1
|
Matarazzo L, Costa C, Porte R, Saliou JM, Figeac M, Delahaye F, Bonnefond A, Kloeckner B, Silvin A, Ginhoux F, Faveeuw C, Baldry M, Carnoy C, Sirard JC. Neutrophil subsets enhance the efficacy of host-directed therapy in pneumococcal pneumonia. Mucosal Immunol 2025; 18:257-268. [PMID: 39592068 DOI: 10.1016/j.mucimm.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/16/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024]
Abstract
Host-directed therapy, using nasal administration of the Toll-like receptor 5 agonist flagellin in combination with antibiotics, has proven effective against pneumococcal pneumonia. In this study, we investigated the immune mechanisms underlying the therapy-induced protective effects. Transcriptomic analysis of lung tissue during infection revealed that flagellin not only enhanced pathways associated with myeloid cell infiltration into the airways and antimicrobial functions, but also promoted the early and transient mobilization of neutrophils and inflammatory monocytes. Neutrophils were identified as crucial for the protective effects of flagellin. The adjunct activity of flagellin correlated with the increased recruitment of neutrophils into airways, their localization at the periphery of bronchi, alveoli, and lung vessels, along with alterations in phagocytic activity. Clustering analysis identified seven neutrophil subsets; notably, flagellin adjunct treatment expanded clusters involved in recruitment and antibacterial activity, and primed augmented functionality. In conclusion, this study highlights specific neutrophil subsets as a promising target for host-directed therapy in infection.
Collapse
Affiliation(s)
- Laura Matarazzo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Charlotte Costa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Rémi Porte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Jean-Michel Saliou
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS - Plateformes Lilloises de Biologie & Santé, F-59000 Lille, France
| | - Martin Figeac
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 - PLBS - Plateformes Lilloises de Biologie & Santé, F-59000 Lille, France
| | - Fabien Delahaye
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, F-59000, Lille, France
| | - Amélie Bonnefond
- Univ. Lille, Inserm UMR1283, CNRS UMR8199, European Genomic Institute for Diabetes (EGID), Institut Pasteur de Lille, CHU de Lille, 1 place de Verdun, F-59000, Lille, France
| | - Benoit Kloeckner
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, F-94800 Villejuif, France
| | - Aymeric Silvin
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, F-94800 Villejuif, France
| | - Florent Ginhoux
- Gustave Roussy Cancer Campus, INSERM, Team Myeloid Cell Development, F-94800 Villejuif, France
| | - Christelle Faveeuw
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Mara Baldry
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Christophe Carnoy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
2
|
Baldry M, Costa C, Zeroual Y, Cayet D, Pardessus J, Soulard D, Wallet F, Beury D, Hot D, MacLoughlin R, Heuzé-Vourc’h N, Sirard JC, Carnoy C. Targeted delivery of flagellin by nebulization offers optimized respiratory immunity and defense against pneumococcal pneumonia. Antimicrob Agents Chemother 2024; 68:e0086624. [PMID: 39480071 PMCID: PMC11619323 DOI: 10.1128/aac.00866-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Novel therapeutic strategies are urgently needed to combat pneumonia caused by Streptococcus pneumoniae strains resistant to standard-of-care antibiotics. Previous studies have shown that targeted stimulation of lung innate immune defenses through intranasal administration of the Toll-like receptor 5 agonist flagellin improves the treatment of pneumonia when combined with antibiotics. To promote translation to the clinic application, this study assessed the direct delivery of flagellin to the airways through nebulization using a vibrating mesh nebulizer in mice. Intranasal delivery achieved approximately 40% lung deposition of the administered flagellin dose, whereas nebulization yielded less than 1%. Despite these differences, nebulized flagellin induced transient activation of lung innate immunity characterized by cytokine/chemokine production and neutrophil infiltration into airways analogous to intranasal administration. Furthermore, inhalation by nebulization resulted in an accelerated resolution of systemic pro-inflammatory responses. Lastly, adjunct therapy combining nebulized flagellin and amoxicillin proved effective against antibiotic-resistant pneumococcal pneumonia in mice. We posit that flagellin aerosol therapy represents a safe and promising approach to address bacterial pneumonia within the context of antimicrobial resistance.
Collapse
Affiliation(s)
- Mara Baldry
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Charlotte Costa
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Yasmine Zeroual
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Delphine Cayet
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jeoffrey Pardessus
- INSERM, Respiratory Disease Research Centre, Tours, France
- University of Tours, Tours, France
| | - Daphnée Soulard
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Frédéric Wallet
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Delphine Beury
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 – PLBS - Plateformes Lilloises de Biologie & Santé, Lille, France
| | - David Hot
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41 - UAR 2014 – PLBS - Plateformes Lilloises de Biologie & Santé, Lille, France
| | | | - Nathalie Heuzé-Vourc’h
- INSERM, Respiratory Disease Research Centre, Tours, France
- University of Tours, Tours, France
| | - Jean-Claude Sirard
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Christophe Carnoy
- Univ. Lille CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
3
|
Costa C, Sirard JC, Gibson PS, Veening JW, Gjini E, Baldry M. Triggering Toll-Like Receptor 5 Signaling During Pneumococcal Superinfection Prevents the Selection of Antibiotic Resistance. J Infect Dis 2024; 230:e1126-e1135. [PMID: 38716762 PMCID: PMC11566229 DOI: 10.1093/infdis/jiae239] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/07/2024] [Indexed: 11/16/2024] Open
Abstract
Toll-like receptor 5 (TLR5) signaling plays a key role in antibacterial defenses. We previously showed that respiratory administration of flagellin, a potent TLR5 agonist, in combination with amoxicillin (AMX) improves the treatment of primary pneumonia or superinfection caused by AMX-sensitive or AMX-resistant Streptococcus pneumoniae. Here, the impact of adjunct flagellin therapy on antibiotic dose/regimen and the selection of antibiotic-resistant S. pneumoniae was investigated using superinfection with isogenic antibiotic-sensitive and antibiotic-resistant bacteria and population dynamics analysis. Our findings demonstrate that flagellin allows for a 200-fold reduction in the antibiotic dose, achieving the same therapeutic effect observed with antibiotic alone. Adjunct treatment also reduced the selection of antibiotic-resistant bacteria in contrast to the antibiotic monotherapy. A mathematical model was developed that captured the population dynamics and estimated a 20-fold enhancement immune-modulatory factor on bacterial clearance. This work paves the way for the development of host-directed therapy and refinement of treatment by modeling.
Collapse
Affiliation(s)
- Charlotte Costa
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Paddy S Gibson
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Erida Gjini
- Center for Computational and Stochastic Mathematics, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Mara Baldry
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
4
|
Maia AR, Cezard A, Fouquenet D, Vasseur V, Briard B, Sirard JC, Si-Tahar M, Hervé V. Preventive nasal administration of flagellin restores antimicrobial effect of gentamicin and protects against a multidrug-resistant strain of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2024; 68:e0136123. [PMID: 38526073 PMCID: PMC11064517 DOI: 10.1128/aac.01361-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/23/2024] [Indexed: 03/26/2024] Open
Abstract
The increasing prevalence of multidrug-resistant Pseudomonas aeruginosa (PA) is a significant concern for chronic respiratory disease exacerbations. Host-directed drugs, such as flagellin, an agonist of toll-like receptor 5 (TLR5), have emerged as a promising solution. In this study, we evaluated the prophylactic intranasal administration of flagellin against a multidrug-resistant strain of PA (PAMDR) in mice and assessed the possible synergy with the antibiotic gentamicin (GNT). The results indicated that flagellin treatment before infection decreased bacterial load in the lungs, likely due to an increase in neutrophil recruitment, and reduced signs of inflammation, including proinflammatory cytokines. The combination of flagellin and GNT showed a synergistic effect, decreasing even more the bacterial load and increasing mice survival rates, in comparison to mice pre-treated only with flagellin. These findings suggest that preventive nasal administration of flagellin could restore the effect of GNT against MDR strains of PA, paving the way for the use of flagellin in vulnerable patients with chronic respiratory diseases.
Collapse
Affiliation(s)
- Ana Raquel Maia
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine, Tours, France
| | - Adeline Cezard
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine, Tours, France
| | - Delphine Fouquenet
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine, Tours, France
| | - Virginie Vasseur
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine, Tours, France
| | - Benoit Briard
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine, Tours, France
| | - Jean-Claude Sirard
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 – UMR8204 – CIIL – Center for Infection and Immunity of Lille, Lille, France
| | - Mustapha Si-Tahar
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine, Tours, France
| | - Virginie Hervé
- INSERM, Centre d’Etude des Pathologies Respiratoires (CEPR), UMR 1100, Tours, France
- Université de Tours, Faculté de Médecine, Tours, France
| |
Collapse
|
5
|
van Linge CCA, Hulme KD, Peters-Sengers H, Sirard JC, Goessens WHF, de Jong MD, Russell CA, de Vos AF, van der Poll T. Immunostimulatory Effect of Flagellin on MDR- Klebsiella-Infected Human Airway Epithelial Cells. Int J Mol Sci 2023; 25:309. [PMID: 38203480 PMCID: PMC10778885 DOI: 10.3390/ijms25010309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/12/2024] Open
Abstract
Pneumonia caused by multi-drug-resistant Klebsiella pneumoniae (MDR-Kpneu) poses a major public health threat, especially to immunocompromised or hospitalized patients. This study aimed to determine the immunostimulatory effect of the Toll-like receptor 5 ligand flagellin on primary human lung epithelial cells during infection with MDR-Kpneu. Human bronchial epithelial (HBE) cells, grown on an air-liquid interface, were inoculated with MDR-Kpneu on the apical side and treated during ongoing infection with antibiotics (meropenem) and/or flagellin on the basolateral and apical side, respectively; the antimicrobial and inflammatory effects of flagellin were determined in the presence or absence of meropenem. In the absence of meropenem, flagellin treatment of MDR-Kpneu-infected HBE cells increased the expression of antibacterial defense genes and the secretion of chemokines; moreover, supernatants of flagellin-exposed HBE cells activated blood neutrophils and monocytes. However, in the presence of meropenem, flagellin did not augment these responses compared to meropenem alone. Flagellin did not impact the outgrowth of MDR-Kpneu. Flagellin enhances antimicrobial gene expression and chemokine release by the MDR-Kpneu-infected primary human bronchial epithelium, which is associated with the release of mediators that activate neutrophils and monocytes. Topical flagellin therapy may have potential to boost immune responses in the lung during pneumonia.
