1
|
Friedrich J, Liu S, Fang L, Prendergast J, Wiener P. Insights into trait-association of selection signatures and adaptive eQTL in indigenous African cattle. BMC Genomics 2024; 25:981. [PMID: 39425030 PMCID: PMC11490109 DOI: 10.1186/s12864-024-10852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/30/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND African cattle represent a unique resource of genetic diversity in response to adaptation to numerous environmental challenges. Characterising the genetic landscape of indigenous African cattle and identifying genomic regions and genes of functional importance can contribute to targeted breeding and tackle the loss of genetic diversity. However, pinpointing the adaptive variant and determining underlying functional mechanisms of adaptation remains challenging. RESULTS In this study, we use selection signatures from whole-genome sequence data of eight indigenous African cattle breeds in combination with gene expression and quantitative trait loci (QTL) databases to characterise genomic targets of artificial selection and environmental adaptation and to identify the underlying functional candidate genes. In general, the trait-association analyses of selection signatures suggest the innate and adaptive immune system and production traits as important selection targets. For example, a large genomic region, with selection signatures identified for all breeds except N'Dama, was located on BTA27, including multiple defensin DEFB coding-genes. Out of 22 analysed tissues, genes under putative selection were significantly enriched for those overexpressed in adipose tissue, blood, lung, testis and uterus. Our results further suggest that cis-eQTL are themselves selection targets; for most tissues, we found a positive correlation between allele frequency differences and cis-eQTL effect size, suggesting that positive selection acts directly on regulatory variants. CONCLUSIONS By combining selection signatures with information on gene expression and QTL, we were able to reveal compelling candidate selection targets that did not stand out from selection signature results alone (e.g. GIMAP8 for tick resistance and NDUFS3 for heat adaptation). Insights from this study will help to inform breeding and maintain diversity of locally adapted, and hence important, breeds.
Collapse
Affiliation(s)
- Juliane Friedrich
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK.
| | - Shuli Liu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics (QGG), Aarhus University, Aarhus, Denmark
| | - James Prendergast
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| | - Pamela Wiener
- Division of Genetics and Genomics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, UK
| |
Collapse
|
2
|
Zhang Y, Liu S, Liu D, Zhao Z, Song H, Peng K. Identification and validation of GIMAP family genes as immune-related prognostic biomarkers in lung adenocarcinoma. Heliyon 2024; 10:e33111. [PMID: 38948046 PMCID: PMC11211882 DOI: 10.1016/j.heliyon.2024.e33111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 07/02/2024] Open
Abstract
Background The GIMAP family genes play a key role in immune function. Increasing evidence suggests that GIMAP genes were implicated in the tumorigenesis of lung adenocarcinoma (LUAD). This study aimed to investigate the clinical significance of GIMAP family genes in LUAD. Methods In this study, we explored the expression, mutation, prognostic value of GIMAP family genes and the correlation with immune microenvironment in LUAD. We further investigated the relationship between GIMAP family genes expression and immunotherapy response in GEO LUAD and melanoma cohorts. Results Among the GIMAP family genes, the expression levels of GIMAP1, GIMAP2, GIMAP4, GIMAP5, GIMAP6, GIMAP7, and GIMAP8 were significantly lower in LUAD tumor tissues than normal tissues. Most GIMAP genes were closely related to age, tumor grade and T stage, but not significantly related to sex, N stage and M stage. In the overall population, patients with high expression of GIMAP family genes had a significant longer overall survival (OS). GO and KEGG enrichment analysis showed that GIMAP family genes were highly enriched in immune-related biological process. The expression of GIMAP family genes was positively correlated with immune cell infiltration and immune checkpoint molecules. Furthermore, high expression of GIMAP family genes were correlated with therapeutic response to immunotherapy in LUAD and melanoma patients. Conclusion In this study, we identified that GIMAP family genes were significantly associated with immune cell infiltration and immune checkpoint molecules. They potentially play a critical role in anti-tumor immunity and serve as immunotherapy biomarkers.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department of Infectious Diseases, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Shan Liu
- Department of Cardiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou Institute of Cardiovascular Disease, Guangzhou, Guangdong, China
| | - Deyi Liu
- Department of General Practice, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhuxiang Zhao
- Department of Infectious Diseases, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Haifeng Song
- Department of Oncology, Lianzhou People's Hospital, Lianzhou, Guangdong, China
| | - Kunwei Peng
- Guangzhou Key Laboratory for Research and Development of Nano-Biomedical Technology for Diagnosis and Therapy & Guangdong Provincial Education Department Key Laboratory of Nano-Immunoregulation Tumour Microenvironment, Department of Oncology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Xie L, Du B, Yu H, Gui L, Qiu J, Yuan L, Shen Y, Xu X, Li J. MicroRNA-30e-3p regulates the inflammatory response by targeting the gimap8 gene in Ctenopharyngodon idella kidney (CIK) cells. FISH & SHELLFISH IMMUNOLOGY 2024; 149:109524. [PMID: 38527657 DOI: 10.1016/j.fsi.2024.109524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
Recent studies have increasingly linked miRNAs with the modulation of inflammatory responses and immunosuppressive activities. This investigation reveals that mir-30e-3p selectively binds to and modulates gimap8, as demonstrated by luciferase reporter assays and qPCR analyses. Upon LPS stimulation of CIK cells, mir-30e-3p expression was notably elevated, inversely correlating with a decrease in gimap8 mRNA levels. Overexpression of mir-30e-3p attenuated the mRNA levels of pro-inflammatory cytokines beyond the effect of LPS alone, suggesting a regulatory role of mir-30e-3p in inflammation mediated by the gimap8 gene. These insights contribute to our understanding of the complex mechanisms governing inflammatory and immune responses.
