1
|
Valencia-Sanchez S, Davis M, Martensen J, Hoeffer C, Link C, Opp MR. Sleep-wake behavior and responses to sleep deprivation and immune challenge of protein kinase RNA-activated knockout mice. Brain Behav Immun 2024; 121:74-86. [PMID: 39043346 DOI: 10.1016/j.bbi.2024.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 07/25/2024] Open
Abstract
Protein Kinase RNA-activated (PKR) is an enzyme that plays a role in many systemic processes, including modulation of inflammation, and is implicated in neurodegenerative diseases, such as Alzheimer's disease (AD). PKR phosphorylation results in the production of several cytokines involved in the regulation / modulation of sleep, including interleukin-1β, tumor necrosis factor-α and interferon-γ. We hypothesized targeting PKR would alter spontaneous sleep of mice, attenuate responses to sleep deprivation, and inhibit responses to immune challenge. To test these hypotheses, we determined the sleep-wake phenotype of mice lacking PKR (knockout; PKR-/-) during undisturbed baseline conditions; in responses to six hours of sleep deprivation; and after immune challenge with lipopolysaccharide (LPS). Adult male mice (C57BL/6J, n = 7; PKR-/-, n = 7) were surgically instrumented with EEG recording electrodes and an intraperitoneal microchip to record core body temperature. During undisturbed baseline conditions, PKR -/- mice spent more time in non-rapid eye movement sleep (NREMS) and rapid-eye movement sleep (REMS), and less time awake at the beginning of the dark period of the light:dark cycle. Delta power during NREMS, a measure of sleep depth, was less in PKR-/- mice during the dark period, and core body temperatures were lower during the light period. Both mouse strains responded to sleep deprivation with increased NREMS and REMS, although these changes did not differ substantively between strains. The initial increase in delta power during NREMS after sleep deprivation was greater in PKR-/- mice, suggesting a faster buildup of sleep pressure with prolonged waking. Immune challenge with LPS increased NREMS and inhibited REMS to the same extent in both mouse strains, whereas the initial LPS-induced suppression of delta power during NREMS was greater in PKR-/- mice. Because sleep regulatory and immune responsive systems in brain are redundant and overlapping, other mediators and signaling pathways in addition to PKR are involved in the responses to acute sleep deprivation and LPS immune challenge.
Collapse
Affiliation(s)
- S Valencia-Sanchez
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - M Davis
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - J Martensen
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - C Hoeffer
- Institute for Behavioral Genetics, University of Colorado Boulder, USA
| | - C Link
- Department of Integrative Physiology, University of Colorado Boulder, USA
| | - M R Opp
- Department of Integrative Physiology, University of Colorado Boulder, USA.
| |
Collapse
|
2
|
Xu Z, Kombe Kombe AJ, Deng S, Zhang H, Wu S, Ruan J, Zhou Y, Jin T. NLRP inflammasomes in health and disease. MOLECULAR BIOMEDICINE 2024; 5:14. [PMID: 38644450 PMCID: PMC11033252 DOI: 10.1186/s43556-024-00179-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/20/2024] [Indexed: 04/23/2024] Open
Abstract
NLRP inflammasomes are a group of cytosolic multiprotein oligomer pattern recognition receptors (PRRs) involved in the recognition of pathogen-associated molecular patterns (PAMPs) and danger-associated molecular patterns (DAMPs) produced by infected cells. They regulate innate immunity by triggering a protective inflammatory response. However, despite their protective role, aberrant NLPR inflammasome activation and gain-of-function mutations in NLRP sensor proteins are involved in occurrence and enhancement of non-communicating autoimmune, auto-inflammatory, and neurodegenerative diseases. In the last few years, significant advances have been achieved in the understanding of the NLRP inflammasome physiological functions and their molecular mechanisms of activation, as well as therapeutics that target NLRP inflammasome activity in inflammatory diseases. Here, we provide the latest research progress on NLRP inflammasomes, including NLRP1, CARD8, NLRP3, NLRP6, NLRP7, NLRP2, NLRP9, NLRP10, and NLRP12 regarding their structural and assembling features, signaling transduction and molecular activation mechanisms. Importantly, we highlight the mechanisms associated with NLRP inflammasome dysregulation involved in numerous human auto-inflammatory, autoimmune, and neurodegenerative diseases. Overall, we summarize the latest discoveries in NLRP biology, their forming inflammasomes, and their role in health and diseases, and provide therapeutic strategies and perspectives for future studies about NLRP inflammasomes.
Collapse
Affiliation(s)
- Zhihao Xu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shasha Deng
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Hongliang Zhang
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China
| | - Jianbin Ruan
- Department of Immunology, University of Connecticut Health Center, Farmington, 06030, USA.
| | - Ying Zhou
- Department of Obstetrics and Gynecology, Core Facility Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Intervention, College of Medicine, Lishui University, Lishui, 323000, China.
- Laboratory of Structural Immunology, the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Department of Obstetrics and Gynecology, Core Facility Center, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China.
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China.
- Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
3
|
Panbhare K, Pandey R, Chauhan C, Sinha A, Shukla R, Kaundal RK. Role of NLRP3 Inflammasome in Stroke Pathobiology: Current Therapeutic Avenues and Future Perspective. ACS Chem Neurosci 2024; 15:31-55. [PMID: 38118278 DOI: 10.1021/acschemneuro.3c00536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023] Open
Abstract
Neuroinflammation is a key pathophysiological feature of stroke-associated brain injury. A local innate immune response triggers neuroinflammation following a stroke via activating inflammasomes. The nucleotide-binding oligomerization domain leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome has been heavily implicated in stroke pathobiology. Following a stroke, several stimuli have been suggested to trigger the assembly of the NLRP3 inflammasome. Recent studies have advanced the understanding and revealed several new players regulating NLRP3 inflammasome-mediated neuroinflammation. This article discussed recent advancements in NLRP3 assembly and highlighted stroke-induced mitochondrial dysfunction as a major checkpoint to regulating NLRP3 activation. The NLRP3 inflammasome activation leads to caspase-1-dependent maturation and release of IL-1β, IL-18, and gasdermin D. In addition, genetic or pharmacological inhibition of the NLRP3 inflammasome activation and downstream signaling has been shown to attenuate brain infarction and improve the neurological outcome in experimental models of stroke. Several drug-like small molecules targeting the NLRP3 inflammasome are in different phases of development as novel therapeutics for various inflammatory conditions, including stroke. Understanding how these molecules interfere with NLRP3 inflammasome assembly is paramount for their better optimization and/or development of newer NLRP3 inhibitors. In this review, we summarized the assembly of the NLRP3 inflammasome and discussed the recent advances in understanding the upstream regulators of NLRP3 inflammasome-mediated neuroinflammation following stroke. Additionally, we critically examined the role of the NLRP3 inflammasome-mediated signaling in stroke pathophysiology and the development of therapeutic modalities to target the NLRP3 inflammasome-related signaling for stroke treatment.
Collapse
Affiliation(s)
- Kartik Panbhare
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rukmani Pandey
- Department of Psychiatry, Center for Molecular Biology and Genetics of Neurodegeneration, Icahn School of Medicine at Mount Sinai, New York, New York 10029, United States
| | - Chandan Chauhan
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Antarip Sinha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| |
Collapse
|
4
|
Lamichhane PP, Samir P. Cellular Stress: Modulator of Regulated Cell Death. BIOLOGY 2023; 12:1172. [PMID: 37759572 PMCID: PMC10525759 DOI: 10.3390/biology12091172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023]
Abstract
Cellular stress response activates a complex program of an adaptive response called integrated stress response (ISR) that can allow a cell to survive in the presence of stressors. ISR reprograms gene expression to increase the transcription and translation of stress response genes while repressing the translation of most proteins to reduce the metabolic burden. In some cases, ISR activation can lead to the assembly of a cytoplasmic membraneless compartment called stress granules (SGs). ISR and SGs can inhibit apoptosis, pyroptosis, and necroptosis, suggesting that they guard against uncontrolled regulated cell death (RCD) to promote organismal homeostasis. However, ISR and SGs also allow cancer cells to survive in stressful environments, including hypoxia and during chemotherapy. Therefore, there is a great need to understand the molecular mechanism of the crosstalk between ISR and RCD. This is an active area of research and is expected to be relevant to a range of human diseases. In this review, we provided an overview of the interplay between different cellular stress responses and RCD pathways and their modulation in health and disease.
Collapse
Affiliation(s)
| | - Parimal Samir
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
5
|
Liu Y, Lei YX, Li JW, Ma YZ, Wang XY, Meng FH, Wu YJ, Wang N, Liang J, Zhao CQ, Yang Y, Chen GX, Yu SX. G Protein-Coupled Receptor 120 Mediates Host Defense against Clostridium perfringens Infection through Regulating NOD-like Receptor Family Pyrin Domain-Containing 3 Inflammasome Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7119-7130. [PMID: 37115810 DOI: 10.1021/acs.jafc.3c01242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Clostridium perfringens is a major cause of infectious foodborne disease, frequently associated with the consumption of raw and undercooked food. Despite intensive studies on clarifying C. perfringens pathogenesis, the molecular mechanisms of host-pathogen interactions remain poorly understood. In soft tissue and mucosal infection models, Gpr120-/- mice, G protein-coupled receptor 120 (GPR120), are more susceptible to C. perfringens infection. Gpr120 deficiency leads to a low survival rate (30 and 10%, p < 0.01), more bacterial loads in the muscle (2.26 × 108 ± 2.08 × 108 CFUs/g, p < 0.01), duodenum (2.80 × 107 ± 1.61 × 107 CFUs/g, p < 0.01), cecum (2.50 × 108 ± 2.05 × 108 CFUs/g, p < 0.01), and MLN (1.23 × 106 ± 8.06 × 105 CFUs/g, p < 0.01), less IL-18 production in the muscle (8.54 × 103 ± 1.20 × 103 pg/g, p < 0.01), duodenum (3.34 × 103 ± 2.46 × 102 pg/g, p < 0.01), and cecum (3.81 × 103 ± 5.29 × 102 pg/g, p < 0.01), and severe organ injury. Obviously, GPR120 facilitates IL-18 production and pathogen control via potassium efflux-dependent NOD-like receptor family pyrin domain-containing 3 (NLRP3) signaling. Mechanistically, GPR120 interaction with NLRP3 potentiates the NLRP3 inflammasome assembly. Thus, this study uncovers a novel role of GPR120 in host protection and reveals that GPR120 may be a potential therapeutic target for limiting pathogen infection.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
- Animal Husbandry Institute, Agriculture and Animal Husbandry Academy of Inner Mongolia, Hohhot 010031, China
| | - Yu-Xin Lei
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jian-Wei Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yu-Ze Ma
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Xue-Yin Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Fan-Hua Meng
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yu-Jing Wu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Na Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Jing Liang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Cai-Quan Zhao
- College of Biological Science and Technology, Bao Tou Teachers' College, Baotou 014030, China
| | - Yang Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Guang-Xin Chen
- Institutes of Biomedical Sciences, the Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Shanxi University, Taiyuan 030006, China
| | - Shui-Xing Yu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| |
Collapse
|
6
|
Chiarini A, Gui L, Viviani C, Armato U, Dal Prà I. NLRP3 Inflammasome’s Activation in Acute and Chronic Brain Diseases—An Update on Pathogenetic Mechanisms and Therapeutic Perspectives with Respect to Other Inflammasomes. Biomedicines 2023; 11:biomedicines11040999. [PMID: 37189617 DOI: 10.3390/biomedicines11040999] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/16/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
Increasingly prevalent acute and chronic human brain diseases are scourges for the elderly. Besides the lack of therapies, these ailments share a neuroinflammation that is triggered/sustained by different innate immunity-related protein oligomers called inflammasomes. Relevant neuroinflammation players such as microglia/monocytes typically exhibit a strong NLRP3 inflammasome activation. Hence the idea that NLRP3 suppression might solve neurodegenerative ailments. Here we review the recent Literature about this topic. First, we update conditions and mechanisms, including RNAs, extracellular vesicles/exosomes, endogenous compounds, and ethnic/pharmacological agents/extracts regulating NLRP3 function. Second, we pinpoint NLRP3-activating mechanisms and known NLRP3 inhibition effects in acute (ischemia, stroke, hemorrhage), chronic (Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, MS, ALS), and virus-induced (Zika, SARS-CoV-2, and others) human brain diseases. The available data show that (i) disease-specific divergent mechanisms activate the (mainly animal) brains NLRP3; (ii) no evidence proves that NLRP3 inhibition modifies human brain diseases (yet ad hoc trials are ongoing); and (iii) no findings exclude that concurrently activated other-than-NLRP3 inflammasomes might functionally replace the inhibited NLRP3. Finally, we highlight that among the causes of the persistent lack of therapies are the species difference problem in disease models and a preference for symptomatic over etiologic therapeutic approaches. Therefore, we posit that human neural cell-based disease models could drive etiological, pathogenetic, and therapeutic advances, including NLRP3’s and other inflammasomes’ regulation, while minimizing failure risks in candidate drug trials.
