1
|
Alvarado-Vazquez PA, Mendez-Enriquez E, Pähn L, Dondalska A, Pazos-Castro D, Hallgren J. Mast cells contribute to T-cell accumulation in the bronchoalveolar space in mice with IL-33-induced airway inflammation. Immunology 2024; 173:590-602. [PMID: 39132816 DOI: 10.1111/imm.13849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 07/29/2024] [Indexed: 08/13/2024] Open
Abstract
Interleukin (IL)-33 released from airway epithelial cells plays a vital role in shaping type 2 immune responses by binding to the ST2 receptor present in many immune cells, including mast cells (MCs). Intranasal administration of IL-33 in mice induces type 2 lung inflammation, an increase in lung MC progenitors, and transepithelial migration of leukocytes to the bronchoalveolar space. The aim of this study was to determine the contribution of MCs in IL-33-induced lung pathology. Four daily intranasal administrations of IL-33 reduced spirometry-like lung function parameters, induced airway hyperresponsiveness, and increased leukocytes in bronchoalveolar lavage fluid (BAL) in an ST2-dependent manner. MC-deficient (Cpa3cre/+) mice, which lack MCs, had intact spirometry-like lung function but slightly reduced airway hyperresponsiveness, possibly related to reduced IL-33 or serotonin. Strikingly, Cpa3cre/+ mice exposed to IL-33 had 50% reduction in BAL T-cells, and CXCL1 and IL-33 were reduced in the lung. Intranasal IL-33 induced CXCR2 expression in T-cells in a MC-independent fashion. Furthermore, IL-33-induced lung MCs were immunopositive for CXCL1 and localized in the epithelium of wild-type mice. These results suggest that MCs are required to sustain intact lung IL-33 and CXCL1 levels in mice with IL-33-induced airway inflammation, thereby facilitating T-cell accumulation in the bronchoalveolar space.
Collapse
Affiliation(s)
| | - Erika Mendez-Enriquez
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Lisa Pähn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Aleksandra Dondalska
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Diego Pazos-Castro
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Li W, Liu M, Chu M. Strategies targeting IL-33/ST2 axis in the treatment of allergic diseases. Biochem Pharmacol 2023; 218:115911. [PMID: 37981174 DOI: 10.1016/j.bcp.2023.115911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/28/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Interleukin-33 (IL-33) and its receptor Serum Stimulation-2 (ST2, also called Il1rl1) are members of the IL-1 superfamily that plays a crucial role in allergic diseases. The interaction of IL-33 and ST2 mainly activates NF-κB signaling and MAPK signaling via the MyD88/IRAK/TRAF6 module, resulting in the production and secretion of pro-inflammatory cytokines. The IL-33/ST2 axis participates in the pathogenesis of allergic diseases, and therefore serves as a promising strategy for allergy treatment. In recent years, strategies blocking IL-33/ST2 through targeting regulation of IL-33 and ST2 or targeting the molecules involved in the signal transduction have been extensively studied mostly in animal models. These studies provide various potential therapeutic agents other than antibodies, such as small molecules, nucleic acids and traditional Chinese medicines. Herein, we reviewed potential targets and agents targeting IL-33/ST2 axis in the treatment of allergic diseases, providing directions for further investigations on treatments for IL-33 induced allergic diseases.
Collapse
Affiliation(s)
- Wenran Li
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China
| | - Mengqi Liu
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Health Science Centre, Peking University. Beijing, China; Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
3
|
Seifert J, Küchler C, Drube S. ATP/IL-33-Co-Sensing by Mast Cells (MCs) Requires Activated c-Kit to Ensure Effective Cytokine Responses. Cells 2023; 12:2696. [PMID: 38067124 PMCID: PMC10705958 DOI: 10.3390/cells12232696] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/10/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Mast cells (MCs) are sentinel cells which represent an important part of the first line of defense of the immune system. MCs highly express receptors for danger-associated molecular patterns (DAMPs) such as the IL-33R and P2X7, making MCs to potentially effective sensors for IL-33 and adenosine-triphosphate (ATP), two alarmins which are released upon necrosis-induced cell damage in peripheral tissues. Besides receptors for alarmins, MCs also express the stem cell factor (SCF) receptor c-Kit, which typically mediates MC differentiation, proliferation and survival. By using bone marrow-derived MCs (BMMCs), ELISA and flow cytometry experiments, as well as p65/RelA and NFAT reporter MCs, we aimed to investigate the influence of SCF on alarmin-induced signaling pathways and the resulting cytokine production and degranulation. We found that the presence of SCF boosted the cytokine production but not degranulation in MCs which simultaneously sense ATP and IL-33 (ATP/IL-33 co-sensing). Therefore, we conclude that SCF maintains the functionality of MCs in peripheral tissues to ensure appropriate MC reactions upon cell damage, induced by pathogens or allergens.
Collapse
Affiliation(s)
- Johanna Seifert
- Institut für Immunologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Leutragraben 3, 07743 Jena, Germany
| | - Claudia Küchler
- Institut für Immunologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Leutragraben 3, 07743 Jena, Germany
| | - Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, Friedrich-Schiller-Universität Jena, Leutragraben 3, 07743 Jena, Germany
| |
Collapse
|
4
|
Gao J, Li Y, Guan X, Mohammed Z, Gomez G, Hui Y, Zhao D, Oskeritzian CA, Huang H. IL-33 priming and antigenic stimulation synergistically promote the transcription of proinflammatory cytokine and chemokine genes in human skin mast cells. BMC Genomics 2023; 24:592. [PMID: 37798647 PMCID: PMC10557204 DOI: 10.1186/s12864-023-09702-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Antigenic stimulation through cross-linking the IgE receptor and epithelial cell-derived cytokine IL-33 are potent stimuli of mast cell (MC) activation. Moreover, IL-33 primes a variety of cell types, including MCs to respond more vigorously to external stimuli. However, target genes induced by the combined IL-33 priming and antigenic stimulation have not been investigated in human skin mast cells (HSMCs) in a genome-wide manner. Furthermore, epigenetic changes induced by the combined IL-33 priming and antigenic stimulation have not been evaluated. RESULTS We found that IL-33 priming of HSMCs enhanced their capacity to promote transcriptional synergy of the IL1B and CXCL8 genes by 16- and 3-fold, respectively, in response to combined IL-33 and antigen stimulation compared to without IL-33 priming. We identified the target genes in IL-33-primed HSMCs in response to the combined IL-33 and antigenic stimulation using RNA sequencing (RNA-seq). We found that the majority of genes synergistically upregulated in the IL-33-primed HSMCs in response to the combined IL-33 and antigenic stimulation were predominantly proinflammatory cytokine and chemokine genes. Moreover, the combined IL-33 priming and antigenic stimulation increase chromatin accessibility in the synergy target genes but not synergistically. Transcription factor binding motif analysis revealed more binding sites for NF-κB, AP-1, GABPA, and RAP1 in the induced or increased chromatin accessible regions of the synergy target genes. CONCLUSIONS Our study demonstrates that IL-33 priming greatly potentiates MCs' ability to transcribe proinflammatory cytokine and chemokine genes in response to antigenic stimulation, shining light on how epithelial cell-derived cytokine IL-33 can cause exacerbation of skin MC-mediated allergic inflammation.
Collapse
Affiliation(s)
- Junfeng Gao
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Yapeng Li
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Xiaoyu Guan
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Zahraa Mohammed
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
- College of Medicine, AI-Mustansiriyah University, Baghdad, Iraq
| | - Gregorio Gomez
- Department of Biomedical Sciences, University of Houston College of Medicine, Houston, TX, USA
| | - Yvonne Hui
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Dianzheng Zhao
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Hua Huang
- Department of Immunology and Genomic Medicine, National Jewish Health, 1400 Jackson Street, Denver, CO, 80206, USA.
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Denver, CO, USA.
| |
Collapse
|
5
|
Mehrani Y, Morovati S, Tieu S, Karimi N, Javadi H, Vanderkamp S, Sarmadi S, Tajik T, Kakish JE, Bridle BW, Karimi K. Vitamin D Influences the Activity of Mast Cells in Allergic Manifestations and Potentiates Their Effector Functions against Pathogens. Cells 2023; 12:2271. [PMID: 37759494 PMCID: PMC10528041 DOI: 10.3390/cells12182271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Mast cells (MCs) are abundant at sites exposed to the external environment and pathogens. Local activation of these cells, either directly via pathogen recognition or indirectly via interaction with other activated immune cells and results in the release of pre-stored mediators in MC granules. The release of these pre-stored mediators helps to enhance pathogen clearance. While MCs are well known for their protective role against parasites, there is also significant evidence in the literature demonstrating their ability to respond to viral, bacterial, and fungal infections. Vitamin D is a fat-soluble vitamin and hormone that plays a vital role in regulating calcium and phosphorus metabolism to maintain skeletal homeostasis. Emerging evidence suggests that vitamin D also has immunomodulatory properties on both the innate and adaptive immune systems, making it a critical regulator of immune homeostasis. Vitamin D binds to its receptor, called the vitamin D receptor (VDR), which is present in almost all immune system cells. The literature suggests that a vitamin D deficiency can activate MCs, and vitamin D is necessary for MC stabilization. This manuscript explores the potential of vitamin D to regulate MC activity and combat pathogens, with a focus on its ability to fight viruses.
Collapse
Affiliation(s)
- Yeganeh Mehrani
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Solmaz Morovati
- Division of Biotechnology, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz 71557-13876, Iran;
| | - Sophie Tieu
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Negar Karimi
- Department of Clinical Sciences, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Helia Javadi
- Department of Medical Sciences, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON N6A 3K7, Canada;
| | - Sierra Vanderkamp
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Soroush Sarmadi
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran 14174-66191, Iran;
| | - Tahmineh Tajik
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 91779-48974, Iran;
| | - Julia E. Kakish
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Byram W. Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| | - Khalil Karimi
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada; (Y.M.); (S.T.); (S.V.); (J.E.K.)
| |
Collapse
|
6
|
Calafiore M, Fu YY, Vinci P, Arnhold V, Chang WY, Jansen SA, Egorova A, Takashima S, Kuttiyara J, Ito T, Serody J, Nakae S, Turnquist H, van Es J, Clevers H, Lindemans CA, Blazar BR, Hanash AM. A tissue-intrinsic IL-33/EGF circuit promotes epithelial regeneration after intestinal injury. Nat Commun 2023; 14:5411. [PMID: 37669929 PMCID: PMC10480426 DOI: 10.1038/s41467-023-40993-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 08/18/2023] [Indexed: 09/07/2023] Open
Abstract
Intestinal stem cells (ISCs) maintain the epithelial lining of the intestines, but mechanisms regulating ISCs and their niche after damage remain poorly understood. Utilizing radiation injury to model intestinal pathology, we report here that the Interleukin-33 (IL-33)/ST2 axis, an immunomodulatory pathway monitored clinically as an intestinal injury biomarker, regulates intrinsic epithelial regeneration by inducing production of epidermal growth factor (EGF). Three-dimensional imaging and lineage-specific RiboTag induction within the stem cell compartment indicated that ISCs expressed IL-33 in response to radiation injury. Neighboring Paneth cells responded to IL-33 by augmenting production of EGF, which promoted ISC recovery and epithelial regeneration. These findings reveal an unknown pathway of niche regulation and crypt regeneration whereby the niche responds dynamically upon injury and the stem cells orchestrate regeneration by regulating their niche. This regenerative circuit also highlights the breadth of IL-33 activity beyond immunomodulation and the therapeutic potential of EGF administration for treatment of intestinal injury.