Collapse
Affiliation(s)
- Lingli Xie
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Biao Du
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Hongyan Yu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China
| | - Lang Gui
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Junqiang Qiu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Li Yuan
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yubang Shen
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xiaoyan Xu
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| | - Jiale Li
- Key Laboratory of Freshwater Aquatic Genetic Resources Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China; Shanghai Engineering Research Center of Aquaculture, Shanghai Ocean University, Shanghai, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
4
|
Zhang J, Li Y, Yang Y, Huang J, Sun Y, Zhang X, Kong X. A novel iTreg-related signature for prognostic prediction in lung adenocarcinoma. Cancer Sci 2024; 115:109-124. [PMID: 38015097 PMCID: PMC10823293 DOI: 10.1111/cas.16015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 11/29/2023] Open
Abstract
Lung adenocarcinoma (LUAD) is the most common subtype of lung cancer. Most patients are diagnosed at an advanced stage, therefore it is crucial to identify novel prognostic biomarkers for LUAD. As important regulatory cells, inducible regulatory T cells (iTregs) play a vital role in immune suppression and are important for the maintenance of immune homeostasis. This study explored the prognostic value and therapeutic effects of iTreg-related genes in LUAD. Data for LUAD patients, including immune infiltration data, RNA sequencing data, and clinical features, were acquired from The Cancer Genome Atlas, Gene Expression Omnibus, and Tumor Immune Single-cell Hub 2 databases. Immune-related subgroups with different infiltration patterns and iTreg-related genes were identified through univariate and multivariate Cox regression analyses and weighted correlation network analysis. Functional enrichment analyses were performed to explore the underlying mechanisms of iTreg-related genes. A prognostic risk signature was constructed using Cox regression analysis with the least absolute shrinkage and selection operator penalty. The ESTIMATE algorithm was applied to determine the immune status of LUAD patients. We applied the constructed signature to predict chemosensitivity and performed single-cell RNA sequencing analysis. The infiltration of iTregs was identified as an independent factor for predicting patient outcomes. We constructed a prognostic signature based on seven iTreg-related genes (GIMAP5, SLA, MS4A7, ZNF366, POU2AF1, MRPL12, and COL5A1), which was applied to subdivide patients into high- and low-risk subgroups. Our results revealed that patients in the iTreg-related low-risk subgroup had a better prognosis and possibly greater sensitivity to traditional chemotherapy. Our study provides a novel iTreg-related signature to elucidate the mechanisms underlying LUAD prognosis and promote individualized chemotherapy treatment.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Thoracic SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Yan Li
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Harbin Medical UniversityHarbinHeilongjiangChina
| | - Yue Yang
- Institute of Cancer Prevention and Treatment, Harbin Medical UniversityHarbinHeilongjiangChina
| | - Jian Huang
- The Fourth Department of Medical OncologyHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Yue Sun
- The Academic Department of Science and TechnologyHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Xi Zhang
- Department of AnaesthesiologyHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| | - Xianglong Kong
- Department of Thoracic SurgeryHarbin Medical University Cancer HospitalHarbinHeilongjiangChina
| |
Collapse
|
5
|
Kyselová J, Tichý L, Sztankóová Z, Marková J, Kavanová K, Beinhauerová M, Mušková M. Comparative Characterization of Immune Response in Sheep with Caseous Lymphadenitis through Analysis of the Whole Blood Transcriptome. Animals (Basel) 2023; 13:2144. [PMID: 37443943 DOI: 10.3390/ani13132144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Caseous lymphadenitis (CL) is a chronic contagious disease that affects small ruminants and is characterized by the formation of pyogranulomas in lymph nodes and other organs. However, the pathogenesis of this disease and the response of the host genome to infection are not yet fully understood. This study aimed to investigate the whole blood transcriptome and evaluate differential gene expression during the later stages of CL in naturally infected ewes. The study included diseased, serologically positive (EP), exposed, serologically negative (EN) ewes from the same infected flock and healthy ewes (CN) from a different flock. RNA sequencing was performed using the Illumina NextSeq system, and differential gene expression was estimated using DESeq2 and Edge R approaches. The analysis identified 191 annotated differentially expressed genes (DEGs) in the EP group (102 upregulated and 89 downregulated) and 256 DEGs in the EN group (106 upregulated and 150 downregulated) compared to the CN group. Numerous immunoregulatory interactions between lymphoid and nonlymphoid cells were influenced in both EP and EN ewes. Immune DEGs were preferentially assigned to antigen presentation through the MHC complex, T lymphocyte-mediated immunity, and extracellular matrix interactions. Furthermore, the EP group showed altered regulation of cytokine and chemokine signaling and activation and recombination of B-cell receptors. Conversely, NF-kappa B signaling, apoptosis, and stress response were the main processes influenced in the EN group. In addition, statistically significant enrichment of the essential immune pathways of binding and uptake of ligands by scavenger receptors in EP and p53 signaling in the EN group was found. In conclusion, this study provides new insights into the disease course and host-pathogen interaction in naturally CL-infected sheep by investigating the blood transcriptome.
Collapse
Affiliation(s)
- Jitka Kyselová
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| | - Ladislav Tichý
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
- Department of Genetics and Breeding, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, 165 00 Prague, Czech Republic
| | - Zuzana Sztankóová
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| | - Jiřina Marková
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Kateřina Kavanová
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Monika Beinhauerová
- Department of Microbiology and Antimicrobial Resistance, Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Michala Mušková
- Department of Genetics and Breeding of Farm Animals, Institute of Animal Science, 104 00 Prague, Czech Republic
| |
Collapse
|
6
|
Prognostic Value of GIMAP4 and Its Role in Promoting Immune Cell Infiltration into Tumor Microenvironment of Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2022; 2022:7440189. [PMID: 36246963 PMCID: PMC9560834 DOI: 10.1155/2022/7440189] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/24/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022]
Abstract
GIMAPs are recognized as an important regulator in the carcinogenesis and development of lung cancer, but the function of GIMAP4 in the tumor microenvironment (TME) of lung cancers is unclear. In this study, we investigated the expression and variation of GIMAP4 in lung adenocarcinoma (LUAD), to explore its association with infiltration of immune cells. The Cancer Genome Atlas (TCGA) data and Gene Expression Omnibus (GEO) data were analyzed. Infiltration of immune cells was identified with TIMER (Tumor Immune Estimation Resource) and TISIDB (an integrated repository portal for tumor-immune system interactions). GIMAP4 expression declined in non-small-cell lung cancer (NSCLC), correlated with a poor overall survival (OS) in LUAD, indicating that GIMAP4 was a promising prognostic biomarker in LUAD. GIMAP4 mutation frequency was 1.76% in TCGA cohort and was relevant to the expression of immune components. TIMER and CIBERSORT analysis further confirmed that high GIMAP4 expression possibly promoted immune cell infiltration into the TME, with low GIMAP4 impairing the efficacy of immunotherapies targeting common immune check point inhibitors (ICI). GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) analyses were performed to provide insights into biological processes involved in LUAD. GIMAP4 was expected to be a prognostic biomarker in LUAD and provides potential adjuvant or neoadjuvant therapeutic strategies for targeting ICIs.