Collapse
|
7
|
Hou Y, Liang Z, Qi L, Tang C, Liu X, Tang J, Zhao Y, Zhang Y, Fang T, Luo Q, Wang S, Wang F. Baicalin Targets HSP70/90 to Regulate PKR/PI3K/AKT/eNOS Signaling Pathways. Molecules 2022; 27:1432. [PMID: 35209223 PMCID: PMC8874410 DOI: 10.3390/molecules27041432] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Baicalin is a major active ingredient of traditional Chinese medicine Scutellaria baicalensis, and has been shown to have antiviral, anti-inflammatory, and antitumor activities. However, the protein targets of baicalin have remained unclear. Herein, a chemical proteomics strategy was developed by combining baicalin-functionalized magnetic nanoparticles (BCL-N3@MNPs) and quantitative mass spectrometry to identify the target proteins of baicalin. Bioinformatics analysis with the use of Gene Ontology, STRING and Ingenuity Pathway Analysis, was performed to annotate the biological functions and the associated signaling pathways of the baicalin targeting proteins. Fourteen proteins in human embryonic kidney cells were identified to interact with baicalin with various binding affinities. Bioinformatics analysis revealed these proteins are mainly ATP-binding and/or ATPase activity proteins, such as CKB, HSP86, HSP70-1, HSP90, ATPSF1β and ACTG1, and highly associated with the regulation of the role of PKR in interferon induction and the antiviral response signaling pathway (P = 10-6), PI3K/AKT signaling pathway (P = 10-5) and eNOS signaling pathway (P = 10-4). The results show that baicalin exerts multiply pharmacological functions, such as antiviral, anti-inflammatory, antitumor, and antioxidant functions, through regulating the PKR and PI3K/AKT/eNOS signaling pathways by targeting ATP-binding and ATPase activity proteins. These findings provide a fundamental insight into further studies on the mechanism of action of baicalin.
Collapse
Affiliation(s)
- Yinzhu Hou
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuqing Liang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyu Qi
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Tang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
| | - Xingkai Liu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jilin Tang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
| | - Yanyan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
| | - Tiantian Fang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shijun Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, National Centre for Mass Spectrometry in Beijing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China; (Y.H.); (Z.L.); (L.Q.); (C.T.); (X.L.); (J.T.); (Y.Z.); (Y.Z.); (T.F.)
- College of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
8
|
PHOrming the inflammasome: phosphorylation is a critical switch in inflammasome signalling. Biochem Soc Trans 2021; 49:2495-2507. [PMID: 34854899 PMCID: PMC8786285 DOI: 10.1042/bst20200987] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/07/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
Inflammasomes are protein complexes in the innate immune system that regulate the production of pro-inflammatory cytokines and inflammatory cell death. Inflammasome activation and subsequent cell death often occur within minutes to an hour, so the pathway must be dynamically controlled to prevent excessive inflammation and the development of inflammatory diseases. Phosphorylation is a fundamental post-translational modification that allows rapid control over protein function and the phosphorylation of inflammasome proteins has emerged as a key regulatory step in inflammasome activation. Phosphorylation of inflammasome sensor and adapter proteins regulates their inter- and intra-molecular interactions, subcellular localisation, and function. The control of inflammasome phosphorylation may thus provide a new strategy for the development of anti-inflammatory therapeutics. Herein we describe the current knowledge of how phosphorylation operates as a critical switch for inflammasome signalling.
Collapse
|
9
|
Zhang YY, Ning BT. Signaling pathways and intervention therapies in sepsis. Signal Transduct Target Ther 2021; 6:407. [PMID: 34824200 PMCID: PMC8613465 DOI: 10.1038/s41392-021-00816-9] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Sepsis is defined as life-threatening organ dysfunction caused by dysregulated host systemic inflammatory and immune response to infection. Over decades, advanced understanding of host-microorganism interaction has gradually unmasked the genuine nature of sepsis, guiding toward new definition and novel therapeutic approaches. Diverse clinical manifestations and outcomes among infectious patients have suggested the heterogeneity of immunopathology, while systemic inflammatory responses and deteriorating organ function observed in critically ill patients imply the extensively hyperactivated cascades by the host defense system. From focusing on microorganism pathogenicity, research interests have turned toward the molecular basis of host responses. Though progress has been made regarding recognition and management of clinical sepsis, incidence and mortality rate remain high. Furthermore, clinical trials of therapeutics have failed to obtain promising results. As far as we know, there was no systematic review addressing sepsis-related molecular signaling pathways and intervention therapy in literature. Increasing studies have succeeded to confirm novel functions of involved signaling pathways and comment on efficacy of intervention therapies amid sepsis. However, few of these studies attempt to elucidate the underlining mechanism in progression of sepsis, while other failed to integrate preliminary findings and describe in a broader view. This review focuses on the important signaling pathways, potential molecular mechanism, and pathway-associated therapy in sepsis. Host-derived molecules interacting with activated cells possess pivotal role for sepsis pathogenesis by dynamic regulation of signaling pathways. Cross-talk and functions of these molecules are also discussed in detail. Lastly, potential novel therapeutic strategies precisely targeting on signaling pathways and molecules are mentioned.
Collapse
Affiliation(s)
- Yun-Yu Zhang
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China
| | - Bo-Tao Ning
- Department of Pediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 200127, Shanghai, China.
| |
Collapse
|
10
|
Chukwurah E, Farabaugh KT, Guan BJ, Ramakrishnan P, Hatzoglou M. A tale of two proteins: PACT and PKR and their roles in inflammation. FEBS J 2021; 288:6365-6391. [PMID: 33387379 PMCID: PMC9248962 DOI: 10.1111/febs.15691] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/14/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022]
Abstract
Inflammation is a pathological hallmark associated with bacterial and viral infections, autoimmune diseases, genetic disorders, obesity and diabetes, as well as environmental stresses including physical and chemical trauma. Among numerous proteins regulating proinflammatory signaling, very few such as Protein kinase R (PKR), have been shown to play an all-pervading role in inflammation induced by varied stimuli. PKR was initially characterized as an interferon-inducible gene activated by viral double-stranded RNA with a role in protein translation inhibition. However, it has become increasingly clear that PKR is involved in multiple pathways that promote inflammation in response to stress activation, both dependent on and independent of its cellular protein activator of PKR (PACT). In this review, we discuss the signaling pathways that contribute to the initiation of inflammation, including Toll-like receptor, interferon, and RIG-I-like receptor signaling, as well as inflammasome activation. We go on to discuss the specific roles that PKR and PACT play in such proinflammatory signaling, as well as in metabolic syndrome- and environmental stress-induced inflammation.
Collapse
Affiliation(s)
- Evelyn Chukwurah
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | - Kenneth T. Farabaugh
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106
| | - Bo-Jhih Guan
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| | | | - Maria Hatzoglou
- Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH 44106
| |
Collapse
|
11
|
Stunnenberg M, van Hamme JL, Trimp M, Gringhuis SI, Geijtenbeek TB. Abortive HIV-1 RNA induces pro-IL-1β maturation via protein kinase PKR and inflammasome activation in humans. Eur J Immunol 2021; 51:2464-2477. [PMID: 34223639 PMCID: PMC8518791 DOI: 10.1002/eji.202149275] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
The proinflammatory cytokine IL-1β mediates high levels of immune activation observed during acute and chronic human immunodeficiency virus 1 (HIV-1) infection. Little is known about the mechanisms that drive IL-1β activation during HIV-1 infection. Here, we have identified a crucial role for abortive HIV-1 RNAs in inducing IL-1β in humans. Abortive HIV-1 RNAs were sensed by protein kinase RNA-activated (PKR), which triggered activation of the canonical NLRP3 inflammasome and caspase-1, leading to pro-IL-1β processing and secretion. PKR activated the inflammasome via ROS generation and MAP kinases ERK1/2, JNK, and p38. Inhibition of PKR during HIV-1 infection blocked IL-1β production. As abortive HIV-1 RNAs are produced during productive infection and latency, our data strongly suggest that targeting PKR signaling might attenuate immune activation during acute and chronic HIV-1 infection.
Collapse
Affiliation(s)
- Melissa Stunnenberg
- Amsterdam UMCDepartment of Experimental ImmunologyUniversity of AmsterdamAmsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
| | - John L. van Hamme
- Amsterdam UMCDepartment of Experimental ImmunologyUniversity of AmsterdamAmsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
| | - Marjolein Trimp
- Amsterdam UMCDepartment of Experimental ImmunologyUniversity of AmsterdamAmsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
| | - Sonja I. Gringhuis
- Amsterdam UMCDepartment of Experimental ImmunologyUniversity of AmsterdamAmsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
| | - Teunis B.H. Geijtenbeek
- Amsterdam UMCDepartment of Experimental ImmunologyUniversity of AmsterdamAmsterdam Institute for Infection & ImmunityAmsterdamThe Netherlands
| |
Collapse
|
12
|
Smyth R, Sun J. Protein Kinase R in Bacterial Infections: Friend or Foe? Front Immunol 2021; 12:702142. [PMID: 34305942 PMCID: PMC8297547 DOI: 10.3389/fimmu.2021.702142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/28/2021] [Indexed: 12/28/2022] Open
Abstract
The global antimicrobial resistance crisis poses a significant threat to humankind in the coming decades. Challenges associated with the development of novel antibiotics underscore the urgent need to develop alternative treatment strategies to combat bacterial infections. Host-directed therapy is a promising new therapeutic strategy that aims to boost the host immune response to bacteria rather than target the pathogen itself, thereby circumventing the development of antibiotic resistance. However, host-directed therapy depends on the identification of druggable host targets or proteins with key functions in antibacterial defense. Protein Kinase R (PKR) is a well-characterized human kinase with established roles in cancer, metabolic disorders, neurodegeneration, and antiviral defense. However, its role in antibacterial defense has been surprisingly underappreciated. Although the canonical role of PKR is to inhibit protein translation during viral infection, this kinase senses and responds to multiple types of cellular stress by regulating cell-signaling pathways involved in inflammation, cell death, and autophagy - mechanisms that are all critical for a protective host response against bacterial pathogens. Indeed, there is accumulating evidence to demonstrate that PKR contributes significantly to the immune response to a variety of bacterial pathogens. Importantly, there are existing pharmacological modulators of PKR that are well-tolerated in animals, indicating that PKR is a feasible target for host-directed therapy. In this review, we provide an overview of immune cell functions regulated by PKR and summarize the current knowledge on the role and functions of PKR in bacterial infections. We also review the non-canonical activators of PKR and speculate on the potential mechanisms that trigger activation of PKR during bacterial infection. Finally, we provide an overview of existing pharmacological modulators of PKR that could be explored as novel treatment strategies for bacterial infections.