Collapse
Affiliation(s)
- Christine C. A. van Linge
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Katina D. Hulme
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| | - Hessel Peters-Sengers
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Jean-Claude Sirard
- Center for Infection and Immunity of Lille, Institut Pasteur de Lille, INSERM U1019, CNRS UMR9017, CHU Lille, University Lille, 59000 Lille, France
| | - Wil H. F. Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, 3015 GD Rotterdam, The Netherlands
| | - Menno D. de Jong
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| | - Colin A. Russell
- Department of Medical Microbiology & Infection Prevention, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
- Department of Global Health, School of Public Health, Boston University, Boston, MA 02215, USA
| | - Alex F. de Vos
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands (A.F.d.V.); (T.v.d.P.)
- Amsterdam Infection & Immunity Institute, 1105 AZ Amsterdam, The Netherlands
- Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, 1012 WP Amsterdam, The Netherlands
| |
Collapse
|
6
|
Vijayan A, Van Maele L, Fougeron D, Cayet D, Sirard JC. The GM-CSF Released by Airway Epithelial Cells Orchestrates the Mucosal Adjuvant Activity of Flagellin. THE JOURNAL OF IMMUNOLOGY 2020; 205:2873-2882. [PMID: 33008952 DOI: 10.4049/jimmunol.2000746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/09/2020] [Indexed: 01/15/2023]
Abstract
The TLR5 agonist flagellin is a potent adjuvant and is currently being developed for use in vaccines. The mechanisms that drive flagellin's activity are influenced by its administration route. Previous studies showed that lung structural cells (especially epithelial cells lining the conducting airways) are pivotal for the efficacy of intranasally administered flagellin-containing vaccines. In this study, we looked at how the airway epithelial cells (AECs) regulate the flagellin-dependent stimulation of Ag-specific CD4+ T cells and the Ab response in mice. Our results demonstrate that after sensing flagellin, AECs trigger the release of GM-CSF in a TLR5-dependent fashion and the doubling of the number of activated type 2 conventional dendritic cells (cDC2s) in draining lymph nodes. Furthermore, the neutralization of GM-CSF reduced cDC2s activation. This resulted in lower of Ag-specific CD4+ T cell count and Ab titers in mice. Our data indicate that during pulmonary immunization, the GM-CSF released by AECs orchestrates the cross-talk between cDC2s and CD4+ T cells and thus drives flagellin's adjuvant effect.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Laurye Van Maele
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Delphine Fougeron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Delphine Cayet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
7
|
Park K, Dhupal M, Kim CS, Jung SH, Choi D, Qi XF, Kim SK, Lee JY. Ameliorating effect of CpG-ODN (oligodeoxynucleotide) against radiation-induced lung injury in mice. RADIATION AND ENVIRONMENTAL BIOPHYSICS 2020; 59:733-741. [PMID: 32914274 DOI: 10.1007/s00411-020-00871-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
While radiation-induced lung injury (RILI) is known to be progressed by Th2 skewed, pro-inflammatory immune response, there have been few therapeutic attempts through Th1 immune modulation. We investigated whether the immunostimulant CpG-oligodeoxynucleotide (CpG-ODN) would be effective against RILI by way of measuring reactive oxygen species (ROS) and nitric oxides (NO), histopathology, micro-three-dimensional computer tomography (CT), and cytokine profiling. We found that KSK CpG-ODN (K-CpG) significantly reduced histopathological fibrosis when compared to the positive control (PC) group (p < 0.01). The levels of ROS production in serum and splenocyte of PC group were significantly higher than that of K-CpG group (p < 0.01). The production of nitric oxide (NO) in CpG-ODNs group was higher than that of PC group. Last, cytokine profiling illustrated that the protein concentrations of Th1-type cytokines such as IL-12 and TNF-α as well as Th2-type cytokine IL-5 in K-CpG group inclined to be significantly (p < 0.001 or p < 0.01) higher than those of in PC group. Collectively, our study clearly indicates that K-CpG is effective against RILI in mice by modulating the innate immune response. To our knowledge, this is the first note on anti-RILI effect of human type, K-CpG, clinically implying the potential of immunotherapy for RILI control.
Collapse
Affiliation(s)
- Kawngwoo Park
- Department of Neurosurgery, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Madhusmita Dhupal
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, 26426, Republic of Korea
| | - Cheol-Su Kim
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, 26426, Republic of Korea
| | - Soon-Hee Jung
- Department of Pathology, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea
| | - Deahan Choi
- Department of Neurosurgery, Gachon University Gil Medical Center, Incheon, Republic of Korea
| | - Xu-Feng Qi
- Key Laboratory for Regenerative Medicine of Ministry of Education and Department of Developmental and Regenerative Biology, Ji Nan University School of Life Science and Technology, Guangzhou, People's Republic of China
| | - Soo-Ki Kim
- Department of Microbiology, Wonju College of Medicine, Yonsei University, Wonju-si, Gangwon-do, 26426, Republic of Korea.
- Institute of Genomic Cohort, Wonju College of Medicine, Yonsei University, Wonju, Republic of Korea.
| | - Jong Yong Lee
- Department of Radiation Oncology, Wonju Severance Christian Hospital, Wonju College of Medicine, Yonsei University, 20 Ilsan-ro, Wonju-si, Gangwon-do, 26426, Republic of Korea.
| |
Collapse
|
8
|
Koné B, Pérez‐Cruz M, Porte R, Hennegrave F, Carnoy C, Gosset P, Trottein F, Sirard J, Pichavant M, Gosset P. Boosting the IL-22 response using flagellin prevents bacterial infection in cigarette smoke-exposed mice. Clin Exp Immunol 2020; 201:171-186. [PMID: 32324274 PMCID: PMC7366752 DOI: 10.1111/cei.13445] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 03/27/2020] [Accepted: 04/10/2020] [Indexed: 12/29/2022] Open
Abstract
The progression of chronic obstructive pulmonary disease (COPD), a lung inflammatory disease being the fourth cause of death worldwide, is marked by acute exacerbations. These episodes are mainly caused by bacterial infections, frequently due to Streptococcus pneumoniae. This susceptibility to infection involves a defect in interleukin (IL)-22, which plays a pivotal role in mucosal defense mechanism. Administration of flagellin, a Toll-like receptor 5 (TLR-5) agonist, can protect mice and primates against respiratory infections in a non-pathological background. We hypothesized that TLR-5-mediated stimulation of innate immunity might improve the development of bacteria-induced exacerbations in a COPD context. Mice chronically exposed to cigarette smoke (CS), mimicking COPD symptoms, are infected with S. pneumoniae, and treated in a preventive and a delayed manner with flagellin. Both treatments induced a lower bacterial load in the lungs and blood, and strongly reduced the inflammation and lung lesions associated with the infection. This protection implicated an enhanced production of IL-22 and involved the recirculation of soluble factors secreted by spleen cells. This is also associated with higher levels of the S100A8 anti-microbial peptide in the lung. Furthermore, human mononuclear cells from non-smokers were able to respond to recombinant flagellin by increasing IL-22 production while active smoker cells do not, a defect associated with an altered IL-23 production. This study shows that stimulation of innate immunity by a TLR-5 ligand reduces CS-induced susceptibility to bacterial infection in mice, and should be considered in therapeutic strategies against COPD exacerbations.