Collapse
|
7
|
Identification of distinct functional thymic programming of fetal and pediatric human γδ thymocytes via single-cell analysis. Nat Commun 2022; 13:5842. [PMID: 36195611 PMCID: PMC9532436 DOI: 10.1038/s41467-022-33488-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/21/2022] [Indexed: 12/12/2022] Open
Abstract
Developmental thymic waves of innate-like and adaptive-like γδ T cells have been described, but the current understanding of γδ T cell development is mainly limited to mouse models. Here, we combine single cell (sc) RNA gene expression and sc γδ T cell receptor (TCR) sequencing on fetal and pediatric γδ thymocytes in order to understand the ontogeny of human γδ T cells. Mature fetal γδ thymocytes (both the Vγ9Vδ2 and nonVγ9Vδ2 subsets) are committed to either a type 1, a type 3 or a type 2-like effector fate displaying a wave-like pattern depending on gestation age, and are enriched for public CDR3 features upon maturation. Strikingly, these effector modules express different CDR3 sequences and follow distinct developmental trajectories. In contrast, the pediatric thymus generates only a small effector subset that is highly biased towards Vγ9Vδ2 TCR usage and shows a mixed type 1/type 3 effector profile. Thus, our combined dataset of gene expression and detailed TCR information at the single-cell level identifies distinct functional thymic programming of γδ T cell immunity in human. Knowledge about the ontogeny of T cells in the thymus relies heavily on mouse studies because of difficulty to obtain human material. Here the authors perform a single cell analysis of thymocytes from human fetal and paediatric thymic samples to characterise the development of human γδ T cells in the thymus.
Collapse
|
8
|
Yao Y, Du Jiang P, Chao BN, Cagdas D, Kubo S, Balasubramaniyam A, Zhang Y, Shadur B, NaserEddin A, Folio LR, Schwarz B, Bohrnsen E, Zheng L, Lynberg M, Gottlieb S, Leney-Greene MA, Park AY, Tezcan I, Akdogan A, Gocmen R, Onder S, Rosenberg A, Soilleux EJ, Johnson E, Jackson PK, Demeter J, Chauvin SD, Paul F, Selbach M, Bulut H, Clatworthy MR, Tuong ZK, Zhang H, Stewart BJ, Bosio CM, Stepensky P, Clare S, Ganesan S, Pascall JC, Daumke O, Butcher GW, McMichael AJ, Simon AK, Lenardo MJ. GIMAP6 regulates autophagy, immune competence, and inflammation in mice and humans. J Exp Med 2022; 219:213217. [PMID: 35551368 PMCID: PMC9111091 DOI: 10.1084/jem.20201405] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 01/18/2022] [Accepted: 03/16/2022] [Indexed: 11/26/2022] Open
Abstract
Inborn errors of immunity (IEIs) unveil regulatory pathways of human immunity. We describe a new IEI caused by mutations in the GTPase of the immune-associated protein 6 (GIMAP6) gene in patients with infections, lymphoproliferation, autoimmunity, and multiorgan vasculitis. Patients and Gimap6−/− mice show defects in autophagy, redox regulation, and polyunsaturated fatty acid (PUFA)–containing lipids. We find that GIMAP6 complexes with GABARAPL2 and GIMAP7 to regulate GTPase activity. Also, GIMAP6 is induced by IFN-γ and plays a critical role in antibacterial immunity. Finally, we observed that Gimap6−/− mice died prematurely from microangiopathic glomerulosclerosis most likely due to GIMAP6 deficiency in kidney endothelial cells.