Collapse
Affiliation(s)
- Robin Smyth
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jim Sun
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
- Centre for Infection, Immunity and Inflammation, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
13
|
Xu Q, Zhao B, Ye Y, Li Y, Zhang Y, Xiong X, Gu L. Relevant mediators involved in and therapies targeting the inflammatory response induced by activation of the NLRP3 inflammasome in ischemic stroke. J Neuroinflammation 2021; 18:123. [PMID: 34059091 PMCID: PMC8166383 DOI: 10.1186/s12974-021-02137-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
The nucleotide-binding oligomerization domain (NOD)-like receptor (NLR) family pyrin domain-containing 3 (NLRP3) inflammasome is a member of the NLR family of inherent immune cell sensors. The NLRP3 inflammasome can detect tissue damage and pathogen invasion through innate immune cell sensor components commonly known as pattern recognition receptors (PRRs). PRRs promote activation of nuclear factor kappa B (NF-κB) pathways and the mitogen-activated protein kinase (MAPK) pathway, thus increasing the transcription of genes encoding proteins related to the NLRP3 inflammasome. The NLRP3 inflammasome is a complex with multiple components, including an NAIP, CIITA, HET-E, and TP1 (NACHT) domain; apoptosis-associated speck-like protein containing a CARD (ASC); and a leucine-rich repeat (LRR) domain. After ischemic stroke, the NLRP3 inflammasome can produce numerous proinflammatory cytokines, mediating nerve cell dysfunction and brain edema and ultimately leading to nerve cell death once activated. Ischemic stroke is a disease with high rates of mortality and disability worldwide and is being observed in increasingly younger populations. To date, there are no clearly effective therapeutic strategies for the clinical treatment of ischemic stroke. Understanding the NLRP3 inflammasome may provide novel ideas and approaches because targeting of upstream and downstream molecules in the NLRP3 pathway shows promise for ischemic stroke therapy. In this manuscript, we summarize the existing evidence regarding the composition and activation of the NLRP3 inflammasome, the molecules involved in inflammatory pathways, and corresponding drugs or molecules that exert effects after cerebral ischemia. This evidence may provide possible targets or new strategies for ischemic stroke therapy.
Collapse
Affiliation(s)
- Qingxue Xu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yingze Ye
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yina Li
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yonggang Zhang
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
14
|
Martinez NW, Gómez FE, Matus S. The Potential Role of Protein Kinase R as a Regulator of Age-Related Neurodegeneration. Front Aging Neurosci 2021; 13:638208. [PMID: 33994991 PMCID: PMC8113420 DOI: 10.3389/fnagi.2021.638208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 03/10/2021] [Indexed: 01/25/2023] Open
Abstract
There is a growing evidence describing a decline in adaptive homeostasis in aging-related diseases affecting the central nervous system (CNS), many of which are characterized by the appearance of non-native protein aggregates. One signaling pathway that allows cell adaptation is the integrated stress response (ISR), which senses stress stimuli through four kinases. ISR activation promotes translational arrest through the phosphorylation of the eukaryotic translation initiation factor 2 alpha (eIF2α) and the induction of a gene expression program to restore cellular homeostasis. However, depending on the stimulus, ISR can also induce cell death. One of the ISR sensors is the double-stranded RNA-dependent protein kinase [protein kinase R (PKR)], initially described as a viral infection sensor, and now a growing evidence supports a role for PKR on CNS physiology. PKR has been largely involved in the Alzheimer’s disease (AD) pathological process. Here, we reviewed the antecedents supporting the role of PKR on the efficiency of synaptic transmission and cognition. Then, we review PKR’s contribution to AD and discuss the possible participation of PKR as a player in the neurodegenerative process involved in aging-related pathologies affecting the CNS.
Collapse
Affiliation(s)
- Nicolás W Martinez
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | | | - Soledad Matus
- Fundación Ciencia & Vida, Santiago, Chile.,Departamento de Ciencias Básicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile.,Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| |
Collapse
|
15
|
Danger-Sensing/Patten Recognition Receptors and Neuroinflammation in Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21239036. [PMID: 33261147 PMCID: PMC7731137 DOI: 10.3390/ijms21239036] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrillar aggregates and soluble oligomers of both Amyloid-β peptides (Aβs) and hyperphosphorylated Tau proteins (p-Tau-es), as well as a chronic neuroinflammation are the main drivers causing progressive neuronal losses and dementia in Alzheimer’s disease (AD). However, the underlying pathogenetic mechanisms are still much disputed. Several endogenous neurotoxic ligands, including Aβs, and/or p-Tau-es activate innate immunity-related danger-sensing/pattern recognition receptors (PPRs) thereby advancing AD’s neuroinflammation and progression. The major PRR families involved include scavenger, Toll-like, NOD-like, AIM2-like, RIG-like, and CLEC-2 receptors, plus the calcium-sensing receptor (CaSR). This quite intricate picture stresses the need to identify the pathogenetically topmost Aβ-activated PRR, whose signaling would trigger AD’s three main drivers and their intra-brain spread. In theory, the candidate might belong to any PRR family. However, results of preclinical studies using in vitro nontumorigenic human cortical neurons and astrocytes and in vivo AD-model animals have started converging on the CaSR as the pathogenetically upmost PRR candidate. In fact, the CaSR binds both Ca2+ and Aβs and promotes the spread of both Ca2+ dyshomeostasis and AD’s three main drivers, causing a progressive neurons’ death. Since CaSR’s negative allosteric modulators block all these effects, CaSR’s candidacy for topmost pathogenetic PRR has assumed a growing therapeutic potential worth clinical testing.
Collapse
|
16
|
Lan T, Tao A, Xu X, Kvietys P, Rui T. Peroxynitrite/PKR Axis Modulates the NLRP3 Inflammasome of Cardiac Fibroblasts. Front Immunol 2020; 11:558712. [PMID: 33101273 PMCID: PMC7545724 DOI: 10.3389/fimmu.2020.558712] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/18/2020] [Indexed: 02/05/2023] Open
Abstract
Sepsis/endotoxemia activates the NLRP3 inflammasome of macrophages leading to the maturation and release of IL-1β, an important mediator of the inflammatory response. Reactive oxygen species have been implicated in NLRP3 inflammasome activation. Further, our preliminary studies indicated that LPS challenge of cardiac fibroblasts could phosphorylate protein kinase R (PKR) on threonine 451 and increase message for pro-IL-1 β. Thus, the major aim of the present study was to address the role of PKR and the oxidant, peroxynitrite, in the two-tiered function of the NLRP3 inflammasome (priming and activation). Materials and Methods: Isolated murine fibroblasts were primed with LPS (1 μg/ml) for 6 h and subsequently activated by an ATP (3 mM) challenge for 30 min to induce optimum functioning of the inflammasome. Increased levels of NLRP3 and pro-IL-1β protein (Western) were used as readouts for inflammasome priming, while activation of caspase 1 (p20) (Western) and secretion of IL-1β (ELISA) were indicative of inflammasome activation. Results: Inhibition of PKR (PKR inhibitor or siRNA) prior to priming with LPS prevented the LPS-induced increase in NLRP3 and pro-IL-1β expression. Further, inhibition of PKR after priming, but before activation, did not affect NLRP3 or pro-IL-1β protein levels, but markedly reduced the activation of caspase 1 and secretion of mature IL-1β. In a similar fashion, a peroxynitrite decomposition catalyst (Fe-TPPS) prevented both the priming and activation of the NLRP3 inflammasome. Finally, pretreatment of the fibroblasts with Fe-TPPS prevented the LPS-induced PKR phosphorylation (T451). Conclusion: Our results indicate that peroxynitrite-/PKR pathway modulates priming and activation of NLRP3 inflammasome in LPS/ATP challenged cardiac fibroblasts.
Collapse
Affiliation(s)
- Ting Lan
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Department of Laboratory Medicine, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Aibin Tao
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Critical Illness Research, Lawson Health Research Institute, London, ON, Canada
| | - Xuemei Xu
- Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Critical Care Western, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Peter Kvietys
- Department of Physiological Sciences, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Tao Rui
- Division of Cardiology, Department of Medicine, The Affiliated People's Hospital of Jiangsu University, Zhenjiang, China.,Critical Illness Research, Lawson Health Research Institute, London, ON, Canada.,Critical Care Western, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Departments of Medicine, Pathology and Laboratory Medicine, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| |
Collapse
|
17
|
Cell fate determined by the activation balance between PKR and SPHK1. Cell Death Differ 2020; 28:401-418. [PMID: 32801355 PMCID: PMC7852545 DOI: 10.1038/s41418-020-00608-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 07/29/2020] [Accepted: 08/06/2020] [Indexed: 11/25/2022] Open
Abstract
Double-stranded RNA (dsRNA)-dependent protein kinase R (PKR) activation via autophosphorylation is the central cellular response to stress that promotes cell death or apoptosis. However, the key factors and mechanisms behind the simultaneous activation of pro-survival signaling pathways remain unknown. We have discovered a novel regulatory mechanism for the maintenance of cellular homeostasis that relies on the phosphorylation interplay between sphingosine kinase 1 (SPHK1) and PKR during exogenous stress. We identified SPHK1 as a previously unrecognized PKR substrate. Phosphorylated SPHK1, a central kinase, mediates the activation of PKR-induced pro-survival pathways by the S1P/S1PR1/MAPKs/IKKα signal axis, and antagonizes PKR-mediated endoplasmic reticulum (ER) stress signal transduction under stress conditions. Otherwise, phosphorylated SPHK1 also acts as the negative feedback factor, preferentially binding to the latent form of PKR at the C-terminal kinase motif, inhibiting the homodimerization of PKR, suppressing PKR autophosphorylation, and reducing the signaling strength for cell death and apoptosis. Our results suggest that the balance of the activation levels between PKR and SPHK1, a probable hallmark of homeostasis maintenance, determines cell fate during cellular stress response.
Collapse
|
18
|
Spalinger MR, Schwarzfischer M, Scharl M. The Role of Protein Tyrosine Phosphatases in Inflammasome Activation. Int J Mol Sci 2020; 21:E5481. [PMID: 32751912 PMCID: PMC7432435 DOI: 10.3390/ijms21155481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammasomes are multi-protein complexes that mediate the activation and secretion of the inflammatory cytokines IL-1β and IL-18. More than half a decade ago, it has been shown that the inflammasome adaptor molecule, ASC requires tyrosine phosphorylation to allow effective inflammasome assembly and sustained IL-1β/IL-18 release. This finding provided evidence that the tyrosine phosphorylation status of inflammasome components affects inflammasome assembly and that inflammasomes are subjected to regulation via kinases and phosphatases. In the subsequent years, it was reported that activation of the inflammasome receptor molecule, NLRP3, is modulated via tyrosine phosphorylation as well, and that NLRP3 de-phosphorylation at specific tyrosine residues was required for inflammasome assembly and sustained IL-1β/IL-18 release. These findings demonstrated the importance of tyrosine phosphorylation as a key modulator of inflammasome activity. Following these initial reports, additional work elucidated that the activity of several inflammasome components is dictated via their phosphorylation status. Particularly, the action of specific tyrosine kinases and phosphatases are of critical importance for the regulation of inflammasome assembly and activity. By summarizing the currently available literature on the interaction of tyrosine phosphatases with inflammasome components we here provide an overview how tyrosine phosphatases affect the activation status of inflammasomes.
Collapse
Affiliation(s)
- Marianne R. Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.S.); (M.S.)
| | - Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.S.); (M.S.)
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.S.); (M.S.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
19
|
Luo Y, Reis C, Chen S. NLRP3 Inflammasome in the Pathophysiology of Hemorrhagic Stroke: A Review. Curr Neuropharmacol 2020; 17:582-589. [PMID: 30592254 PMCID: PMC6712291 DOI: 10.2174/1570159x17666181227170053] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 11/26/2018] [Accepted: 12/19/2018] [Indexed: 12/14/2022] Open
Abstract
Hemorrhagic stroke is a devastating disease with high morbidity and mortality. There is still a lack of effective ther-apeutic approach. The recent studies have shown that the innate immune system plays a significant role in hemorrhagic stroke. Microglia, as major components in innate immune system, are activated and then can release cytokines and chemo-kines in response to hemorrhagic stroke, and ultimately led to neuroinflammation and brain injury. The NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome is predominantly released by microglia and is believed as the main contributor of neuroinflammation. Several studies have focused on the role of NLRP3 inflammasome in hemorrhagic stroke-induced brain injury, however, the specific mechanism of NLRP3 activation and regulation remains unclear. This re-view summarized the mechanism of NLRP3 activation and its role in hemorrhagic stroke and discussed the translational sig-nificance.