Collapse
Affiliation(s)
- B. Koné
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - M. Pérez‐Cruz
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - R. Porte
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - F. Hennegrave
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - C. Carnoy
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - P. Gosset
- Service d’Anatomo‐pathologieHôpital Saint Vincent de PaulLilleFrance
| | - F. Trottein
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - J.‐C. Sirard
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - M. Pichavant
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| | - P. Gosset
- Université de LilleCNRSInsermCHU LilleInstitut Pasteur de LilleLilleFrance
| |
Collapse
|
9
|
Matarazzo L, Casilag F, Porte R, Wallet F, Cayet D, Faveeuw C, Carnoy C, Sirard JC. Therapeutic Synergy Between Antibiotics and Pulmonary Toll-Like Receptor 5 Stimulation in Antibiotic-Sensitive or -Resistant Pneumonia. Front Immunol 2019; 10:723. [PMID: 31024555 PMCID: PMC6465676 DOI: 10.3389/fimmu.2019.00723] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/18/2019] [Indexed: 11/15/2022] Open
Abstract
Bacterial infections of the respiratory tract constitute a major cause of death worldwide. Given the constant rise in bacterial resistance to antibiotics, treatment failure is increasingly frequent. In this context, innovative therapeutic strategies are urgently needed. Stimulation of innate immune cells in the respiratory tract [via activation of Toll-like receptors (TLRs)] is an attractive approach for rapidly activating the body's immune defenses against a broad spectrum of microorganisms. Previous studies of the TLR5 agonist flagellin in animal models showed that standalone TLR stimulation does not result in the effective treatment of pneumococcal respiratory infection but does significantly improve the therapeutic outcome of concomitant antibiotic treatment. Here, we investigated the antibacterial interaction between antibiotic and intranasal flagellin in a mouse model of pneumococcal respiratory infection. Using various doses of orally administered amoxicillin or systemically administered cotrimoxazole, we found that the intranasal instillation of flagellin (a dose that promotes maximal lung pro-inflammatory responses) induces synergistic rather than additive antibacterial effects against antibiotic–susceptible pneumococcus. We next set up a model of infection with pneumococcus that is resistant to multiple antibiotics in the context of influenza superinfection. Remarkably, the combination of amoxicillin and flagellin effectively treated superinfection with the amoxicillin-resistant pneumococcus since the bacterial clearance was increased by more than 100-fold compared to standalone treatments. Our results also showed that, in response to flagellin, the lung tissue generated an innate immune response even though it had been damaged by the influenza virus and pneumococcal infections. In conclusion, we demonstrated that the selective boosting of lung innate immunity is a conceptually advantageous approach for improving the effectiveness of antibiotic treatment and fighting antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Laura Matarazzo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Fiordiligie Casilag
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Rémi Porte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Frederic Wallet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Delphine Cayet
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Christelle Faveeuw
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Christophe Carnoy
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
10
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. NF‐κB targeting for overcoming tumor resistance and normal tissues toxicity. J Cell Physiol 2019; 234:17187-17204. [DOI: 10.1002/jcp.28504] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/22/2019] [Accepted: 03/05/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy School of Medicine, Kurdistan University of Medical Sciences Sanandaj Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department School of Paramedical Sciences, Kermanshah University of Medical Sciences Kermanshah Iran
| | - Bagher Farhood
- Departments of Medical Physics and Radiology Faculty of Paramedical Sciences, Kashan University of Medical Sciences Kashan Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center Faculty of Pharmacy, Mazandaran University of Medical Sciences Sari Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology College of Medicine, University of Misan Misan Iraq
| | - Ahmed E. Musa
- Department of Medical Physics Tehran University of Medical Sciences (International Campus) Tehran Iran
| |
Collapse
|
11
|
Mortezaee K, Shabeeb D, Musa AE, Najafi M, Farhood B. Metformin as a Radiation Modifier; Implications to Normal Tissue Protection and Tumor Sensitization. CURRENT CLINICAL PHARMACOLOGY 2019; 14:41-53. [PMID: 30360725 DOI: 10.2174/1574884713666181025141559] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Nowadays, ionizing radiation is used for several applications in medicine, industry, agriculture, and nuclear power generation. Besides the beneficial roles of ionizing radiation, there are some concerns about accidental exposure to radioactive sources. The threat posed by its use in terrorism is of global concern. Furthermore, there are several side effects to normal organs for patients who had undergone radiation treatment for cancer. Hence, the modulation of radiation response in normal tissues was one of the most important aims of radiobiology. Although, so far, several agents have been investigated for protection and mitigation of radiation injury. Agents such as amifostine may lead to severe toxicity, while others may interfere with radiation therapy outcomes as a result of tumor protection. Metformin is a natural agent that is well known as an antidiabetic drug. It has shown some antioxidant effects and enhances DNA repair capacity, thereby ameliorating cell death following exposure to radiation. Moreover, through targeting endogenous ROS production within cells, it can mitigate radiation injury. This could potentially make it an effective radiation countermeasure. In contrast to other radioprotectors, metformin has shown modulatory effects through induction of several genes such as AMPK, which suppresses reduction/ oxidation (redox) reactions, protects cells from accumulation of unrepaired DNA, and attenuates initiation of inflammation as well as fibrotic pathways. Interestingly, these properties of metformin can sensitize cancer cells to radiotherapy. CONCLUSION In this article, we aimed to review the interesting properties of metformin such as radioprotection, radiomitigation and radiosensitization, which could make it an interesting adjuvant for clinical radiotherapy, as well as an interesting candidate for mitigation of radiation injury after a radiation disaster.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Dheyauldeen Shabeeb
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed E Musa
- Department of Medical Physics & Biomedical Engineering, School of Medicine, Tehran University of Medical Sciences (International Campus), Tehran, Iran
- Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| |
Collapse
|
12
|
Vijayan A, Rumbo M, Carnoy C, Sirard JC. Compartmentalized Antimicrobial Defenses in Response to Flagellin. Trends Microbiol 2018; 26:423-435. [PMID: 29173868 DOI: 10.1016/j.tim.2017.10.008] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 10/20/2017] [Accepted: 10/27/2017] [Indexed: 11/19/2022]
Abstract
Motility is often a pathogenicity determinant of bacteria targeting mucosal tissues. Flagella constitute the machinery that propels bacteria into appropriate niches. Besides motility, the structural component, flagellin, which forms the flagella, targets Toll-like receptor 5 (TLR5) to activate innate immunity. The compartmentalization of flagellin-mediated immunity and the contribution of epithelial cells and dendritic cells in detecting flagellin within luminal and basal sides are highlighted here, respectively. While a direct stimulation of the epithelium mainly results in recruitment of immune cells and production of antimicrobial molecules, TLR5 engagement on parenchymal dendritic cells can contribute to the stimulation of innate lymphocytes such as type 3 innate lymphoid cells, as well as T helper cells. This review, therefore, illustrates how the innate and adaptive immunity to flagellin are differentially regulated by the epithelium and the dendritic cells in response to pathogens that either colonize or invade mucosa.
Collapse
Affiliation(s)
- Aneesh Vijayan
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Martin Rumbo
- Instituto de Estudios Inmunológicos y Fisiopatológicos - CONICET - National Universtity of La Plata, 1900 La Plata, Argentina
| | - Christophe Carnoy
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| | - Jean-Claude Sirard
- Université Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France.
| |
Collapse
|
13
|
Porte R, Van Maele L, Muñoz-Wolf N, Foligné B, Dumoutier L, Tabareau J, Cayet D, Gosset P, Jonckheere N, Van Seuningen I, Chabalgoity JA, Simonet M, Lamkanfi M, Renauld JC, Sirard JC, Carnoy C. Flagellin-Mediated Protection against Intestinal Yersinia pseudotuberculosis Infection Does Not Require Interleukin-22. Infect Immun 2017; 85:e00806-16. [PMID: 27872237 PMCID: PMC5278166 DOI: 10.1128/iai.00806-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 11/11/2016] [Indexed: 12/11/2022] Open
Abstract
Signaling through Toll-like receptors (TLRs), the main receptors in innate immunity, is essential for the defense of mucosal surfaces. It was previously shown that systemic TLR5 stimulation by bacterial flagellin induces an immediate, transient interleukin-22 (IL-22)-dependent antimicrobial response to bacterial or viral infections of the mucosa. This process was dependent on the activation of type 3 innate lymphoid cells (ILCs). The objective of the present study was to analyze the effects of flagellin treatment in a murine model of oral infection with Yersinia pseudotuberculosis (an invasive, Gram-negative, enteropathogenic bacterium that targets the small intestine). We found that systemic administration of flagellin significantly increased the survival rate after intestinal infection (but not systemic infection) by Y. pseudotuberculosis This protection was associated with a low bacterial count in the gut and the spleen. In contrast, no protection was afforded by administration of the TLR4 agonist lipopolysaccharide, suggesting the presence of a flagellin-specific effect. Lastly, we found that TLR5- and MyD88-mediated signaling was required for the protective effects of flagellin, whereas neither lymphoid cells nor IL-22 was involved.
Collapse
Affiliation(s)
- Rémi Porte
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Laurye Van Maele
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Natalia Muñoz-Wolf
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Benoit Foligné
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Laure Dumoutier
- Ludwig Institute for Cancer Research, Brussels Branch, and de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Julien Tabareau
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Delphine Cayet
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Pierre Gosset
- Hopital Saint Vincent, Groupe Hospitalier de l'Institut Catholique de Lille, Université Catholique de Lille, Lille, France
| | - Nicolas Jonckheere
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, JPArc-Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, Lille, France
| | - Isabelle Van Seuningen
- Univ. Lille, INSERM, CHU Lille, UMR-S 1172, JPArc-Centre de Recherche Jean-Pierre Aubert Neurosciences et Cancer, Lille, France
| | - José A Chabalgoity
- Laboratory for Vaccine Research, Department of Biotechnology, Instituto de Higiene, Facultad de Medicina, Universidad de la Republica, Montevideo, Uruguay
| | - Michel Simonet
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France
- Laboratoire de Bactériologie Hygiène, Institut de Microbiologie, Centre de Biologie Pathologie, CHRU Lille, Lille, France
| | - Mohamed Lamkanfi
- Department of Medical Protein Research, VIB, and Department of Biochemistry, Ghent University, Ghent, Belgium
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Brussels Branch, and de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France
| | - Christophe Carnoy
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019-UMR8204, CIIL-Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
14
|
Determinants of Divergent Adaptive Immune Responses after Airway Sensitization with Ligands of Toll-Like Receptor 5 or Toll-Like Receptor 9. PLoS One 2016; 11:e0167693. [PMID: 27977701 PMCID: PMC5157987 DOI: 10.1371/journal.pone.0167693] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 10/22/2016] [Indexed: 01/09/2023] Open
Abstract
Excessive type 2 helper T cell responses to environmental antigens can cause immunopathology such as asthma and allergy, but how such immune responses are induced remains unclear. We studied this process in the airways by immunizing mice intranasally with the antigen ovalbumin together with either of two Toll-like receptor (TLR) ligands. We found the TLR5 ligand flagellin promoted a type 2 helper T cell response, whereas, a TLR9 ligand CpG oligodeoxyribonucleotide (ODN) promoted a type 1 helper T cell response. CpG ODN induced mRNA encoding interleukin (IL)-12 p40, whereas, flagellin caused IL-33 secretion and induced mRNAs encoding IL-1 and thymic stromal lymphopoietin (TSLP). By using mice deficient in the TLR and IL-1R signaling molecule, myeloid differentiation primary response 88 (MyD88), in conventional dendritic cells (cDCs) and alveolar macrophages (AMs), and by cell sorting different lung populations after 2 hours of in vivo stimulation, we characterized the cell types that rapidly produced inflammatory cytokines in response to TLR stimulation. CpG ODN was likely recognized by TLR9 on cDCs and AMs, which made mRNA encoding IL-12. IL-12 was necessary for the subsequent innate and adaptive interferon-γ production. In contrast, flagellin stimulated multiple cells of hematopoietic and non-hematopoietic origin, including AMs, DCs, monocytes, and lung epithelial cells. AMs were largely responsible for IL-1α, whereas lung epithelial cells made TSLP. Multiple hematopoietic cells, including AMs, DCs, and monocytes contributed to other cytokines, including IL-1β and TNFα. MyD88-dependent signals, likely through IL-1R and IL-33R, and MyD88-independent signals, likely from TSLP, were necessary in cDCs for promotion of the early IL-4 response by CD4 T cells in the draining lymph node. Thus, the cell types that responded to TLR ligands were a critical determinant of the innate cytokines produced and the character of the resulting adaptive immune response in the airways.
