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 127:315-342. [PMID: 34340772 DOI: 10.1016/bs.apcsb.2021.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lung Emphysema is an abnormal enlargement of the air sacs followed by the destruction of alveolar walls without any prominent fibrosis. This study primarily identifies the differentially expressed genes (DEGs), interactions between them, and their significant involvement in the activated signaling cascades. The dataset with ID GSE1122 (five normal lung tissue samples, five of usual emphysema, and five of alpha-1 antitrypsin deficiency-related emphysema) from the gene expression omnibus (GEO) was analyzed using the GEO2R tool. The physical association between the DEGs were mapped using the STRING tool and was visualized in the Cytoscape software. The enriched functional processes were identified with the ClueGO plugin's help from Cytoscape. Further integrative functional annotation was performed by implying the GeneGo Metacore™ to distinguish the enriched pathway maps, process networks, and GO processes. The results from this analysis revealed the critical signaling cascades that have been either activated or inhibited due to identified DEGs. We found the activated pathways such as immune response IL-1 signaling pathway, positive regulation of smooth muscle migration, BMP signaling pathway, positive regulation of leukocyte migration, NIK/NF-kappB signaling, and cytochrome-c oxidase activity. Finally, we mapped four crucial genes (CCL5, ALK, TAC1, CD74, and HLA-DOA) by comparing the functional annotations that could be significantly influential in emphysema molecular pathogenesis. Our study provides insights into the pathogenesis of emphysema and helps in developing potential drug targets against emphysema.
Collapse
Affiliation(s)
- S Udhaya Kumar
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - N Madhana Priya
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, Tamil Nadu, India
| | - D Thirumal Kumar
- Meenakshi Academy of Higher Education and Research, Chennai, Tamil Nadu, India
| | - V Anu Preethi
- School of Computer Science and Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Vibhaa Kumar
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Dhanushya Nagarajan
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - R Magesh
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Porur, Chennai, Tamil Nadu, India
| | - Salma Younes
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, QU Health, Qatar University, Doha, Qatar
| | - C George Priya Doss
- School of BioSciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.
| |
Collapse
|
22
|
Khalil BA, Elemam NM, Maghazachi AA. Chemokines and chemokine receptors during COVID-19 infection. Comput Struct Biotechnol J 2021; 19:976-988. [PMID: 33558827 PMCID: PMC7859556 DOI: 10.1016/j.csbj.2021.01.034] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/17/2022] Open
Abstract
Chemokines are crucial inflammatory mediators needed during an immune response to clear pathogens. However, their excessive release is the main cause of hyperinflammation. In the recent COVID-19 outbreak, chemokines may be the direct cause of acute respiratory disease syndrome, a major complication leading to death in about 40% of severe cases. Several clinical investigations revealed that chemokines are directly involved in the different stages of SARS-CoV-2 infection. Here, we review the role of chemokines and their receptors in COVID-19 pathogenesis to better understand the disease immunopathology which may aid in developing possible therapeutic targets for the infection.
Collapse
Key Words
- AECs, airway epithelial cells
- AP-1, Activator Protein 1
- ARDS
- ARDS, acute respiratory disease syndrome
- BALF, bronchial alveolar lavage fluid
- CAP, community acquired pneumonia
- COVID-19
- CRS, cytokine releasing syndrome
- Chemokine Receptors
- Chemokines
- DCs, dendritic cells
- ECM, extracellular matrix
- GAGs, glycosaminoglycans
- HIV, human immunodeficiency virus
- HRSV, human respiratory syncytial virus
- IFN, interferon
- IMM, inflammatory monocytes and macrophages
- IP-10, IFN-γ-inducible protein 10
- IRF, interferon regulatory factor
- Immunity
- MERS-CoV, Middle East respiratory syndrome coronavirus
- NETs, neutrophil extracellular traps
- NF-κB, Nuclear Factor kappa-light-chain-enhancer of activated B cells
- NK cells, natural killer cells
- PBMCs, peripheral blood mononuclear cells
- PRR, pattern recognition receptors
- RSV, rous sarcoma virus
- SARS-CoV, severe acute respiratory syndrome coronavirus
- SARS-CoV-2
- TLR, toll like receptor
- TRIF, TIR-domain-containing adapter-inducing interferon-β
Collapse
Affiliation(s)
- Bariaa A. Khalil
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| | - Noha Mousaad Elemam
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| | - Azzam A. Maghazachi
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Immuno-Oncology Group, Sharjah Institute for Medical Research (SIMR), Sharjah, United Arab Emirates
| |
Collapse
|
23
|
Bhat H, Zaun G, Hamdan TA, Lang J, Adomati T, Schmitz R, Friedrich SK, Bergerhausen M, Cham LB, Li F, Ali M, Zhou F, Khairnar V, Duhan V, Brandenburg T, Machlah YM, Schiller M, Berry A, Xu H, Vollmer J, Häussinger D, Thier B, Pandyra AA, Schadendorf D, Paschen A, Schuler M, Lang PA, Lang KS. Arenavirus Induced CCL5 Expression Causes NK Cell-Mediated Melanoma Regression. Front Immunol 2020; 11:1849. [PMID: 32973762 PMCID: PMC7472885 DOI: 10.3389/fimmu.2020.01849] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/09/2020] [Indexed: 01/18/2023] Open
Abstract
Immune activation within the tumor microenvironment is one promising approach to induce tumor regression. Certain viruses including oncolytic viruses such as the herpes simplex virus (HSV) and non-oncolytic viruses such as the lymphocytic choriomeningitis virus (LCMV) are potent tools to induce tumor-specific immune activation. However, not all tumor types respond to viro- and/or immunotherapy and mechanisms accounting for such differences remain to be defined. In our current investigation, we used the non-cytopathic LCMV in different human melanoma models and found that melanoma cell lines produced high levels of CCL5 in response to immunotherapy. In vivo, robust CCL5 production in LCMV infected Ma-Mel-86a tumor bearing mice led to recruitment of NK cells and fast tumor regression. Lack of NK cells or CCL5 abolished the anti-tumoral effects of immunotherapy. In conclusion, we identified CCL5 and NK cell-mediated cytotoxicity as new factors influencing melanoma regression during virotherapy.
Collapse
Affiliation(s)
- Hilal Bhat
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Gregor Zaun
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thamer A Hamdan
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Judith Lang
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Tom Adomati
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Rosa Schmitz
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Sarah-Kim Friedrich
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Michael Bergerhausen
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Lamin B Cham
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Fanghui Li
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Murtaza Ali
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Fan Zhou
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Vishal Khairnar
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany.,Department of Systems Biology, Beckman Research Institute, City of Hope, Monrovia, CA, United States
| | - Vikas Duhan
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Tim Brandenburg
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Yara Maria Machlah
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Maximilian Schiller
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| | - Arshia Berry
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Haifeng Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | | | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Beatrice Thier
- Department of Dermatology, University Hospital Essen, Essen, Germany
| | - Aleksandra A Pandyra
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany.,Department of Gastroenterology, Hepatology and Infectious Diseases, University of Düsseldorf, Düsseldorf, Germany
| | - Dirk Schadendorf
- Department of Dermatology, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Annette Paschen
- Department of Dermatology, University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Martin Schuler
- Department of Medical Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany.,German Cancer Consortium (DKTK), Partner Site University Hospital Essen, Essen, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Karl S Lang
- Medical Faculty, Institute of Immunology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
24
|
Li P, He F, Wu C, Zhao G, Hardwidge PR, Li N, Peng Y. Transcriptomic Analysis of Chicken Lungs Infected With Avian and Bovine Pasteurella multocida Serotype A. Front Vet Sci 2020; 7:452. [PMID: 32851030 PMCID: PMC7433353 DOI: 10.3389/fvets.2020.00452] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/22/2020] [Indexed: 12/15/2022] Open
Abstract
Pasteurella multocida (P. multocida) is a common animal pathogen responsible for many animal diseases. Strains from different hosts exhibit disparate degrees of effect in other species. Here, we characterize an avian P. multocida serogroup A strain (PmQ) showing high lethality to chickens and a bovine P. multocida serogroup A strain (PmCQ2) with no lethality to chickens. We used RNA-seq to profile the transcriptomes of chicken lungs infected with PmQ and PmCQ2. A total of 1,649 differentially expressed genes (DEGs) due to PmQ infection (831 upregulated genes and 818 downregulated genes) and 1427 DEGs (633 upregulated genes and 794 downregulated genes) due to PmCQ2 infection were identified. Functional analysis of these DEGs demonstrated that the TNF signaling pathway, the toll-like receptor signaling pathway, complement and coagulation cascades, and cytokine–cytokine receptor interaction were both enriched in PmQ and PmCQ2 infection. STAT and apoptosis signaling pathways were uniquely enriched by PmQ infection, and the NOD-like receptor signaling pathway was enriched only by PmCQ2 infection. Cell-type enrichment analysis of the transcriptomes showed that immune cells, including macrophages and granulocytes, were enriched in both infection groups. Collectively, our study profiled the transcriptomic response of chicken lungs infected with P. multocida and provided valuable information to understand the chicken responses to P. multocida infection.