Collapse
Affiliation(s)
- Yujie Luo
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Cesar Reis
- Department of Physiology and Pharmacology, Loma Linda University, Loma Linda, CA, United States
| | - Sheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.,Department of Neurosurgery, Taizhou Hospital, Wenzhou Medical University, Linhai, Zhejiang, China
| |
Collapse
|
20
|
Darweesh M, Kamel W, Gavrilin MA, Akusjärvi G, Svensson C. Adenovirus VA RNAI Blocks ASC Oligomerization and Inhibits NLRP3 Inflammasome Activation. Front Immunol 2019; 10:2791. [PMID: 31849970 PMCID: PMC6901988 DOI: 10.3389/fimmu.2019.02791] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/14/2019] [Indexed: 01/10/2023] Open
Abstract
Virus infected immune cells can rapidly respond to the invader by activating the inflammasome and as a consequence release proinflammatory cytokines and eventually die by pyroptosis. In human adenovirus-5 (Ad5) infected THP-1 cells, inhibition of NLRP3 inflammasome activation was demonstrated by a decreased secretion of HMGB1 and matured forms of caspase-1and IL-1ß. An Ad5 mutant virus defective in expression of the non-coding VA RNAI failed to inhibit the NLRP3 inflammasome and in addition displayed formation of ASC specks and increased cell lysis. Importantly, in vitro synthesized VA RNAI was able to inhibit the NLRP3 inflammasome activity in THP-1 cells in the absence of an Ad5 infection, suggesting that VA RNAI binding to PKR and blocking its function is sufficient for inhibition of the NLRP3 inflammasome. Although the inhibition of NLRP3 inflammasome activation required the phylogenetically conserved base paired tetranucleotide sequence in the central stem of VA RNAI, we demonstrate that PKR binding to VA RNAI primarily protected the apical stem, but not the tetranucleotide sequence itself. VA RNAI did not influence the interaction between PKR and NLRP3. In contrast, we describe a novel interaction between PKR and ASC and further show that VA RNAI inhibited ASC phosphorylation and oligomerization. Collectively, our results indicate a novel role for Ad5 VA RNAI as an inhibitor of NLRP3 inflammasome activation by targeting the cellular pro-inflammatory protein PKR.
Collapse
Affiliation(s)
- Mahmoud Darweesh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Microbiology and Immunology, Al-Azhr University, Assiut, Egypt
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mikhail A Gavrilin
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Catharina Svensson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
The NLRP3 Inflammasome: An Overview of Mechanisms of Activation and Regulation. Int J Mol Sci 2019; 20:ijms20133328. [PMID: 31284572 PMCID: PMC6651423 DOI: 10.3390/ijms20133328] [Citation(s) in RCA: 1985] [Impact Index Per Article: 397.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/01/2019] [Accepted: 07/03/2019] [Indexed: 02/07/2023] Open
Abstract
The NLRP3 inflammasome is a critical component of the innate immune system that mediates caspase-1 activation and the secretion of proinflammatory cytokines IL-1β/IL-18 in response to microbial infection and cellular damage. However, the aberrant activation of the NLRP3 inflammasome has been linked with several inflammatory disorders, which include cryopyrin-associated periodic syndromes, Alzheimer's disease, diabetes, and atherosclerosis. The NLRP3 inflammasome is activated by diverse stimuli, and multiple molecular and cellular events, including ionic flux, mitochondrial dysfunction, and the production of reactive oxygen species, and lysosomal damage have been shown to trigger its activation. How NLRP3 responds to those signaling events and initiates the assembly of the NLRP3 inflammasome is not fully understood. In this review, we summarize our current understanding of the mechanisms of NLRP3 inflammasome activation by multiple signaling events, and its regulation by post-translational modifications and interacting partners of NLRP3.
Collapse
|
22
|
Role of PKR in the Inhibition of Proliferation and Translation by Polycystin-1. BIOMED RESEARCH INTERNATIONAL 2019; 2019:5320747. [PMID: 31341901 PMCID: PMC6612395 DOI: 10.1155/2019/5320747] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/19/2019] [Accepted: 06/02/2019] [Indexed: 12/13/2022]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is mainly caused by mutations in the PKD1 (~85%) or PKD2 (~15%) gene which, respectively, encode polycystin-1 (PC1) and polycystin-2 (PC2). How PC1 regulates cell proliferation and apoptosis has been studied for decades but the underlying mechanisms remain controversial. Protein kinase RNA-activated (PKR) is activated by interferons or double-stranded RNAs, inhibits protein translation, and induces cell apoptosis. In a previous study, we found that PC1 reduces apoptosis through suppressing the PKR/eIF2α signaling. Whether and how PKR is involved in PC1-inhibited proliferation and protein synthesis remains unknown. Here we found that knockdown of PKR abolishes PC1-inhibited proliferation and translation. Because suppressed PKR-eIF2α signaling/activity by PC1 would stimulate, rather than inhibit, the proliferation and translation, we examined the effect of dominant negative PKR mutant K296R that has no kinase activity and found that it enhances the inhibition of proliferation and translation by PC1. Thus, our study showed that inhibition of cell proliferation and protein synthesis by PC1 is mediated by the total expression but not the kinase activity of PKR, possibly through physical association.
Collapse
|
23
|
Jiang Y, Steinle JJ. Epac1 inhibits PKR to reduce NLRP3 inflammasome proteins in retinal endothelial cells. J Inflamm Res 2019; 12:153-159. [PMID: 31354329 PMCID: PMC6580119 DOI: 10.2147/jir.s210441] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/09/2019] [Indexed: 12/19/2022] Open
Abstract
Purpose: Inflammation has been strongly associated with retinal damage in diseases such as diabetic retinopathy. Several studies have reported that high glucose exposure induces damage to the retinal vasculature. We and others have shown that high glucose can activate the NOD-like receptor family, pyrin domain containing family member 3 (NLRP3) pathway, leading to increased levels of cleaved caspase 1 and IL-1β to activate a number of inflammatory pathways in the retina. Methods: We used retinal endothelial cells grown in normal (5 mM) or high (25 mM) glucose or retinal lysates from endothelial cell-specific knockout mice for exchange protein activated by cAMP 1 (Epac1). Human recombinant protein kinase R (PKR) or C16, a PKR inhibitor, was used on the cells to dissect PKR and NLRP3 signaling. Results: Using retinal endothelial cells (REC) in high glucose and whole retinal lysates from endothelial cell-specific knockout of Epac1, we demonstrate that Epac1 regulates PKR phosphorylation. Using an Epac1 agonist or PKR inhibition with C16, we demonstrated that loss of PKR resulted in reduced NLRP3, cleaved caspase 1, and IL-1β levels. Furthermore, despite the addition of recombinant human PKR, Epac1 was still able to significantly reduce NLRP3 signaling. Conclusion: Overall, these studies demonstrated that PKR regulates the NLRP3 inflammasome in REC, and that Epac1 inhibition of PKR can reduce activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Youde Jiang
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Jena J Steinle
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
24
|
Fusco WG, Duncan JA. Novel aspects of the assembly and activation of inflammasomes with focus on the NLRC4 inflammasome. Int Immunol 2019; 30:183-193. [PMID: 29617808 DOI: 10.1093/intimm/dxy009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 02/13/2018] [Indexed: 12/31/2022] Open
Abstract
Inflammasomes are multiprotein structures that activate caspase-1, support secretion of pro-inflammatory cytokines, IL-1β and IL-18, and also induce inflammatory programmed cell death, termed pyoptosis. Inflammasomes are activated in response to the detection of endogenous and microbially derived danger signals and are mediated by several classes of inflammasome-forming sensors. These include several nucleotide-binding proteins of the NOD-like receptor (NLR) family, including NLRP1, NLRP3 and NLRC4, as well as the proteins Absent in Melanoma 2 (AIM2) and Pyrin. Mutations in genes encoding some of these sensors have been found to be associated with gain-of-function monogenetic inflammatory disorders in humans. Genetic, biochemical and structural studies have begun to demonstrate how these proteins sense danger signals and to shed light on the step-by-step processes that are necessary for the assembly of inflammasomes, in both physiologic responses to pathogens and potentially in autoinflammatory conditions. Recent biochemical studies of pro-caspase-1 and an adapter protein known as ASC suggest that inflammasomes act to initiate self-generating effector filaments responsible for activating caspase-1 and initiating downstream signaling. These studies have suggested a model of molecular events from sensor activation to inflammasome formation that may describe processes that are universal to inflammasome formation.
Collapse
Affiliation(s)
- William G Fusco
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Joseph A Duncan
- Department of Medicine, Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
25
|
Chen W, Zhu S, Wang Y, Li J, Qiang X, Zhao X, Yang H, D'Angelo J, Becker L, Wang P, Tracey KJ, Wang H. Enhanced Macrophage Pannexin 1 Expression and Hemichannel Activation Exacerbates Lethal Experimental Sepsis. Sci Rep 2019; 9:160. [PMID: 30655582 PMCID: PMC6336828 DOI: 10.1038/s41598-018-37232-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/04/2018] [Indexed: 12/20/2022] Open
Abstract
We have recently reported an important role of Connexin 43 (Cx43) hemichannels in the pathogenesis of lethal sepsis through facilitating ATP efflux to potentiate the double-stranded RNA-activated protein kinase R (PKR)-dependent macrophage activation. Here we further elucidated the possible role of Pannexin 1 (Panx1) hemichannel in lethal sepsis by assessing its expression along with the impact of a Panx1-specific mimetic inhibitory peptide, 10Panx, on macrophage hemichannel activity in vitro and animal sepsis lethality in vivo. Both crude bacterial lipopolysaccharide (LPS) and purified serum amyloid A (SAA) effectively induced the expression and extracellular release of Panx1 by macrophages or monocytes as judged by Western blotting and immunocytochemistry assays. In animal model of lethal sepsis, Panx1 expression levels were significantly elevated in the heart, but reduced in the kidney, lung, spleen, and blood. At relatively lower doses (10, 50, and 100 mg/kg), the Panx1 mimetic peptide, 10Panx, reproducibly exacerbated the sepsis-induced animal lethality, reducing survival rates from 60-70% to 0-10%. Consistently, 10Panx did not inhibit, but rather promoted, the LPS-induced elevation of Lucifer Yellow dye uptake, ATP release, and Nitric Oxide (NO) production. Collectively, these findings suggested that elevated macrophage Panx1 expression and hemichannel activation contribute to the pathogenesis of lethal sepsis.
Collapse
Affiliation(s)
- Weiqiang Chen
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Shu Zhu
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Yongjun Wang
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Jianhua Li
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - Xiaoling Qiang
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Xiaoling Zhao
- Department of Pathology, New York University School of Medicine, 550 1st Ave, New York, NY, 10016, USA
| | - Huan Yang
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
| | - John D'Angelo
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Lance Becker
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Ping Wang
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Kevin J Tracey
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA
| | - Haichao Wang
- The Feinstein Institute for Medical Research, Northwell Health, 350 Community Drive, Manhasset, NY, 11030, USA.