Collapse
Affiliation(s)
- Yikun Yao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Ping Du Jiang
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Brittany N Chao
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD.,Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK.,Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Deniz Cagdas
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.,Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Satoshi Kubo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Arasu Balasubramaniyam
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Bella Shadur
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel.,The Garvan Institute of Medical Research, Immunology Division, Darlinghurst, Sydney, Australia.,St Vincent's Clinical School, University of New South Wales, Darlinghurst, Sydney, Australia
| | - Adeeb NaserEddin
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel
| | - Les R Folio
- Clinical Center, National Institutes of Health, Bethesda, MD
| | - Benjamin Schwarz
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Eric Bohrnsen
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Lixin Zheng
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Matthew Lynberg
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Simone Gottlieb
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Michael A Leney-Greene
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Ann Y Park
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Ilhan Tezcan
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey.,Department of Pediatric Immunology, Institute of Child Health, Hacettepe University, Ankara, Turkey.,Ihsan Dogramaci Childrens Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ali Akdogan
- Division of Rheumatology, Department of Internal Medicine, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Rahsan Gocmen
- Department of Radiology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sevgen Onder
- Department of Pathology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Avi Rosenberg
- Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD.,Department of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD
| | | | - Errin Johnson
- The Dunn School of Pathology, South Parks Road, Oxford, UK
| | - Peter K Jackson
- Baxter Laboratory, Departments of Microbiology & Immunology and Pathology Stanford University School of Medicine, Stanford, CA
| | - Janos Demeter
- Baxter Laboratory, Departments of Microbiology & Immunology and Pathology Stanford University School of Medicine, Stanford, CA
| | - Samuel D Chauvin
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| | - Florian Paul
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Matthias Selbach
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Haydar Bulut
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Menna R Clatworthy
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Zewen K Tuong
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Hanlin Zhang
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Benjamin J Stewart
- Molecular Immunity Unit, University of Cambridge Department of Medicine, Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.,Cellular Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Catharine M Bosio
- Laboratory of Bacteriology, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - Polina Stepensky
- Hadassah University Medical Center, Department of Bone Marrow Transplantation and Cancer Immunotherapy, Jerusalem, Israel
| | - Simon Clare
- Host-Microbiota Interactions Laboratory, Wellcome Sanger Institute, Hinxton, UK
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, Rockville, MD
| | - John C Pascall
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Oliver Daumke
- Crystallography, Max-Delbrück-Centrum for Molecular Medicine in the Helmholtz Association, Berlin, Germany.,Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustrasse 6, Berlin, Germany
| | - Geoffrey W Butcher
- Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Babraham Research Campus, Cambridge, UK
| | - Andrew J McMichael
- Nuffield Department of Medicine Research Building, Roosevelt Drive, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Anna Katharina Simon
- Kennedy Institute of Rheumatology, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Michael J Lenardo
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD.,National Institute of Allergy and Infectious Diseases Clinical Genomics Program, Rockville, MD
| |
Collapse
|
9
|
Qin Y, Liu H, Huang X, Huang L, Liao L, Li J, Zhang L, Li W, Yang J. GIMAP7 as a Potential Predictive Marker for Pan-Cancer Prognosis and Immunotherapy Efficacy. J Inflamm Res 2022; 15:1047-1061. [PMID: 35210811 PMCID: PMC8858002 DOI: 10.2147/jir.s342503] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 02/02/2022] [Indexed: 01/26/2023] Open
Abstract
Background Methods Results Conclusion
Collapse
Affiliation(s)
- Yan Qin
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, 530021, People’s Republic of China
| | - He Liu
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, 530021, People’s Republic of China
| | - Xiaoliang Huang
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Lihaoyun Huang
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Lixian Liao
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jiasheng Li
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Lihua Zhang
- Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, People’s Republic of China
| | - Wei Li
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jianrong Yang
- Department of Health Management, The People’s Hospital of Guangxi Zhuang Autonomous Region & Research Center of Health Management, Guangxi Academy of Medical Sciences, Nanning, Guangxi, 530021, People’s Republic of China
- Correspondence: Jianrong Yang; Wei Li, Health Examination Center, The People’s Hospital of Guangxi Zhuang Autonomous Region, Email ;
| |
Collapse
|
10
|
Coelho JC, Calhoun ED, Calhoun GN, Poole AZ. Patchy Distribution of GTPases of Immunity Associated Proteins (GIMAP) within Cnidarians and Dinoflagellates Suggests a Complex Evolutionary History. Genome Biol Evol 2022; 14:6500283. [PMID: 35015849 PMCID: PMC8857920 DOI: 10.1093/gbe/evac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
GTPases of Immunity-Associated Proteins (GIMAP) are a group of small GTP-binding proteins found in a variety of organisms, including vertebrates, invertebrates, and plants. These proteins are characterized by the highly conserved AIG1 domain, and in vertebrates, have been implicated in regulation of the immune system as well as apoptosis and autophagy, though their exact mechanism of action remains unclear. Recent work on cnidarian GIMAPs suggests a conserved role in immunity, apoptosis, and autophagy—three processes involved in coral bleaching, or the breakdown of cnidarian-dinoflagellate symbiosis. Therefore, to further understand the evolution of GIMAPs in this group of organisms, the purpose of this study was to characterize GIMAP or GIMAP-like sequences utilizing publicly available genomic and transcriptomic data in species across the cnidarian phylogeny. The results revealed a patchy distribution of GIMAPs in cnidarians, with three distinct types referred to as L-GIMAP, S-GIMAP, and GIMAP-like. Additionally, GIMAPs were present in most dinoflagellate species and formed seven well-supported clades. Overall, these results elucidate the distribution of GIMAPs within two distantly related eukaryotic groups and represent the first in-depth investigation on the evolution of these proteins within both protists and basal metazoans.
Collapse
Affiliation(s)
- Jenny C Coelho
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA.,Department of Biology, University of North Carolina at Chapel Hill, 120 South Rd, Chapel Hill, NC 27599, USA
| | - Ethan D Calhoun
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA
| | - Grant N Calhoun
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA
| | - Angela Z Poole
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA
| |
Collapse
|
11
|
Blake D, Lynch KW. The three as: Alternative splicing, alternative polyadenylation and their impact on apoptosis in immune function. Immunol Rev 2021; 304:30-50. [PMID: 34368964 DOI: 10.1111/imr.13018] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/28/2021] [Indexed: 12/13/2022]
Abstract
The latest advances in next-generation sequencing studies and transcriptomic profiling over the past decade have highlighted a surprising frequency of genes regulated by RNA processing mechanisms in the immune system. In particular, two control steps in mRNA maturation, namely alternative splicing and alternative polyadenylation, are now recognized to occur in the vast majority of human genes. Both have the potential to alter the identity of the encoded protein, as well as control protein abundance or even protein localization or association with other factors. In this review, we will provide a summary of the general mechanisms by which alternative splicing (AS) and alternative polyadenylation (APA) occur, their regulation within cells of the immune system, and their impact on immunobiology. In particular, we will focus on how control of apoptosis by AS and APA is used to tune cell fate during an immune response.