Collapse
|
15
|
Chen J, Tian X, Mei Z, Wang Y, Yao Y, Zhang S, Li X, Wang H, Zhang J, Xie C. The effect of the TLR9 ligand CpG-oligodeoxynucleotide on the protective immune response to radiation-induced lung fibrosis in mice. Mol Immunol 2016; 80:33-40. [PMID: 27825048 DOI: 10.1016/j.molimm.2016.11.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/26/2016] [Accepted: 11/01/2016] [Indexed: 12/18/2022]
Abstract
CpG-oligodeoxynucleotide (CpG-ODN) is not only reported to protect against airway hyper responsiveness but is also known as a potent vaccine adjuvant for anti-tumor therapy. Little is known about the effect of CpG-ODN in mice with radiation-induced lung fibrosis (RILF), a common late stage form of tissue damage that occurs after thorax radiotherapy (RT). Here, we evaluated the immunomodulatory effects of CpG-ODN on the development of RILF. Mice were divided into four groups: (1) RT, single dose of 12Gy to the whole thorax; (2) CpG, only intraperitoneal injection of CpG-ODN for total 5 weeks; (3) RT+CpG, irradiation plus CpG-ODN treatment before and after irradiation for total 5 weeks; and (4) control (CTL): No RT or CpG-ODN treatment. In this study, we found that CpG-ODN treatment attenuated lung fibrosis and collagen deposition by increasing the number of M1 macrophagocytes, levels of Type-2 cytokines and TGF-β. CpG-ODN administration up-regulated the expression of TLR9 and STAT1 phosphorylation and reversed the expression of Type-2 immune response key transcription factor GATA-3. Activation of the JAK-STAT1 signaling pathway further enhanced M1 macrophage differentiation and Type-1 cytokine production. This study reveals the mitigating effect of early exposure to CpG-ODN on lung injury caused by irradiation in mice. The potential mechanism of action may be related to enhancement of Type-1 immunity. In conclusion, CpG-ODN may be a potential therapeutic target to treat RILF.
Collapse
Affiliation(s)
- Jing Chen
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Xiaoli Tian
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Zijie Mei
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Yacheng Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Ye Yao
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Shimin Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Xin Li
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Hui Wang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Junhong Zhang
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China
| | - Conghua Xie
- Department of Radiation and Medical Oncology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China; Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital, Wuhan University, Wuhan, Hubei 430071, PR China.
| |
Collapse
|
16
|
Muñoz-Wolf N, Rial A, Fougeron D, Tabareau J, Sirard JC, Chabalgoity JA. Sublingual flagellin protects against acute pneumococcal pneumonia in a TLR5-dependent and NLRC4-independent fashion. Future Microbiol 2016; 11:1167-77. [PMID: 27546231 DOI: 10.2217/fmb-2016-0045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To evaluate efficacy of sublingual flagellin to treat acute pneumonia. MATERIALS & METHODS Mice were treated sublingually with flagellin and challenged intranasally with a lethal dose of pneumococcus. Flagellins lacking TLR5 or NLRC4 activation domains were used to assess their contribution to protection. RESULTS Sublingual flagellin protected mice in a TLR5-dependent, NLRC4-independent fashion. Neutrophils were required for protection. Flagellin-stimulated lung epithelial cells recapitulated the lung's transcriptional profile suggesting they could be targeted by flagellin in vivo. CONCLUSION Ligation of TLR5, a pathogen recognition receptor not naturally engaged by pneumococcus, protects mice from invasive pneumonia when administered via sublingual route. This can be a highly cost-effective alternative therapy against pneumonia.
Collapse
Affiliation(s)
- Natalia Muñoz-Wolf
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina-Universidad de la República (UdelaR), Montevideo, 11600, Uruguay.,Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, D02 PN40, Ireland
| | - Analía Rial
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina-Universidad de la República (UdelaR), Montevideo, 11600, Uruguay
| | - Delphine Fougeron
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection & Immunity of Lille, F-59000 Lille, France
| | - Julien Tabareau
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection & Immunity of Lille, F-59000 Lille, France
| | - Jean-Claude Sirard
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection & Immunity of Lille, F-59000 Lille, France
| | - José A Chabalgoity
- Departamento de Desarrollo Biotecnológico, Instituto de Higiene, Facultad de Medicina-Universidad de la República (UdelaR), Montevideo, 11600, Uruguay
| |
Collapse
|
17
|
Anas AA, van Lieshout MHP, Claushuis TAM, de Vos AF, Florquin S, de Boer OJ, Hou B, Van't Veer C, van der Poll T. Lung epithelial MyD88 drives early pulmonary clearance of Pseudomonas aeruginosa by a flagellin dependent mechanism. Am J Physiol Lung Cell Mol Physiol 2016; 311:L219-28. [PMID: 27288486 DOI: 10.1152/ajplung.00078.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/08/2016] [Indexed: 01/08/2023] Open
Abstract
Pseudomonas aeruginosa is a flagellated pathogen frequently causing pneumonia in hospitalized patients and sufferers of chronic lung disease. Here we investigated the role of the common Toll-like receptor (TLR) adaptor myeloid differentiation factor (MyD)88 in myeloid vs. lung epithelial cells in clearance of P. aeruginosa from the airways. Mice deficient for MyD88 in lung epithelial cells (Sftpccre-MyD88-lox mice) or myeloid cells (LysMcre-MyD88-lox mice) and bone marrow chimeric mice deficient for TLR5 (the receptor recognizing Pseudomonas flagellin) in either parenchymal or hematopoietic cells were infected with P. aeruginosa via the airways. Sftpccre-MyD88-lox mice demonstrated a reduced influx of neutrophils into the bronchoalveolar space and an impaired early antibacterial defense after infection with P. aeruginosa, whereas the response of LysMcre-MyD88-lox mice did not differ from control mice. The immune-enhancing role of epithelial MyD88 was dependent on recognition of pathogen-derived flagellin by epithelial TLR5, as demonstrated by an unaltered clearance of mutant P. aeruginosa lacking flagellin from the lungs of Sftpccre-MyD88-lox mice and an impaired bacterial clearance in bone marrow chimeric mice lacking TLR5 in parenchymal cells. These data indicate that early clearance of P. aeruginosa from the airways is dependent on flagellin-TLR5-MyD88-dependent signaling in respiratory epithelial cells.
Collapse
Affiliation(s)
- Adam A Anas
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands;
| | - Miriam H P van Lieshout
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Theodora A M Claushuis
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Alex F de Vos
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Sandrine Florquin
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Onno J de Boer
- Department of Pathology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Baidong Hou
- Key Laboratory of Infection and Immunity, Institute of Biophysics, Chaoyang District, Beijing, China; and
| | - Cornelis Van't Veer
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Center of Experimental and Molecular Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Division of Infectious Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
18
|
Krivokrysenko VI, Toshkov IA, Gleiberman AS, Krasnov P, Shyshynova I, Bespalov I, Maitra RK, Narizhneva NV, Singh VK, Whitnall MH, Purmal AA, Shakhov AN, Gudkov AV, Feinstein E. The Toll-Like Receptor 5 Agonist Entolimod Mitigates Lethal Acute Radiation Syndrome in Non-Human Primates. PLoS One 2015; 10:e0135388. [PMID: 26367124 PMCID: PMC4569586 DOI: 10.1371/journal.pone.0135388] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 07/15/2015] [Indexed: 12/28/2022] Open
Abstract
There are currently no approved medical radiation countermeasures (MRC) to reduce the lethality of high-dose total body ionizing irradiation expected in nuclear emergencies. An ideal MRC would be effective even when administered well after radiation exposure and would counteract the effects of irradiation on the hematopoietic system and gastrointestinal tract that contribute to its lethality. Entolimod is a Toll-like receptor 5 agonist with demonstrated radioprotective/mitigative activity in rodents and radioprotective activity in non-human primates. Here, we report data from several exploratory studies conducted in lethally irradiated non-human primates (rhesus macaques) treated with a single intramuscular injection of entolimod (in the absence of intensive individualized supportive care) administered in a mitigative regimen, 1-48 hours after irradiation. Following exposure to LD50-70/40 of radiation, injection of efficacious doses of entolimod administered as late as 25 hours thereafter reduced the risk of mortality 2-3-fold, providing a statistically significant (P<0.01) absolute survival advantage of 40-60% compared to vehicle treatment. Similar magnitude of survival improvement was also achieved with drug delivered 48 hours after irradiation. Improved survival was accompanied by predominantly significant (P<0.05) effects of entolimod administration on accelerated morphological recovery of hematopoietic and immune system organs, decreased severity and duration of thrombocytopenia, anemia and neutropenia, and increased clonogenic potential of the bone marrow compared to control irradiated animals. Entolimod treatment also led to reduced apoptosis and accelerated crypt regeneration in the gastrointestinal tract. Together, these data indicate that entolimod is a highly promising potential life-saving treatment for victims of radiation disasters.