Collapse
Affiliation(s)
- Marco Calafiore
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Ya-Yuan Fu
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Paola Vinci
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Viktor Arnhold
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Winston Y Chang
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Suze A Jansen
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB, Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, Netherlands
| | - Anastasiya Egorova
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Shuichiro Takashima
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Hematology, National Hospital Organization Kyushu Medical Center, Fukuoka, Fukuoka, 810-8563, Japan
| | - Jason Kuttiyara
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Takahiro Ito
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jonathan Serody
- Department of Microbiology and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Susumu Nakae
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima City, Hiroshima, 739-0046, Japan
| | - Heth Turnquist
- Starzl Transplantation Institute, Department of Surgery, and Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Johan van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT, Utrecht, the Netherlands
| | - Hans Clevers
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, Netherlands
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), 3584 CT, Utrecht, the Netherlands
- Roche Pharma Research and Early Development, Basel, Switzerland
| | - Caroline A Lindemans
- Division of Pediatrics, Regenerative Medicine Center, University Medical Center Utrecht, Utrecht University, 3508 AB, Utrecht, Netherlands
- Princess Máxima Center for Pediatric Oncology, 3584 CS, Utrecht, Netherlands
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Alan M Hanash
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medical College, New York, NY, 10065, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, 10065, USA.
| |
Collapse
|
7
|
Extracellular Ca2+ aggravates IgE-induced allergic reaction in mast cells through GPRC6A, a novel family C G-protein-coupled receptor. Life Sci 2022; 311:121013. [DOI: 10.1016/j.lfs.2022.121013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 09/17/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
|
8
|
IL-33 Induces an Antiviral Signature in Mast Cells but Enhances Their Permissiveness for Human Rhinovirus Infection. Viruses 2022; 14:v14112430. [PMID: 36366528 PMCID: PMC9699625 DOI: 10.3390/v14112430] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/26/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Mast cells (MCs) are classically associated with allergic asthma but their role in antiviral immunity is unclear. Human rhinoviruses (HRVs) are a major cause of asthma exacerbations and can infect and replicate within MCs. The primary site of HRV infection is the airway epithelium and MCs localise to this site with increasing asthma severity. The asthma susceptibility gene, IL-33, encodes an epithelial-derived cytokine released following HRV infection but its impact on MC antiviral responses has yet to be determined. In this study we investigated the global response of LAD2 MCs to IL-33 stimulation using RNA sequencing and identified genes involved in antiviral immunity. In spite of this, IL-33 treatment increased permissiveness of MCs to HRV16 infection which, from the RNA-Seq data, we attributed to upregulation of ICAM1. Flow cytometric analysis confirmed an IL-33-dependent increase in ICAM1 surface expression as well as LDLR, the receptors used by major and minor group HRVs for cellular entry. Neutralisation of ICAM1 reduced the IL-33-dependent enhancement in HRV16 replication and release in both LAD2 MCs and cord blood derived MCs. These findings demonstrate that although IL-33 induces an antiviral signature in MCs, it also upregulates the receptors for HRV entry to enhance infection. This highlights the potential for a gene-environment interaction involving IL33 and HRV in MCs to contribute to virus-induced asthma exacerbations.
Collapse
|
9
|
The Role of TGFβ and Other Cytokines in Regulating Mast Cell Functions in Allergic Inflammation. Int J Mol Sci 2022; 23:ijms231810864. [PMID: 36142776 PMCID: PMC9503477 DOI: 10.3390/ijms231810864] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/12/2022] [Accepted: 09/15/2022] [Indexed: 12/15/2022] Open
Abstract
Mast cells (MC) are a key effector cell in multiple types of immune responses, including atopic conditions. Allergic diseases have been steadily rising across the globe, creating a growing public health problem. IgE-mediated activation of MCs leads to the release of potent mediators that can have dire clinical consequences. Current therapeutic options to inhibit MC activation and degranulation are limited; thus, a better understanding of the mechanisms that regulate MC effector functions in allergic inflammation are necessary in order to develop effective treatment options with minimal side effects. Several cytokines have been identified that play multifaceted roles in regulating MC activation, including TGFβ, IL-10, and IL-33, and others that appear to serve primarily anti-inflammatory functions, including IL-35 and IL-37. Here, we review the literature examining cytokines that regulate MC-mediated allergic immune responses.
Collapse
|
10
|
The Heat Shock Protein 90 (HSP90) Is Required for the IL-33-Induced Cytokine Production in Mast Cells (MCs). Int J Mol Sci 2022; 23:ijms231810855. [PMID: 36142767 PMCID: PMC9502846 DOI: 10.3390/ijms231810855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/17/2022] Open
Abstract
The alarmin interleukin-33 (IL-33) is released upon cell stress and damage in peripheral tissues. The receptor for IL-33 is the Toll/Interleukin-1 receptor (TIR)-family member T1/ST2 (the IL-33R), which is highly and constitutively expressed on MCs. The sensing of IL-33 by MCs induces the MyD88-TAK1-IKK2-dependent activation of p65/RelA and MAP-kinases, which mediate the production of pro-inflammatory cytokines and amplify FcεRI-mediated MC-effector functions and the resulting allergic reactions. Therefore, the investigation of IL-33-induced signaling is of interest for developing therapeutic interventions effective against allergic reactions. Importantly, beside the release of IL-33, heat shock proteins (HSPs) are upregulated during allergic reactions. This maintains the biological functions of signaling molecules and/or cytokines but unfortunately also strengthens the severity of inflammatory reactions. Here, we demonstrate that HSP90 does not support the IL-33-induced and MyD88-TAK1-IKK2-dependent activation of p65/RelA and of mitogen-activated protein (MAP)-kinases. We found that HSP90 acts downstream of these signaling pathways, mediates the stability of produced cytokine mRNAs, and therefore facilitates the resulting cytokine production. These data show that IL-33 enables MCs to perform an effective cytokine production by the upregulation of HSP90. Consequently, HSP90 might be an attractive therapeutic target for blocking IL-33-mediated inflammatory reactions.
Collapse
|
11
|
Bong SK, Park NJ, Lee SH, Lee JW, Kim AT, Liu X, Kim SM, Yang MH, Kim YK, Kim SN. Trifuhalol A Suppresses Allergic Inflammation through Dual Inhibition of TAK1 and MK2 Mediated by IgE and IL-33. Int J Mol Sci 2022; 23:ijms231710163. [PMID: 36077570 PMCID: PMC9456157 DOI: 10.3390/ijms231710163] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
The activation and degranulation of immune cells play a pivotal role in allergic inflammation, a pathological condition that includes anaphylaxis, pruritus, and allergic march-related diseases. In this study, trifuhalol A, a phlorotannin isolated from Agarum cribrosum, inhibited the degranulation of immune cells and the biosynthesis of IL-33 and IgE in differentiated B cells and keratinocytes, respectively. Additionally, trifuhalol A suppressed the IL-33 and IgE-mediated activation of RBL-2H3 cells through the regulation of the TAK1 and MK2 pathways. Hence, the effect of trifuhalol A on allergic inflammation was evaluated using a Compound 48/80-induced systemic anaphylaxis mouse model and a house dust mite (HDM)-induced atopic dermatitis (AD) mouse model. Trifuhalol A alleviated anaphylactic death and pruritus, which appeared as an early-phase reaction to allergic inflammation in the Compound 48/80-induced systemic anaphylaxis model. In addition, trifuhalol A improved symptoms such as itching, edema, erythema, and hyperkeratinization in HDM-induced AD mice as a late-phase reaction. Moreover, the expression of IL-33 and thymic stromal lymphopoietin, inflammatory cytokines secreted from activated keratinocytes, was significantly reduced by trifuhalol A administration, resulting in the reduced infiltration of immune cells into the skin and a reduction in the blood levels of IgE and IL-4. In summarizing the above results, these results confirm that trifuhalol A is a potential therapeutic candidate for the regulation of allergic inflammation.
Collapse
Affiliation(s)
- Sim-Kyu Bong
- Natural Products Research Institute, Korea Institute of Sceience and Technology (KIST), Gangneung 25451, Korea
| | - No-June Park
- Natural Products Research Institute, Korea Institute of Sceience and Technology (KIST), Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| | - Sang Heon Lee
- Natural Products Research Institute, Korea Institute of Sceience and Technology (KIST), Gangneung 25451, Korea
| | - Jin Woo Lee
- Natural Products Research Institute, Korea Institute of Sceience and Technology (KIST), Gangneung 25451, Korea
| | - Aaron Taehwan Kim
- Department of Food Science, University of Massachusetts, Amherst, MA 01003, USA
| | - Xiaoyong Liu
- Haizhibao Deutschland GmbH, Heiliggeistgasse 28, 85354 Freising, Germany
| | - Sang Moo Kim
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Korea
| | - Min Hye Yang
- College of Pharmacy, Pusan National University, Busan 46241, Korea
| | - Yong Kee Kim
- College of Pharmacy, Sookmyung Women's University, Seoul 04310, Korea
| | - Su-Nam Kim
- Natural Products Research Institute, Korea Institute of Sceience and Technology (KIST), Gangneung 25451, Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul 02792, Korea
| |
Collapse
|
12
|
Dermcidin-derived polypeptides: DCD(86-103) induced inflammatory reaction in the skin by activation of mast cells via ST2. Immunol Lett 2022; 251-252:29-37. [DOI: 10.1016/j.imlet.2022.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/23/2022]
|
13
|
Costa VV, Sugimoto MA, Hubner J, Bonilha CS, Queiroz-Junior CM, Gonçalves-Pereira MH, Chen J, Gobbetti T, Libanio Rodrigues GO, Bambirra JL, Passos IB, Machado Lopes CE, Moreira TP, Bonjour K, Melo RCN, Oliveira MAP, Andrade MVM, Sousa LP, Souza DG, Santiago HDC, Perretti M, Teixeira MM. Targeting the Annexin A1-FPR2/ALX pathway for host-directed therapy in dengue disease. eLife 2022; 11:73853. [PMID: 35293862 PMCID: PMC8959599 DOI: 10.7554/elife.73853] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
Host immune responses contribute to dengue's pathogenesis and severity, yet the possibility that failure in endogenous inflammation resolution pathways could characterise the disease has not been contemplated. The pro-resolving protein Annexin A1 (AnxA1) is known to counterbalance overexuberant inflammation and mast cell (MC) activation. We hypothesised that inadequate AnxA1 engagement underlies the cytokine storm and vascular pathologies associated with dengue disease. Levels of AnxA1 were examined in the plasma of dengue patients and infected mice. Immunocompetent, interferon (alpha and beta) receptor one knockout (KO), AnxA1 KO, and formyl peptide receptor 2 (FPR2) KO mice were infected with dengue virus (DENV) and treated with the AnxA1 mimetic peptide Ac2-26 for analysis. In addition, the effect of Ac2-26 on DENV-induced MC degranulation was assessed in vitro and in vivo. We observed that circulating levels of AnxA1 were reduced in dengue patients and DENV-infected mice. Whilst the absence of AnxA1 or its receptor FPR2 aggravated illness in infected mice, treatment with AnxA1 agonistic peptide attenuated disease manifestationsatteanuated the symptoms of the disease. Both clinical outcomes were attributed to modulation of DENV-mediated viral load-independent MC degranulation. We have thereby identified that altered levels of the pro-resolving mediator AnxA1 are of pathological relevance in DENV infection, suggesting FPR2/ALX agonists as a therapeutic target for dengue disease.