Collapse
Affiliation(s)
- Davia Blake
- Immunology Graduate Group and the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kristen W Lynch
- Immunology Graduate Group and the Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
12
|
Cristinelli S, Angelino P, Janowczyk A, Delorenzi M, Ciuffi A. HIV Modifies the m6A and m5C Epitranscriptomic Landscape of the Host Cell. FRONTIERS IN VIROLOGY 2021. [DOI: 10.3389/fviro.2021.714475] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The study of RNA modifications, today known as epitranscriptomics, is of growing interest. The N6-methyladenosine (m6A) and 5-methylcytosine (m5C) RNA modifications are abundantly present on mRNA molecules, and impact RNA interactions with other proteins or molecules, thereby affecting cellular processes, such as RNA splicing, export, stability, and translation. Recently m6A and m5C marks were found to be present on human immunodeficiency (HIV) transcripts as well and affect viral replication. Therefore, the discovery of RNA methylation provides a new layer of regulation of HIV expression and replication, and thus offers novel array of opportunities to inhibit replication. However, no study has been performed to date to investigate the impact of HIV replication on the transcript methylation level in the infected cell. We used a productive HIV infection model, consisting of the CD4+ SupT1 T cell line infected with a VSV-G pseudotyped HIVeGFP-based vector, to explore the temporal landscape of m6A and m5C epitranscriptomic marks upon HIV infection, and to compare it to mock-treated cells. Cells were collected at 12, 24, and 36 h post-infection for mRNA extraction and FACS analysis. M6A RNA modifications were investigated by methylated RNA immunoprecipitation followed by high-throughput sequencing (MeRIP-Seq). M5C RNA modifications were investigated using a bisulfite conversion approach followed by high-throughput sequencing (BS-Seq). Our data suggest that HIV infection impacted the methylation landscape of HIV-infected cells, inducing mostly increased methylation of cellular transcripts upon infection. Indeed, differential methylation (DM) analysis identified 59 m6A hypermethylated and only 2 hypomethylated transcripts and 14 m5C hypermethylated transcripts and 7 hypomethylated ones. All data and analyses are also freely accessible on an interactive web resource (http://sib-pc17.unil.ch/HIVmain.html). Furthermore, both m6A and m5C methylations were detected on viral transcripts and viral particle RNA genomes, as previously described, but additional patterns were identified. This work used differential epitranscriptomic analysis to identify novel players involved in HIV life cycle, thereby providing innovative opportunities for HIV regulation.
Collapse
|
13
|
Rindler K, Krausgruber T, Thaler FM, Alkon N, Bangert C, Kurz H, Fortelny N, Rojahn TB, Jonak C, Griss J, Bock C, Brunner PM. Spontaneously Resolved Atopic Dermatitis Shows Melanocyte and Immune Cell Activation Distinct From Healthy Control Skin. Front Immunol 2021; 12:630892. [PMID: 33717163 PMCID: PMC7943477 DOI: 10.3389/fimmu.2021.630892] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 02/01/2021] [Indexed: 01/11/2023] Open
Abstract
Atopic dermatitis (AD) typically starts in infancy or early childhood, showing spontaneous remission in a subset of patients, while others develop lifelong disease. Despite an increased understanding of AD, factors guiding its natural course are only insufficiently elucidated. We thus performed suction blistering in skin of adult patients with stable, spontaneous remission from previous moderate-to-severe AD during childhood. Samples were compared to healthy controls without personal or familial history of atopy, and to chronic, active AD lesions. Skin cells and tissue fluid obtained were used for single-cell RNA sequencing and proteomic multiplex assays, respectively. We found overall cell composition and proteomic profiles of spontaneously healed AD to be comparable to healthy control skin, without upregulation of typical AD activity markers (e.g., IL13, S100As, and KRT16). Among all cell types in spontaneously healed AD, melanocytes harbored the largest numbers of differentially expressed genes in comparison to healthy controls, with upregulation of potentially anti-inflammatory markers such as PLA2G7. Conventional T-cells also showed increases in regulatory markers, and a general skewing toward a more Th1-like phenotype. By contrast, gene expression of regulatory T-cells and keratinocytes was essentially indistinguishable from healthy skin. Melanocytes and conventional T-cells might thus contribute a specific regulatory milieu in spontaneously healed AD skin.
Collapse
Affiliation(s)
- Katharina Rindler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Felix M. Thaler
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Natalia Alkon
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christine Bangert
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Harald Kurz
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Nikolaus Fortelny
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Thomas B. Rojahn
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Constanze Jonak
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Johannes Griss
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Center for Medical Statistics, Informatics, and Intelligent Systems, Institute of Artificial Intelligence and Decision Support, Medical University of Vienna, Vienna, Austria
| | - Patrick M. Brunner
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
14
|
A human case of GIMAP6 deficiency: a novel primary immune deficiency. Eur J Hum Genet 2020; 29:657-662. [PMID: 33328581 PMCID: PMC7739214 DOI: 10.1038/s41431-020-00773-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 09/14/2020] [Accepted: 10/27/2020] [Indexed: 01/08/2023] Open
Abstract
The GTPase of immunity-associated proteins (GIMAPs) are a family of genes believed to contribute to lymphocyte development, signaling, and apoptosis, thus playing an important role in immune system homeostasis. While models of gene derangement have been described in both mice and immortalized cell lines, human examples of these diseases remain exceptionally rare. In this manuscript we describe the first documented human cases of a homozygous deleterious GIMAP6 variant in the GIMAP6 gene and their subsequent clinical and immunological phenotype. In order to interrogate the patients’ immune defect, we performed whole-exome sequencing, western blot, flow cytometry analysis, lymphocyte activation and proliferation studies, cytokine release assays, and apoptosis studies. We found two siblings with a predicted deleterious homozygous variant in the GIMAP6 gene with no expression of GIMAP6 protein on western blot. Patients demonstrated accelerated apoptosis, but largely normal lymphocyte subpopulations, activation and proliferation and cytokine release. There appears to be a spectrum of clinical features associated with deficiency of GIMAP6 protein, with one patient suffering lymphopenia and recurrent sinopulmonary infections, and the other clinically asymptomatic. Biallelic variants in the GIMAP6 gene have now been shown to demonstrate disease in humans. The absence of GIMAP6 protein is associated with a spectrum of clinical manifestations and much remains to be learnt about the pathogenic mechanisms underlying this disease. We suggest that biallelic variants in the gene for GIMAP6 should be considered in children with lymphopenia and recurrent sinopulmonary infections.