Collapse
Affiliation(s)
| | - Ilia A. Toshkov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | | | - Peter Krasnov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | - Inna Shyshynova
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | - Ivan Bespalov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | - Ratan K. Maitra
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | | | - Vijay K. Singh
- Armed Forces Radiobiology Research Institute (AFRRI), Bethesda, Maryland, United States of America
| | - Mark H. Whitnall
- Armed Forces Radiobiology Research Institute (AFRRI), Bethesda, Maryland, United States of America
| | - Andrei A. Purmal
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
| | | | - Andrei V. Gudkov
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
- Department of Cell Stress Biology, Roswell Park Cancer Institute (RPCI), Buffalo, New York, United States of America
- * E-mail: (AVG); (EF)
| | - Elena Feinstein
- Cleveland BioLabs, Inc. (CBLI), Buffalo, New York, United States of America
- * E-mail: (AVG); (EF)
| |
Collapse
|
19
|
Gao F, Zhang C, Zhou C, Sun W, Liu X, Zhang P, Han J, Xian L, Bai D, Liu H, Cheng Y, Li B, Cui J, Cai J, Liu C. A critical role of toll-like receptor 2 (TLR2) and its' in vivo ligands in radio-resistance. Sci Rep 2015; 5:13004. [PMID: 26268450 PMCID: PMC4534783 DOI: 10.1038/srep13004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 07/10/2015] [Indexed: 01/07/2023] Open
Abstract
The role of Toll-like receptor-2 (TLR2) in radio-resistance remained largely unknown. TLR2 knockout (TLR2−/−) mice received radiation of 6.5 Gy, and then were studied. We found that radiation resulted in more severe mortality and morbidity rates in TLR2−/− mice. The cause of death in TLR2−/− mice may be severe and persistent bone marrow cell loss. Injection of the TLR2 agonist Pam3CSK4 into wild type (WT) mice induced radio-resistance. Myd88−/− mice were more susceptible to radiation. In conclusion, our data indicate that, similar to TLR4, TLR2 plays a critical role in radio-resistance.
Collapse
Affiliation(s)
- Fu Gao
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Chaoxiong Zhang
- Department of Centre for Disease Prevention and Control, Chengdu Military Region, Chengdu 610021, China
| | - Chuanfeng Zhou
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Weimin Sun
- National Key Laboratory of Medical Immunology&Institute of Immunology, Second Military Medical University, Shanghai 200433, China
| | - Xin Liu
- Model Animal Research Center, Nanjing University, Nanjing, People's Republic of China
| | - Pei Zhang
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Jiaqi Han
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Linfeng Xian
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Dongchen Bai
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Hu Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Ying Cheng
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Bailong Li
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Jianguo Cui
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Jianming Cai
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, PR China
| | - Cong Liu
- Department of Radiation Medicine, Faculty of Naval Medicine, Second Military Medical University, Shanghai 200433, PR China
| |
Collapse
|
20
|
A Toll-Like Receptor 5 Agonist Improves the Efficacy of Antibiotics in Treatment of Primary and Influenza Virus-Associated Pneumococcal Mouse Infections. Antimicrob Agents Chemother 2015. [PMID: 26195519 DOI: 10.1128/aac.01210-15] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Prophylactic intranasal administration of the Toll-like receptor 5 (TLR5) agonist flagellin protects mice against respiratory pathogenic bacteria. We hypothesized that TLR5-mediated stimulation of lung immunity might improve the therapeutic index of antibiotics for the treatment of Streptococcus pneumoniae respiratory infections in mice. Intranasal administration of flagellin was combined with either oral administration of amoxicillin or intraperitoneal injection of trimethoprim-sulfamethoxazole to treat S. pneumoniae-infected animals. Compared with standalone treatments, the combination of antibiotic and flagellin resulted in a lower bacterial load in the lungs and greater protection against S. pneumoniae dissemination and was associated with an early increase in neutrophil infiltration in the airways. The antibiotic-flagellin combination treatment was, however, not associated with any exacerbation of inflammation. Moreover, combination treatment was more efficacious than standalone antibiotic treatments in the context of post-influenza virus pneumococcal infection. Lastly, TLR5 signaling was shown to be mandatory for the efficacy of the combined antibacterial therapy. This report is the first to show that combining antibiotic treatment with the stimulation of mucosal innate immunity is a potent antibacterial strategy against pneumonia.
Collapse
|
21
|
Fougeron D, Van Maele L, Songhet P, Cayet D, Hot D, Van Rooijen N, Mollenkopf HJ, Hardt WD, Benecke AG, Sirard JC. Indirect Toll-like receptor 5-mediated activation of conventional dendritic cells promotes the mucosal adjuvant activity of flagellin in the respiratory tract. Vaccine 2015; 33:3331-41. [PMID: 26003491 DOI: 10.1016/j.vaccine.2015.05.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 04/17/2015] [Accepted: 05/11/2015] [Indexed: 01/17/2023]
Abstract
The Toll-like receptor 5 (TLR5) agonist flagellin is an effective adjuvant for vaccination. Recently, we demonstrated that the adaptive responses stimulated by intranasal administration of flagellin and antigen were linked to TLR5 signaling in the lung epithelium. The present study sought to identify the antigen presenting cells involved in this adjuvant activity. We first found that the lung dendritic cells captured antigen very efficiently in a process independent of TLR5. However, TLR5-mediated signaling specifically enhanced the maturation of lung dendritic cells. Afterward, the number of antigen-bound and activated conventional dendritic cells (both CD11b(+) and CD103(+)) increased in the mediastinal lymph nodes in contrast to monocyte-derived dendritic cells. These data suggested that flagellin-activated lung conventional dendritic cells migrate to the draining lymph nodes. The lymph node dendritic cells, in particular CD11b(+) cells, were essential for induction of CD4 T-cell response. Lastly, neutrophils and monocytes were recruited into the lungs by flagellin administration but did not contribute to the adjuvant activity. The functional activation of conventional dendritic cells was independent of direct TLR5 signaling, thereby supporting the contribution of maturation signals produced by flagellin-stimulated airway epithelium. In conclusion, our results demonstrated that indirect TLR5-dependent stimulation of airway conventional dendritic cells is essential to flagellin's mucosal adjuvant activity.
Collapse
Affiliation(s)
- Delphine Fougeron
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, F-59019 Lille, France; Université de Lille, F-59000 Lille, France
| | - Laurye Van Maele
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, F-59019 Lille, France; Université de Lille, F-59000 Lille, France
| | - Pascal Songhet
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Delphine Cayet
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, F-59019 Lille, France; Université de Lille, F-59000 Lille, France
| | - David Hot
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, F-59019 Lille, France; Université de Lille, F-59000 Lille, France
| | - Nico Van Rooijen
- Department of Molecular Cell Biology, VU Medical Center, NL-1007 Amsterdam, The Netherlands
| | | | - Wolf-Dietrich Hardt
- Institute of Microbiology, Eidgenössische Technische Hochschule Zürich, CH-8093 Zürich, Switzerland
| | - Arndt G Benecke
- Institut des Hautes Études Scientifiques and Centre National de la Recherche Scientifique, F-91440 Bures-sur-Yvette, France
| | - Jean-Claude Sirard
- Institut Pasteur de Lille, Centre d'Infection et d'Immunité de Lille, F-59019 Lille, France; Institut National de la Santé et de la Recherche Médicale, U1019, F-59019 Lille, France; Centre National de la Recherche Scientifique, UMR 8204, F-59019 Lille, France; Université de Lille, F-59000 Lille, France.
| |
Collapse
|
22
|
Muñoz-Wolf N, Rial A, Saavedra JM, Chabalgoity JA. Sublingual immunotherapy as an alternative to induce protection against acute respiratory infections. J Vis Exp 2014. [PMID: 25225769 DOI: 10.3791/52036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Sublingual route has been widely used to deliver small molecules into the bloodstream and to modulate the immune response at different sites. It has been shown to effectively induce humoral and cellular responses at systemic and mucosal sites, namely the lungs and urogenital tract. Sublingual vaccination can promote protection against infections at the lower and upper respiratory tract; it can also promote tolerance to allergens and ameliorate asthma symptoms. Modulation of lung's immune response by sublingual immunotherapy (SLIT) is safer than direct administration of formulations by intranasal route because it does not require delivery of potentially harmful molecules directly into the airways. In contrast to intranasal delivery, side effects involving brain toxicity or facial paralysis are not promoted by SLIT. The immune mechanisms underlying SLIT remain elusive and its use for the treatment of acute lung infections has not yet been explored. Thus, development of appropriate animal models of SLIT is needed to further explore its potential advantages. This work shows how to perform sublingual administration of therapeutic agents in mice to evaluate their ability to protect against acute pneumococcal pneumonia. Technical aspects of mouse handling during sublingual inoculation, precise identification of sublingual mucosa, draining lymph nodes and isolation of tissues, bronchoalveolar lavage and lungs are illustrated. Protocols for single cell suspension preparation for FACS analysis are described in detail. Other downstream applications for the analysis of the immune response are discussed. Technical aspects of the preparation of Streptococcus pneumoniae inoculum and intranasal challenge of mice are also explained. SLIT is a simple technique that allows screening of candidate molecules to modulate lungs' immune response. Parameters affecting the success of SLIT are related to molecular size, susceptibility to degradation and stability of highly concentrated formulations.