Collapse
Affiliation(s)
- Pan Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Fang He
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Chenlu Wu
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Guangfu Zhao
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China.,The College of Life Sciences, Sichuan University, Chengdu, China
| | - Philip R Hardwidge
- College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Nengzhang Li
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage & Herbivore, College of Animal Science and Technology, Southwest University, Chongqing, China
| |
Collapse
|
25
|
Gan Y, Tan F, Yi R, Zhou X, Li C, Zhao X. Research Progress on Coronavirus Prevention and Control in Animal-Source Foods. J Multidiscip Healthc 2020; 13:743-751. [PMID: 32801737 PMCID: PMC7414935 DOI: 10.2147/jmdh.s265059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 11/23/2022] Open
Abstract
Coronaviruses (CoVs) are common pathogens that can infect both animals and humans, thereby posing a threat to global public health. CoV infection mostly occurs during winter and spring in temperate countries; the virus has high transmission efficiency and may have severe infection outcomes. The recent SARS-CoV-2 outbreak exhibited transboundary transmission due to international transportation, trade, and economic exchange. Animal hosts provide a persistent source for CoVs and their recombination. Domestic camels have been shown to be one of the hosts of CoVs, while livestock, poultry and other warm-blooded animals may act as intermediate hosts for CoVs. This paper outlines the biological and epidemiological characteristics and diagnosis of CoVs and describes the origin, transmission route, animal-source food risk, and control measures for CoVs. Such knowledge can be used to prevent CoVs from harming consumers through animal-sourced foods and can help to prevent new zoonoses from occurring. This work will provide a reference for strengthening the controls on the production process in meat production companies, thereby improving food safety.
Collapse
Affiliation(s)
- Yi Gan
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
| | - Fang Tan
- Department of Public Health, Our Lady of Fatima University, Valenzuela, Philippines
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
| | - Xianrong Zhou
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
| | - Chong Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing, People’s Republic of China
| |
Collapse
|
26
|
Miller AM, Lemke-Miltner CD, Blackwell S, Tomanek-Chalkley A, Gibson-Corely KN, Coleman KL, Weiner GJ, Chan CHF. Intraperitoneal CMP-001: A Novel Immunotherapy for Treating Peritoneal Carcinomatosis of Gastrointestinal and Pancreaticobiliary Cancer. Ann Surg Oncol 2020; 28:1187-1197. [PMID: 32409965 DOI: 10.1245/s10434-020-08591-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND The treatment options for patients with peritoneal carcinomatosis (PC) of gastrointestinal and pancreaticobiliary origins are limited. The virus-like particle, CMP-001, composed of the Qβ bacteriophage capsid protein encapsulating a CpG-A oligodeoxynucleotide, activates plasmacytoid dendritic cells (pDCs) and triggers interferon alpha (IFNα) release, leading to a cascade of anti-tumor immune effects. METHODS To evaluate the ability of CMP-001 to trigger an immune response in patients with PC, peritoneal cells were isolated and stimulated ex vivo with CMP-001. Both IFNα release and percentage of pDC were quantified using enzyme-linked immunosorbent assay (ELISA) and flow cytometry, respectively. To evaluate the anti-tumor response in vivo, murine PC models were generated using mouse cancer cell lines (Panc02 and MC38) in immunocompetent mice treated with intraperitoneal CMP-001 or saline control. Survival was followed, and the immunophenotype of cells in the peritoneal tumor microenvironment was evaluated. RESULTS The pDCs accounted for 1% (range 0.1-3.9%; n = 17) of the isolated peritoneal cells. Ex vivo CMP-001 stimulation of the peritoneal cells released an average of 0.77 ng/ml of IFNα (range, 0-4700 pg/ml; n = 14). The IFNα concentration was proportional to the percentage of pDCs present in the peritoneal cell mixture (r = 0.6; p = 0.037). In murine PC models, intraperitoneal CMP-001 treatment elicited an anti-tumor immune response including an increase in chemokines (RANTES and MIP-1β), pro-inflammatory cytokines (IFNγ, interleukin 6 [IL-6], and IL-12), and peritoneal/tumor immune infiltration (CD4+/CD8+ T and natural killer [NK] cells). The CMP-001 treatment improved survival in both the Panc02 (median, 35 vs 28 days) and the MC38 (median: 57 vs 35 days) PC models (p < 0.05). CONCLUSIONS As a novel immunotherapeutic agent, CMP-001 may be effective for treating patients with PC.
Collapse
Affiliation(s)
- Ann M Miller
- Department of Surgery, University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, IA, USA
| | - Caitlin D Lemke-Miltner
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Sue Blackwell
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Ann Tomanek-Chalkley
- Department of Surgery, University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, IA, USA
| | - Katherine N Gibson-Corely
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,Department of Pathology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Kristen L Coleman
- Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - George J Weiner
- Department of Internal Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA
| | - Carlos H F Chan
- Department of Surgery, University of Iowa Hospitals and Clinics, University of Iowa, Iowa City, IA, USA. .,Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
27
|
Zhang L, Yu J, Liu Z. MicroRNAs expressed by human cytomegalovirus. Virol J 2020; 17:34. [PMID: 32164742 PMCID: PMC7069213 DOI: 10.1186/s12985-020-1296-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/04/2020] [Indexed: 12/13/2022] Open
Abstract
Background MicroRNAs (miRNAs) are small non-coding RNAs about 22 nucleotides in length, which play an important role in gene regulation of both eukaryotes and viruses. They can promote RNA cleavage and repress translation via base-pairing with complementary sequences within mRNA molecules. Main body Human cytomegalovirus (HCMV) encodes a large number of miRNAs that regulate transcriptions of both host cells and themselves to favor viral infection and inhibit the host’s immune response. To date, ~ 26 mature HCMV miRNAs have been identified. Nevertheless, their roles in viral infection are ambiguous, and the mechanisms have not been fully revealed. Therefore, we discuss the methods used in HCMV miRNA research and summarize the important roles of HCMV miRNAs and their potential mechanisms in infection. Conclusions To study the miRNAs encoded by viruses and their roles in viral replication, expression, and infection will not only contribute to the planning of effective antiviral therapies, but also provide new molecular targets for the development of antiviral drugs.