Collapse
Affiliation(s)
- Vivian Vasconcelos Costa
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michelle A Sugimoto
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,School of Medicine, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Josy Hubner
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caio S Bonilha
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Celso Martins Queiroz-Junior
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcela Helena Gonçalves-Pereira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jianmin Chen
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Thomas Gobbetti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Gisele Olinto Libanio Rodrigues
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jordana L Bambirra
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Ingredy B Passos
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Carla Elizabeth Machado Lopes
- Department of Morphology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Thaiane P Moreira
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Kennedy Bonjour
- Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Rossana C N Melo
- Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
| | - Milton A P Oliveira
- Tropical Pathology and Public Health Institute, Universidade Federal de Goiás, Goiânia, Brazil
| | | | - Lirlândia Pires Sousa
- Department of Clinical and Toxicological Analyses, School of Pharmacy, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Danielle Gloria Souza
- Department of Microbiology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Helton da Costa Santiago
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom.,Centre for Inflammation and Therapeutic Innovation, Queen Mary University of London, London, United Kingdom
| | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
14
|
Role of IL-33/ST2 Axis in Chronic Inflammatory Neurological Disorderss. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2021. [DOI: 10.2478/sjecr-2020-0038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract
Interleukin-33 (IL-33) is a member of IL-1 family of cytokines, produced constitutively by fibroblasts, endothelial cells, and epithelial cells. IL-33 can be released passively from cells during tissue damage and cell necrosis, suggesting that it may act as an alarmin. Function of IL-33 is mediated by its interaction with ST2 molecule that is expressed on many immune cells: Th2 lymphocytes, NK, NKT and mast cells, monocytes, dendritic cells and granulocytes. IL-33/ST2 pathway plays, often dual, roles in different physiological and inflammatory processes, mediating both, pathological immune responses and tissue repair. Expression of IL-33 in the central nervous system (CNS) is significantly enhanced during various pathological processes, indicating its important role in the pathogenesis of neurological inflammatory and degenerative diseases. In this review the biological features, expression of IL-33 and its ligand ST2 in CNS, and the role of IL- 33/ST2 pathway in development of Alzheimer’s disease and multiple sclerosis are discussed.
Collapse
|
15
|
Role of Interleukin-1 Receptor-Like 1 (ST2) in Cerebrovascular Disease. Neurocrit Care 2021; 35:887-893. [PMID: 34231185 DOI: 10.1007/s12028-021-01284-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 05/21/2021] [Indexed: 12/16/2022]
Abstract
Following both ischemic and hemorrhagic stroke, innate immune cells initiate a proinflammatory response that further exacerbate tissue injury in the acute phase, but these cells also play an important reparative role thereafter. Numerous cytokines and signaling pathways have been implicated in driving the deleterious proinflammatory response, but less is known about the mediators that connect the initial vascular injury to the systemic immune response and the relationship between proinflammatory and reparative immune responses. The Interleukin-33 (IL-33) and serum stimulation-2 (ST2) axis is an interleukin signaling pathway that is a prime candidate to fulfill this role. In this review, we describe the biology of the IL-33/ST2 system, present evidence that its soluble decoy receptor, soluble ST2 (sST2), plays a key role in secondary neurologic injury after stroke, and discuss this in the context of the known role of IL-33/ST2 in other disease.
Collapse
|
16
|
Jordan PM, Andreas N, Groth M, Wegner P, Weber F, Jäger U, Küchler C, Werz O, Serfling E, Kamradt T, Dudeck A, Drube S. ATP/IL-33-triggered hyperactivation of mast cells results in an amplified production of pro-inflammatory cytokines and eicosanoids. Immunology 2021; 164:541-554. [PMID: 34142370 PMCID: PMC8517600 DOI: 10.1111/imm.13386] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/03/2022] Open
Abstract
IL‐33 and ATP are alarmins, which are released upon damage of cellular barriers or are actively secreted upon cell stress. Due to high‐density expression of the IL‐33 receptor T1/ST2 (IL‐33R), and the ATP receptor P2X7, mast cells (MCs) are one of the first highly sensitive sentinels recognizing released IL‐33 or ATP in damaged peripheral tissues. Whereas IL‐33 induces the MyD88‐dependent activation of the TAK1‐IKK2‐NF‐κB signalling, ATP induces the Ca2+‐dependent activation of NFAT. Thereby, each signal alone only induces a moderate production of pro‐inflammatory cytokines and lipid mediators (LMs). However, MCs, which simultaneously sense (co‐sensing) IL‐33 and ATP, display an enhanced and prolonged activation of the TAK1‐IKK2‐NF‐κB signalling pathway. This resulted in a massive production of pro‐inflammatory cytokines such as IL‐2, IL‐4, IL‐6 and GM‐CSF as well as of arachidonic acid‐derived cyclooxygenase (COX)‐mediated pro‐inflammatory prostaglandins (PGs) and thromboxanes (TXs), hallmarks of strong MC activation. Collectively, these data show that co‐sensing of ATP and IL‐33 results in hyperactivation of MCs, which resembles to MC activation induced by IgE‐mediated crosslinking of the FcεRI. Therefore, the IL‐33/IL‐33R and/or the ATP/P2X7 signalling axis are attractive targets for therapeutical intervention of diseases associated with the loss of integrity of cellular barriers such as allergic and infectious respiratory reactions.
Collapse
Affiliation(s)
- Paul M Jordan
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Nico Andreas
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Marco Groth
- CF DNA Sequencing, Fritz Lipmann Institute, Jena, Germany
| | - Philine Wegner
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Franziska Weber
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Ute Jäger
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Claudia Küchler
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Oliver Werz
- Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Friedrich Schiller University Jena, Jena, Germany
| | - Edgar Serfling
- Department of Molecular Pathology, Institute of Pathology, University Würzburg, Würzburg, Germany
| | - Thomas Kamradt
- Institute of Immunology, Jena University Hospital, Jena, Germany
| | - Anne Dudeck
- Institute for Molecular and Clinical Immunology, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany.,Health Campus Immunology, Infectiology and Inflammation, Medical Faculty, Otto-von-Guericke Universität Magdeburg, Magdeburg, Germany
| | - Sebastian Drube
- Institute of Immunology, Jena University Hospital, Jena, Germany
| |
Collapse
|
17
|
Srivastava M, Kaplan MH. Transcription Factors in the Development and Pro-Allergic Function of Mast Cells. FRONTIERS IN ALLERGY 2021; 2:679121. [PMID: 35387064 PMCID: PMC8974754 DOI: 10.3389/falgy.2021.679121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/12/2021] [Indexed: 11/13/2022] Open
Abstract
Mast cells (MCs) are innate immune cells of hematopoietic origin localized in the mucosal tissues of the body and are broadly implicated in the pathogenesis of allergic inflammation. Transcription factors have a pivotal role in the development and differentiation of mast cells in response to various microenvironmental signals encountered in the resident tissues. Understanding the regulation of mast cells by transcription factors is therefore vital for mechanistic insights into allergic diseases. In this review we summarize advances in defining the transcription factors that impact the development of mast cells throughout the body and in specific tissues, and factors that are involved in responding to the extracellular milieu. We will further describe the complex networks of transcription factors that impact mast cell physiology and expansion during allergic inflammation and functions from degranulation to cytokine secretion. As our understanding of the heterogeneity of mast cells becomes more detailed, the contribution of specific transcription factors in mast cell-dependent functions will potentially offer new pathways for therapeutic targeting.
Collapse
Affiliation(s)
- Mansi Srivastava
- Department of BioHealth Informatics, School of Informatics and Computing, Indiana University-Purdue University, Indianapolis, IN, United States
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Mark H. Kaplan
| |
Collapse
|
18
|
Saikumar Jayalatha AK, Hesse L, Ketelaar ME, Koppelman GH, Nawijn MC. The central role of IL-33/IL-1RL1 pathway in asthma: From pathogenesis to intervention. Pharmacol Ther 2021; 225:107847. [PMID: 33819560 DOI: 10.1016/j.pharmthera.2021.107847] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023]
Abstract
Interleukin-33 (IL-33), a member of the IL-1 family, and its cognate receptor, Interleukin-1 receptor like-1 (IL-1RL1 or ST2), are susceptibility genes for childhood asthma. In response to cellular damage, IL-33 is released from barrier tissues as an 'alarmin' to activate the innate immune response. IL-33 drives type 2 responses by inducing signalling through its receptor IL-1RL1 in several immune and structural cells, thereby leading to type 2 cytokine and chemokine production. IL-1RL1 gene transcript encodes different isoforms generated through alternative splicing. Its soluble isoform, IL-1RL1-a or sST2, acts as a decoy receptor by sequestering IL-33, thereby inhibiting IL1RL1-b/IL-33 signalling. IL-33 and its receptor IL-1RL1 are therefore considered as putative biomarkers or targets for pharmacological intervention in asthma. This review will provide an overview of the genetics and biology of the IL-33/IL-1RL1 pathway in the context of asthma pathogenesis. It will discuss the potential and complexities of targeting the cytokine or its receptor, how genetics or biomarkers may inform precision medicine for asthma targeting this pathway, and the possible positioning of therapeutics targeting IL-33 or its receptor in the expanding landscape of novel biologicals applied in asthma management.
Collapse
Affiliation(s)
- A K Saikumar Jayalatha
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - L Hesse
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - M E Ketelaar
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - G H Koppelman
- University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Beatrix Children's Hospital, Department of Paediatric Pulmonology and Paediatric Allergology, Groningen, the Netherlands
| | - M C Nawijn
- University of Groningen, University Medical Centre Groningen, Department of Pathology and Medical Biology, Laboratory of Experimental Pulmonology and Inflammation Research (EXPIRE), Groningen, the Netherlands; University of Groningen University Medical Centre Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands.
| |
Collapse
|
19
|
Franke K, Wang Z, Zuberbier T, Babina M. Cytokines Stimulated by IL-33 in Human Skin Mast Cells: Involvement of NF-κB and p38 at Distinct Levels and Potent Co-Operation with FcεRI and MRGPRX2. Int J Mol Sci 2021; 22:ijms22073580. [PMID: 33808264 PMCID: PMC8036466 DOI: 10.3390/ijms22073580] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/26/2021] [Accepted: 03/28/2021] [Indexed: 12/13/2022] Open
Abstract
The IL-1 family cytokine IL-33 activates and re-shapes mast cells (MCs), but whether and by what mechanisms it elicits cytokines in MCs from human skin remains poorly understood. The current study found that IL-33 activates CCL1, CCL2, IL-5, IL-8, IL-13, and TNF-α, while IL-1β, IL-6, IL-31, and VEGFA remain unaffected in cutaneous MCs, highlighting that each MC subset responds to IL-33 with a unique cytokine profile. Mechanistically, IL-33 induced the rapid (1–2 min) and durable (2 h) phosphorylation of p38, whereas the phosphorylation of JNK was weaker and more transient. Moreover, the NF-κB pathway was potently activated, as revealed by IκB degradation, increased nuclear abundance of p50/p65, and vigorous phosphorylation of p65. The activation of NF-κB occurred independently of p38 or JNK. The induced transcription of the cytokines selected for further study (CCL1, CCL2, IL-8, TNF-α) was abolished by interference with NF-κB, while p38/JNK had only some cytokine-selective effects. Surprisingly, at the level of the secreted protein products, p38 was nearly as effective as NF-κB for all entities, suggesting post-transcriptional involvement. IL-33 did not only instruct skin MCs to produce selected cytokines, but it also efficiently co-operated with the allergic and pseudo-allergic/neurogenic activation networks in the production of IL-8, TNF-α, CCL1, and CCL2. Synergism was more pronounced at the protein than at the mRNA level and appeared stronger for MRGPRX2 ligands than for FcεRI. Our results underscore the pro-inflammatory nature of an acute IL-33 stimulus and imply that especially in combination with allergens or MRGPRX2 agonists, IL-33 will efficiently amplify skin inflammation and thereby aggravate inflammatory dermatoses.
Collapse
Affiliation(s)
- Kristin Franke
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
| | - Zhao Wang
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
- Department of Dermatology, The Second Affiliated Hospital, Northwest Hospital, Xi’an Jiaotong University, Xi’an 710004, China
| | - Torsten Zuberbier
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
| | - Magda Babina
- Department of Dermatology, Venerology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (K.F.); (Z.W.); (T.Z.)