Collapse
|
15
|
Bailey GF, Coelho JC, Poole AZ. Differential expression of Exaiptasia pallida GIMAP genes upon induction of apoptosis and autophagy suggests a potential role in cnidarian symbiosis and disease. J Exp Biol 2020; 223:jeb229906. [PMID: 32978315 DOI: 10.1242/jeb.229906] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/15/2020] [Indexed: 01/11/2023]
Abstract
Coral reefs, one of the world's most productive and diverse ecosystems, are currently threatened by a variety of stressors that result in increased prevalence of both bleaching and disease. Therefore, understanding the molecular mechanisms involved in these responses is critical to mitigate future damage to the reefs. One group of genes that is potentially involved in cnidarian immunity and symbiosis is GTPases of immunity associated proteins (GIMAP). In vertebrates, this family of proteins is involved in regulating the fate of developing lymphocytes and interacts with proteins involved in apoptosis and autophagy. As apoptosis, autophagy and immunity have previously been shown to be involved in cnidarian symbiosis and disease, the goal of this research was to determine the role of cnidarian GIMAPs in these processes using the anemone Exaiptasia pallida To do so, GIMAP genes were characterized in the E. pallida genome and changes in gene expression were measured using qPCR in response to chemical induction of apoptosis, autophagy and treatment with the immune stimulant lipopolysaccharide (LPS) in both aposymbiotic and symbiotic anemones. The results revealed four GIMAP-like genes in E. pallida, referred to as Ep_GIMAPs Induction of apoptosis and autophagy resulted in a general downregulation of Ep_GIMAPs, but no significant changes were observed in response to LPS treatment. This indicates that Ep_GIMAPs may be involved in the regulation of apoptosis and autophagy, and therefore could play a role in cnidarian-dinoflagellate symbiosis. Overall, these results increase our knowledge on the function of GIMAPs in a basal metazoan.
Collapse
Affiliation(s)
- Grace F Bailey
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| | - Jenny C Coelho
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| | - Angela Z Poole
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry, GA 30161, USA
| |
Collapse
|
16
|
Systemic analyses of expression patterns and clinical features for GIMAPs family members in lung adenocarcinoma. Aging (Albany NY) 2020; 12:20413-20431. [PMID: 33115964 PMCID: PMC7655191 DOI: 10.18632/aging.103836] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/14/2020] [Indexed: 12/22/2022]
Abstract
GTPase of immunity-associated proteins (GIMAPs) are frequently prescribed as important components of immune regulation complexes, which were known to play key roles in lung adenocarcinoma. However, little is known about the function of distinct GIMAPs in lung adenocarcinoma. To address this issue, this study investigated the biological function and pathway of GIMAPs in lung adenocarcinoma using multiple public databases. Absent expression of GIMAPs was found in lung adenocarcinoma at mRNA and protein levels. While a purity-corrected value uncovered that all GIMAPs were positively associated with the immune infiltration of lung adenocarcinoma. Furthermore, the expressions of GIMAPs were considered to be negatively associated with clinical cancer stages, patient’s gender and pathological tumor grades in patients with lung adenocarcinoma. Besides, higher mRNA expression of GIMAPs was significantly associated with longer overall survival of patients with lung adenocarcinoma. Taken together, these results may enable GIMAPs family members as diagnostic and survival biomarker candidates or even potential therapeutic targets for patients with lung adenocarcinoma.
Collapse
|
17
|
Berg HE, Blackburn PR, Baughn LB, Ketterling RP, Xu X, Greipp PT, Hoppman NL, Smadbeck JB, Vasmatzis G, Shi M, Reichard KK, Viswanatha DS, Jevremovic D, Maher GM, Peterson JF. Identification of a novel KMT2A/GIMAP8 gene fusion in a pediatric patient with acute undifferentiated leukemia. Genes Chromosomes Cancer 2020; 60:108-111. [PMID: 33078871 DOI: 10.1002/gcc.22902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 01/05/2023] Open
Abstract
Acute undifferentiated leukemia (AUL) is a very rare hematologic neoplasm that expresses no markers specific for either myeloid or lymphoid lineages. While commonly observed in several acute leukemias, KMT2A rearrangements in AUL have been rarely reported in the literature. We report the third case to our knowledge of AUL harboring a KMT2A rearrangement. Furthermore, the KMT2A/GIMAP8 gene fusion identified in this case represents a novel KMT2A rearrangement.
Collapse
Affiliation(s)
- Holly E Berg
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patrick R Blackburn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Linda B Baughn
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Rhett P Ketterling
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA.,Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Xinjie Xu
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Patricia T Greipp
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicole L Hoppman
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - James B Smadbeck
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota, USA
| | - George Vasmatzis
- Center for Individualized Medicine-Biomarker Discovery, Mayo Clinic, Rochester, Minnesota, USA
| | - Min Shi
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kaaren K Reichard
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - David S Viswanatha
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dragan Jevremovic
- Division of Hematopathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - George M Maher
- Divison of Pediatric Hematology/Oncology, Sanford Children's Hospital, Sioux Falls, South Dakota, USA
| | - Jess F Peterson
- Division of Laboratory Genetics and Genomics, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
18
|
覃 鸿, 郑 幽, 王 嫚, 张 峥, 牛 祖, 马 骊, 孙 强, 黄 红, 王 小. [Subcellular localization of GTPase of immunity-associated protein 2]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2020; 52:221-226. [PMID: 32306002 PMCID: PMC7433440 DOI: 10.19723/j.issn.1671-167x.2020.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 06/11/2023]
Abstract
OBJECTIVE To analyze the subcellular localization of GTPase of immunity-associated protein 2 (GIMAP2) for the further functional study. METHODS In the study, we first obtained the protein sequences of GTPase of immunity-associated protein 2 (GIMAP2) from National Center for Biotechnology Information (NCBI) database, and then performed a prediction analysis of its transmembrane structure, nuclear localization signal (NLS), nuclear export signal (NES) and subcellular localization through bioinformatics online tools. GIMAP2 gene amplified by PCR was inserted into the expression vector pQCXIP-mCherry-N1 and positive clones were selected by ampicillin resistance. After using methods to extract and purify, the sequenced recombinant plasmid pQCXIP-GIMAP2-mCherry, together with the retroviral packaging plasmids VSVG and Gag/pol, was transferred into HEK293FT cells by liposomes for virus packaging. The virus supernatant was collected 48 h after transfection and directly infected the human breast cancer cell line MDA-MB-436. Immunofluorescence staining was constructed to detect the localization of endogenous and exogenous GIMAP2 in MDA-MB-436 cells. Meanwhile, green fluorescent chemical dyes were used to label mitochondria, endoplasmic reticulum, and lipid droplets in living MDA-MB-436 cells stably expressing the GIMAP2-mCherry fusion protein. Images for the three dye-labeled organelles and GIMAP2-mCherry fusion protein were captured by super-resolution microscope N-SIM. RESULTS Bioinformatics analysis data showed that GIMAP2 protein composed of 337 amino acids might contain two transmembrane helix (TM) structures at the carboxyl terminus, of which TMs were estimated to contain 40-41 expected amino acids, followed by the residual protein structures toward the cytoplasmic side. NES was located at the 279-281 amino acids of the carboxyl terminus whereas NLS was not found. GIMAP2 might locate in the lumen of the endoplasmic reticulum. Sequencing results indicated that the expression vector pQCXIP-GIMAP2-mCherry was successfully constructed. Fluorescent staining confirmed that GIMAP2-mCherry fusion protein, co-localized well with endogenous GIMAP2, expressed successfully in the endoplasmic reticulum and on the surface of lipid droplets in MDA-MB-436 cells. CONCLUSION GIMAP2 localizes in the endoplasmic reticulum and on the surface of LDs, suggesting potential involvement of GIMAP2 in lipid metabolism.