- Zucker School of Medicine at Hofstra/Northwell, 500 Hofstra Blvd, Hempstead, NY, 11549, USA.
| |
Collapse
|
26
|
Valentine RJ, Jefferson MA, Kohut ML, Eo H. Imoxin attenuates LPS-induced inflammation and MuRF1 expression in mouse skeletal muscle. Physiol Rep 2018; 6:e13941. [PMID: 30548229 PMCID: PMC6286898 DOI: 10.14814/phy2.13941] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/16/2018] [Indexed: 12/20/2022] Open
Abstract
The double-stranded RNA-dependent protein kinase (PKR) contributes to inflammatory cytokine expression and disease pathogenesis in many conditions. Limited data are available on the efficacy of the PKR inhibitor imoxin to prevent lipopolysaccharide (LPS)-induced inflammation in skeletal muscle in vivo. The aim of this study was to evaluate the effect of imoxin, a PKR inhibitor, on inflammatory and atrophy signaling in skeletal muscle in response to an acute inflammatory insult with LPS. Six-week old C57BL/6J mice received vehicle (saline) or 0.5 mg/kg imoxin 24 and 2 h prior to induction of inflammation via 1 mg/kg LPS. Gastrocnemius muscles were collected 24 h post-LPS and mRNA and protein expression were assessed. LPS lead to a loss of body weight, which was similar in Imoxin+LPS. There were no differences in muscle weight among groups. LPS increased gastrocnemius mRNA expression of TNF-α and IL-1β, and protein levels of NLRP3, all of which were attenuated by imoxin. Similarly, IL-6 mRNA and IL-1β protein were suppressed in Imoxin+LPS compared to LPS alone. LPS increased mRNA of the atrogenes, MuRF1 and MAFbx, and imoxin attenuated the LPS-induced increase in MuRF1 mRNA, and lowered MuRF1 protein. Imoxin+LPS increased p-Akt compared to saline or LPS, whereas p-mTOR was unaltered. FoxO1 was upregulated and p-FoxO1/FoxO1 reduced by LPS, both of which were prevented by imoxin. Both LPS and Imoxin+LPS had diminished p-FoxO3/FoxO3 compared to control. These results demonstrate the potential anti-inflammatory and anti-atrophy effects of imoxin on skeletal muscle in vivo.
Collapse
Affiliation(s)
- Rudy J. Valentine
- Department of KinesiologyIowa State UniversityAmesIowa
- Interdepartmental Graduate Program in Nutritional SciencesIowa State UniversityAmesIowa
- Immunobiology Interdepartmental Graduate ProgramIowa State UniversityAmesIowa
| | - Matthew A. Jefferson
- Department of KinesiologyIowa State UniversityAmesIowa
- Interdepartmental Neuroscience Graduate ProgramIowa State UniversityAmesIowa
| | - Marian L. Kohut
- Department of KinesiologyIowa State UniversityAmesIowa
- Immunobiology Interdepartmental Graduate ProgramIowa State UniversityAmesIowa
| | - Hyeyoon Eo
- Department of KinesiologyIowa State UniversityAmesIowa
- Interdepartmental Graduate Program in Nutritional SciencesIowa State UniversityAmesIowa
| |
Collapse
|
27
|
Control of Inflammasome Activation by Phosphorylation. Trends Biochem Sci 2018; 43:685-699. [PMID: 30049633 DOI: 10.1016/j.tibs.2018.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/05/2018] [Accepted: 06/30/2018] [Indexed: 02/08/2023]
Abstract
Inflammasomes are cytosolic protein complexes composed of innate immune sensors, the adaptor protein ASC, and the cysteine protease caspase-1. In response to microbial infection or 'danger signals', inflammasomes play critical roles in host defense or contribute to the pathogenesis of various inflammatory diseases. Recent studies have provided abundant evidence for a vital role of phosphorylation in the regulation of inflammasome assembly and activation. This review integrates previous observations and discoveries for inflammasome regulation by protein phosphorylation with the most recent findings. Additionally, the timely application and clinical prospects in the treatment of inflammatory diseases, by targeting related protein kinases or phosphatases, are also discussed.
Collapse
|
28
|
Dabo S, Maillard P, Collados Rodriguez M, Hansen MD, Mazouz S, Bigot DJ, Tible M, Janvier G, Helynck O, Cassonnet P, Jacob Y, Bellalou J, Gatignol A, Patel RC, Hugon J, Munier-Lehmann H, Meurs EF. Inhibition of the inflammatory response to stress by targeting interaction between PKR and its cellular activator PACT. Sci Rep 2017; 7:16129. [PMID: 29170442 PMCID: PMC5701060 DOI: 10.1038/s41598-017-16089-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/07/2017] [Indexed: 02/07/2023] Open
Abstract
PKR is a cellular kinase involved in the regulation of the integrative stress response (ISR) and pro-inflammatory pathways. Two N-terminal dsRNA Binding Domains (DRBD) are required for activation of PKR, by interaction with either dsRNA or PACT, another cellular DRBD-containing protein. A role for PKR and PACT in inflammatory processes linked to neurodegenerative diseases has been proposed and raised interest for pharmacological PKR inhibitors. However, the role of PKR in inflammation is subject to controversy. We identified the flavonoid luteolin as an inhibitor of the PKR/PACT interaction at the level of their DRBDs using high-throughput screening of chemical libraries by homogeneous time-resolved fluorescence. This was further validated using NanoLuc-Based Protein Complementation Assay. Luteolin inhibits PKR phosphorylation, the ISR and the induction of pro-inflammatory cytokines in human THP1 macrophages submitted to oxidative stress and toll-like receptor (TLR) agonist. Similarly, luteolin inhibits induction of pro-inflammatory cytokines in murine microglial macrophages. In contrast, luteolin increased activation of the inflammasome, in a PKR-independent manner. Collectively, these data delineate the importance of PKR in the inflammation process to the ISR and induction of pro-inflammatory cytokines. Pharmacological inhibitors of PKR should be used in combination with drugs targeting directly the inflammasome.
Collapse
Affiliation(s)
- Stephanie Dabo
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Patrick Maillard
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Milagros Collados Rodriguez
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Marianne Doré Hansen
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France.,Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, 7006, Trondheim, Norway
| | - Sabrina Mazouz
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Donna-Joe Bigot
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Marion Tible
- Center of Cognitive Neurology, Lariboisière Hospital AP-HP University Paris Diderot, Paris, France.,Inserm, U942, Paris, France
| | - Geneviève Janvier
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France.,CNRS, UMR 3569, Paris, France
| | - Olivier Helynck
- Unité de Chimie et Biocatalyse, Institut Pasteur, 75015, Paris, France.,CNRS, UMR3523, Paris, France
| | - Patricia Cassonnet
- CNRS, UMR 3569, Paris, France.,Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Yves Jacob
- CNRS, UMR 3569, Paris, France.,Unité de Génétique Moléculaire des Virus à ARN, Institut Pasteur, Université Paris Diderot, Paris, France
| | - Jacques Bellalou
- Plate-forme des protéines recombinantes, Institut Pasteur, 75015, CNRS UMR 3528, Paris, France
| | - Anne Gatignol
- Virus-Cell Interactions Laboratory, Lady Davis Institute for Medical Research, Department of Medicine, department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Rekha C Patel
- University of South Carolina, Department of Biological Sciences, Columbia, South Carolina, 29208, USA
| | - Jacques Hugon
- Center of Cognitive Neurology, Lariboisière Hospital AP-HP University Paris Diderot, Paris, France.,Inserm, U942, Paris, France
| | - Hélène Munier-Lehmann
- Unité de Chimie et Biocatalyse, Institut Pasteur, 75015, Paris, France.,CNRS, UMR3523, Paris, France
| | - Eliane F Meurs
- Unité Hepacivirus and Innate Immunity, Institut Pasteur, 75015, Paris, France. .,CNRS, UMR 3569, Paris, France.
| |
Collapse
|
29
|
Inflammation, metaflammation and immunometabolic disorders. Nature 2017; 542:177-185. [PMID: 28179656 DOI: 10.1038/nature21363] [Citation(s) in RCA: 1384] [Impact Index Per Article: 197.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/05/2017] [Indexed: 12/11/2022]
Abstract
Proper regulation and management of energy, substrate diversity and quantity, as well as macromolecular synthesis and breakdown processes, are fundamental to cellular and organismal survival and are paramount to health. Cellular and multicellular organization are defended by the immune response, a robust and critical system through which self is distinguished from non-self, pathogenic signals are recognized and eliminated, and tissue homeostasis is safeguarded. Many layers of evolutionarily conserved interactions occur between immune response and metabolism. Proper maintenance of this delicate balance is crucial for health and has important implications for many pathological states such as obesity, diabetes, and other chronic non-communicable diseases.
Collapse
|
30
|
Yoshida K, Okamura H, Hiroshima Y, Abe K, Kido JI, Shinohara Y, Ozaki K. PKR induces the expression of NLRP3 by regulating the NF-κB pathway in Porphyromonas gingivalis-infected osteoblasts. Exp Cell Res 2017; 354:57-64. [PMID: 28341446 DOI: 10.1016/j.yexcr.2017.03.028] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
The double-stranded RNA-dependent kinase (PKR), which is activated by double stranded RNA, induces inflammation by regulating NF-κB signaling. The NLR family pyrin domain-containing 3 (NLRP3) inflammasome also modulates inflammation in response to infection. Porphyromonas gingivalis (P.gingivalis) is an oral bacterium which is implicated in the pathogenesis of periodontal diseases. We previously reported that PKR is a key modulator of bone metabolism and inflammation in the periodontal tissue. PKR was also reported to induce inflammation in response to microbes by regulating the NLRP3 inflammasome, suggesting that PKR could affect inflammation along with NLRP3 in periodontal diseases. In this study, we investigated the effects of PKR on NLRP3 expression and NF-κB activity in P. gingivalis infected osteoblasts. We first constructed a SNAP26b-tagged P.gingivalis (SNAP-P. g.) and traced its internalization into the cell. SNAP-P. g. increased the activity of PKR and NF-κB and also induced NLRP3 expression in osteoblasts. Inhibition of NF-κB attenuated SNAP-P. g.-induced NLRP3 expression. The knockdown of PKR using shRNA decreased both the activity of NF-κB and the expression of NLRP3 induced by SNAP-P.g.. We therefore concluded that in osteoblasts, P. gingivalis activated PKR, which in turn increased NLRP3 expression by activating NF-κB. Our results suggest that PKR modulates inflammation by regulating the expression of the NLRP3 inflammasome through the NF-κB pathway in periodontal diseases.
Collapse
Affiliation(s)
- Kaya Yoshida
- Department of Oral Healthcare Education, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan.
| | - Hirohiko Okamura
- Department of Histology and Oral Histology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan; Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata, Kita-ku, Okayama 770-8525, Japan
| | - Yuka Hiroshima
- Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kaori Abe
- SHIBASAKI, Inc., 507 Horikiri, Chichibu 368-0066, Japan
| | - Jun-Ichi Kido
- Department of Periodontology and Endodontology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| | - Yasuo Shinohara
- Institute for Genome Research, Tokushima University, 3-18-15 Kuramoto, Tokushima 770-8503, Japan
| | - Kazumi Ozaki
- Oral Healthcare Promotion, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto, Tokushima 770-8504, Japan
| |
Collapse
|
31
|
Garay-Lugo N, Domínguez-Lopez A, Miliar García A, Aguilar Barrera E, Gómez López M, Gómez Alcalá A, Martínez Godinez MDLA, Lara-Padilla E. n-3 Fatty acids modulate the mRNA expression of the Nlrp3 inflammasome and Mtor in the liver of rats fed with high-fat or high-fat/fructose diets. Immunopharmacol Immunotoxicol 2017; 38:353-63. [PMID: 27367537 DOI: 10.1080/08923973.2016.1208221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT There is evidence that n-3 polyunsaturated fatty acids (n-3-PUFAs) can inhibit mTORC1, which should potentiate autophagy and eliminate NLRP3 inflammasome activity. OBJECTIVE Evaluate the effect of a high-fat or high-fat/fructose diet with and without n-3-PUFAs on hepatic gene expression. MATERIALS AND METHODS We examined the mRNA expression by RT-PCR of Mtor, Nlrp3, and other 22 genes associated with inflammation in rats livers after a 9-week diet. The dietary regimens were low-fat (control, CD), high-fat (HF), high-fat/fructose (HF-Fr), and also each of these supplemented with n-3-PUFAs (CD-n-3-PUFAs, HF-n-3-PUFAs, and HF-Fr-n-3-PUFAs). These data were processed by GeneMania and STRING databases. RESULTS Compared to the control, the HF group showed a significant increase (between p < 0.05 and p < 0.0001) in 20 of these genes (Il1b, Il18, Rxra, Nlrp3, Casp1, Il33, Tnf, Acaca, Mtor, Eif2s1, Eif2ak4, Nfkb1, Srebf1, Hif1a, Ppara, Ppard, Pparg, Mlxipl, Fasn y Scd1), and a decrease in Sirt1 (p < 0.05). With the HF-Fr diet, a significant increase (between p < 0.05 and p < 0.005) was also found in the expression of 16 evaluated genes (Srebf1, Mlxipl, Rxra, Abca1, Il33, Nfkb1, Hif1a, Pparg, Casp1, Il1b, Il-18, Tnf, Ppard, Acaca, Fasn, Scd1), along with a decrease in the transcription of Mtor and Elovl6 (p < 0.05). Contrarily, many of the genes whose expression increased with the HF and HF-Fr diets did not significantly increase with the HF-n-3-PUFAs or HF-Fr-n-3-PUFAs diet. DISCUSSION AND CONCLUSION We found the interrelation of the genes for the mTORC1 complex, the NLRP3 inflammasome, and other metabolically important proteins, and that these genes respond to n-3-PUFAs.