- Correspondence: ; Tel.: +49-175-1649-539; Fax: +49-30-45051-8900
| |
Collapse
|
20
|
Mohd Jaya FN, Liu Z, Chan GCF. Early Treatment of Interleukin-33 can Attenuate Lupus Development in Young NZB/W F1 Mice. Cells 2020; 9:cells9112448. [PMID: 33182616 PMCID: PMC7696801 DOI: 10.3390/cells9112448] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/31/2020] [Accepted: 11/05/2020] [Indexed: 01/12/2023] Open
Abstract
Interleukin-33 (IL-33), a member of the IL-1 cytokine family, has been recently associated with the development of autoimmune diseases, including systemic lupus erythematosus (SLE). IL-33 is an alarmin and a pleiotropic cytokine that affects various types of immune cells via binding to its receptor, ST2. In this study, we determine the impact of intraperitoneal IL-33 treatments in young lupus, NZB/W F1 mice. Mice were treated from the age of 6 to 11 weeks. We then assessed the proteinuria level, renal damage, survival rate, and anti-dsDNA antibodies. The induction of regulatory B (Breg) cells, changes in the level of autoantibodies, and gene expression were also examined. In comparison to the control group, young NZB/W F1 mice administered with IL-33 had a better survival rate as well as reduced proteinuria level and lupus nephritis. IL-33 treatments significantly increased the level of IgM anti-dsDNA antibodies, IL-10 expressing Breg cells, and alternatively-induced M2 macrophage gene signatures. These results imply that IL-33 exhibits a regulatory role during lupus onset via the expansion of protective IgM anti-dsDNA as well as regulatory cells such as Breg cells and M2 macrophages.
Collapse
|
21
|
Du X, Li C, Wang W, Huang Q, Wang J, Tong Z, Huang K, Chen Y, Yuan H, Lv Z, Corrigan CJ, Wang W, Ying S. IL-33 induced airways inflammation is partially dependent on IL-9. Cell Immunol 2020; 352:104098. [PMID: 32241531 DOI: 10.1016/j.cellimm.2020.104098] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/07/2020] [Accepted: 03/26/2020] [Indexed: 12/30/2022]
Abstract
Asthma is an inflammatory disease of the airways and numerous cytokines contribute to this pathogenesis. It is shown that challenge of airways with IL-33 induces asthma-like pathological changes in mice, but the possible downstream cytokines in this process remain to be characterised. To explore this, we compared changes in the airways of wildtype (WT) and IL-9 deficient mice challenged with IL-33. In line with previous report, per-nasal challenge of WT mice with IL-33 significantly increased the responsiveness of the airways along with infiltration of inflammatory cells, goblet cell hyperplasia, collagen deposition and smooth muscle hypertrophy, and the expression of cytokines compared with control group. Surprisingly, all of these pathological changes were significantly attenuated in IL-9 deficient mice following identical IL-33 challenge. These data suggest that IL-9 is one downstream cytokine relevant to the effects of IL-33 in asthmatic airways and consequently a potential therapeutic target for the treatment of asthma.
Collapse
Affiliation(s)
- Xiaonan Du
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chenduo Li
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wenjun Wang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Qiong Huang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jingjing Wang
- Department of Laboratory Animal Sciences, Capital Medical University, Beijing, China
| | - Zhaohui Tong
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Kewu Huang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University & Beijing Institute of Respiratory Medicine, Beijing, China
| | - Yan Chen
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Huihui Yuan
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhe Lv
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Chris J Corrigan
- Faculty of Life Sciences & Medicine, School of Immunology & Microbial Sciences, Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London, UK
| | - Wei Wang
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Sun Ying
- Department of Immunology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
22
|
Watson CJF, Maguire ARR, Rouillard MM, Crozier RWE, Yousef M, Bruton KM, Fajardo VA, MacNeil AJ. TAK1 signaling activity links the mast cell cytokine response and degranulation in allergic inflammation. J Leukoc Biol 2020; 107:649-661. [PMID: 32108376 DOI: 10.1002/jlb.2a0220-401rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
Mast cells drive the inappropriate immune response characteristic of allergic inflammatory disorders via release of pro-inflammatory mediators in response to environmental cues detected by the IgE-FcεRI complex. The role of TGF-β-activated kinase 1 (TAK1), a participant in related signaling in other contexts, remains unknown in allergy. We detect novel activation of TAK1 at Ser412 in response to IgE-mediated activation under SCF-c-kit potentiation in a mast cell-driven response characteristic of allergic inflammation, which is potently blocked by TAK1 inhibitor 5Z-7-oxozeaenol (OZ). We, therefore, interrogated the role of TAK1 in a series of mast cell-mediated responses using IgE-sensitized murine bone marrow-derived mast cells, stimulated with allergen under several TAK1 inhibition strategies. TAK1 inhibition by OZ resulted in significant impairment in the phosphorylation of MAPKs p38, ERK, and JNK; and mediation of the NF-κB pathway via IκBα. Impaired gene expression and near abrogation in release of pro-inflammatory cytokines TNF, IL-6, IL-13, and chemokines CCL1, and CCL2 was detected. Finally, a significant inhibition of mast cell degranulation, accompanied by an impairment in calcium mobilization, was observed in TAK1-inhibited cells. These results suggest that TAK1 acts as a signaling node, not only linking the MAPK and NF-κB pathways in driving the late-phase response, but also initiation of the degranulation mechanism of the mast cell early-phase response following allergen recognition and may warrant consideration in future therapeutic development.
Collapse
Affiliation(s)
- Colton J F Watson
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Aindriu R R Maguire
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Melissa M Rouillard
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Robert W E Crozier
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Michael Yousef
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Kelly M Bruton
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Val A Fajardo
- Department of Kinesiology, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| |
Collapse
|
23
|
Cildir G, Toubia J, Yip KH, Zhou M, Pant H, Hissaria P, Zhang J, Hong W, Robinson N, Grimbaldeston MA, Lopez AF, Tergaonkar V. Genome-wide Analyses of Chromatin State in Human Mast Cells Reveal Molecular Drivers and Mediators of Allergic and Inflammatory Diseases. Immunity 2019; 51:949-965.e6. [PMID: 31653482 DOI: 10.1016/j.immuni.2019.09.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 02/18/2019] [Accepted: 09/25/2019] [Indexed: 12/21/2022]
Abstract
Mast cells (MCs) are versatile immune cells capable of rapidly responding to a diverse range of extracellular cues. Here, we mapped the genomic and transcriptomic changes in human MCs upon diverse stimuli. Our analyses revealed broad H3K4me3 domains and enhancers associated with activation. Notably, the rise of intracellular calcium concentration upon immunoglobulin E (IgE)-mediated crosslinking of the high-affinity IgE receptor (FcεRI) resulted in genome-wide reorganization of the chromatin landscape and was associated with a specific chromatin signature, which we term Ca2+-dependent open chromatin (COC) domains. Examination of differentially expressed genes revealed potential effectors of MC function, and we provide evidence for fibrinogen-like protein 2 (FGL2) as an MC mediator with potential relevance in chronic spontaneous urticaria. Disease-associated single-nucleotide polymorphisms mapped onto cis-regulatory regions of human MCs suggest that MC function may impact a broad range of pathologies. The datasets presented here constitute a resource for the further study of MC function.
Collapse
Affiliation(s)
- Gökhan Cildir
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - John Toubia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; ACRF Cancer Genomics Facility, Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Kwok Ho Yip
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Mingyan Zhou
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Harshita Pant
- School of Medicine, University of Adelaide, Adelaide, SA, Australia
| | | | - Jingxian Zhang
- Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Wanjin Hong
- Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Nirmal Robinson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | | | - Angel F Lopez
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia
| | - Vinay Tergaonkar
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5000, Australia; Laboratory of NF-κB Signaling, Institute of Molecular and Cell Biology (IMCB), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore; Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119074, Singapore.
| |
Collapse
|
24
|
Rönnberg E, Ghaib A, Ceriol C, Enoksson M, Arock M, Säfholm J, Ekoff M, Nilsson G. Divergent Effects of Acute and Prolonged Interleukin 33 Exposure on Mast Cell IgE-Mediated Functions. Front Immunol 2019; 10:1361. [PMID: 31275312 PMCID: PMC6593472 DOI: 10.3389/fimmu.2019.01361] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022] Open
Abstract
Background: Epithelial cytokines, including IL-33 and Thymic stromal lymphopoietin (TSLP), have attracted interest because of their roles in chronic allergic inflammation-related conditions such as asthma. Mast cells are one of the major targets of IL-33, to which they respond by secreting cytokines. Most studies performed thus far have investigated the acute effects of IL-33 on mast cells. In the current study, we investigated how acute vs. prolonged exposure of mast cells to IL-33 and TSLP affects mediator synthesis and IgE-mediated activation. Methods: Human lung mast cells (HLMCs), cord blood-derived mast cells (CBMCs), and the ROSA mast cell line were used for this study. Receptor expression and the levels of mediators were measured after treatment with IL-33 and/or TSLP. Results: IL-33 induced the release of cytokines. Prolonged exposure to IL-33 increased while TSLP reduced intracellular levels of tryptase. Acute IL-33 treatment strongly potentiated IgE-mediated activation. In contrast, 4 days of exposure to IL-33 decreased IgE-mediated activation, an effect that was accompanied by a reduction in FcεRI expression. Conclusion: We show that IL-33 plays dual roles in mast cells, in which its acute effects include cytokine release and the potentiation of IgE-mediated degranulation, whereas prolonged exposure to IL-33 reduces IgE-mediated activation. We conclude that mast cells act quickly in response to the alarmin IL-33 to initiate an acute inflammatory response, whereas extended exposure to IL-33 during prolonged inflammation reduces IgE-mediated responses. This negative feedback effect suggests the presence of a novel regulatory pathway that modulates IgE-mediated human mast cell responses.
Collapse
Affiliation(s)
- Elin Rönnberg
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Avan Ghaib
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
- Department of Microbiology, College of Medicine, University of Sulaimani, Sulaimani, Iraq
| | - Carlos Ceriol
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Mattias Enoksson
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Michel Arock
- Molecular and Cellular Oncology, LBPA CNRS UMR 8113, Ecole Normale Supérieure de Cachan, Cachan, France
- Laboratoire Central d'Hématologie, Groupe Hospitalier Pitié-Salpêtrière, Paris, France
| | - Jesper Säfholm
- The Unit for Asthma and Allergy Research, The Institute of Environmental Medicine, Karolinska Institutet, Solna, Sweden
| | - Maria Ekoff
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
| | - Gunnar Nilsson
- Immunology and Allergy Unit, Department of Medicine Solna, Karolinska Institutet, Karolinska University Hospital, Solna, Sweden
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Huber M, Cato ACB, Ainooson GK, Freichel M, Tsvilovskyy V, Jessberger R, Riedlinger E, Sommerhoff CP, Bischoff SC. Regulation of the pleiotropic effects of tissue-resident mast cells. J Allergy Clin Immunol 2019; 144:S31-S45. [PMID: 30772496 DOI: 10.1016/j.jaci.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 01/29/2019] [Accepted: 02/01/2019] [Indexed: 12/18/2022]
Abstract
Mast cells (MCs), which are best known for their detrimental role in patients with allergic diseases, act in a diverse array of physiologic and pathologic functions made possible by the plurality of MC types. Their various developmental avenues and distinct sensitivity to (micro-) environmental conditions convey extensive heterogeneity, resulting in diverse functions. We briefly summarize this heterogeneity, elaborate on molecular determinants that allow MCs to communicate with their environment to fulfill their tasks, discuss the protease repertoire stored in secretory lysosomes, and consider different aspects of MC signaling. Furthermore, we describe key MC governance mechanisms (ie, the high-affinity receptor for IgE [FcεRI]), the stem cell factor receptor KIT, the IL-4 system, and both Ca2+- and phosphatase-dependent mechanisms. Finally, we focus on distinct physiologic functions, such as chemotaxis, phagocytosis, host defense, and the regulation of MC functions at the mucosal barriers of the lung, gastrointestinal tract, and skin. A deeper knowledge of the pleiotropic functions of MC mediators, as well as the molecular processes of MC regulation and communication, should enable us to promote beneficial MC traits in physiology and suppress detrimental MC functions in patients with disease.