Collapse
Affiliation(s)
- Natalia Muñoz-Wolf
- Departamento de Desarrollo Biotecnológico, Universidad de la República; Present Affiliation: Trinity Biomedical Science Institute, Trinity College Dublin
| | - Analía Rial
- Departamento de Desarrollo Biotecnológico, Universidad de la República
| | - José M Saavedra
- Departamento de Desarrollo Biotecnológico, Universidad de la República
| | | |
Collapse
|
23
|
Airway structural cells regulate TLR5-mediated mucosal adjuvant activity. Mucosal Immunol 2014; 7:489-500. [PMID: 24064672 DOI: 10.1038/mi.2013.66] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 07/16/2013] [Accepted: 08/13/2013] [Indexed: 02/04/2023]
Abstract
Antigen-presenting cell (APC) activation is enhanced by vaccine adjuvants. Most vaccines are based on the assumption that adjuvant activity of Toll-like receptor (TLR) agonists depends on direct, functional activation of APCs. Here, we sought to establish whether TLR stimulation in non-hematopoietic cells contributes to flagellin's mucosal adjuvant activity. Nasal administration of flagellin enhanced T-cell-mediated immunity, and systemic and secretory antibody responses to coadministered antigens in a TLR5-dependent manner. Mucosal adjuvant activity was not affected by either abrogation of TLR5 signaling in hematopoietic cells or the presence of flagellin-specific, circulating neutralizing antibodies. We found that flagellin is rapidly degraded in conducting airways, does not translocate into lung parenchyma and stimulates an early immune response, suggesting that TLR5 signaling is regionalized. The flagellin-specific early response of lung was regulated by radioresistant cells expressing TLR5 (particularly the airway epithelial cells). Flagellin stimulated the epithelial production of a small set of mediators that included the chemokine CCL20, which is known to promote APC recruitment in mucosal tissues. Our data suggest that (i) the adjuvant activity of TLR agonists in mucosal vaccination may require TLR stimulation of structural cells and (ii) harnessing the effect of adjuvants on epithelial cells can improve mucosal vaccines.
Collapse
|
24
|
Lacave-Lapalun JV, Benderitter M, Linard C. Flagellin and LPS each restores rat lymphocyte populations after colorectal irradiation. J Leukoc Biol 2014; 95:931-40. [PMID: 24532644 DOI: 10.1189/jlb.0413209] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Radiation-induced gastrointestinal toxicity, including its shift of the immune balance, remains a major limitation to delivering tumoricidal doses of abdominal radiation therapy. This study evaluates the effect on the colon's innate and adaptive immune responses to moderate irradiation doses and the therapeutic possibilities of maintaining immune homeostasis. We investigated whether administration of the TLR4 agonist LPS or of the TLR5 agonist flagellin, 3 days after a single 20-Gy colorectal irradiation, modified recruitment of neutrophils, NK cells, or CD4⁺ or CD8⁺ T cells, 7 days postirradiation. Flow cytometric analysis showed that LPS and flagellin reduced irradiation-induced neutrophil infiltration and normalized NK frequency. LPS normalized the CD4⁺ population and enhanced the CD8⁺ population, whereas flagellin maintained the radiation-induced elevation in the frequencies of both. Irradiation also modified TLR4 and TLR5 expression on the surface of both populations, but LPS and flagellin each subsequently normalized them. LPS and flagellin were strong inducers of Th1 cytokines (IL-12p35, IL-12p40, and IFN-γ) and thus, contributed to a shift from the Th2 polarization induced by irradiation toward a Th1 polarization, confirmed by an increase of the T-bet:GATA3 ratio, which assesses the Th1 or Th2 status in mixed cell populations. LPS and flagellin treatment resulted in overexpression of FoxP3, IL-2Rα (CD25), IL-2, and OX40, all expressed specifically and involved in high levels of Treg cell expansion. We observed no variation in Treg function-related expression of IL-10 or CTLA-4. These data suggest that the use of TLR ligands limits the effects of irradiation on innate and adaptive immunity.
Collapse
Affiliation(s)
- Jean-Victor Lacave-Lapalun
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Marc Benderitter
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| | - Christine Linard
- Laboratory of Radiopathology and Experimental Therapies, Institute for Radiological Protection and Nuclear Safety, Fontenay-aux-Roses, France
| |
Collapse
|
25
|
Abstract
Toll-like receptor-4 (TLR4) plays a critical role in innate and acquired immunity, but its role in radio-resistance is unknown. We used TLR4 knockout (KO,(-/-)) mice and gut commensal depletion methods, to test the influence of TLR4 and its' in vivo agonist on basal radio-resistance. We found that mice deficient in TLR4 were more susceptible to IR-induced mortality and morbidity. Mortality of TLR4-deficient mice after IR was associated with a severe and persistent bone marrow cell loss. Injection of lipopolysaccharide into normal mice, which is known to activate TLR4 in vivo, induced radio-resistance. Moreover, TLR4 in vivo ligands are required for basal radio-resistance. We found that exposure to radiation leads to significant endotoxemia that also confers endogenous protection from irradiation. The circulating endotoxins appear to originate from the gut, as sterilization of the gut with antibiotics lead to increased mortality from radiation. Further data indicated that Myd88, but not TRIF, may be the critical adaptor in TLR4-induced radio-resistance. Taken together, these data strongly suggest that TLR4 plays a critical role in basal radio-resistance. Our data suggest, it is important not to give antibiotics that may sterilize the gut before the whole body irradiation. Further, these data also suggest that management of gut flora through antibiotic or possibly probiotic therapy may alter the innate response to the total body irradiation.
Collapse
|
26
|
Parker D, Prince A. Epithelial uptake of flagella initiates proinflammatory signaling. PLoS One 2013; 8:e59932. [PMID: 23527288 PMCID: PMC3603936 DOI: 10.1371/journal.pone.0059932] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 02/21/2013] [Indexed: 12/31/2022] Open
Abstract
The airway epithelium serves multiple roles in the defense of the lung. Not only does it act as a physical barrier, it acts as a distal extension of the innate immune system. We investigated the role of the airway epithelium in the interaction with flagella, an important virulence factor of the pathogen Pseudomonas aeruginosa, a cause of ventilator associated pneumonia and significant morbidity and mortality in patients with cystic fibrosis. Flagella were required for transmigration across polarized airway epithelial cells and this was a direct consequence of motility, and not a signaling effect. Purified flagella did not alter the barrier properties of the epithelium but were observed to be rapidly endocytosed inside epithelial cells. Neither flagella nor intact P. aeruginosa stimulated epithelial inflammasome signaling. Flagella-dependent signaling required dynamin-based uptake as well as TLR5 and primarily led to the induction of proinflammatory (Tnf, Il6) as well as neutrophil (Cxcl1, Cxcl2, Ccl3) and macrophage (Ccl20) chemokines. Although flagella are important in invasion across the epithelial barrier their shedding in the airway lumen results in epithelial uptake and signaling that has a major role in the initial recruitment of immune cells in the lung.
Collapse
Affiliation(s)
- Dane Parker
- Department of Pediatrics, Columbia University, New York, New York, United States of America.
| | | |
Collapse
|
27
|
Zgair AK, Chhibber S. Stenotrophomonas maltophiliaflagellin restricts bacterial colonization in BALB/c mouse lungin vivo. ACTA ACUST UNITED AC 2012; 66:191-200. [DOI: 10.1111/j.1574-695x.2012.00999.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Revised: 04/28/2012] [Accepted: 06/11/2012] [Indexed: 11/27/2022]
|
28
|
Blohmke CJ, Mayer ML, Tang AC, Hirschfeld AF, Fjell CD, Sze MA, Falsafi R, Wang S, Hsu K, Chilvers MA, Hogg JC, Hancock REW, Turvey SE. Atypical activation of the unfolded protein response in cystic fibrosis airway cells contributes to p38 MAPK-mediated innate immune responses. THE JOURNAL OF IMMUNOLOGY 2012; 189:5467-75. [PMID: 23105139 DOI: 10.4049/jimmunol.1103661] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Inflammatory lung disease is the major cause of morbidity and mortality in cystic fibrosis (CF); understanding what produces dysregulated innate immune responses in CF cells will be pivotal in guiding the development of novel anti-inflammatory therapies. To elucidate the molecular mechanisms that mediate exaggerated inflammation in CF following TLR signaling, we profiled global gene expression in immortalized human CF and non-CF airway cells at baseline and after microbial stimulation. Using complementary analysis methods, we observed a signature of increased stress levels in CF cells, specifically characterized by endoplasmic reticulum (ER) stress, the unfolded protein response (UPR), and MAPK signaling. Analysis of ER stress responses revealed an atypical induction of the UPR, characterized by the lack of induction of the PERK-eIF2α pathway in three complementary model systems: immortalized CF airway cells, fresh CF blood cells, and CF lung tissue. This atypical pattern of UPR activation was associated with the hyperinflammatory phenotype in CF cells, as deliberate induction of the PERK-eIF2α pathway with salubrinal attenuated the inflammatory response to both flagellin and Pseudomonas aeruginosa. IL-6 production triggered by ER stress and microbial stimulation were both dependent on p38 MAPK activity, suggesting a molecular link between both signaling events. These data indicate that atypical UPR activation fails to resolve the ER stress in CF and sensitizes the innate immune system to respond more vigorously to microbial challenge. Strategies to restore ER homeostasis and normalize the UPR activation profile may represent a novel therapeutic approach to minimize lung-damaging inflammation in CF.