Collapse
Affiliation(s)
- Natalia Garay-Lugo
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Aarón Domínguez-Lopez
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Angel Miliar García
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Eliud Aguilar Barrera
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Modesto Gómez López
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Alejandro Gómez Alcalá
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Maria de Los Angeles Martínez Godinez
- a Laboratorio de Biología Molecular , Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Salvador Díaz Mirón , México , D.F , México
| | - Eleazar Lara-Padilla
- b Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis and Díaz Mirón , México , D.F , México
| |
Collapse
|
32
|
Protein Kinase R Mediates the Inflammatory Response Induced by Hyperosmotic Stress. Mol Cell Biol 2017; 37:MCB.00521-16. [PMID: 27920257 DOI: 10.1128/mcb.00521-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 12/01/2016] [Indexed: 12/25/2022] Open
Abstract
High extracellular osmolarity results in a switch from an adaptive to an inflammatory gene expression program. We show that hyperosmotic stress activates the protein kinase R (PKR) independently of its RNA-binding domain. In turn, PKR stimulates nuclear accumulation of nuclear factor κB (NF-κB) p65 species phosphorylated at serine-536, which is paralleled by the induction of a subset of inflammatory NF-κB p65-responsive genes, including inducible nitric oxide synthase (iNOS), interleukin-6 (IL-6), and IL-1β. The PKR-mediated hyperinduction of iNOS decreases cell survival in mouse embryonic fibroblasts via mechanisms involving nitric oxide (NO) synthesis and posttranslational modification of proteins. Moreover, we demonstrate that the PKR inhibitor C16 ameliorates both iNOS amplification and disease-induced phenotypic breakdown of the intestinal epithelial barrier caused by an increase in extracellular osmolarity induced by dextran sodium sulfate (DSS) in vivo Collectively, these findings indicate that PKR activation is an essential part of the molecular switch from adaptation to inflammation in response to hyperosmotic stress.
Collapse
|
33
|
Abstract
Organisms throughout biology need to maintain the integrity of their genome. From bacteria to vertebrates, life has established sophisticated mechanisms to detect and eliminate foreign genetic material or to restrict its function and replication. Tremendous progress has been made in the understanding of these mechanisms which keep foreign or unwanted nucleic acids from viruses or phages in check. Mechanisms reach from restriction-modification systems and CRISPR/Cas in bacteria and archaea to RNA interference and immune sensing of nucleic acids, altogether integral parts of a system which is now appreciated as nucleic acid immunity. With inherited receptors and acquired sequence information, nucleic acid immunity comprises innate and adaptive components. Effector functions include diverse nuclease systems, intrinsic activities to directly restrict the function of foreign nucleic acids (e.g., PKR, ADAR1, IFIT1), and extrinsic pathways to alert the immune system and to elicit cytotoxic immune responses. These effects act in concert to restrict viral replication and to eliminate virus-infected cells. The principles of nucleic acid immunity are highly relevant for human disease. Besides its essential contribution to antiviral defense and restriction of endogenous retroelements, dysregulation of nucleic acid immunity can also lead to erroneous detection and response to self nucleic acids then causing sterile inflammation and autoimmunity. Even mechanisms of nucleic acid immunity which are not established in vertebrates are relevant for human disease when they are present in pathogens such as bacteria, parasites, or helminths or in pathogen-transmitting organisms such as insects. This review aims to provide an overview of the diverse mechanisms of nucleic acid immunity which mostly have been looked at separately in the past and to integrate them under the framework nucleic acid immunity as a basic principle of life, the understanding of which has great potential to advance medicine.
Collapse
Affiliation(s)
- G Hartmann
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital, University of Bonn, Bonn, Germany.
| |
Collapse
|
34
|
Raeven RHM, Brummelman J, Pennings JLA, van der Maas L, Tilstra W, Helm K, van Riet E, Jiskoot W, van Els CACM, Han WGH, Kersten GFA, Metz B. Bordetella pertussis outer membrane vesicle vaccine confers equal efficacy in mice with milder inflammatory responses compared to a whole-cell vaccine. Sci Rep 2016; 6:38240. [PMID: 27905535 PMCID: PMC5131296 DOI: 10.1038/srep38240] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/07/2016] [Indexed: 12/12/2022] Open
Abstract
The demand for improved pertussis vaccines is urgent due to the resurgence of whooping cough. A deeper understanding of the mode of action of pertussis vaccines is required to achieve this improvement. The vaccine-induced effects of a candidate outer membrane vesicle vaccine (omvPV) and a classical protective but reactogenic whole cell vaccine (wPV) were comprehensively compared in mice. The comparison revealed essential qualitative and quantitative differences with respect to immunogenicity and adverse effects for these vaccines. Both vaccines stimulated a mixed systemic Th1/Th2/Th17 response. Remarkably, omvPV evoked higher IgG levels, lower systemic pro-inflammatory cytokine responses and enhanced splenic gene expression than wPV. The omvPV-induced transcriptome revealed gene signatures of the IFN-signaling pathway, anti-inflammatory signatures that attenuate LPS responses, anti-inflammatory metabolic signatures, and IgG responses. Upon intranasal challenge, both immunized groups were equally efficient in clearing Bordetella pertussis from the lungs. This study importantly shows that immunization with omvPV provides a milder inflammatory responses but with equal protection to bacterial colonization and induction of protective antibody and Th1/Th17 type immune responses compared to wPV. These results emphasize the potential of omvPV as a safe and effective next-generation pertussis vaccine.
Collapse
Affiliation(s)
- René H M Raeven
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands.,Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Jolanda Brummelman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Jeroen L A Pennings
- Centre for Health Protection (GZB), National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | - Wichard Tilstra
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Kina Helm
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Elly van Riet
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| | - Wim Jiskoot
- Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Wanda G H Han
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Gideon F A Kersten
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands.,Division of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Leiden, The Netherlands
| | - Bernard Metz
- Institute for Translational Vaccinology (Intravacc), Bilthoven, The Netherlands
| |
Collapse
|
35
|
Xie M, Yu Y, Kang R, Zhu S, Yang L, Zeng L, Sun X, Yang M, Billiar TR, Wang H, Cao L, Jiang J, Tang D. PKM2-dependent glycolysis promotes NLRP3 and AIM2 inflammasome activation. Nat Commun 2016; 7:13280. [PMID: 27779186 PMCID: PMC5093342 DOI: 10.1038/ncomms13280] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 09/16/2016] [Indexed: 02/06/2023] Open
Abstract
Sepsis, severe sepsis and septic shock are the main cause of mortality in non-cardiac intensive care units. Immunometabolism has been linked to sepsis; however, the precise mechanism by which metabolic reprogramming regulates the inflammatory response is unclear. Here we show that aerobic glycolysis contributes to sepsis by modulating inflammasome activation in macrophages. PKM2-mediated glycolysis promotes inflammasome activation by modulating EIF2AK2 phosphorylation in macrophages. Pharmacological and genetic inhibition of PKM2 or EIF2AK2 attenuates NLRP3 and AIM2 inflammasomes activation, and consequently suppresses the release of IL-1β, IL-18 and HMGB1 by macrophages. Pharmacological inhibition of the PKM2-EIF2AK2 pathway protects mice from lethal endotoxemia and polymicrobial sepsis. Moreover, conditional knockout of PKM2 in myeloid cells protects mice from septic death induced by NLRP3 and AIM2 inflammasome activation. These findings define an important role of PKM2 in immunometabolism and guide future development of therapeutic strategies to treat sepsis.
Collapse
Affiliation(s)
- Min Xie
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Yan Yu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Rui Kang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Shan Zhu
- Center of DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Liangchun Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Ling Zeng
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Research institute for Traffic Medicine of People's Liberation Army, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Xiaofang Sun
- Center of DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| | - Minghua Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Timothy R. Billiar
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
| | - Haichao Wang
- Laboratory of Emergency Medicine, The Feinstein Institute for Medical Research, Manhasset, New York 11030, USA
| | - Lizhi Cao
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Research Institute of Surgery, Research institute for Traffic Medicine of People's Liberation Army, Daping Hospital, Third Military Medical University, Chongqing 400042, China
| | - Daolin Tang
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, USA
- Center of DAMP Biology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510510, China
| |
Collapse
|
36
|
Mechanism and Regulation of NLRP3 Inflammasome Activation. Trends Biochem Sci 2016; 41:1012-1021. [PMID: 27669650 DOI: 10.1016/j.tibs.2016.09.002] [Citation(s) in RCA: 1898] [Impact Index Per Article: 237.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 09/01/2016] [Accepted: 09/07/2016] [Indexed: 01/08/2023]
Abstract
Members of the nucleotide-binding domain and leucine-rich repeat (LRR)-containing (NLR) family and the pyrin and HIN domain (PYHIN) family can form multiprotein complexes termed 'inflammasomes'. The biochemical function of inflammasomes is to activate caspase-1, which leads to the maturation of interleukin 1 beta (IL-1β) and IL-18 and the induction of pyroptosis, a form of cell death. Unlike other inflammasomes, the NLRP3 inflammasome can be activated by diverse stimuli. The importance of the NLRP3 inflammasome in immunity and human diseases has been well documented, but the mechanism and regulation of its activation remain unclear. In this review we summarize current understanding of the mechanism and regulation of NLRP3 inflammasome activation as well as recent advances in the noncanonical and alternative inflammasome pathways.
Collapse
|
37
|
Kim BH, Chee JD, Bradfield CJ, Park ES, Kumar P, MacMicking JD. Interferon-induced guanylate-binding proteins in inflammasome activation and host defense. Nat Immunol 2016; 17:481-9. [PMID: 27092805 DOI: 10.1038/ni.3440] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 03/16/2016] [Indexed: 02/06/2023]
Abstract
Traditional views of the inflammasome highlight the assembly of pre-existing core components shortly after infection or tissue damage. Emerging work, however, suggests that the inflammasome machinery is also subject to 'tunable' or inducible signals that might accelerate its autocatalytic properties and dictate where inflammasome assembly takes place in the cell. Many of these signals operate downstream of interferon receptors to elicit inflammasome regulators, including a new family of interferon-induced GTPases called 'guanylate-binding proteins' (GBPs). Here we investigate the critical roles of interferon-induced GBPs in directing inflammasome subtype-specific responses and their consequences for cell-autonomous immunity to a wide variety of microbial pathogens. We discuss emerging mechanisms of action and the potential effect of these GBPs on predisposition to sepsis and other infectious or inflammatory diseases.