Collapse
Affiliation(s)
- Michael Huber
- Institute of Biochemistry and Molecular Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Andrew C B Cato
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - George K Ainooson
- Karlsruhe Institute of Technology, Institute of Toxicology and Genetics, Eggenstein-Leopoldshafen, Germany
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Rolf Jessberger
- Institute for Physiological Chemistry, Medical Faculty Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Eva Riedlinger
- Institute of Laboratory Medicine, University Hospital, LMU Munich, Munich, Germany
| | | | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany.
| |
Collapse
|
26
|
Halova I, Rönnberg E, Draberova L, Vliagoftis H, Nilsson GP, Draber P. Changing the threshold-Signals and mechanisms of mast cell priming. Immunol Rev 2019; 282:73-86. [PMID: 29431203 DOI: 10.1111/imr.12625] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells play a key role in allergy and other inflammatory diseases involving engagement of multivalent antigen with IgE bound to high-affinity IgE receptors (FcεRIs). Aggregation of FcεRIs on mast cells initiates a cascade of signaling events that eventually lead to degranulation, secretion of leukotrienes and prostaglandins, and cytokine and chemokine production contributing to the inflammatory response. Exposure to pro-inflammatory cytokines, chemokines, bacterial and viral products, as well as some other biological products and drugs, induces mast cell transition from the basal state into a primed one, which leads to enhanced response to IgE-antigen complexes. Mast cell priming changes the threshold for antigen-mediated activation by various mechanisms, depending on the priming agent used, which alone usually do not induce mast cell degranulation. In this review, we describe the priming processes induced in mast cells by various cytokines (stem cell factor, interleukins-4, -6 and -33), chemokines, other agents acting through G protein-coupled receptors (adenosine, prostaglandin E2 , sphingosine-1-phosphate, and β-2-adrenergic receptor agonists), toll-like receptors, and various drugs affecting the cytoskeleton. We will review the current knowledge about the molecular mechanisms behind priming of mast cells leading to degranulation and cytokine production and discuss the biological effects of mast cell priming induced by several cytokines.
Collapse
Affiliation(s)
- Ivana Halova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Elin Rönnberg
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Lubica Draberova
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Harissios Vliagoftis
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Alberta Respiratory Center and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Gunnar P Nilsson
- Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden.,Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Petr Draber
- Department of Signal Transduction, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
27
|
Li W, Yin N, Tao W, Wang Q, Fan H, Wang Z. Berberine suppresses IL-33-induced inflammatory responses in mast cells by inactivating NF-κB and p38 signaling. Int Immunopharmacol 2018; 66:82-90. [PMID: 30445310 DOI: 10.1016/j.intimp.2018.11.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023]
Abstract
Berberine (BBR) possesses many pharmacological characteristics including anti-inflammation, anti-allergy, anti-angiogenesis and anti-tumor. However, the effects and mechanisms of BBR on IL-33-induced mast cell inflammatory responses are kept unknown. To investigate these, rat peritoneal mast cells (RPMCs) were isolated from the peritoneal cavity and cultured with BBR treatment in combination IL-33 stimulation. Firstly, cytotoxic effect of BBR on RPMCs was detected by MTT assay. Then, IL-33-induced cytokine production and the expression of ST2 receptor, were evaluated by ELISA and real-time PCR, respectively. In addition, NF-κB and MAPK signaling involved in IL-33-mediated mast cell activation were assessed by Western blot, which also was confirmed using the signal transduction inhibitors. Simultaneously, the effect of BBR on IL-33-activated enhancement of IgE-mediated mast cell responses was analyzed. Lastly, SD rats were used to explore the effect of BBR on IL-33-induced inflammation in vivo. BBR treatment significantly reduced IL-33-stimulated cytokine production in RPMCs, such as IL-6, TNF-α, IL-13 and MCP-1, but had little effect in ST2 expression. BBR modulated IL-33 signaling via suppressing IL-33-induced NF-ΚB transcription and p38 phosphorylation, but not ERK and JNK. Additionally, BBR also hampered the combined effects of IL-33 and IgE-mediated mast cell activation. Decreased cytokine production followed BBR treatment in vitro was consistent with that in vivo, where BBR injection i.p. into rats obviously inhibited IL-33-induced plasma cytokine levels. These findings demonstrated that BBR suppressed IL-33-mediated inflammation in mast cells by inactivating NF-κB and p38 signaling, suggesting its potential application for the treatment of allergic inflammation.
Collapse
Affiliation(s)
- Weihua Li
- Department of Cardiology, Affiliated Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430077, China
| | - Nina Yin
- Department of Anatomy, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Wenting Tao
- School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qian Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Hong Fan
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhigang Wang
- Department of Pathogen Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
28
|
McCarthy PC, Phair IR, Greger C, Pardali K, McGuire VA, Clark AR, Gaestel M, Arthur JSC. IL-33 regulates cytokine production and neutrophil recruitment via the p38 MAPK-activated kinases MK2/3. Immunol Cell Biol 2018; 97:54-71. [PMID: 30171775 PMCID: PMC6378613 DOI: 10.1111/imcb.12200] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/28/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022]
Abstract
IL-33 is an IL-1-related cytokine that can act as an alarmin when released from necrotic cells. Once released, it can target various immune cells including mast cells, innate lymphoid cells and T cells to elicit a Th2-like immune response. We show here that bone marrow-derived mast cells produce IL-13, IL-6, TNF, GM-CSF, CCL3 and CCL4 in response to IL-33 stimulation. Inhibition of the p38 MAPK, or inhibition or knockout of its downstream kinases MK2 and MK3, blocked the production of these cytokines in response to IL-33. The mechanism downstream of MK2/3 was cytokine specific; however, MK2 and MK3 were able to regulate TNF and GM-CSF mRNA stability. Previous studies in macrophages have shown that MK2 regulates mRNA stability via phosphorylation of the RNA-binding protein TTP (Zfp36). The regulation of cytokine production in mast cells was, however, independent of TTP. MK2/3 were able to phosphorylate the TTP-related protein Brf1 (Zfp36 l1) in IL-33-stimulated mast cells, suggesting a mechanism by which MK2/3 might control mRNA stability in these cells. In line with its ability to regulate in vitro IL-33-stimulated cytokine production, double knockout of MK2 and 3 in mice prevented neutrophil recruitment following intraperitoneal injection of IL-33.
Collapse
Affiliation(s)
- Pierre C McCarthy
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,MRC Protein Phosphorylation Unit, School of Life Sciences, Sir James Black Centre, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Iain R Phair
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Corinna Greger
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| | - Katerina Pardali
- Respiratory, Inflammation & Autoimmunity IMED Biotech Unit, AstraZeneca, Gothenburg, Mölndal, 43183, Sweden
| | - Victoria A McGuire
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,Photobiology Unit, Scottish Cutaneous Porphyria Service, Ninewells Hospital and Medical School, Dundee, DD1 9SY, UK
| | - Andrew R Clark
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Matthias Gaestel
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK.,Institute for Cell Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, Hannover, 30623, Germany
| | - J Simon C Arthur
- Division of Cell Signalling and Immunology, School of Life Sciences, Wellcome Trust Building, University of Dundee, Dow St, Dundee, DD1 5EH, UK
| |
Collapse
|
29
|
Wang X, Zhao H, Ma C, Lv L, Feng J, Han S. Gallic acid attenuates allergic airway inflammation via suppressed interleukin-33 and group 2 innate lymphoid cells in ovalbumin-induced asthma in mice. Int Forum Allergy Rhinol 2018; 8:1284-1290. [PMID: 30191679 DOI: 10.1002/alr.22207] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/27/2018] [Accepted: 08/21/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Asthma is an inflammatory disease characterized by airway hyperresponsiveness. Gallic acid is a powerful anti-inflammatory agent. In this study we aimed to investigate the efficacy of gallic acid in asthma treatment and its mechanisms. METHODS An ovalbumin-induced asthma mouse model was generated. Pro-inflammatory cell infiltration and T helper (Th2)-associated cytokine release in the bronchoalveolar lavage fluid (BALF) were analyzed to reflect the severity of asthma in mice. An interleukin-33 (IL-33)-induced asthma mouse model was also generated to study the mechanism by which gallic acid could improve asthma. Group 2 lymphoid cells (ILC2s) were identified using flow cytometry. Proteins were detected using Western blotting. RESULTS Ovalbumin significantly increased the infiltration of pro-inflammatory cells, including eosinophils, macrophages, lymphocytes, and neutrophils, accompanied by enhanced airway hyperesponsiveness. Gallic acid reduced pro-inflammatory cell infiltration and improved airway hyperresponsiveness. Meanwhile, gallic acid reduced IL-5 and IL-13 levels in BALF and decreased expression of IL-33 in the lungs. Mechanistically, gallic acid inhibited MyD88 expression and downregulated nuclear factor (NF)-κB signaling to decrease IL-33 expression. CONCLUSIONS Gallic acid can mollify ovalbumin-induced asthma in mice, possibly by inhibiting IL-33-mediated ILC2 activation and subsequent Th2 cytokine release via downregulation of the MyD88/NF-κB signaling pathway. ©2018 ARSAAOA, LLC.
Collapse
Affiliation(s)
- Xinhua Wang
- Department of Respiratory Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Liangxi District, Wuxi, China
| | - Hongqing Zhao
- Department of Respiratory Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Liangxi District, Wuxi, China
| | - Chenhui Ma
- Department of Respiratory Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Liangxi District, Wuxi, China
| | - Lei Lv
- Department of Respiratory Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Liangxi District, Wuxi, China
| | - Jinping Feng
- Department of Respiratory Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Liangxi District, Wuxi, China
| | - Shuguang Han
- Department of Respiratory Medicine, The Affiliated Wuxi No. 2 People's Hospital of Nanjing Medical University, Liangxi District, Wuxi, China
| |
Collapse
|
30
|
Sun B, Zhu L, Tao Y, Sun HX, Li Y, Wang P, Hou Y, Zhao Y, Zhang X, Zhang L, Na N, Zhao Y. Characterization and allergic role of IL-33-induced neutrophil polarization. Cell Mol Immunol 2018; 15:782-793. [PMID: 29503441 PMCID: PMC6141612 DOI: 10.1038/cmi.2017.163] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 01/09/2023] Open
Abstract
Neutrophils are involved in the pathogenesis of allergy. However, the contribution of the different functionally polarized neutrophils in allergy needs to be clarified. We sought to define the characteristics of interleukin (IL)-33-induced neutrophils and the involvement of this subset of polarized neutrophils in allergic pathogenesis. Freshly isolated neutrophils were treated with different cytokines and the cytokine expression levels were detected by real-time PCR. The gene expression profile of IL-33-induced neutrophils was determined by microarray assay. Adoptive transfer assay was used to investigate the function of IL-33-induced neutrophils in an ovalbumin (OVA)-induced allergic asthma model. IL-33-treated neutrophils selectively produced IL-4, IL-5, IL-9 and IL-13 (referred as to N(IL-33) cells) and displayed a distinctive gene expression profile in sharp contrast to resting and lipopolysaccharide (LPS)-treated neutrophils. IL-33-induced neutrophils expressed high Levels of IL-1R2 on cell surface, whereas resting and LPS-treated neutrophils did not, indicating IL-1R2 might be used as a biomarker for N(IL-33) cells. Importantly, N(IL-33) neutrophils exist in the lungs of OVA-induced allergic asthma mice. Adoptive transfer of N(IL-33) neutrophils significantly promotes the severity of the lung pathogenesis in this model. IL-33 induces neutrophil polarization through c-Jun N-terminal kinase- and nuclear factor-κB-dependent pathways. A previously unappreciated neutrophil polarization driven by IL-33 with unique cell surface markers and cytokine/chemokine-producing gene profile was defined. The newly identified N(IL-33) subpopulation may have significant contribution to IL-33-related pathogenesis.
Collapse
Affiliation(s)
- Bo Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Linnan Zhu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yaling Tao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Hai-Xi Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yang Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Peng Wang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yuzhu Hou
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100101, China
| | - Lianfeng Zhang
- Key Laboratory of Human Diseases Comparative Medicine, Ministry of Health, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, 100021, Beijing, China.
| | - Ning Na
- Department of Kidney Transplantation, The Third Affiliated Hospital of Sun Yat-sen University, 510630, Guangzhou, Guangdong, China.