Collapse
Affiliation(s)
- Lichen Zhang
- Clinical School, Weifang Medical University, Weifang, 261053, China
| | - Jiaqi Yu
- Clinical School, Weifang Medical University, Weifang, 261053, China
| | - Zhijun Liu
- Department of Medical Microbiology, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
28
|
Bueno-Silva B, Rosalen PL, Alencar SM, Mayer MPA. Vestitol drives LPS-activated macrophages into M2 phenotype through modulation of NF-κB pathway. Int Immunopharmacol 2020; 82:106329. [PMID: 32114412 DOI: 10.1016/j.intimp.2020.106329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 12/12/2022]
Abstract
Previously, we demonstrated the anti-inflammatory properties of vestitol in a neutrophil model. Here, we show the effects of vestitol on macrophage activation and function. Vestitol was obtained from Brazilian red propolis after bioguided fractionation and tested at different concentrations in LPS-activated RAW 264.7 murine macrophages for nitric oxide (NO) production and cell viability. The levels of TNF-α, IL1-β, TGF-β, IL-4, IL-6, IL-10, IL-12, GM-CSF, IFN-ɣ and gene expression related to cytokines, NO, PI3K-AKT and signal transduction pathways were assayed by ELISA and RT-qPCR, respectively. Differences were determined by one-way ANOVA followed by Tukey-Kramer. Vestitol inhibited NO production by 83% at 0.55 μM without affecting cell viability when compared to the vehicle control (P < 0.05). Treatment with vestitol reduced GM-CSF, IL-6, TNF-α, IL-4 and TGF-β levels and increased IL-10 release (P < 0.05). Vestitol affected the expression of genes related to NF-κB pathway, NO synthase, and inhibition of leukocyte transmigration, namely: Ccs, Ccng1, Calm1, Tnfsf15, Il11, Gata3, Gadd45b, Cdkn1b, Csf1, Ccl5, Birc3 (negatively regulated), and Igf1 (positively regulated). Vestitol diminished the activation of NF-κB and Erk 1/2 pathways and induced macrophages into M2-like polarization. The modulatory effects of vestitol are due to inhibition of NF-κB and Erk 1/2 signaling pathways, which are associated with the production of pro-inflammatory factors.
Collapse
Affiliation(s)
- Bruno Bueno-Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil.
| | - Pedro L Rosalen
- Piracicaba Dental School, University of Campinas - UNICAMP, Department of Physiological Sciences, P.O. Box 52, 13414-903, Piracicaba, SP, Brazil
| | - Severino M Alencar
- Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, P.O. Box 9, 13418-900, Piracicaba, SP, Brazil
| | - Marcia P A Mayer
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil
| |
Collapse
|
29
|
Naqvi AR. Immunomodulatory roles of human herpesvirus-encoded microRNA in host-virus interaction. Rev Med Virol 2020; 30:e2081. [PMID: 31432608 PMCID: PMC7398577 DOI: 10.1002/rmv.2081] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 12/18/2022]
Abstract
Human herpesviruses (HHV) are large, double stranded, DNA viruses with high seroprevalence across the globe. Clinical manifestation of primary HHV infection resolve shortly, however, this period is prolonged in immunocompromised patients or individuals with suppressed immunity. Examining molecular mechanisms of HHV-encoded virulence factors can provide finer details of HHV-host interaction. A unique genetic feature of most members of HHV is that they encode multiple microRNAs (miR). In this review, I will provide mechanistic insights into the immunomodulatory functions of herpesvirus-encoded viral miR (v-miR) that favor viral persistence and spread by ingenious immune evasion schemes. Similar to host miR, v-miR can simultaneously regulate expression of multiple transcripts including host- and virus-derived. V-miRs, by virtue of their direct interaction with various transcripts, can regulate expression of critical components of host innate and adaptive immune system. V-miRs are also exported through exosomal route and gain entry into various cells even at distant sites, thereby allowing HHV to manipulate cellular and tissue immunity. Targeting v-miR may serve as a novel and promising therapeutic candidate to mitigate HHV-mediated clinical manifestations.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Mucosal Immunology Lab, College of Dentistry, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
30
|
Xu JZ, Kumar R, Gong H, Liu L, Ramos-Solis N, Li Y, Derbigny WA. Toll-Like Receptor 3 Deficiency Leads to Altered Immune Responses to Chlamydia trachomatis Infection in Human Oviduct Epithelial Cells. Infect Immun 2019; 87:e00483-19. [PMID: 31383744 PMCID: PMC6759307 DOI: 10.1128/iai.00483-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Reproductive tract pathology caused by Chlamydia trachomatis infection is an important global cause of human infertility. To better understand the mechanisms associated with Chlamydia-induced genital tract pathogenesis in humans, we used CRISPR genome editing to disrupt Toll-like receptor 3 (TLR3) function in the human oviduct epithelial (hOE) cell line OE-E6/E7 in order to investigate the possible role(s) of TLR3 signaling in the immune response to Chlamydia Disruption of TLR3 function in these cells significantly diminished the Chlamydia-induced synthesis of several inflammation biomarkers, including interferon beta (IFN-β), interleukin-6 (IL-6), interleukin-6 receptor alpha (IL-6Rα), soluble interleukin-6 receptor beta (sIL-6Rβ, or gp130), IL-8, IL-20, IL-26, IL-34, soluble tumor necrosis factor receptor 1 (sTNF-R1), tumor necrosis factor ligand superfamily member 13B (TNFSF13B), matrix metalloproteinase 1 (MMP-1), MMP-2, and MMP-3. In contrast, the Chlamydia-induced synthesis of CCL5, IL-29 (IFN-λ1), and IL-28A (IFN-λ2) was significantly increased in TLR3-deficient hOE cells compared to their wild-type counterparts. Our results indicate a role for TLR3 signaling in limiting the genital tract fibrosis, scarring, and chronic inflammation often associated with human chlamydial disease. Interestingly, we saw that Chlamydia infection induced the production of biomarkers associated with persistence, tumor metastasis, and autoimmunity, such as soluble CD163 (sCD163), chitinase-3-like protein 1, osteopontin, and pentraxin-3, in hOE cells; however, their expression levels were significantly dysregulated in TLR3-deficient hOE cells. Finally, we demonstrate using hOE cells that TLR3 deficiency resulted in an increased amount of chlamydial lipopolysaccharide (LPS) within Chlamydia inclusions, which is suggestive that TLR3 deficiency leads to enhanced chlamydial replication and possibly increased genital tract pathogenesis during human infection.
Collapse
Affiliation(s)
- Jerry Z Xu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Ramesh Kumar
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Haoli Gong
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Luyao Liu
- Xiangya Second Hospital, Central South University, Changsha, Hunan Province, People's Republic of China
| | - Nicole Ramos-Solis
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Yujing Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Wilbert A Derbigny
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
31
|
Nakamura Y, Miyagawa S, Yoshida S, Sasawatari S, Toyofuku T, Toda K, Sawa Y. Natural killer cells impede the engraftment of cardiomyocytes derived from induced pluripotent stem cells in syngeneic mouse model. Sci Rep 2019; 9:10840. [PMID: 31346220 PMCID: PMC6658523 DOI: 10.1038/s41598-019-47134-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Transplantation of cardiomyocytes derived from induced pluripotent stem cell (iPSC-CMs) is a promising approach for increasing functional CMs during end-stage heart failure. Although major histocompatibility complex (MHC) class I matching between donor cells and recipient could reduce acquired immune rejection, innate immune responses may have negative effects on transplanted iPSC-CMs. Here, we demonstrated that natural killer cells (NKCs) infiltrated in iPSC-CM transplants even in a syngeneic mouse model. The depletion of NKCs using an anti-NKC antibody rescued transplanted iPSC-CMs, suggesting that iPSC-CMs activated NKC-mediated innate immunity. Surprisingly, iPSC-CMs lost inhibitory MHCs but not activating ligands for NKCs. Re-expression of MHC class I induced by IFN-γ as well as suppression of activating ligands by an antibody rescued the transplanted iPSC-CMs. Thus, NKCs impede the engraftment of transplanted iPSC-CMs because of lost MHC class I, and our results provide a basis for an approach to improve iPSC-CM engraftment.