Collapse
Affiliation(s)
- Christoph J Blohmke
- Department of Paediatrics, BC Children's Hospital and Child & Family Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada V5Z 4H4
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
The Toll-like receptor 5 ligand flagellin promotes asthma by priming allergic responses to indoor allergens. Nat Med 2012; 18:1705-10. [PMID: 23064463 PMCID: PMC3493750 DOI: 10.1038/nm.2920] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 08/08/2012] [Indexed: 12/30/2022]
Abstract
Allergic asthma is a complex disease characterized by eosinophilic pulmonary inflammation, mucus production and reversible airway obstruction1. Exposure to indoor allergens is a clear risk factor for asthma, but this disease is also associated with high household levels of total and Gram-negative bacteria2. The ability of bacterial products to act as adjuvants3 suggests they might promote asthma by priming allergic sensitization to inhaled allergens. In support of this idea, house dust extracts (HDEs) can activate antigen presenting dendritic cells (DC) in vitro and promote allergic sensitization to inhaled innocuous proteinsin vivo4. It is unknown which microbial products provide most of the adjuvant activity in HDEs. A screen of microbial products for their adjuvant activity in the airway revealed that the bacterial protein, flagellin (FLA) stimulated strong allergic responses to an innocuous inhaled protein. Moreover, toll-like receptor (TLR)5, the mammalian receptor for FLA5,6, was required for priming strong allergic responses to natural indoor allergens present in HDEs. In addition, the incidence of human asthma was associated with high serum levels of FLA-specific antibodies. Together, these findings suggest that household FLA promotes the development of allergic asthma by TLR5-dependent priming of allergic responses to indoor allergens.
Collapse
|
30
|
Wang R, Ahmed J, Wang G, Hassan I, Strulovici-Barel Y, Salit J, Mezey JG, Crystal RG. Airway epithelial expression of TLR5 is downregulated in healthy smokers and smokers with chronic obstructive pulmonary disease. THE JOURNAL OF IMMUNOLOGY 2012; 189:2217-25. [PMID: 22855713 DOI: 10.4049/jimmunol.1101895] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The TLRs are important components of the respiratory epithelium host innate defense, enabling the airway surface to recognize and respond to a variety of insults in inhaled air. On the basis of the knowledge that smokers are more susceptible to pulmonary infection and that the airway epithelium of smokers with chronic obstructive pulmonary disease (COPD) is characterized by bacterial colonization and acute exacerbation of airway infections, we assessed whether smoking alters expression of TLRs in human small airway epithelium, the primary site of smoking-induced disease. Microarrays were used to survey the TLR family gene expression in small airway (10th to 12th order) epithelium from healthy nonsmokers (n = 60), healthy smokers (n = 73), and smokers with COPD (n = 36). Using the criteria of detection call of present (P call) ≥ 50%, 6 of 10 TLRs (TLRs 1-5 and 8) were expressed. Compared with nonsmokers, the most striking change was for TLR5, which was downregulated in healthy smokers (1.4-fold, p < 10⁻¹⁰) and smokers with COPD (1.6-fold, p < 10⁻¹¹). TaqMan RT-PCR confirmed these observations. Bronchial biopsy immunofluorescence studies showed that TLR5 was expressed mainly on the apical side of the epithelium and was decreased in healthy smokers and smokers with COPD. In vitro, the level of TLR5 downstream genes, IL-6 and IL-8, was highly induced by flagellin in TLR5 high-expressing cells compared with TLR5 low-expressing cells. In the context that TLR5 functions to recognize pathogens and activate innate immune responses, the smoking-induced downregulation of TLR5 may contribute to smoking-related susceptibility to airway infection, at least for flagellated bacteria.
Collapse
Affiliation(s)
- Rui Wang
- Department of Genetic Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Escherichia coli flagellin stimulates pro-inflammatory immune response. World J Microbiol Biotechnol 2012; 28:2139-46. [DOI: 10.1007/s11274-012-1019-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 02/01/2012] [Indexed: 10/14/2022]
|
32
|
Brickey WJ, Neuringer IP, Walton W, Hua X, Wang EY, Jha S, Sempowski GD, Yang X, Kirby SL, Tilley SL, Ting JPY. MyD88 provides a protective role in long-term radiation-induced lung injury. Int J Radiat Biol 2012; 88:335-47. [PMID: 22248128 DOI: 10.3109/09553002.2012.652723] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE The role of innate immune regulators is investigated in injury sustained from irradiation as in the clinic for cancer treatment or from a nuclear incident. The protective benefits of flagellin signaling through Toll-like receptors (TLR) in an irradiation setting warrant study of a key intracellular adaptor of TLR signaling, namely Myeloid differentiation primary response factor 88 (MyD88). The role of MyD88 in regulating innate immunity and Nuclear factor kappa-B (NF-κB)-activated responses targets this critical factor for influencing injury and recovery as well as maintaining immune homeostasis. MATERIALS AND METHODS To examine the role of MyD88, we examined immune cells and factors during acute pneumonitic and fibrotic phases in Myd88-deficient animals receiving thoracic gamma (γ)-irradiation. RESULTS We found that MyD88 supports survival from radiation-induced injury through the regulation of inflammatory factors that aid in recovery from irradiation. The absence of MyD88 resulted in unresolved pulmonary infiltrate and enhanced collagen deposition plus elevated type 2 helper T cell (Th2) cytokines in long-term survivors of irradiation. CONCLUSIONS These results based only on a gene deletion model suggest that alterations of MyD88-dependent inflammatory processes impact chronic lung injury. Therefore, MyD88 may contribute to attenuating long-term radiation-induced lung injury and protecting against fibrosis.
Collapse
Affiliation(s)
- Willie J Brickey
- Department of Microbiology/Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Williams JP, McBride WH. After the bomb drops: a new look at radiation-induced multiple organ dysfunction syndrome (MODS). Int J Radiat Biol 2011; 87:851-68. [PMID: 21417595 PMCID: PMC3314299 DOI: 10.3109/09553002.2011.560996] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE There is increasing concern that, since the Cold War era, there has been little progress regarding the availability of medical countermeasures in the event of either a radiological or nuclear incident. Fortunately, since much is known about the acute consequences that are likely to be experienced by an exposed population, the probability of survival from the immediate hematological crises after total body irradiation (TBI) has improved in recent years. Therefore focus has begun to shift towards later down-stream effects, seen in such organs as the gastrointestinal tract (GI), skin, and lung. However, the mechanisms underlying therapy-related normal tissue late effects, resulting from localised irradiation, have remained somewhat elusive and even less is known about the development of the delayed syndrome seen in the context of whole body exposures, when it is likely that systemic perturbations may alter tissue microenvironments and homeostasis. CONCLUSIONS The sequence of organ failures observed after near-lethal TBI doses are similar in many ways to that of multiple organ dysfunction syndrome (MODS), leading to multiple organ failure (MOF). In this review, we compare the mechanistic pathways that underlie both MODS and delayed normal tissue effects since these may impact on strategies to identify radiation countermeasures.
Collapse
Affiliation(s)
- Jacqueline P Williams
- Department of Radiation Oncology, University of Rochester Medical Center Rochester, NY 14642, USA.
| | | |
Collapse
|
34
|
LeibundGut-Landmann S, Weidner K, Hilbi H, Oxenius A. Nonhematopoietic cells are key players in innate control of bacterial airway infection. THE JOURNAL OF IMMUNOLOGY 2011; 186:3130-7. [PMID: 21270399 DOI: 10.4049/jimmunol.1003565] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Airborne pathogens encounter several hurdles during host invasion, including alveolar macrophages (AMs) and airway epithelial cells (AECs) and their products. Although growing evidence indicates pathogen-sensing capacities of epithelial cells, the relative contribution of hematopoietic versus nonhematopoietic cells in the induction of an inflammatory response and their possible interplay is still poorly defined in vivo in the context of infections with pathogenic microorganisms. In this study, we show that nonhematopoietic cells, including AECs, are critical players in the inflammatory process induced upon airway infection with Legionella pneumophila, and that they are essential for control of bacterial infections. Lung parenchymal cells, including AECs, are not infected themselves by L. pneumophila in vivo but rather act as sensors and amplifiers of inflammatory cues delivered by L. pneumophila-infected AM. We identified AM-derived IL-1β as the critical mediator to induce chemokine production in nonhematopoietic cells in the lung, resulting in swift and robust recruitment of infection-controlling neutrophils into the airways. These data add a new level of complexity to the coordination of the innate immune response to L. pneumophila and illustrate how the cross talk between leukocytes and nonhematopoietic cells contributes to efficient host protection.