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
31
|
Huang H, Li Y, Liang J, Finkelman FD. Molecular Regulation of Histamine Synthesis. Front Immunol 2018; 9:1392. [PMID: 29973935 PMCID: PMC6019440 DOI: 10.3389/fimmu.2018.01392] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 06/05/2018] [Indexed: 12/25/2022] Open
Abstract
Histamine is a critical mediator of IgE/mast cell-mediated anaphylaxis, a neurotransmitter and a regulator of gastric acid secretion. Histamine is a monoamine synthesized from the amino acid histidine through a reaction catalyzed by the enzyme histidine decarboxylase (HDC), which removes carboxyl group from histidine. Despite the importance of histamine, transcriptional regulation of HDC gene expression in mammals is still poorly understood. In this review, we focus on discussing advances in the understanding of molecular regulation of mammalian histamine synthesis.
Collapse
Affiliation(s)
- Hua Huang
- The Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,The Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, IL, United States
| | - Yapeng Li
- The Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Jinyi Liang
- The Department of Biomedical Research, National Jewish Health, Denver, CO, United States.,Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Fred D Finkelman
- The Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,The Division of Immunology, Allergy and Rheumatology, Department of Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| |
Collapse
|
32
|
Ball DH, Al-Riyami L, Harnett W, Harnett MM. IL-33/ST2 signalling and crosstalk with FcεRI and TLR4 is targeted by the parasitic worm product, ES-62. Sci Rep 2018. [PMID: 29540770 PMCID: PMC5852134 DOI: 10.1038/s41598-018-22716-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
ES-62 is a secreted parasitic worm-derived immunomodulator that exhibits therapeutic potential in allergy by downregulating aberrant MyD88 signalling to normalise the inflammatory phenotype and mast cell responses. IL-33 plays an important role in driving mast cell responses and promoting type-2 allergic inflammation, particularly with respect to asthma, via MyD88-integrated crosstalk amongst the IL-33 receptor (ST2), TLR4 and FcεRI. We have now investigated whether ES-62 targets this pathogenic network by subverting ST2-signalling, specifically by characterising how the functional outcomes of crosstalk amongst ST2, TLR4 and FcεRI are modulated by the worm product in wild type and ST2-deficient mast cells. This analysis showed that whilst ES-62 inhibits IL-33/ST2 signalling, the precise functional modulation observed varies with receptor usage and/or mast cell phenotype. Thus, whilst ES-62’s harnessing of the capacity of ST2 to sequester MyD88 appears sufficient to mediate its inhibitory effects in peritoneal-derived serosal mast cells, downregulation of MyD88 expression appears to be required to dampen the higher levels of cytokine production typically released by bone marrow-derived mucosal mast cells.
Collapse
Affiliation(s)
- Dimity H Ball
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, Scotland
| | - Lamyaa Al-Riyami
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, Scotland
| | - William Harnett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, Scotland
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, Scotland.
| |
Collapse
|
33
|
Redegeld FA, Yu Y, Kumari S, Charles N, Blank U. Non-IgE mediated mast cell activation. Immunol Rev 2018; 282:87-113. [DOI: 10.1111/imr.12629] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Frank A. Redegeld
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Yingxin Yu
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Sangeeta Kumari
- Division of Pharmacology; Utrecht Institute for Pharmaceutical Sciences; Utrecht University; Utrecht The Netherlands
| | - Nicolas Charles
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
| | - Ulrich Blank
- INSERM U1149; Centre de Recherche sur l'Inflammation; Paris France
- CNRS ERL8252; Paris France
- Université Paris-Diderot; Sorbonne Paris Cité; Faculté de Médecine; Site Xavier Bichat; Paris France
- Inflamex Laboratory of Excellence; Paris France
| |
Collapse
|
34
|
New roles and controls of mast cells. Curr Opin Immunol 2018; 50:39-47. [DOI: 10.1016/j.coi.2017.10.012] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 10/13/2017] [Accepted: 10/28/2017] [Indexed: 12/14/2022]
|
35
|
Salamon P, Shefler I, Moshkovits I, Munitz A, Horwitz Klotzman D, Mekori YA, Hershko AY. IL-33 and IgE stimulate mast cell production of IL-2 and regulatory T cell expansion in allergic dermatitis. Clin Exp Allergy 2017; 47:1409-1416. [PMID: 28892206 DOI: 10.1111/cea.13027] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 08/14/2017] [Accepted: 09/05/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND We have previously shown that mast cells (MCs) suppress chronic allergic dermatitis in mice. The underlying mechanism involves MC-derived IL-2, which supports regulatory T cell (Treg) response at the site of inflammation. However, it is not clear what are the factors that drive MCs to produce IL-2. OBJECTIVE To understand the mechanisms that lead to IL-2 production from MCs in chronic allergic dermatitis. METHODS Isolated murine bone marrow-derived MCs (BMMCs) were incubated with various stimulators, and IL-2 production was assessed by RT-PCR and ELISA. The response of signalling pathways was evaluated by MAPK inhibitors and Western blot analysis. The effect of MC-IL-2 on Tregs was studied by incubation of splenic T cells with conditioned media obtained from activated BMMCs. Dermatitis was elicited by repeated exposures of mouse ears to oxazolone. MCs in mouse and human skin samples were evaluated by immunostaining. RESULTS BMMCs released IL-2 in response to IL-33, and IL-2 production was further enhanced by concomitant FcεRI activation. The effect of IL-33 was mediated by activation of the MAPK family members. IL-2 in conditioned media from IL-33 and IgE-stimulated BMMCs led to considerable expansion of Tregs in vitro. IL-33 levels were elevated in oxazolone-challenged ears along with increased numbers of IL-2-expressing MCs. Human skin with chronic inflammation also contained IL-2-expressing MCs that colocalized with IL-33 staining in the dermis. CONCLUSIONS IL-33, in collaboration with IgE, is critical for MC-IL-2 production in allergic skin disease, thus leading to Treg stimulation and suppression of allergic dermatitis.
Collapse
Affiliation(s)
- P Salamon
- Laboratory of Allergy and Clinical Immunology, The Herbert Mast Cell Disorders Center, Meir Medical Center, Kfar Saba, Israel
| | - I Shefler
- Laboratory of Allergy and Clinical Immunology, The Herbert Mast Cell Disorders Center, Meir Medical Center, Kfar Saba, Israel
| | - I Moshkovits
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - A Munitz
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Y A Mekori
- Laboratory of Allergy and Clinical Immunology, The Herbert Mast Cell Disorders Center, Meir Medical Center, Kfar Saba, Israel.,Department of Medicine, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - A Y Hershko
- Laboratory of Allergy and Clinical Immunology, The Herbert Mast Cell Disorders Center, Meir Medical Center, Kfar Saba, Israel.,Department of Medicine, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Department of Medicine B, Meir Medical Center, Kfar Saba, Israel
| |
Collapse
|
36
|
Didox (3,4-dihydroxybenzohydroxamic acid) suppresses IL-33-induced cytokine production in primary mouse mast cells. Cell Immunol 2017; 319:10-16. [PMID: 28750923 DOI: 10.1016/j.cellimm.2017.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 01/07/2023]
Abstract
While IgE is considered the primary mediator of mast cell activation, IL-33 contributes substantially in asthma, allergic rhinitis, and atopic dermatitis. To develop effective treatments for allergic disease, it is important to understand the role of therapeutic agents on IL-33 activation. We examined the effect of Didox (3,4-dihydroxybenzohydroxamic acid), an antioxidant and ribonucleotide reductase (RNR) inhibitor, on IL-33-mediated mast cell activation. Didox suppressed IL-6, IL-13, TNF, and MIP-1α (CCL3) production in bone marrow derived mast cells following IL-33 activation. This suppression was observed in different genetic backgrounds and extended to peritoneal mast cells. The antioxidant N-acetylcysteine mimicked the suppression of Didox, albeit at a much higher dose, while the RNR inhibitor hydroxyurea had no effect. Didox substantially suppressed IL-33-mediated NFκB and AP-1 transcriptional activities. These results suggest that Didox attenuates IL-33-induced mast cell activation and should be further studied as a potential therapeutic agent for inflammatory diseases involving IL-33.
Collapse
|
37
|
Griesenauer B, Paczesny S. The ST2/IL-33 Axis in Immune Cells during Inflammatory Diseases. Front Immunol 2017; 8:475. [PMID: 28484466 PMCID: PMC5402045 DOI: 10.3389/fimmu.2017.00475] [Citation(s) in RCA: 408] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 04/05/2017] [Indexed: 12/16/2022] Open
Abstract
Il1rl1 (also known as ST2) is a member of the IL-1 superfamily, and its only known ligand is IL-33. ST2 exists in two forms as splice variants: a soluble form (sST2), which acts as a decoy receptor, sequesters free IL-33, and does not signal, and a membrane-bound form (ST2), which activates the MyD88/NF-κB signaling pathway to enhance mast cell, Th2, regulatory T cell (Treg), and innate lymphoid cell type 2 functions. sST2 levels are increased in patients with active inflammatory bowel disease, acute cardiac and small bowel transplant allograft rejection, colon and gastric cancers, gut mucosal damage during viral infection, pulmonary disease, heart disease, and graft-versus-host disease. Recently, sST2 has been shown to be secreted by intestinal pro-inflammatory T cells during gut inflammation; on the contrary, protective ST2-expressing Tregs are decreased, implicating that ST2/IL-33 signaling may play an important role in intestinal disease. This review will focus on what is known on its signaling during various inflammatory disease states and highlight potential avenues to intervene in ST2/IL-33 signaling as treatment options.
Collapse
Affiliation(s)
- Brad Griesenauer
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
- Department of Microbiology Immunology, Indiana University, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| | - Sophie Paczesny
- Department of Pediatrics, Indiana University, Indianapolis, IN, USA
- Department of Microbiology Immunology, Indiana University, Indianapolis, IN, USA
- Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, IN, USA
| |
Collapse
|
38
|
Abstract
Sepsis remains a major clinical problem with high morbidity and mortality. As new inflammatory mediators are characterized, it is important to understand their roles in sepsis. Interleukin 33 (IL-33) is a recently described member of the IL-1 family that is widely expressed in cells of barrier tissues. Upon tissue damage, IL-33 is released as an alarmin and activates various types of cells of both the innate and adaptive immune system through binding to the ST2/IL-1 receptor accessory protein complex. IL-33 has apparent pleiotropic functions in many disease models, with its actions strongly shaped by the local microenvironment. Recent studies have established a role for the IL-33-ST2 axis in the initiation and perpetuation of inflammation during endotoxemia, but its roles in sepsis appear to be organism and model dependent. In this review, we focus on the recent advances in understanding the role of the IL-33/ST2 axis in sepsis.
Collapse
Affiliation(s)
- Hui Xu
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 USA.,State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Heth R Turnquist
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 USA.,Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213 USA
| | - Rosemary Hoffman
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 USA.,State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041 China
| | - Timothy R Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213 USA
| |
Collapse
|
39
|
Paranjape A, Chernushevich O, Qayum AA, Spence AJ, Taruselli MT, Abebayehu D, Barnstein BO, McLeod JJA, Baker B, Bajaj GS, Chumanevich AP, Oskeritzian CA, Ryan JJ. Dexamethasone rapidly suppresses IL-33-stimulated mast cell function by blocking transcription factor activity. J Leukoc Biol 2016; 100:1395-1404. [PMID: 27443878 PMCID: PMC5109997 DOI: 10.1189/jlb.3a0316-125r] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/07/2016] [Accepted: 07/01/2016] [Indexed: 12/21/2022] Open
Abstract
Mast cells are critical effectors of allergic disease and can be activated by IL-33, a proinflammatory member of the IL-1 cytokine family. IL-33 worsens the pathology of mast cell-mediated diseases, but therapies to antagonize IL-33 are still forthcoming. Because steroids are the mainstay of allergic disease treatment and are well known to suppress mast cell activation by other stimuli, we examined the effects of the steroid dexamethasone on IL-33-mediated mast cell function. We found that dexamethasone potently and rapidly suppressed cytokine production elicited by IL-33 from murine bone marrow-derived and peritoneal mast cells. IL-33 enhances IgE-mediated mast cell cytokine production, an activity that was also antagonized by dexamethasone. These effects were consistent in human mast cells. We additionally observed that IL-33 augmented migration of IgE-sensitized mast cells toward antigen. This enhancing effect was similarly reversed by dexamethasone. Simultaneous addition of dexamethasone with IL-33 had no effect on the phosphorylation of MAP kinases or NFκB p65 subunit; however, dexamethasone antagonized AP-1- and NFκB-mediated transcriptional activity. Intraperitoneal administration of dexamethasone completely abrogated IL-33-mediated peritoneal neutrophil recruitment and prevented plasma IL-6 elevation. These data demonstrate that steroid therapy may be an effective means of antagonizing the effects of IL-33 on mast cells in vitro and in vivo, acting partly by suppressing IL-33-induced NFκB and AP-1 activity.