Collapse
Affiliation(s)
- Yuki Nakamura
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shohei Yoshida
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Shigemi Sasawatari
- Department of Immunology and Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Toshihiko Toyofuku
- Department of Immunology and Regenerative Medicine, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Koichi Toda
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
32
|
Liu X, Zhou M, Wu J, Wang J, Peng Q. HMGB1 release from trophoblasts contributes to inflammation during Brucella melitensis infection. Cell Microbiol 2019; 21:e13080. [PMID: 31265755 DOI: 10.1111/cmi.13080] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/28/2019] [Accepted: 06/25/2019] [Indexed: 01/10/2023]
Abstract
Brucella melitensis infection causes acute necrotizing inflammation in pregnant animals; however, the pathophysiological mechanisms leading to placentitis are unknown. Here, we demonstrate that high-mobility group box 1 (HMGB1) acts as a mediator of placenta inflammation in B. melitensis-infected pregnant mice model. HMGB1 levels were increased in trophoblasts or placental explant during B. melitensis infection. Inhibition of HMGB1 activity with neutralising antibody significantly reduced the secretion of inflammatory cytokines in B. melitensis-infected trophoblasts or placenta, whereas administration of recombinant HMGB1 (rHMGB1) increased the inflammatory response. Mechanistically, this decreased inflammatory response results from inhibition of HMGB1 activity, which cause the suppression of both mitogen-activated protein kinases and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation. Moreover, neutralising antibody to HMGB1 prevented B. melitensis infection-induced activation of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase in trophoblasts. In contrast, in vitro stimulation of trophoblasts with rHMGB1 caused activation of NADPH oxidase and increased the production of ROS, which contributes to high bacterial burden within trophoblasts or placenta. In vivo, treatment with anti-HMGB1 antibody increases the number of Brucella survival within placenta in B. melitensis-infected pregnant mice but successfully reduced the severity of placentitis and abortion.
Collapse
Affiliation(s)
- Xiaofeng Liu
- Clinical laboratory, Tumor Hospital of Jilin Province, Changchun, China
| | - Mi Zhou
- Department of Microbiology, Changchun Medical College, Changchun, China
| | - Jing Wu
- School of Nursing, Gansu University of Chinese Medicine, Lanzhou, China
| | - Jun Wang
- Laboratory Department, Shenzhen Center for Chronic Disease Control, Shenzhen, China
| | - Qisheng Peng
- Key Laboratory of Zoonosis, Ministry of Education, Institute of Zoonosis, Jilin University, Changchun, China
| |
Collapse
|
33
|
Froehlich K, Schmidt A, Heger JI, Al-Kawlani B, Aberl CA, Jeschke U, Loibl S, Markert UR. Breast cancer, placenta and pregnancy. Eur J Cancer 2019; 115:68-78. [PMID: 31121525 DOI: 10.1016/j.ejca.2019.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/03/2019] [Accepted: 03/29/2019] [Indexed: 12/18/2022]
Abstract
BACKGROUND Breast cancer is one of the most frequently diagnosed malignancies during pregnancy. Tumours often present characteristics of high malignancy and are hormone receptor negative/HER2 positive or triple negative. In general, pregnancy, including the postpartum period, is associated with a transiently increased risk of developing breast cancer but followed by a long-lasting protective period. Placental metastases are very rare and, thus far, breast cancer metastases in the foetal compartment have not been described. To discuss these apparently contradictory observations, this narrative review resumes immunological and hormonal alterations during pregnancy potentially affecting breast cancer risk as well as tumour growth and behaviour. OBSERVATIONS Upregulation of breast cancer-associated genes involved in immunological and reproductive processes has been observed in parous women and is potentially responsible for a transiently increased risk in pregnancy. In contrast, maternal immunisation and immunoglobulin production against antigens expressed on trophoblast cells, such as specific glycosylation patterns of mucin-1 or RCAS1-associated truncated glycans, seem to prevent breast cancer development in later years. Animal and human studies indicate that T cells are involved in these processes. Several placenta-derived factors, especially kisspeptin, have direct anti-tumour effects. The pregnancy-related increase of estrogen, progesterone, and other hormones influence growth and characteristics of breast cancer while the role of further placenta-secreted factors is still controversially discussed. CONCLUSION Several factors and cells are involved in altered breast cancer risk during and after pregnancy and have potential for developing novel treatment strategies in future.
Collapse
Affiliation(s)
- Karolin Froehlich
- University Hospital Jena, Department of Obstetrics, Placenta Lab, Am Klinikum 1, 07747, Jena, Germany
| | - André Schmidt
- University Hospital Jena, Department of Obstetrics, Placenta Lab, Am Klinikum 1, 07747, Jena, Germany
| | - Julia Isabell Heger
- University Hospital Jena, Department of Obstetrics, Placenta Lab, Am Klinikum 1, 07747, Jena, Germany
| | - Boodor Al-Kawlani
- University Hospital Jena, Department of Obstetrics, Placenta Lab, Am Klinikum 1, 07747, Jena, Germany
| | - Caroline Anna Aberl
- LMU München, Department of Obstetrics and Gynecology, Ludwig Maximilians University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Udo Jeschke
- LMU München, Department of Obstetrics and Gynecology, Ludwig Maximilians University of Munich, Maistrasse 11, 80337, Munich, Germany
| | - Sibylle Loibl
- German Breast Group, c/o GBG-Forschungs GmbH, Martin-Behaim-Str 12, 63263, Neu-Isenburg, Germany
| | - Udo Rudolf Markert
- University Hospital Jena, Department of Obstetrics, Placenta Lab, Am Klinikum 1, 07747, Jena, Germany.
| |
Collapse
|
34
|
Lehrnbecher T, Schmidt S. Why are natural killer cells important for defense againstAspergillus? Med Mycol 2019; 57:S206-S210. [DOI: 10.1093/mmy/myy034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 03/30/2018] [Accepted: 05/02/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Thomas Lehrnbecher
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | - Stanislaw Schmidt
- Division of Pediatric Hematology and Oncology, Hospital for Children and Adolescents, Johann Wolfgang Goethe-University, Frankfurt, Germany
| |
Collapse
|
35
|
Yi DH, Stetter N, Jakobsen K, Jonsson R, Appel S. 3-Day monocyte-derived dendritic cells stimulated with a combination of OK432, TLR7/8 ligand, and prostaglandin E 2 are a promising alternative for cancer immunotherapy. Cancer Immunol Immunother 2018; 67:1611-1620. [PMID: 30069688 PMCID: PMC11028251 DOI: 10.1007/s00262-018-2216-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 07/23/2018] [Indexed: 12/28/2022]
Abstract
Numerous trials using dendritic cell (DC)-based vaccinations for the treatment of cancer are being carried out. However, an improvement of the quality of DC used is highly warranted. We here generated human monocyte-derived dendritic cells using a 3 day protocol and stimulated the cells using a combination of OK432 (Picibanil), TLR7/8 ligand CL097, and reduced amounts of prostaglandin (PG)E2. We analyzed phenotype, migratory, and T-cell stimulatory capacity compared to a cytokine cocktail consisting of IL-1β, IL-6, TNF, and PGE2. The OK432 cocktail stimulated cells had a similar mature phenotype with upregulated co-stimulatory molecules, HLA-DR and CCR7 as the cytokine cocktail-matured cells and a similar cytokine profile except increased amounts of IL-12p70. Chemotaxis towards CCL19 was reduced compared to the cytokine cocktail, but increased compared to OK432 alone. The T-cell stimulatory capacity was similar to the cytokine cocktail stimulated cells. In conclusion, the OK432 cocktail has the advantage of inducing IL-12p70 production without impairing phenotype or T-cell stimulatory capacity of the cells and might, therefore, be an advantageous alternative to be used in DC-based immunotherapy.