Collapse
Affiliation(s)
- 鸿泉 覃
- 南方医科大学检验与生物技术学院分子免疫研究所,广州 510515School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology,Southern Medical University, Guangzhou 510515, China
- 军事医学研究院生物工程研究所,北京 100071Institute of Biotechnology, Academy of Military Medical Sciences, Beijing100071, China
| | - 幽 郑
- 军事医学研究院生物工程研究所,北京 100071Institute of Biotechnology, Academy of Military Medical Sciences, Beijing100071, China
| | - 嫚娜 王
- 军事医学研究院生物工程研究所,北京 100071Institute of Biotechnology, Academy of Military Medical Sciences, Beijing100071, China
| | - 峥嵘 张
- 军事医学研究院生物工程研究所,北京 100071Institute of Biotechnology, Academy of Military Medical Sciences, Beijing100071, China
| | - 祖彪 牛
- 军事医学研究院生物工程研究所,北京 100071Institute of Biotechnology, Academy of Military Medical Sciences, Beijing100071, China
| | - 骊 马
- 南方医科大学检验与生物技术学院分子免疫研究所,广州 510515School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology,Southern Medical University, Guangzhou 510515, China
| | - 强 孙
- 军事医学研究院生物工程研究所,北京 100071Institute of Biotechnology, Academy of Military Medical Sciences, Beijing100071, China
| | - 红艳 黄
- 首都医科大学附属北京世纪坛医院脑胶质瘤科,北京 100038Department of Glioma, Beijing Shijitan Hospital, Capital Medical University, Beijing100038, China
| | - 小宁 王
- 南方医科大学检验与生物技术学院分子免疫研究所,广州 510515School of Laboratory Medicine and Biotechnology, Institute of Molecular Immunology,Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
19
|
Pavlovich SS, Darling T, Hume AJ, Davey RA, Feng F, Mühlberger E, Kepler TB. Egyptian Rousette IFN-ω Subtypes Elicit Distinct Antiviral Effects and Transcriptional Responses in Conspecific Cells. Front Immunol 2020; 11:435. [PMID: 32231668 PMCID: PMC7083018 DOI: 10.3389/fimmu.2020.00435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/25/2020] [Indexed: 12/15/2022] Open
Abstract
Bats host a number of viruses that cause severe disease in humans without experiencing overt symptoms of disease themselves. While the mechanisms underlying this ability to avoid sickness are not known, deep sequencing studies of bat genomes have uncovered genetic adaptations that may have functional importance in the antiviral response of these animals. Egyptian rousette bats (Rousettus aegyptiacus) are the natural reservoir hosts of Marburg virus (MARV). In contrast to humans, these bats do not become sick when infected with MARV. A striking difference to the human genome is that Egyptian rousettes have an expanded repertoire of IFNW genes. To probe the biological implications of this expansion, we synthesized IFN-ω4 and IFN-ω9 proteins and tested their antiviral activity in Egyptian rousette cells. Both IFN-ω4 and IFN-ω9 showed antiviral activity against RNA viruses, including MARV, with IFN-ω9 being more efficient than IFN-ω4. Using RNA-Seq, we examined the transcriptional response induced by each protein. Although the sets of genes induced by the two IFNs were largely overlapping, IFN-ω9 induced a more rapid and intense response than did IFN-ω4. About 13% of genes induced by IFN-ω treatment are not found in the Interferome or other ISG databases, indicating that they may be uniquely IFN-responsive in this bat.