Collapse
Affiliation(s)
- Anuya Paranjape
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA; and
| | - Oksana Chernushevich
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA; and
| | - Amina Abdul Qayum
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA; and
| | - Andrew J Spence
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA; and
| | - Marcela T Taruselli
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA; and
| | - Daniel Abebayehu
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA; and
| | - Brian O Barnstein
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA; and
| | | | - Bianca Baker
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA; and
| | - Gurjas S Bajaj
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA; and
| | - Alena P Chumanevich
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, South Carolina, USA
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, Virginia, USA; and
| |
Collapse
|
40
|
Joulia R, L'Faqihi FE, Valitutti S, Espinosa E. IL-33 fine tunes mast cell degranulation and chemokine production at the single-cell level. J Allergy Clin Immunol 2016; 140:497-509.e10. [PMID: 27876627 DOI: 10.1016/j.jaci.2016.09.049] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 01/14/2023]
Abstract
BACKGROUND Mast cells are versatile key components of allergy and inflammation known to respond to both innate and adaptive immunologic stimuli. However, the response of individual mast cells to cumulative stimuli remains poorly understood. OBJECTIVES We sought to dissect mast cell responses at the single-cell level and their potentiation by IL-33. METHODS We monitored mast cell degranulation in real time by exploiting the capacity of fluorochrome-labeled avidin to stain degranulating cells. During the degranulation process, the granule matrix is externalized and immediately bound by fluorochrome-labeled avidin present in the culture medium. The degranulation process is monitored by using either time-lapse microscopy or fluorescence-activated cell sorting analysis. RESULTS Single-cell analysis revealed a strong heterogeneity of individual mast cell degranulation responses. We observed that the number of degranulating mast cells was graded according to the FcεRI stimulation strength, whereas the magnitude of individual mast cell degranulation remained unchanged, suggesting an all-or-none response of mast cells after FcεRI triggering. IL-33 pretreatment increased not only the number of degranulating and chemokine-producing mast cells but also the magnitude of individual mast cell degranulation and chemokine production. CONCLUSION We illustrate the effect of IL-33 on mast cell biology at the single-cell level by showing that IL-33 potentiates IgE-mediated mast cell responses by both increasing the number of responding cells and enhancing the responses of individual mast cells.
Collapse
Affiliation(s)
- Régis Joulia
- INSERM U1043, and Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Fatima-Ezzahra L'Faqihi
- INSERM U1043, and Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Salvatore Valitutti
- INSERM U1043, and Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France
| | - Eric Espinosa
- INSERM U1043, and Université de Toulouse, UPS, Centre de Physiopathologie de Toulouse Purpan (CPTP), Toulouse, France.
| |
Collapse
|
41
|
Abebayehu D, Spence AJ, Qayum AA, Taruselli MT, McLeod JJA, Caslin HL, Chumanevich AP, Kolawole EM, Paranjape A, Baker B, Ndaw VS, Barnstein BO, Oskeritzian CA, Sell SA, Ryan JJ. Lactic Acid Suppresses IL-33-Mediated Mast Cell Inflammatory Responses via Hypoxia-Inducible Factor-1α-Dependent miR-155 Suppression. THE JOURNAL OF IMMUNOLOGY 2016; 197:2909-17. [PMID: 27559047 DOI: 10.4049/jimmunol.1600651] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 07/28/2016] [Indexed: 01/02/2023]
Abstract
Lactic acid (LA) is present in tumors, asthma, and wound healing, environments with elevated IL-33 and mast cell infiltration. Although IL-33 is a potent mast cell activator, how LA affects IL-33-mediated mast cell function is unknown. To investigate this, mouse bone marrow-derived mast cells were cultured with or without LA and activated with IL-33. LA reduced IL-33-mediated cytokine and chemokine production. Using inhibitors for monocarboxylate transporters (MCT) or replacing LA with sodium lactate revealed that LA effects are MCT-1- and pH-dependent. LA selectively altered IL-33 signaling, suppressing TGF-β-activated kinase-1, JNK, ERK, and NF-κB phosphorylation, but not p38 phosphorylation. LA effects in other contexts have been linked to hypoxia-inducible factor (HIF)-1α, which was enhanced in bone marrow-derived mast cells treated with LA. Because HIF-1α has been shown to regulate the microRNA miR-155 in other systems, LA effects on miR-155-5p and miR-155-3p species were measured. In fact, LA selectively suppressed miR-155-5p in an HIF-1α-dependent manner. Moreover, overexpressing miR-155-5p, but not miR-155-3p, abolished LA effects on IL-33-induced cytokine production. These in vitro effects of reducing cytokines were consistent in vivo, because LA injected i.p. into C57BL/6 mice suppressed IL-33-induced plasma cytokine levels. Lastly, IL-33 effects on primary human mast cells were suppressed by LA in an MCT-dependent manner. Our data demonstrate that LA, present in inflammatory and malignant microenvironments, can alter mast cell behavior to suppress inflammation.
Collapse
Affiliation(s)
- Daniel Abebayehu
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284
| | - Andrew J Spence
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Amina Abdul Qayum
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | | | - Jamie J A McLeod
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Heather L Caslin
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Alena P Chumanevich
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208; and
| | | | - Anuya Paranjape
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Bianca Baker
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Victor S Ndaw
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Brian O Barnstein
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284
| | - Carole A Oskeritzian
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29208; and
| | - Scott A Sell
- Department of Biomedical Engineering, Saint Louis University, St. Louis, MO 63103
| | - John J Ryan
- Department of Biology, Virginia Commonwealth University, Richmond, VA 23284;
| |
Collapse
|
42
|
Numata T, Ito T, Maeda T, Egusa C, Tsuboi R. IL-33 promotes ICAM-1 expression via NF-kB in murine mast cells. Allergol Int 2016; 65:158-165. [PMID: 26666474 DOI: 10.1016/j.alit.2015.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/16/2015] [Accepted: 10/19/2015] [Indexed: 10/22/2022] Open
Abstract
BACKGROUND IL-33, a member of the IL-1 cytokine family, binds to heterodimeric receptors ST2 and IL-1 receptor accessory protein, and activates Th2-type immune responses. The signals from the ST2 receptor are mediated by the two major pathways, including AP-1 and NF-κB molecules. The present study examined whether IL-33 induced ICAM-1 expression in bone marrow-derived mast cells (BMMCs). METHODS BMMCs from C57BL/6J mice, cultured in media containing IL-3 (20 ng/ml), were treated with IL-33 (50 ng/ml) for up to 72 h. ICAM-1 expression with mRNA and protein, degranulation of siRNA ICAM-1 transfected BMMCs, and cell adhesion were analyzed. In the in vivo part of the experiment rIL-33 (500 ng) was injected intradermally into the ear pinnae of mice and any resulting pathological changes were assessed. RESULTS ICAM-1 mRNA expression was increased one hour after IL-33 stimulation while ICAM-1 protein attained maximum expression levels 24 h after IL-33 stimulation. Moreover, IL-33-treated BMMCs showed increased cell adhesion to the LFA-1-coated plate. However, siRNA ICAM-1 transfected BMMCs did not affect Ag/IgE-mediated degranulation level compared to the wild control siRNA. Pre-treatment with a NF-κB inhibitor dramatically reduced ICAM-1 expression in IL-33-treated BMMCs, suggesting the involvement of NF-κB in the process. In vivo study, at 6 h after IL-33 treatment, MCs histologically showed up-regulated ICAM-1 expression though the number of tryptase-positive cells did not change. CONCLUSIONS These data suggest that MCs increase ICAM-1 expression and activate LFA-1 positive cells in the early phase of skin inflammation in response to IL-33.
Collapse
|
43
|
Drube S, Weber F, Loschinski R, Beyer M, Rothe M, Rabenhorst A, Göpfert C, Meininger I, Diamanti MA, Stegner D, Häfner N, Böttcher M, Reinecke K, Herdegen T, Greten FR, Nieswandt B, Hartmann K, Krämer OH, Kamradt T. Subthreshold IKK activation modulates the effector functions of primary mast cells and allows specific targeting of transformed mast cells. Oncotarget 2016; 6:5354-68. [PMID: 25749030 PMCID: PMC4467154 DOI: 10.18632/oncotarget.3022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/31/2014] [Indexed: 01/16/2023] Open
Abstract
Mast cell differentiation and proliferation depends on IL-3. IL-3 induces the activation of MAP-kinases and STATs and consequently induces proliferation and survival. Dysregulation of IL-3 signaling pathways also contribute to inflammation and tumorigenesis. We show here that IL-3 induces a SFK- and Ca²⁺-dependent activation of the inhibitor of κB kinases 2 (IKK2) which results in mast cell proliferation and survival but does not induce IκBα-degradation and NFκB activation. Therefore we propose the term "subthreshold IKK activation".This subthreshold IKK activation also primes mast cells for enhanced responsiveness to IL-33R signaling. Consequently, co-stimulation with IL-3 and IL-33 increases IKK activation and massively enhances cytokine production induced by IL-33.We further reveal that in neoplastic mast cells expressing constitutively active Ras, subthreshold IKK activation is associated with uncontrolled proliferation. Consequently, pharmacological IKK inhibition reduces tumor growth selectively by inducing apoptosis in vivo.Together, subthreshold IKK activation is crucial to mediate the full IL-33-induced effector functions in primary mast cells and to mediate uncontrolled proliferation of neoplastic mast cells. Thus, IKK2 is a new molecularly defined target structure.
Collapse
Affiliation(s)
- Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Franziska Weber
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Romy Loschinski
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Mandy Beyer
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Mandy Rothe
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Anja Rabenhorst
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, 50937 Köln, Germany
| | - Christiane Göpfert
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Isabel Meininger
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Michaela A Diamanti
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, 60596 Frankfurt, Germany
| | - David Stegner
- Rudolf Virchow Centrum für experimentelle Biomedizin, Universität Würzburg, 97080 Würzburg, Germany
| | - Norman Häfner
- Gynäkologische Molekularbiologie, Klinik für Frauenheilkunde und Geburtshilfe, 07743 Jena, Germany
| | - Martin Böttcher
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| | - Kirstin Reinecke
- Institut für Experimentelle und Klinische Pharmakologie, Universität Schleswig-Holstein, 24105 Kiel, Germany
| | - Thomas Herdegen
- Institut für Experimentelle und Klinische Pharmakologie, Universität Schleswig-Holstein, 24105 Kiel, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, 60596 Frankfurt, Germany
| | - Bernhard Nieswandt
- Rudolf Virchow Centrum für experimentelle Biomedizin, Universität Würzburg, 97080 Würzburg, Germany
| | - Karin Hartmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, 50937 Köln, Germany
| | - Oliver H Krämer
- Institut für Toxikologie, Universitätsmedizin Mainz, 55131 Mainz, Germany
| | - Thomas Kamradt
- Institut für Immunologie, Universitätsklinikum Jena, 07743 Jena, Germany
| |
Collapse
|
44
|
Saluja R, Khan M, Church MK, Maurer M. The role of IL-33 and mast cells in allergy and inflammation. Clin Transl Allergy 2015; 5:33. [PMID: 26425339 PMCID: PMC4588911 DOI: 10.1186/s13601-015-0076-5] [Citation(s) in RCA: 142] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/13/2015] [Indexed: 12/25/2022] Open
Abstract
Interleukin-33 (IL-33) is a member of the interleukin-1 (IL-1) cytokine family. It is preferentially and constitutively expressed in different structural cells such as epithelial cells, endothelial cells, and smooth muscle cells. During necrosis of these cells (after tissue injury or cell damage), the IL-33 that is released may be recognized by different types of immune cells, such as eosinophils, basophils and, especially, mast cells. IL-33 needs the specific receptor ST2 (membrane-bound receptor) and Interleukin-1 receptor accessory protein heterodimer for its binding, which instigates the production of different types of cytokines and chemokines that have crucial roles in the exacerbation of allergic diseases and inflammation. IL-33 and mast cells have been influentially associated to the pathophysiology of allergic diseases and inflammation. IL-33 is a crucial regulator of mast cell functions and might be an attractive therapeutic target for the treatment of allergic and inflammatory diseases. In this review, we summarize the current knowledge regarding the roles of IL-33 and mast cells in the pathogenesis of allergies and inflammation.