Collapse
Affiliation(s)
- Dag Heiro Yi
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway
| | - Nadine Stetter
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway
| | - Kjerstin Jakobsen
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway
| | - Roland Jonsson
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway
- Department of Rheumatology, Haukeland University Hospital, Bergen, Norway
| | - Silke Appel
- Broegelmann Research Laboratory, Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021, Bergen, Norway.
| |
Collapse
|
36
|
Räihä MR, Puolakkainen PA. Tumor-associated macrophages (TAMs) as biomarkers for gastric cancer: A review. Chronic Dis Transl Med 2018; 4:156-163. [PMID: 30276362 PMCID: PMC6160505 DOI: 10.1016/j.cdtm.2018.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Indexed: 02/07/2023] Open
Abstract
Gastric adenocarcinoma is one of the most common types of cancer worldwide, with an incidence of a million new cases annually. In addition to having a high mortality rate due to often delayed detection and its poor response to cancer therapy, it also spreads aggressively. Inflammation has been shown to play a role in carcinogenesis. Consequently, macrophages are important in phagocytosis, antigen presenting and producing cytokines and growth factors. As a response to microenvironmental signals, they may polarize into tumor resisting M1 or tumor promoting M2 macrophages. Recently, studies have indicated that M2-type macrophage resembling tumor-associated macrophages (TAMs) might be used as an independent prognostic factor for gastric cancer. This review will discuss the possible use of TAMs as prognostic tools for gastric cancer and whether they are suitable for use in clinical environment.
Collapse
Affiliation(s)
- Meri R Räihä
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki 00014, Finland
| | - Pauli A Puolakkainen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
37
|
Bernier A, Sagan SM. The Diverse Roles of microRNAs at the Host⁻Virus Interface. Viruses 2018; 10:v10080440. [PMID: 30126238 PMCID: PMC6116274 DOI: 10.3390/v10080440] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 08/16/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that regulate gene expression at the post-transcriptional level. Through this activity, they are implicated in almost every cellular process investigated to date. Hence, it is not surprising that miRNAs play diverse roles in regulation of viral infections and antiviral responses. Diverse families of DNA and RNA viruses have been shown to take advantage of cellular miRNAs or produce virally encoded miRNAs that alter host or viral gene expression. MiRNA-mediated changes in gene expression have been demonstrated to modulate viral replication, antiviral immune responses, viral latency, and pathogenesis. Interestingly, viruses mediate both canonical and non-canonical interactions with miRNAs to downregulate specific targets or to promote viral genome stability, translation, and/or RNA accumulation. In this review, we focus on recent findings elucidating several key mechanisms employed by diverse virus families, with a focus on miRNAs at the host–virus interface during herpesvirus, polyomavirus, retroviruses, pestivirus, and hepacivirus infections.
Collapse
Affiliation(s)
- Annie Bernier
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
| | - Selena M Sagan
- Department of Microbiology & Immunology, McGill University, Montréal, QC H3G 1Y6, Canada.
- Department of Biochemistry, McGill University, Montréal, QC H3G 1Y6, Canada.
| |
Collapse
|
38
|
Han SW, Kim YY, Kang WJ, Kim HC, Ku SY, Kang BC, Yun JW. The Use of Normal Stem Cells and Cancer Stem Cells for Potential Anti-Cancer Therapeutic Strategy. Tissue Eng Regen Med 2018; 15:365-380. [PMID: 30603561 PMCID: PMC6171655 DOI: 10.1007/s13770-018-0128-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 05/08/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Despite recent advance in conventional cancer therapies including surgery, radiotherapy, chemotherapy, and immunotherapy to reduce tumor size, unfortunately cancer mortality and metastatic cancer incidence remain high. Along with a deeper understanding of stem cell biology, cancer stem cell (CSC) is important in targeted cancer therapy. Herein, we review representative patents using not only normal stem cells as therapeutics themselves or delivery vehicles, but also CSCs as targets for anti-cancer strategy. METHODS Relevant patent literatures published between 2005 and 2017 are discussed to present developmental status and experimental results on using normal stem cells and CSCs for cancer therapy and explore potential future directions in this field. RESULTS Stem cells have been considered as important element of regenerative therapy by promoting tissue regeneration. Particularly, there is a growing trend to use stem cells as a target drug-delivery system to reduce undesirable side effects in non-target tissues. Noteworthy, studies on CSC-specific markers for distinguishing CSCs from normal stem cells and mature cancer cells have been conducted as a selective anti-cancer therapy with few side effects. Many researchers have also reported the development of various substances with anticancer effects by targeting CSCs from cancer tissues. CONCLUSION There has been a continuing increase in the number of studies on therapeutic stem cells and CSC-specific markers for selective diagnosis and therapy of cancer. This review focuses on the current status in the use of normal stem cells and CSCs for targeted cancer therapy. Future direction is also proposed.
Collapse
Affiliation(s)
- Seung-Woo Han
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| | - Yoon Young Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Woo-Ju Kang
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource Center, Korea Research Institute of Bioscience and Biotechnology, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, Chungcheongbuk-do 28116 Republic of Korea
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080 Republic of Korea
- Designed Animal and Transplantation Research Institute, Institute of GreenBio Science Technology, Seoul National University, 1447 Pyeongchang-daero, Daehwa-myeon, Pyeongchang-gun, Gangwon-do 25354 Republic of Korea
| | - Jun-Won Yun
- Department of Biotechnology, The Catholic University of Korea, 43 Jibongro, Bucheon, 14662 Republic of Korea
| |
Collapse
|
39
|
Li CY, Cui JY. Regulation of protein-coding gene and long noncoding RNA pairs in liver of conventional and germ-free mice following oral PBDE exposure. PLoS One 2018; 13:e0201387. [PMID: 30067809 PMCID: PMC6070246 DOI: 10.1371/journal.pone.0201387] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Accepted: 07/14/2018] [Indexed: 02/07/2023] Open
Abstract
Gut microbiome communicates with the host liver to modify hepatic xenobiotic biotransformation and nutrient homeostasis. Polybrominated diphenyl ethers (PBDEs) are persistent environmental contaminants that are detected in fatty food, household dust, and human breast milk at worrisome levels. Recently, long noncoding RNAs (lncRNAs) have been recognized as novel biomarkers for toxicological responses and may regulate the transcriptional/translational output of protein-coding genes (PCGs). However, very little is known regarding to what extent the interactions between PBDEs and gut microbiome modulate hepatic lncRNAs and PCGs, and what critical signaling pathways are impacted at the transcriptomic scale. In this study, we performed RNA-Seq in livers of nine-week-old male conventional (CV) and germ-free (GF) mice orally exposed to the most prevalent PBDE congeners BDE-47 and BDE-99 (100 μmol/kg once daily for 4-days; vehicle: corn oil, 10 ml/kg), and unveiled key molecular pathways and PCG-lncRNA pairs targeted by PBDE-gut microbiome interactions. Lack of gut microbiome profoundly altered the PBDE-mediated transcriptomic response in liver, with the most prominent effect observed in BDE-99-exposed GF mice. The top pathways up-regulated by PBDEs were related to xenobiotic metabolism, whereas the top pathways down-regulated by PBDEs were in lipid metabolism and protein synthesis in both enterotypes. Genomic annotation of the differentially regulated lncRNAs revealed that majority of these lncRNAs overlapped with introns and 3'-UTRs of PCGs. Lack of gut microbiome profoundly increased the percentage of PBDE-regulated lncRNAs mapped to the 3'-UTRs of PCGs, suggesting the potential involvement of lncRNAs in increasing the translational efficiency of PCGs by preventing miRNA-3'-UTR binding, as a compensatory mechanism following toxic exposure to PBDEs. Pathway analysis of PCGs paired with lncRNAs revealed that in CV mice, BDE-47 regulated nucleic acid and retinol metabolism, as well as circadian rhythm; whereas BDE-99 regulated fatty acid metabolism. In GF mice, BDE-47 differentially regulated 19 lncRNA-PCG pairs that were associated with glutathione conjugation and transcriptional regulation. In contrast, BDE-99 up-regulated the xenobiotic-metabolizing Cyp3a genes, but down-regulated the fatty acid-metabolizing Cyp4 genes. Taken together, the present study reveals common and unique lncRNAs and PCG targets of PBDEs in mouse liver, and is among the first to show that lack of gut microbiome sensitizes the liver to toxic exposure of BDE-99 but not BDE-47. Therefore, lncRNAs may serve as specific biomarkers that differentiate various PBDE congeners as well as environmental chemical-mediated dysbiosis. Coordinate regulation of PCG-lncRNA pairs may serve as a more efficient molecular mechanism to combat against xenobiotic insult, and especially during dysbiosis-induced increase in the internal dose of toxicants.