Collapse
|
35
|
Blohmke CJ, Park J, Hirschfeld AF, Victor RE, Schneiderman J, Stefanowicz D, Chilvers MA, Durie PR, Corey M, Zielenski J, Dorfman R, Sandford AJ, Daley D, Turvey SE. TLR5 as an anti-inflammatory target and modifier gene in cystic fibrosis. THE JOURNAL OF IMMUNOLOGY 2010; 185:7731-8. [PMID: 21068401 DOI: 10.4049/jimmunol.1001513] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
New treatments are needed to improve the health of people with cystic fibrosis (CF). Reducing lung-damaging inflammation is likely to be beneficial, but specific anti-inflammatory targets have not been identified. By combining cellular immunology with a population-based genetic modifier study, we examined TLR5 as an anti-inflammatory target and modifier gene in CF. Using two pairs of human CF and control airway epithelial cells, we demonstrated that the TLR5-flagellin interaction is a major mediator of inflammation following exposure to Pseudomonas aeruginosa. To validate TLR5 as an anti-inflammatory target, we analyzed the disease modifying effects of the TLR5 c.1174C>T single nucleotide polymorphism (rs5744168) in a large cohort of CF patients (n = 2219). rs5744168 encodes a premature stop codon and the T allele is associated with a 45.5-76.3% reduction in flagellin responsiveness (p < 0.0001). To test the hypothesis that reduced TLR5 responsiveness would be associated with improved health in CF patients, we examined the relationship between rs5744168 and two clinical phenotypes: lung function and body weight. Adults with CF carrying the TLR5 premature stop codon (CT or TT genotype) had a higher body mass index than did CF patients homozygous for the fully functional allele (CC genotype) (p = 0.044); however, similar improvements in lung function associated with the T allele were not statistically significant. Although follow-up studies are needed to confirm the impact of TLR5 on nutritional status, this translational research provides evidence that genetic variation in TLR5 resulting in reduced flagellin responsiveness is associated with improved health indicators in adults with CF.
Collapse
Affiliation(s)
- Christoph J Blohmke
- Department of Paediatrics, BC Children's Hospital and Child and Family Research Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mucosal administration of flagellin protects mice from Streptococcus pneumoniae lung infection. Infect Immun 2010; 78:4226-33. [PMID: 20643849 DOI: 10.1128/iai.00224-10] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae is a major cause of pneumonia in infants and the elderly. Innate defenses are essential to the control of pneumococcal infections, and deficient responses can trigger disease in susceptible individuals. Here we showed that flagellin can locally activate innate immunity and thereby increase the resistance to acute pneumonia. Flagellin mucosal treatment improved S. pneumoniae clearance in the lungs and promoted increased survival of infection. In addition, lung architecture was fully restored after the treatment of infected mice, indicating that flagellin allows the reestablishment of steady-state conditions. Using a flagellin mutant that is unable to signal through Toll-like receptor 5 (TLR5), we established that TLR5 signaling is essential for protection. In the respiratory tract, flagellin induced neutrophil infiltration into airways and upregulated the expression of genes coding for interleukin 6 (IL-6), tumor necrosis factor alpha (TNF-α), CXCL1, CXCL2, and CCL20. Using depleting antibodies, we demonstrated that neutrophils are major effectors of protection. Further, we found that B- and T-cell-deficient SCID mice clear S. pneumoniae challenge to the same extent as immunocompetent animals, suggesting that these cell populations are not required for flagellin-induced protection. In conclusion, this study emphasizes that mucosal stimulation of innate immunity by a TLR not naturally engaged by S. pneumoniae can increase the potential to cure pneumococcal pneumonia.
Collapse
|
37
|
Van Maele L, Carnoy C, Cayet D, Songhet P, Dumoutier L, Ferrero I, Janot L, Erard F, Bertout J, Leger H, Sebbane F, Benecke A, Renauld JC, Hardt WD, Ryffel B, Sirard JC. TLR5 signaling stimulates the innate production of IL-17 and IL-22 by CD3(neg)CD127+ immune cells in spleen and mucosa. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 185:1177-85. [PMID: 20566828 PMCID: PMC3060348 DOI: 10.4049/jimmunol.1000115] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In adaptive immunity, Th17 lymphocytes produce the IL-17 and IL-22 cytokines that stimulate mucosal antimicrobial defenses and tissue repair. In this study, we observed that the TLR5 agonist flagellin induced swift and transient transcription of genes encoding IL-17 and IL-22 in lymphoid, gut, and lung tissues. This innate response also temporarily enhanced the expression of genes associated with the antimicrobial Th17 signature. The source of the Th17-related cytokines was identified as novel populations of CD3(neg)CD127(+) immune cells among which CD4-expressing cells resembling lymphoid tissue inducer cells. We also demonstrated that dendritic cells are essential for expression of Th17-related cytokines and so for stimulation of innate cells. These data define that TLR-induced activation of CD3(neg)CD127(+) cells and production of Th17-related cytokines may be crucial for the early defenses against pathogen invasion of host tissues.
Collapse
Affiliation(s)
- Laurye Van Maele
- CIL, Centre d'infection et d'immunité de Lille
INSERM : U1019Institut Pasteur de LilleLille,FR
- UMR 8204
CNRS : UMR 8204Université Lille NordLille,FR
| | - Christophe Carnoy
- CIL, Centre d'infection et d'immunité de Lille
INSERM : U1019Institut Pasteur de LilleLille,FR
- UMR 8204
CNRS : UMR 8204Université Lille NordLille,FR
| | - Delphine Cayet
- CIL, Centre d'infection et d'immunité de Lille
INSERM : U1019Institut Pasteur de LilleLille,FR
- UMR 8204
CNRS : UMR 8204Université Lille NordLille,FR
| | - Pascal Songhet
- ETH Zürich, Eldgenössische Technische Hochschule Zürich
ETH ZurichHauptgebäude Rämistrasse 101 8092 Zürich Schweiz Telefon: +41 44 632 11 11 Telefax: +41 44 632 10 10,CH
| | - Laure Dumoutier
- Ludwig Institute for Cancer Research
Ludwig Institute for Cancer ResearchBrussels Branch, Brussels,BE
- Université Catholique de Louvain
Université Catholique de LouvainBE
| | - Isabel Ferrero
- Ludwig Institute for Cancer Research
Ludwig Institute for Cancer ResearchUniversité de LausanneEpalinges,CH
| | - Laure Janot
- IEM, Immunologie et embryologie moléculaires
CNRS : UMR6218Université d'Orléans3B rue de la Ferollerie 45071 ORLEANS CEDEX 2,FR
| | - François Erard
- IEM, Immunologie et embryologie moléculaires
CNRS : UMR6218Université d'Orléans3B rue de la Ferollerie 45071 ORLEANS CEDEX 2,FR
| | - Julie Bertout
- MCM, Médecine cellulaire et moléculaire
CNRS : IFR142INSERMInstitut Pasteur de LilleUniversité des Sciences et Technologies de Lille - Lille IUniversité du Droit et de la Santé - Lille II1 rue du Professeur Calmette 59019 LILLE CEDEX,FR
| | - Hélène Leger
- IHES, Institut des Hautes Etudes Scientifiques
IHES35 route de Chartres 91440 Bures sur Yvette,FR
- USTL, Institut de Recherche Interdisciplinaire
CNRS : USR3078Université Lille NordLille,FR
| | - Florent Sebbane
- CIL, Centre d'infection et d'immunité de Lille
INSERM : U1019Institut Pasteur de LilleLille,FR
- UMR 8204
CNRS : UMR 8204Université Lille NordLille,FR
| | - Arndt Benecke
- IHES, Institut des Hautes Etudes Scientifiques
IHES35 route de Chartres 91440 Bures sur Yvette,FR
| | | | - Wolf-Dietrich Hardt
- ETH Zürich, Eldgenössische Technische Hochschule Zürich
ETH ZurichHauptgebäude Rämistrasse 101 8092 Zürich Schweiz Telefon: +41 44 632 11 11 Telefax: +41 44 632 10 10,CH
| | - Bernhard Ryffel
- IEM, Immunologie et embryologie moléculaires
CNRS : UMR6218Université d'Orléans3B rue de la Ferollerie 45071 ORLEANS CEDEX 2,FR
- USTL, Institut de Recherche Interdisciplinaire
CNRS : USR3078Université Lille NordLille,FR
| | - Jean-Claude Sirard
- CIL, Centre d'infection et d'immunité de Lille
INSERM : U1019Institut Pasteur de LilleLille,FR
- UMR 8204
CNRS : UMR 8204Université Lille NordLille,FR
| |
Collapse
|
38
|
Abstract
The body senses "danger" from "damaged self" molecules through members of the same receptor superfamily it uses for microbial "non-self", triggering canonical signaling pathways that lead to the generation of acute inflammatory responses. For this reason, the biology of normal tissue responses to moderate and clinically relevant doses of radiation is inextricably connected to innate immunity. The complex sequence of inflammatory events that ensues causes further cell and tissue damage to eliminate potential invaders but also leads to cytoprotective responses that limit the spread of damage and to wound healing through tissue regeneration or replacement. These sequential processes are orchestrated through multiple feedback control mechanisms involving cyclical production of free radicals and cytokines that are common to both radiation and immune signaling. This requires a concerted effort by resident tissue and inflammatory cell types, with macrophages apparently leading the way. The initial response to moderate doses of radiation therefore feeds into a pro-inflammatory paradigm whose eventual outcome is critically dependent upon the properties of the immune cells that are involved in tissue damage, regeneration and repair and that are in part under genetic influence. Importantly, these canonical pathways provide targets for interventions aimed at modifying normal tissue radiation responses. In this review, we examine areas of intersection between innate immunity and normal tissue radiobiology.
Collapse
Affiliation(s)
- Dörthe Schaue
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1714
| | - William H. McBride
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1714
| |
Collapse
|