Collapse
Affiliation(s)
- Rohit Saluja
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany ; Department of Biochemistry, All India Institute of Medical Sciences, Bhopal, Madhya Pradesh 462024 India ; Ramalingaswami Fellow, Department of Biotechnology, Government of India, New Delhi, India
| | - Mahejibin Khan
- Central Food Technological Research Institute-Resource Centre, Lucknow, India
| | - Martin K Church
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus Maurer
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
45
|
Interleukin-33 and Mast Cells Bridge Innate and Adaptive Immunity: From the Allergologist's Perspective. Int Neurourol J 2015; 19:142-50. [PMID: 26620895 PMCID: PMC4582085 DOI: 10.5213/inj.2015.19.3.142] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/04/2015] [Indexed: 01/29/2023] Open
Abstract
Interleukin (IL) 33, a member of the IL-1 superfamily, is an “alarmin” protein and is secreted in its active form from damaged cells undergoing necrotic cell death. Mast cells are one of the main effector cell types in allergic disorders. They secrete a variety of mediators, including T helper 2 cytokines. As mast cells have high-affinity IgE receptors (FcεRI) on their surface, they can capture circulating IgE. IgE-bound mast cells degranulate large amounts of histamine, heparin, and proteases when they encounter antigens. As IL-33 is an important mediator of innate immunity and mast cells play an important role in adaptive immune responses, interactions between the two could link innate and adaptive immunity. IL-33 promotes the adhesion of mast cells to laminin, fibronectin, and vitronectin. IL-33 increases the expression of adhesion molecules, such as intracellular adhesion molecule-1 and vascular cell adhesion molecule-1, in endothelial cells, thus enhancing mast cell adhesion to blood vessel walls. IL-33 stimulates mast cell proliferation by activating the ST2/Myd88 pathway; increases mast cell survival by the activation of survival proteins such as Bcl-XL; and promotes the growth, development, and maturation of mast cell progenitors. IL-33 is also involved in the activation of mature mast cells and production of different proinflammatory cytokines. The interaction of IL-33 and mast cells could have important clinical implications in the field of clinical urology. Epithelial dysfunction and mast cells could play an important role in the pathogenesis of interstitial cystitis. Urinary levels of IL-33 significantly increase in patients with interstitial cystitis. In addition, the number of mast cells significantly increase in the urinary bladders of patients with interstitial cystitis. Therefore, inhibition of mast cell activation and degranulation in response to increase in IL-33 is a potential therapeutic target in the treatment of interstitial cystitis.
Collapse
|
46
|
Bandara G, Beaven MA, Olivera A, Gilfillan AM, Metcalfe DD. Activated mast cells synthesize and release soluble ST2-a decoy receptor for IL-33. Eur J Immunol 2015; 45:3034-44. [PMID: 26256265 DOI: 10.1002/eji.201545501] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 07/20/2015] [Accepted: 08/08/2015] [Indexed: 12/19/2022]
Abstract
IL-33 released from damaged cells plays a central role in allergic inflammation by acting through its membrane-bound receptor, ST2 receptor (ST2L). IL-33 activity can be neutralized by the soluble spliced variant of ST2 (sST2) that has been associated with allergic inflammation but its source is not well defined. We investigated whether mast cells (MCs) are a significant source of sST2 following activation through FcεRI or ST2. We find that antigen and IL-33 induce substantial production and release of sST2 from human and mouse MCs in culture and do so synergistically when added together or in combination with stem cell factor. Moreover, increases in circulating sST2 during anaphylaxis in mice were dependent on the presence of MCs. Human MCs activated via FcεRI failed to generate IL-33 and IL-33 produced by mouse bone marrow-derived MCs was retained within the cells. Therefore, FcεRI-mediated sST2 production is independent of MC-derived IL-33 acting in an autocrine manner. These results are consistent with the conclusion that both mouse and human MCs when activated are a significant inducible source of sST2 but not IL-33 and thus have the ability to modulate the biologic impact of IL-33 produced locally by other cell types during allergic inflammation.
Collapse
Affiliation(s)
- Geethani Bandara
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Michael A Beaven
- Laboratory of Molecular Immunology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ana Olivera
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Alasdair M Gilfillan
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dean D Metcalfe
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
47
|
Molofsky AB, Savage AK, Locksley RM. Interleukin-33 in Tissue Homeostasis, Injury, and Inflammation. Immunity 2015; 42:1005-19. [PMID: 26084021 DOI: 10.1016/j.immuni.2015.06.006] [Citation(s) in RCA: 451] [Impact Index Per Article: 50.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Indexed: 12/12/2022]
Abstract
Interleukin-33 (IL-33) is a nuclear-associated cytokine of the IL-1 family originally described as a potent inducer of allergic type 2 immunity. IL-33 signals via the receptor ST2, which is highly expressed on group 2 innate lymphoid cells (ILC2s) and T helper 2 (Th2) cells, thus underpinning its association with helminth infection and allergic pathology. Recent studies have revealed ST2 expression on subsets of regulatory T cells, and for a role for IL-33 in tissue homeostasis and repair that suggests previously unrecognized interactions within these cellular networks. IL-33 can participate in pathologic fibrotic reactions, or, in the setting of microbial invasion, can cooperate with inflammatory cytokines to promote responses by cytotoxic NK cells, Th1 cells, and CD8(+) T cells. Here, we highlight the regulation and function of IL-33 and ST2 and review their roles in homeostasis, damage, and inflammation, suggesting a conceptual framework for future studies.
Collapse
Affiliation(s)
- Ari B Molofsky
- Department of Microbiology & Immunology, University of California, San Francisco, 94143-0795, USA; Department of Laboratory Medicine, University of California, San Francisco, 94143-0795, USA
| | - Adam K Savage
- Howard Hughes Medical Institute, University of California, San Francisco, 94143-0795, USA; Department of Microbiology & Immunology, University of California, San Francisco, 94143-0795, USA
| | - Richard M Locksley
- Howard Hughes Medical Institute, University of California, San Francisco, 94143-0795, USA; Department of Medicine, University of California, San Francisco, 94143-0795, USA; Department of Microbiology & Immunology, University of California, San Francisco, 94143-0795, USA.
| |
Collapse
|
48
|
Saluja R, Zoltowska A, Ketelaar ME, Nilsson G. IL-33 and Thymic Stromal Lymphopoietin in mast cell functions. Eur J Pharmacol 2015; 778:68-76. [PMID: 26051792 DOI: 10.1016/j.ejphar.2015.04.047] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 04/18/2015] [Accepted: 04/21/2015] [Indexed: 11/16/2022]
Abstract
Thymic Stromal Lymphopoietin (TSLP) and Interleukin 33 (IL-33) are two cytokines released by cells that are in proximity to our environment, e.g., keratinocytes of the skin and epithelial cells of the airways. Pathogens, allergens, chemicals and other agents induce the release of TSLP and IL-33, which are recognized by mast cells. TSLP and IL-33 affect several mast cell functions, including growth, survival and mediator release. These molecules do not directly induce exocytosis, but cause release of de novo synthesized lipid mediators and cytokines. TSLP and IL-33 are also implicated in inflammatory diseases where mast cells are known to be an important part of the pathogenesis, e.g., asthma and atopic dermatitis. In this chapter we describe and discuss the implications of TSLP and IL-33 on mast cell functions in health and disease.
Collapse
Affiliation(s)
- Rohit Saluja
- Department of Dermatology and Allergy, Allergie-Centrum-Charité, Charité - Universitätsmedizin, Berlin, Germany.
| | - Anna Zoltowska
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Maria Elizabeth Ketelaar
- University of Groningen, Laboratory of Allergology and Pulmonary Diseases, Department of Pathology and Medical Biology, University Medical Center Groningen, Groningen, The Netherlands
| | - Gunnar Nilsson
- Clinical Immunology and Allergy Unit, Department of Medicine, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
49
|
Ito T, Egusa C, Maeda T, Numata T, Nakano N, Nishiyama C, Tsuboi R. IL-33 promotes MHC class II expression in murine mast cells. IMMUNITY INFLAMMATION AND DISEASE 2015; 3:196-208. [PMID: 26417437 PMCID: PMC4578520 DOI: 10.1002/iid3.59] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 03/23/2015] [Accepted: 03/24/2015] [Indexed: 02/06/2023]
Abstract
Mast cells (MCs), recognized as tissue-resident cells of hematopoietic origin, are involved in cellular and pathological manifestations of allergic disorders including atopic dermatitis. IL-33, a member of the IL-1 cytokine family, activates Th2-type immune responses, and promotes the degranulation and maturation of MCs. However, it is uncertain whether IL-33 treatment induces mature mast cells to acquire the characteristics of the monocyte-dendritic cell lineage.We investigated the effect of IL-33 on the MHC class II expression and function of murine mast cells. IL-33-treated mature murine bone marrow-derived mast cells (BMMCs) were analyzed by FACS, real-time PCR, chromatin immunoprecipitation (ChIP) assay, and Western blotting. The morphology and degranulation activity of BMMCs and T-cell activation by BMMCs were also examined. BMMCs treated with IL-33 for 10 days induced cell surface expression of the MHC class II protein, whereas the expression of FcεRI and c-kit was not affected by IL-33. The expression of CIITA, driven from pIII and pIV, was up-regulated in IL-33-treated BMMCs. The amount of PU.1 mRNA and protein significantly increased in IL-33-treated BMMCs. The ChIP assay showed PU.1 binding to CIITA pIII, and enhanced histone acetylation due to IL-33 treatment. Syngeneic T cells were activated by co-culture with IL-33-treated BMMCs, although the expression of the co-stimulatory molecules, CD40, CD80, CD86, and PDL-1, was not detected. Mast cells express MHC class II after prolonged exposure to IL-33, probably due to enhanced recruitment of PU.1 to CIITA pIII, resulting in transactivation of CIITA and MHC class II. IL-33 is an important cytokine in allergic disorders. Mast cells have the ability to express MHC class II after prolonged exposure to IL-33 in a murine model. IL-33 holds a key to understanding the etiology of atopic dermatitis.
Collapse
Affiliation(s)
- Tomonobu Ito
- Department of Dermatology, Tokyo Medical University 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Chizu Egusa
- Department of Dermatology, Tokyo Medical University 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Tatsuo Maeda
- Department of Dermatology, Tokyo Medical University 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Takafumi Numata
- Department of Dermatology, Tokyo Medical University 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| | - Nobuhiro Nakano
- Atopy (Allergy) Research Center, Juntendo University School of Medicine 2-1-1 Hongo, Bunkyo-ku, Tokyo 113-8421, Japan
| | - Chiharu Nishiyama
- Department of Biological Science and Technology, Tokyo University of Science 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Ryoji Tsuboi
- Department of Dermatology, Tokyo Medical University 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
50
|
Lu J, Kang J, Zhang C, Zhang X. The role of IL-33/ST2L signals in the immune cells. Immunol Lett 2015; 164:11-7. [DOI: 10.1016/j.imlet.2015.01.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 12/26/2014] [Accepted: 01/27/2015] [Indexed: 12/18/2022]
|