Collapse
Affiliation(s)
- Cindy Yanfei Li
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Julia Yue Cui
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
40
|
Physiologic and innate immunity responses to bacterial lipopolysaccharide administration in beef heifers supplemented with OmniGen-AF. Animal 2018; 13:153-160. [PMID: 29929569 DOI: 10.1017/s1751731118001441] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Nutritional alternatives to strengthen animal immunocompetence are critical for welfare and productivity in livestock systems, such as beef cattle operations. This experiment evaluated physiological and innate immunity effects of supplementing an immunomodulatory feed ingredient (Omnigen-AF; Phibro Animal Health, Teaneck, NJ, USA) to beef heifers administered bacterial lipopolysaccharide (LPS). In total, 8 non-pregnant, non-lactating nulliparous Angus×Hereford heifers (676±4 days of age) were ranked by BW (473±8 kg), and assigned to crossover design containing two periods of 34 days each. Heifers were housed in individual pens and had ad libitum access to meadow foxtail (Alopecurus pratensis L.) hay, water and a granulated commercial vitamin+mineral mix. Within each period, heifers received (as-fed basis) 227 g/day of dried distillers grains including (OMN) or not (CON) 56 g of Omnigen-AF for 34 days. On day 28 of each period (0800 h), heifers received an intravenous bolus dose (0.5 μg/kg of BW, diluted in 5 ml of 0.9% sterile saline) of bacterial LPS (Escherichia coli 0111:B4). Hay DM intake was recorded daily from day 0 to 34. Blood was collected at -1, 0, 0.5, 1, 1.5, 2, 2.5, 3, 4, 5, 6, 24, 48, 72, 96, 120 and 144 h relative to LPS administration. Heifer intravaginal temperature was recorded every 10 min from -0.5 to 10 h relative to LPS administration. No treatment effect was detected (P=0.35) for hay DM intake during the experiment. No treatment effects were detected (P⩾0.64) for intravaginal temperature and plasma concentrations of tumor necrosis-α, cortisol and haptoglobin, which increased (time effect, P<0.01) for OMN and CON heifers and peaked at 4.5, 2, 4 and 48 h, respectively, after LPS administration. No treatment effects were detected (P⩾0.35) for whole blood mRNA expression of chemokine ligand 5, tumor necrosis-α, cyclooxygenase 2 and interleukin 8, which also increased (time effect, P<0.01) for OMN and CON heifers and peaked at 0.5, 1.5, 2 and 2.5 h, respectively, after LPS administration. Whole blood mRNA expression of interleukin 8 receptor and L-selectin were also similar (P⩾0.61) between OMN and CON heifers, and decreased (time effect, P<0.01) for both treatments reaching nadir levels at 1 and 2.5 h, respectively, after LPS administration. Collectively, OMN supplementation did not modulate the physiological and innate immunity responses of beef heifers to bacterial LPS administration.
Collapse
|
41
|
Liu G, Gong Y, Zhang R, Piao L, Li X, Liu Q, Yan S, Shen Y, Guo S, Zhu M, Yin H, Funk CD, Zhang J, Yu Y. Resolvin E1 attenuates inj ury‐induced vascular neointimal formation by inhibition of inflammatory responses and vascular smooth muscle cell migration. FASEB J 2018; 32:5413-5425. [DOI: 10.1096/fj.201800173r] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Guizhu Liu
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Yanjun Gong
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Rui Zhang
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Lingjuan Piao
- Graduate School of Pharmaceutical SciencesCollege of Pharmacy, Ewha Women's UniversitySeoulSouth Korea
| | - Xinzhi Li
- Department of Biomedical and Molecular SciencesQueen's UniversityKingston OntarioCanada
| | - Qian Liu
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Shuai Yan
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Yujun Shen
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Shumin Guo
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Mingjiang Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Huiyong Yin
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
| | - Colin D. Funk
- Department of Biomedical and Molecular SciencesQueen's UniversityKingston OntarioCanada
| | - Jian Zhang
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| | - Ying Yu
- CAS Key Laboratory of Nutrition, Metabolism and Food SafetyShanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of SciencesBeijingChina
- Department of Pharmacology, College of Basic Medical SciencesTianjin Medical UniversityTianjinChina
| |
Collapse
|
42
|
Laufer JM, Legler DF. Beyond migration-Chemokines in lymphocyte priming, differentiation, and modulating effector functions. J Leukoc Biol 2018; 104:301-312. [PMID: 29668063 DOI: 10.1002/jlb.2mr1217-494r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 02/06/2023] Open
Abstract
Chemokines and their receptors coordinate the positioning of leukocytes, and lymphocytes in particular, in space and time. Discrete lymphocyte subsets, depending on their activation and differentiation status, express various sets of chemokine receptors to be recruited to distinct tissues. Thus, the network of chemokines and their receptors ensures the correct localization of specialized lymphocyte subsets within the appropriate microenvironment enabling them to search for cognate antigens, to become activated, and to fulfill their effector functions. The chemokine system therefore is vital for the initiation as well as the regulation of immune responses to protect the body from pathogens while maintaining tolerance towards self. Besides the well investigated function of orchestrating directed cell migration, chemokines additionally act on lymphocytes in multiple ways to shape immune responses. In this review, we highlight and discuss the role of chemokines and chemokine receptors in controlling cell-to-cell contacts required for lymphocyte arrest on endothelial cells and immunological synapse formation, in lymphocyte priming and differentiation, survival, as well as in modulating effector functions.