Collapse
Affiliation(s)
- Bae-Hoon Kim
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Jonathan D Chee
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Clinton J Bradfield
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Eui-Soon Park
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Pradeep Kumar
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - John D MacMicking
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
38
|
Yang J, Liu Z, Xiao TS. Post-translational regulation of inflammasomes. Cell Mol Immunol 2016; 14:65-79. [PMID: 27345727 PMCID: PMC5214939 DOI: 10.1038/cmi.2016.29] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/05/2016] [Accepted: 05/05/2016] [Indexed: 12/16/2022] Open
Abstract
Inflammasomes play essential roles in immune protection against microbial infections. However, excessive inflammation is implicated in various human diseases, including autoinflammatory syndromes, diabetes, multiple sclerosis, cardiovascular disorders and neurodegenerative diseases. Therefore, precise regulation of inflammasome activities is critical for adequate immune protection while limiting collateral tissue damage. In this review, we focus on the emerging roles of post-translational modifications (PTMs) that regulate activation of the NLRP3, NLRP1, NLRC4, AIM2 and IFI16 inflammasomes. We anticipate that these types of PTMs will be identified in other types of and less well-characterized inflammasomes. Because these highly diverse and versatile PTMs shape distinct inflammatory responses in response to infections and tissue damage, targeting the enzymes involved in these PTMs will undoubtedly offer opportunities for precise modulation of inflammasome activities under various pathophysiological conditions.
Collapse
Affiliation(s)
- Jie Yang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106-7288, USA.,Graduate Program in Physiology and Biophysics, Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-7288, USA
| | - Zhonghua Liu
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106-7288, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106-7288, USA
| |
Collapse
|
39
|
Abstract
Inflammasomes are multiprotein signalling platforms that control the inflammatory response and coordinate antimicrobial host defences. They are assembled by pattern-recognition receptors following the detection of pathogenic microorganisms and danger signals in the cytosol of host cells, and they activate inflammatory caspases to produce cytokines and to induce pyroptotic cell death. The clinical importance of inflammasomes reaches beyond infectious disease, as dysregulated inflammasome activity is associated with numerous hereditary and acquired inflammatory disorders. In this Review, we discuss the recent developments in inflammasome research with a focus on the molecular mechanisms that govern inflammasome assembly, signalling and regulation.
Collapse
Affiliation(s)
- Petr Broz
- Focal Area Infection Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Vishva M Dixit
- Genentech Inc., South San Francisco, California 94080, USA
| |
Collapse
|
40
|
Cook-Mills J, Gebretsadik T, Abdala-Valencia H, Green J, Larkin EK, Dupont WD, Shu XO, Gross M, Bai C, Gao YT, Hartman TJ, Rosas-Salazar C, Hartert T. Interaction of vitamin E isoforms on asthma and allergic airway disease. Thorax 2016; 71:954-6. [PMID: 27257004 DOI: 10.1136/thoraxjnl-2016-208494] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/08/2016] [Indexed: 01/30/2023]
Abstract
Prospective epidemiological studies, observational cross-sectional studies and some randomised prevention trials have demonstrated inconsistent findings of the impact of vitamin E on asthma risk. The goals of this study were to explore whether this differing association of vitamin E on asthma risk is due to an interaction of vitamin E isoforms. To address this question, in a population-based asthma incidence study we assessed the interaction between the plasma concentrations of vitamin E isoforms α-tocopherol and γ-tocopherol on asthma risk. Second, to understand the mechanisms of any interaction of these isoforms, we conducted experimental supplementation of α-tocopherol and γ-tocopherol isoforms in mice on the outcome of allergic airway inflammation. We found that in the highest γ-tocopherol tertile, low levels of α-tocopherol were associated with increased asthma risk, while highest tertile α-tocopherol levels trended to be protective. Similarly, in a mouse model of asthma, diet supplementation with α-tocopherol decreased lung inflammation in response to house dust mite (HDM) challenge. In contrast, diet supplementation with γ-tocopherol increased lung inflammation in response to HDM. These human and animal studies provide evidence for the competing effects of the vitamin E isoforms, in physiological concentrations, on asthma and allergic airway disease.
Collapse
Affiliation(s)
| | | | | | | | - Emma K Larkin
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Xiao Ou Shu
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Myron Gross
- Department of Laboratory Medicine and Pathology, School of Public Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Chunxue Bai
- Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yu-Tang Gao
- Department of Epidemiology, Shanghai Cancer Institute, Shanghai, People's Republic of China
| | - Terryl J Hartman
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | | | - Tina Hartert
- Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
41
|
Banerjee S. RNase L and the NLRP3-inflammasome: An old merchant in a new trade. Cytokine Growth Factor Rev 2016; 29:63-70. [PMID: 26987611 DOI: 10.1016/j.cytogfr.2016.02.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/27/2016] [Indexed: 12/12/2022]
Abstract
The type I/III interferon (IFN)-inducible 2'-5'- oligoadenylate synthetase (OAS)/endoribonuclease L (RNase L) is a classical innate immune pathway that has been implicated in antiviral and antibacterial defense and also in hereditary prostate cancer. The OAS/RNase L pathway is activated when OAS senses double-stranded RNA and catalyzes the synthesis of 2'-5' linked oligodenylates (2-5A) from ATP. 2-5A then binds and activates RNase L, resulting cleavage of single-stranded RNAs. RNase L cleavage products are capable of activating RIG-like receptors such as RIG-I and MDA5 that leads to IFN-β expression during viral infection. Our recent findings suggest that beside the RLR pathway, RNase L cleavage products can also activate the NLRP3-inflammasome pathway, which requires DHX33 (DExD/H-box helicase) and the mitochondrial adaptor protein MAVS. Here we discuss this newly identified role of OAS-RNase L pathway in regulation of inflammasome signaling as an alternative antimicrobial mechanism that has potential as a target for development of new broad-spectrum antimicrobial and anti-inflammatory therapies.
Collapse
Affiliation(s)
- Shuvojit Banerjee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
42
|
Zhang L, Xiang W, Wang G, Yan Z, Zhu Z, Guo Z, Sengupta R, Chen AF, Loughran PA, Lu B, Wang Q, Billiar TR. Interferon β (IFN-β) Production during the Double-stranded RNA (dsRNA) Response in Hepatocytes Involves Coordinated and Feedforward Signaling through Toll-like Receptor 3 (TLR3), RNA-dependent Protein Kinase (PKR), Inducible Nitric Oxide Synthase (iNOS), and Src Protein. J Biol Chem 2016; 291:15093-107. [PMID: 27226571 DOI: 10.1074/jbc.m116.717942] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Indexed: 12/19/2022] Open
Abstract
The sensing of double-stranded RNA (dsRNA) in the liver is important for antiviral defenses but can also contribute to sterile inflammation during liver injury. Hepatocytes are often the target of viral infection and are easily injured by inflammatory insults. Here we sought to establish the pathways involved in the production of type I interferons (IFN-I) in response to extracellular poly(I:C), a dsRNA mimetic, in hepatocytes. This was of interest because hepatocytes are long-lived and, unlike most immune cells that readily die after activation with dsRNA, are not viewed as cells with robust antimicrobial capacity. We found that poly(I:C) leads to rapid up-regulation of inducible nitric oxide synthase (iNOS), double-stranded RNA-dependent protein kinase (PKR), and Src. The production of IFN-β was dependent on iNOS, PKR, and Src and partially dependent on TLR3/Trif. iNOS and Src up-regulation was partially dependent on TLR3/Trif but entirely dependent on PKR. The phosphorylation of TLR3 on tyrosine 759 was shown to increase in parallel to IFN-β production in an iNOS- and Src-dependent manner, and Src was found to directly interact with TLR3 in the endosomal compartment of poly(I:C)-treated cells. Furthermore, we identified a robust NO/cGMP/PKG-dependent feedforward pathway for the amplification of iNOS expression. These data identify iNOS/NO as an integral component of IFN-β production in response to dsRNA in hepatocytes in a pathway that involves the coordinated activities of TLR3/Trif and PKR.
Collapse
Affiliation(s)
- Liyong Zhang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Wenpei Xiang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, the Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoliang Wang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhengzheng Yan
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhaowei Zhu
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Zhong Guo
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Rajib Sengupta
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Alex F Chen
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Patricia A Loughran
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, the Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, and
| | - Ben Lu
- the Xiangya Third Hospital and Central South University School of Medicine, Changsha, China
| | - Qingde Wang
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213
| | - Timothy R Billiar
- From the Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213,
| |
Collapse
|
43
|
p58(IPK) suppresses NLRP3 inflammasome activation and IL-1β production via inhibition of PKR in macrophages. Sci Rep 2016; 6:25013. [PMID: 27113095 PMCID: PMC4845006 DOI: 10.1038/srep25013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/04/2016] [Indexed: 02/07/2023] Open
Abstract
The NLRP3 inflammasome activation is a key signaling event for activation and secretion of pro-inflammatory cytokines such as IL-1β from macrophages. p58IPK is a molecular chaperone that regulates protein homeostasis through inhibiting eIF-2α kinases including double-stranded RNA–dependent protein kinase (PKR), which has been recently implicated in inflammasome activation. Herein we investigate the role of p58IPK in TLR4 signaling and inflammasome activation in macrophages. Primary bone marrow-derived macrophages (BMDM) was isolated from p58IPK knockout (KO) and wildtype (WT) mice and treated with lipopolysaccharide (LPS) and ATP to activate TLR4 signaling and stimulate inflammasome activation. Compared to WT macrophages, p58IPK deficient cells demonstrated significantly stronger activation of PKR, NF-κB, and JNK and higher expression of pro-inflammatory genes TNF-α and IL-1β. Coincidently, p58IPK deletion intensified NLRP3-inflammasome activation indicated by enhanced caspase 1 cleavage and increased IL-1β maturation and secretion. Pretreatment with specific PKR inhibitor or overexpression of p58IPK largely abolished the changes in inflammasome activation and IL-1β secretion in p58IPK null macrophages. Furthermore, immunoprecipitation assay confirmed the binding of p58IPK with PKR, but not other TLR4 downstream signaling molecules. Collectively, these results suggest a novel and crucial role of p58IPK in regulation of inflammasome activation and IL-1β secretion in macrophages.
Collapse
|
44
|
Webster SJ, Ellis L, O'Brien LM, Tyrrell B, Fitzmaurice TJ, Elder MJ, Clare S, Chee R, Gaston JSH, Goodall JC. IRE1α mediates PKR activation in response to Chlamydia trachomatis infection. Microbes Infect 2016; 18:472-83. [PMID: 27021640 PMCID: PMC4936793 DOI: 10.1016/j.micinf.2016.03.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/09/2016] [Accepted: 03/18/2016] [Indexed: 12/20/2022]
Abstract
Protein kinase RNA activated (PKR) is a crucial mediator of anti-viral responses but is reported to be activated by multiple non-viral stimuli. However, mechanisms underlying PKR activation, particularly in response to bacterial infection, remain poorly understood. We have investigated mechanisms of PKR activation in human primary monocyte-derived dendritic cells in response to infection by Chlamydia trachomatis. Infection resulted in potent activation of PKR that was dependent on TLR4 and MyD88 signalling. NADPH oxidase was dispensable for activation of PKR as cells from chronic granulomatous disease (CGD) patients, or mice that lack NADPH oxidase activity, had equivalent or elevated PKR activation. Significantly, stimulation of cells with endoplasmic reticulum (ER) stress-inducing agents resulted in potent activation of PKR that was blocked by an inhibitor of IRE1α RNAse activity. Crucially, infection resulted in robust IRE1α RNAse activity that was dependent on TLR4 signalling and inhibition of IRE1α RNAse activity prevented PKR activation. Finally, we demonstrate that TLR4/IRE1α mediated PKR activation is required for the enhancement of interferon-β production following C. trachomatis infection. Thus, we provide evidence of a novel mechanism of PKR activation requiring ER stress signalling that occurs as a consequence of TLR4 stimulation during bacterial infection and contributes to inflammatory responses.