Collapse
Affiliation(s)
- Julia M Laufer
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| | - Daniel F Legler
- Biotechnology Institute Thurgau (BITg), University of Konstanz, Kreuzlingen, Switzerland.,Konstanz Research School Chemical Biology, University of Konstanz, Konstanz, Germany
| |
Collapse
|
43
|
Detrimental Influence of Alveolar Macrophages on Protective Humoral Immunity during Francisella tularensis SchuS4 Pulmonary Infection. Infect Immun 2018; 86:IAI.00787-17. [PMID: 29311236 DOI: 10.1128/iai.00787-17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/02/2018] [Indexed: 01/08/2023] Open
Abstract
Opsonizing antibody is a critical component of the host protective immune response against many respiratory pathogens. However, the role of antibodies in protection against pulmonary infection with highly virulent Francisella tularensis strain SchuS4 is unclear, and the mechanism that allows F. tularensis to evade antibody-mediated bacterial clearance is not fully understood. We have now found that depletion of alveolar macrophages reveals an otherwise cryptic protective effect of opsonizing antibody. While antibody opsonization alone failed to confer any survival benefit against SchuS4 lung infection, significant protection was observed when mice were depleted of alveolar macrophages prior to infection. Blood immune signature analyses and bacterial burden measurements indicated that the treatment regimen blocked establishment of productive, systemic infection. In addition, protection was found to be dependent upon neutrophils. The results show for the first time a protective effect of opsonizing antibodies against highly virulent F. tularensis SchuS4 pulmonary infection through depletion of alveolar macrophages, the primary bacterial reservoir, and prevention of systemic dissemination. These findings have important implications for the potential use of therapeutic antibodies against intracellular pathogens that may escape clearance by residing within mucosal macrophages.
Collapse
|
44
|
Benhamou Y, Picco V, Raybaud H, Sudaka A, Chamorey E, Brolih S, Monteverde M, Merlano M, Lo Nigro C, Ambrosetti D, Pagès G. Telomeric repeat-binding factor 2: a marker for survival and anti-EGFR efficacy in oral carcinoma. Oncotarget 2018; 7:44236-44251. [PMID: 27329590 PMCID: PMC5190092 DOI: 10.18632/oncotarget.10005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/04/2016] [Indexed: 12/21/2022] Open
Abstract
Oral Squamous Cell Carcinoma (OSCC) is the most common oral cancer worldwide. Treatments including surgery, radio- and chemo-therapies mostly result in debilitating side effects. Thus, a more accurate evaluation of patients at risk of recurrence after radio/chemo treatment is important for preserving their quality of life. We assessed whether the Telomeric Repeat-binding Factor 2 (TERF2) influences tumor aggressiveness and treatment response. TERF2 is over-expressed in many cancers but its correlation to patient outcome remains controversial in OSCC. Our retrospective study on sixty-two patients showed that TERF2 overexpression has a negative impact on survival time. TERF2-dependent survival time was independent of tumor size in a multivariate analysis. In vitro, TERF2 knockdown by RNA interference had no effect on cell proliferation, migration, senescence and apoptosis. Instead, TERF2 knockdown increased the expression of cytokines implicated in inflammation and angiogenesis, except for vascular endothelial growth factor. TERF2 knockdown resulted in a decrease vascularization and growth of xenograft tumors. Finally, response to erlotinib/Tarceva and cetuximab/Erbitux treatment was increased in TRF2 knocked-down cells. Hence, TERF2 may represent an independent marker of survival for OSCC and a predictive marker for cetuximab/Erbitux and erlotinib/Tarceva efficacy.
Collapse
Affiliation(s)
- Yordan Benhamou
- CNRS UMR 7284/INSERM U1081, Institute for Research on Cancer and Aging of Nice, University of Nice Sophia Antipolis, Nice, France.,Odontology Department, Nice University Hospital, University of Nice Sophia Antipolis, Nice, France
| | - Vincent Picco
- Biomedical Department, Centre Scientifique de Monaco, Principality of Monaco
| | - Hélène Raybaud
- Central Laboratory of Pathology, University of Nice Sophia Antipolis, Nice, France
| | - Anne Sudaka
- Department of Pathology, Research and Statistics, Centre Antoine Lacassagne, Nice, France
| | - Emmanuel Chamorey
- Department of Pathology, Research and Statistics, Centre Antoine Lacassagne, Nice, France
| | - Sanja Brolih
- Biomedical Department, Centre Scientifique de Monaco, Principality of Monaco
| | - Martino Monteverde
- Cancer Genetics and Translational Oncology Laboratory, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Marco Merlano
- Medical Oncology, Oncology Department, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Cristiana Lo Nigro
- Cancer Genetics and Translational Oncology Laboratory, S. Croce & Carle Teaching Hospital, Cuneo, Italy
| | - Damien Ambrosetti
- Central Laboratory of Pathology, University of Nice Sophia Antipolis, Nice, France
| | - Gilles Pagès
- CNRS UMR 7284/INSERM U1081, Institute for Research on Cancer and Aging of Nice, University of Nice Sophia Antipolis, Nice, France
| |
Collapse
|
45
|
Hernández-Castellano LE, Özçelik R, Hernandez LL, Bruckmaier RM. Short communication: Supplementation of colostrum and milk with 5-hydroxy-l-tryptophan affects immune factors but not growth performance in newborn calves. J Dairy Sci 2018; 101:794-800. [DOI: 10.3168/jds.2017-13501] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 08/31/2017] [Indexed: 01/15/2023]
|
46
|
Targeting autophagy inhibits melanoma growth by enhancing NK cells infiltration in a CCL5-dependent manner. Proc Natl Acad Sci U S A 2017; 114:E9271-E9279. [PMID: 29078276 PMCID: PMC5676879 DOI: 10.1073/pnas.1703921114] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The failure in achieving a durable clinical immune response against cancer cells depends on the ability of cancer cells to establish a microenvironment that prevent cytotoxic immune cells to infiltrate tumors and kill cancer cells. Therefore, the key approach to achieving successful antitumor immune response is to harness strategies allowing the reorientation of immune cells to the tumor. Herein we reveal that inhibiting autophagy induces a massive infiltration of natural killer immune cells into the tumor bed, and a subsequent dramatic decrease in the tumor volume of melanomas. These results highlight the role of targeting autophagy in breaking the immunosuppressive tumor microenvironment barrier, thus allowing the infiltration of natural killer cells into the tumor to kill cancer cells. While blocking tumor growth by targeting autophagy is well established, its role on the infiltration of natural killer (NK) cells into tumors remains unknown. Here, we investigate the impact of targeting autophagy gene Beclin1 (BECN1) on the infiltration of NK cells into melanomas. We show that, in addition to inhibiting tumor growth, targeting BECN1 increased the infiltration of functional NK cells into melanoma tumors. We provide evidence that driving NK cells to the tumor bed relied on the ability of autophagy-defective tumors to transcriptionally overexpress the chemokine gene CCL5. Such infiltration and tumor regression were abrogated by silencing CCL5 in BECN1-defective tumors. Mechanistically, we show that the up-regulated expression of CCL5 occurred through the activation of its transcription factor c-Jun by a mechanism involving the impairment of phosphatase PP2A catalytic activity and the subsequent activation of JNK. Similar to BECN1, targeting other autophagy genes, such as ATG5, p62/SQSTM1, or inhibiting autophagy pharmacologically by chloroquine, also induced the expression of CCL5 in melanoma cells. Clinically, a positive correlation between CCL5 and NK cell marker NKp46 expression was found in melanoma patients, and a high expression level of CCL5 was correlated with a significant improvement of melanoma patients’ survival. We believe that this study highlights the impact of targeting autophagy on the tumor infiltration by NK cells and its benefit as a novel therapeutic approach to improve NK-based immunotherapy.