Collapse
Affiliation(s)
- Steve J Webster
- Rheumatology Research Group, Department of Medicine, University of Cambridge, UK
| | - Lou Ellis
- Rheumatology Research Group, Department of Medicine, University of Cambridge, UK
| | - Louise M O'Brien
- Rheumatology Research Group, Department of Medicine, University of Cambridge, UK
| | - Beatrice Tyrrell
- Rheumatology Research Group, Department of Medicine, University of Cambridge, UK
| | | | - Matthew J Elder
- Rheumatology Research Group, Department of Medicine, University of Cambridge, UK
| | - Simon Clare
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Ronnie Chee
- Department of Immunology, Royal Free Hospital, London, UK
| | - J S Hill Gaston
- Rheumatology Research Group, Department of Medicine, University of Cambridge, UK
| | - Jane C Goodall
- Rheumatology Research Group, Department of Medicine, University of Cambridge, UK.
| |
Collapse
|
45
|
Wu T, Wang C, Ding L, Shen Y, Cui H, Wang M, Wang H. Arginine Relieves the Inflammatory Response and Enhances the Casein Expression in Bovine Mammary Epithelial Cells Induced by Lipopolysaccharide. Mediators Inflamm 2016; 2016:9618795. [PMID: 27110069 PMCID: PMC4821974 DOI: 10.1155/2016/9618795] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/24/2016] [Indexed: 12/31/2022] Open
Abstract
As one of functional active amino acids, L-arginine holds a key position in immunity. However, the mechanism that arginine modulates cow mammary inflammatory response in ruminant is unclear. Therefore, this study was conducted to investigate the effects of L-arginine on inflammatory response and casein expression after challenging the bovine mammary epithelial cells (BMECs) with lipopolysaccharide (LPS). The cells were divided into four groups, stimulated with or without LPS (10 μg/mL) and treated with or without arginine (100 μg/mL) for 12 h. The concentration of proinflammatory cytokines, inducible nitric oxide synthase (iNOS), mammalian target of rapamycin (mTOR), and Toll-like receptor 4 (TLR4) signaling pathways as well as the casein was determined. The results showed that arginine reduced the LPS-induced production like IL-1β, IL-6, TNF-α, and iNOS. Though the expression of NF-κB was attenuated and the mTOR signaling pathway was upregulated, arginine had no effect on TLR4 expression. In addition, our results show that the content of β-casein and the total casein were enhanced after arginine was supplemented in LPS-induced BMECs. In conclusion, arginine could relieve the inflammatory reaction induced by LPS and enhance the concentration of β-casein and the total casein in bovine mammary epithelial cells.
Collapse
Affiliation(s)
- Tianyou Wu
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Chao Wang
- Cell Signaling Group, School of Pathology and Laboratory Medicine, The University of Western Australia, M Block QEII Medical Center, Monash Avenue, Nedlands, WA 6009, Australia
| | - Luoyang Ding
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yizhao Shen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Huihui Cui
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Mengzhi Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
46
|
PKR is not obligatory for high-fat diet-induced obesity and its associated metabolic and inflammatory complications. Nat Commun 2016; 7:10626. [PMID: 26838266 PMCID: PMC4743083 DOI: 10.1038/ncomms10626] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 01/06/2016] [Indexed: 12/19/2022] Open
Abstract
Protein kinase R (PKR) has previously been suggested to mediate many of the deleterious consequences of a high-fat diet (HFD). However, previous studies have observed substantial phenotypic variability when examining the metabolic consequences of PKR deletion. Accordingly, herein, we have re-examined the role of PKR in the development of obesity and its associated metabolic complications in vivo as well as its putative lipid-sensing role in vitro. Here we show that the deletion of PKR does not affect HFD-induced obesity, hepatic steatosis or glucose metabolism, and only modestly affects adipose tissue inflammation. Treatment with the saturated fatty acid palmitate in vitro induced comparable levels of inflammation in WT and PKR KO macrophages, demonstrating that PKR is not necessary for the sensing of pro-inflammatory lipids. These results challenge the proposed role for PKR in obesity, its associated metabolic complications and its role in lipid-induced inflammation. Protein kinase R (PKR) has been suggested to act as a mediator of ER stress and inflammation in obesity. Here, Lancaster et al. find that genetic loss of PKR does not alter the development of obesity, and suggest that the use of littermate controls may explain differences in mouse knockout phenotypes.
Collapse
|
47
|
The kinase activity of PKR represses inflammasome activity. Cell Res 2016; 26:367-79. [PMID: 26794869 DOI: 10.1038/cr.2016.11] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 10/24/2015] [Accepted: 11/04/2015] [Indexed: 12/16/2022] Open
Abstract
The protein kinase R (PKR) functions in the antiviral response by controlling protein translation and inflammatory cell signaling pathways. We generated a transgenic, knock-in mouse in which the endogenous PKR is expressed with a point mutation that ablates its kinase activity. This novel animal allows us to probe the kinase-dependent and -independent functions of PKR. We used this animal together with a previously generated transgenic mouse that is ablated for PKR expression to determine the role of PKR in regulating the activity of the cryopyrin inflammasome. Our data demonstrate that, in contradiction to earlier reports, PKR represses cryopyrin inflammasome activity. We demonstrate that this control is mediated through the established function of PKR to inhibit protein translation of constituents of the inflammasome to prevent initial priming during innate immune signaling. These findings identify an important role for PKR to dampen inflammation during the innate immune response and caution against the previously proposed therapeutic strategy to inhibit PKR to treat inflammation.
Collapse
|
48
|
Cui J, Chen Y, Wang HY, Wang RF. Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum Vaccin Immunother 2015; 10:3270-85. [PMID: 25625930 DOI: 10.4161/21645515.2014.979640] [Citation(s) in RCA: 207] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Research on innate immune signaling and regulation has recently focused on pathogen recognition receptors (PRRs) and their signaling pathways. Members of PRRs sense diverse microbial invasions or danger signals, and initiate innate immune signaling pathways, leading to proinflammatory cytokines production, which, in turn, instructs adaptive immune response development. Despite the diverse functions employed by innate immune signaling to respond to a variety of different pathogens, the innate immune response must be tightly regulated. Otherwise, aberrant, uncontrolled immune responses will lead to harmful, or even fatal, consequences. Therefore, it is essential to better discern innate immune signaling and many regulators, controlling various signaling pathways, have been identified. In this review, we focus on the recent advances in our understanding of the activation and regulation of innate immune signaling in the host response to pathogens and cancer.
Collapse
Key Words
- AIM2, absent in melanoma 2
- ALRs, AIM2-like receptors
- AMPK, AMP activated protein kinase
- ASC, apoptosis-associated speck-like protein containing a CARD
- Atg16L, autophagy related 16-like
- BMM, bone marrow-derived macrophage
- CARD, caspase recruitment domain
- CDNs, cyclic dinucleotides
- CLRs, C-type lectin receptors
- CMV, cytomegalovirus
- CYLD, the familial cylindromatosis tumor suppressor gene
- DAMPs, danger-associated molecular patterns
- DCs, dendritic cells
- DDX41, DEAD (Asp-Glu-Ala-Asp) box polypeptide 41
- ER, endoplasmic reticulum
- GBP5, guanylate-binding protein 5
- GSK3β, Glycogen synthase kinase 3β
- HCC, hepatocellular carcinoma
- IFI16, interferon, gamma-inducible protein 16
- IFN, interferon
- IKK, IkB kinase
- IKKi, inducible IkB kinase
- IRAK, interleukin-1 receptor-associated kinase
- IRF, interferon regulatory factor
- KSHV, Kaposi's sarcoma-associated herpesvirus
- LBP, LPS-binding protein
- LGP 2, laboratory of genetics and physiology 2
- LPS, lipopolysaccharide
- LRR, leucine-rich repeat
- LT, lethal toxin
- LUBAC, linear ubiquitin assembly complex
- MAVS, mitochondrial antiviral signaling protein
- MDA5, melanoma differentiation-associated protein 5
- MDP, muramyl dipeptide
- MIB, mind bomb
- MyD88, myeloid differentiation factor 88
- NAIPs, neuronal apoptosis inhibitory proteins
- NEMO, NF-kB essential modulator
- NLRs, Nod- like receptors
- NOD, nucleotide-binding oligomerization domain
- Nrdp1, neuregulin receptor degradation protein 1
- PAMPs, pathogen-associated molecular patterns
- PKC-d, protein kinase C delta
- PKR, dsRNA-dependent protein kinase
- PRRs
- PRRs, pathogen recognition receptors
- RACK1, receptor for activated C kinase 1
- RAUL, RTA-associated E3 ligase
- RIG-I, retinoic acid-inducible gene 1
- RIP, receptor-interacting protein
- RLRs, RIG-I-like receptors
- ROS, reactive oxygen species
- SARM, sterile a- and armadillo motif-containing protein
- SIGIRR, single Ig IL-1-related receptor
- SOCS, suppressor of cytokine signaling
- STING, stimulator of interferon gene
- TAK1, TGF-b-activating kinase 1
- TANK, TRAF family-member-associated NF-kB activator
- TBK1, TANK binding kinase 1
- TIR, Toll IL-1 receptor
- TIRAP, TIR domain-containing adapter protein
- TLRs, Toll-like receptors
- TRAF, TNFR-associated factor
- TRAILR, tumor-necrosis factor-related apoptosis-inducing ligand receptor
- TRAM, TRIF-related adaptor molecule
- TRIF, TIR domain-containing adaptor inducing IFN-b
- TRIMs, tripartite motif containing proteins
- TRIP, TRAF-interacting protein
- ULK1, autophagy related serine threonine UNC-51- like kinase
- cDC, conventional dendritic cell
- cGAS, cyclic GMP-AMP synthase
- cIAP, cellular inhibitor of apoptosis protein
- cancer
- iE-DAP, g-D-glutamyl-meso-diaminopimelic acid
- inflammation
- innate immunity
- pDC, plasmacytoid dendritic cell
- type I interferon
Collapse
Affiliation(s)
- Jun Cui
- a Key Laboratory of Gene Engineering of the Ministry of Education; State Key Laboratory of Biocontrol; School of Life Sciences ; Sun Yat-sen University ; Guangzhou , P. R. China
| | | | | | | |
Collapse
|
49
|
Eigenbrod T, Dalpke AH. Bacterial RNA: An Underestimated Stimulus for Innate Immune Responses. THE JOURNAL OF IMMUNOLOGY 2015; 195:411-8. [DOI: 10.4049/jimmunol.1500530] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
50
|
Toldo S, Mezzaroma E, Mauro AG, Salloum F, Van Tassell BW, Abbate A. The inflammasome in myocardial injury and cardiac remodeling. Antioxid Redox Signal 2015; 22:1146-61. [PMID: 25330141 DOI: 10.1089/ars.2014.5989] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
SIGNIFICANCE An inflammatory response follows an injury of any nature, and while such a response is an attempt to promote healing, it may, itself, result in further injury. RECENT ADVANCES The inflammasome is a macromolecular structure recently recognized as a central mediator in the acute inflammatory response. The inflammasome senses the injury and it amplifies the response by leading to the release of powerful pro-inflammatory cytokines, interleukin-1β (IL-1β) and IL-18. CRITICAL ISSUES The activation of the inflammasome in the heart during ischemic and nonischemic injury represents an exaggerated response to sterile injury and promotes adverse cardiac remodeling and failure. FUTURE DIRECTIONS Pilot clinical trials have explored blockade of the inflammasome-derived IL-1β and have shown beneficial effects on cardiac function. Additional clinical studies testing this approach are warranted. Moreover, specific inflammasome inhibitors that are ready for clinical use are currently lacking.
Collapse
Affiliation(s)
- Stefano Toldo
- 1 VCU Pauley Heart Center, Virginia Commonwealth University , Richmond, Virginia
| | | | | | | | | | | |
Collapse
|