Collapse
|
47
|
Nuclear transport of cancer extracellular vesicle-derived biomaterials through nuclear envelope invagination-associated late endosomes. Oncotarget 2017; 8:14443-14461. [PMID: 28129640 PMCID: PMC5362417 DOI: 10.18632/oncotarget.14804] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/1969] [Accepted: 01/11/2017] [Indexed: 12/12/2022] Open
Abstract
Extracellular membrane vesicles (EVs) function as vehicles of intercellular communication, but how the biomaterials they carry reach the target site in recipient cells is an open question. We report that subdomains of Rab7+ late endosomes and nuclear envelope invaginations come together to create a sub-nuclear compartment, where biomaterials associated with CD9+ EVs are delivered. EV-derived biomaterials were also found in the nuclei of host cells. The inhibition of nuclear import and export pathways abrogated the nuclear localization of EV-derived biomaterials or led to their accumulation therein, respectively, suggesting that their translocation is dependent on nuclear pores. Nuclear envelope invagination-associated late endosomes were observed in ex vivo biopsies in both breast carcinoma and associated stromal cells. The transcriptome of stromal cells exposed to cancer cell-derived CD9+ EVs revealed that the regulation of eleven genes, notably those involved in inflammation, relies on the nuclear translocation of EV-derived biomaterials. Our findings uncover a new cellular pathway used by EVs to reach nuclear compartment.
Collapse
|
48
|
Discoidin domain receptor inhibition reduces neuropathology and attenuates inflammation in neurodegeneration models. J Neuroimmunol 2017; 311:1-9. [PMID: 28863860 DOI: 10.1016/j.jneuroim.2017.07.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 06/23/2017] [Accepted: 07/12/2017] [Indexed: 01/04/2023]
Abstract
The role of cell surface tyrosine kinase collagen-activated receptors known as discoidin domain receptors (DDRs) is unknown in neurodegenerative diseases. We detect up-regulation in DDRs level in post-mortem Alzheimer and Parkinson brains. Lentiviral shRNA knockdown of DDR1 and DDR2 reduces the levels of α-synuclein, tau, and β-amyloid and prevents cell loss in vivo and in vitro. DDR1 and DDR2 knockdown alters brain immunity and significantly reduces the level of triggering receptor expressed on myeloid cells (TREM)-2 and microglia. These studies suggest that DDR1 and DDR2 inhibition is a potential target to clear neurotoxic proteins and reduce inflammation in neurodegeneration.
Collapse
|
49
|
Collin R, St-Pierre C, Guilbault L, Mullins-Dansereau V, Policheni A, Guimont-Desrochers F, Pelletier AN, Gray DH, Drobetsky E, Perreault C, Hillhouse EE, Lesage S. An Unbiased Linkage Approach Reveals That the p53 Pathway Is Coupled to NK Cell Maturation. THE JOURNAL OF IMMUNOLOGY 2017; 199:1490-1504. [PMID: 28710252 DOI: 10.4049/jimmunol.1600789] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 06/18/2017] [Indexed: 12/23/2022]
Abstract
Natural killer cells constitute potent innate lymphoid cells that play a major role in both tumor immunosurveillance and viral clearance via their effector functions. A four-stage model of NK cell functional maturation has been established according to the expression of CD11b and CD27, separating mature NK (mNK) cells into distinct populations that exhibit specific phenotypic and functional properties. To identify genetic factors involved in the regulation of NK cell functional maturation, we performed a linkage analysis on F2 (B6.Rag1-/- × NOD.Rag1-/- intercross) mice. We identified six loci on chromosomes 2, 4, 7, 10, 11, and 18 that were linked to one or more mNK cell subsets. Subsequently, we performed an in silico analysis exploiting mNK cell subset microarray data, highlighting various genes and microRNAs as potential regulators of the functional maturation of NK cells. Together, the combination of our unbiased genetic linkage study and the in silico analysis positions genes known to affect NK cell biology along the specific stages of NK cell functional maturation. Moreover, this approach allowed us to uncover a novel candidate gene in the regulation of NK cell maturation, namely Trp53 Using mice deficient for Trp53, we confirm that this tumor suppressor regulates NK cell functional maturation. Additional candidate genes revealed in this study may eventually serve as targets for the modulation of NK cell functional maturation to potentiate both tumor immunosurveillance and viral clearance.
Collapse
Affiliation(s)
- Roxanne Collin
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Charles St-Pierre
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Lorie Guilbault
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Victor Mullins-Dansereau
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Antonia Policheni
- Molecular Genetics of Cancer Division, Immunology Division, Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia; and.,Department of Medical Biology, Melbourne University, Parkville, Victoria 3052, Australia
| | - Fanny Guimont-Desrochers
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Adam-Nicolas Pelletier
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada.,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Daniel H Gray
- Molecular Genetics of Cancer Division, Immunology Division, Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia; and.,Department of Medical Biology, Melbourne University, Parkville, Victoria 3052, Australia
| | - Elliot Drobetsky
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada
| | - Claude Perreault
- Institut de Recherche en Immunologie et en Cancérologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada.,Département de Médecine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Erin E Hillhouse
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada;
| | - Sylvie Lesage
- Department of Immunology-Oncology, Maisonneuve-Rosemont Hospital, Montreal, Quebec H1T 2M4, Canada; .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| |
Collapse
|
50
|
Ghebes CA, Groen N, Cheuk YC, Fu SC, Fernandes HM, Saris DBF. Muscle-Secreted Factors Improve Anterior Cruciate Ligament Graft Healing: An In Vitro and In Vivo Analysis. Tissue Eng Part A 2017; 24:322-334. [PMID: 28530157 DOI: 10.1089/ten.tea.2016.0546] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the ligaments most often damaged during sports-the anterior cruciate ligament (ACL)-has poor healing capacity. On damage, reconstructive surgery is performed to restore the mechanical stability of the knee and to reduce the inflammatory milieu otherwise present in the joint. A return to normal activities, however, takes between 9 and 12 months. Thus, strategies capable of improving ACL graft healing are needed. Embryonic development of tendon and ligament (T/L) is regulated by a crosstalk between different cell types. We hypothesized that terminally differentiated skeletal-derived cells such as osteoblasts, chondrocytes, and myoblasts modulate T/L healing. Using an indirect coculture system, we discovered that myoblast-secreted signals-but not osteoblasts, chondrocytes, or stromal-secreted signals-are capable of upregulating classical T/L markers such as scleraxis and tenomodulin on human hamstring tendon-derived cells (hTC), which contribute to ACL graft healing. Transcriptome analysis showed that coculturing hTC with myoblasts led to an upregulation of extracellular matrix (ECM) genes and resulted in enhanced ECM deposition. In vivo, using a rat model of ACL reconstruction showed that conditioned media derived from human muscle tissue accelerated femoral tunnel closure, a key step for autograft integration. Collectively, these results indicate that muscle-secreted signals can be used to improve ACL graft healing in a clinical setting where muscle remnants are often discarded.
Collapse
Affiliation(s)
- Corina Adriana Ghebes
- 1 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands
| | - Nathalie Groen
- 2 Department of Nephrology, Leiden University Medical Center , ZA Leiden, The Netherlands
| | - Yau Chuk Cheuk
- 3 Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong , Prince of Wales of Hospital, Shatin, New Territories, Hong Kong, SAR, China .,4 Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong , Prince of Wales of Hospital, Shatin, New Territories, Hong Kong, SAR, China
| | - Sai Chuen Fu
- 3 Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong , Prince of Wales of Hospital, Shatin, New Territories, Hong Kong, SAR, China .,4 Lui Che Woo Institute of Innovative Medicine, Faculty of Medicine, The Chinese University of Hong Kong , Prince of Wales of Hospital, Shatin, New Territories, Hong Kong, SAR, China
| | - Hugo Machado Fernandes
- 1 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands .,5 Stem Cells and Drug Screening Lab, Center for Neuroscience and Cell Biology (CNC), University of Coimbra , Coimbra, Portugal
| | - Daniel B F Saris
- 1 MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente , Enschede, The Netherlands .,6 Department of Orthopaedics, University Medical Center Utrecht , Utrecht, The Netherlands
| |
Collapse
|