Collapse
Affiliation(s)
- Stephanie S Pavlovich
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA, United States
| | - Tamarand Darling
- Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Adam J Hume
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Robert A Davey
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA, United States.,Department of Virology and Immunology, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - Feng Feng
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States
| | - Elke Mühlberger
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA, United States
| | - Thomas B Kepler
- Department of Microbiology, Boston University School of Medicine, Boston, MA, United States.,National Emerging Infectious Diseases Laboratory, Boston University, Boston, MA, United States.,Department of Mathematics and Statistics, Boston University, Boston, MA, United States
| |
Collapse
|
20
|
Wang G, Chow RD, Bai Z, Zhu L, Errami Y, Dai X, Dong MB, Ye L, Zhang X, Renauer PA, Park JJ, Shen L, Ye H, Fuchs CS, Chen S. Multiplexed activation of endogenous genes by CRISPRa elicits potent antitumor immunity. Nat Immunol 2019; 20:1494-1505. [PMID: 31611701 PMCID: PMC6858551 DOI: 10.1038/s41590-019-0500-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
Abstract
Immunotherapy has transformed cancer treatment. However, current immunotherapy modalities face various limitations. Here, we developed MAEGI, a new form of immunotherapy that elicits anti-tumor immunity through multiplexed activation of endogenous genes. We leveraged CRISPR activation (CRISPRa) to directly augment the in situ expression of endogenous genes, thereby the presentation of tumor antigens, leading to dramatic anti-tumor immune responses. Deploying this as a cell-based vaccination strategy showed efficacy in both prophylactic and therapeutic settings. Intratumoral adeno-associated virus delivery of CRISPRa libraries elicited strong anti-tumor immunity across multiple cancer types. Precision targeting of mutated gene sets eradicated a large fraction of established tumors at both local and distant sites. This treatment modality led to alterations of the tumor microenvironment, marked by enhanced T cell infiltration and anti-tumor immune signatures. Multiplexed endogenous gene activation is a versatile and highly scalable strategy to elicit potent immune responses against cancer, distinct from existing cancer therapies.
Collapse
Affiliation(s)
- Guangchuan Wang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Ryan D Chow
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.,MD-PhD Program, Yale University, New Haven, CT, USA
| | - Zhigang Bai
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.,Department of General Surgery, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Lvyun Zhu
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Youssef Errami
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Xiaoyun Dai
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Matthew B Dong
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.,MD-PhD Program, Yale University, New Haven, CT, USA.,Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.,Immunobiology Program, Yale University, New Haven, CT, USA
| | - Lupeng Ye
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Xiaoya Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Paul A Renauer
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.,Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA
| | - Jonathan J Park
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA.,MD-PhD Program, Yale University, New Haven, CT, USA
| | - Li Shen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Hanghui Ye
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA.,System Biology Institute, Yale University, West Haven, CT, USA.,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA
| | - Charles S Fuchs
- Department of Medicine, Yale University School of Medicine, New Haven, CT, USA.,Smilow Cancer Hospital, New Haven, CT, USA.,Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA
| | - Sidi Chen
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA. .,System Biology Institute, Yale University, West Haven, CT, USA. .,Center for Cancer Systems Biology, Yale University, West Haven, CT, USA. .,MD-PhD Program, Yale University, New Haven, CT, USA. .,Immunobiology Program, Yale University, New Haven, CT, USA. .,Combined Program in the Biological and Biomedical Sciences, Yale University, New Haven, CT, USA. .,Yale Comprehensive Cancer Center, Yale University School of Medicine, New Haven, CT, USA. .,Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA. .,Yale Stem Cell Center, Yale University School of Medicine, New Haven, CT, USA. .,Yale Liver Center, Yale University School of Medicine, New Haven, CT, USA. .,Yale Center for Biomedical Data Science, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
21
|
Yang C, Siebert JR, Burns R, Gerbec ZJ, Bonacci B, Rymaszewski A, Rau M, Riese MJ, Rao S, Carlson KS, Routes JM, Verbsky JW, Thakar MS, Malarkannan S. Heterogeneity of human bone marrow and blood natural killer cells defined by single-cell transcriptome. Nat Commun 2019; 10:3931. [PMID: 31477722 PMCID: PMC6718415 DOI: 10.1038/s41467-019-11947-7] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 08/09/2019] [Indexed: 12/21/2022] Open
Abstract
Natural killer (NK) cells are critical to both innate and adaptive immunity. However, the development and heterogeneity of human NK cells are yet to be fully defined. Using single-cell RNA-sequencing technology, here we identify distinct NK populations in human bone marrow and blood, including one population expressing higher levels of immediate early genes indicative of a homeostatic activation. Functionally matured NK cells with high expression of CX3CR1, HAVCR2 (TIM-3), and ZEB2 represents terminally differentiated status with the unique transcriptional profile. Transcriptomic and pseudotime analyses identify a transitional population between CD56bright and CD56dim NK cells. Finally, a donor with GATA2T354M mutation exhibits reduced percentage of CD56bright NK cells with altered transcriptome and elevated cell death. These data expand our understanding of the heterogeneity and development of human NK cells. Natural killer (NK) cells are important innate immune cells with diverse functions. Here the authors use single-cell RNA-sequencing of purified human bone marrow and peripheral blood NK cells to define five populations of NK cells with distinct transcriptomic profile to further our understanding of NK development and heterogeneity.
Collapse
Affiliation(s)
- Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jason R Siebert
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Robert Burns
- Bioinfomatics Core, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Zachary J Gerbec
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Benedetta Bonacci
- Flow Cytometry Core, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - Amy Rymaszewski
- Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Mary Rau
- Departments of Surgery, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Matthew J Riese
- Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA.,Laboratory of Lymphocyte Biology, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Departments of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Sridhar Rao
- Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA.,Laboratory of Stem Cell Transcriptional Regulation, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Departments of Cell Biology, Neurobiology, and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Karen-Sue Carlson
- Departments of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.,Laboratory of Coagulation Biology, Blood Research Institute, Versiti, Milwaukee, WI, USA
| | - John M Routes
- Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - James W Verbsky
- Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA.,Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, Versiti, Milwaukee, WI, USA. .,Departments of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, USA. .,Departments of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA. .,Departments of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
22
|
Nakada-Tsukui K, Sekizuka T, Sato-Ebine E, Escueta-de Cadiz A, Ji DD, Tomii K, Kuroda M, Nozaki T. AIG1 affects in vitro and in vivo virulence in clinical isolates of Entamoeba histolytica. PLoS Pathog 2018; 14:e1006882. [PMID: 29554130 PMCID: PMC5884625 DOI: 10.1371/journal.ppat.1006882] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 04/04/2018] [Accepted: 01/17/2018] [Indexed: 11/17/2022] Open
Abstract
The disease state of amebiasis, caused by Entamoeba histolytica, varies from asymptomatic to severe manifestations that include dysentery and extraintestinal abscesses. The virulence factors of the pathogen, and host defense mechanisms, contribute to the outcomes of infection; however, the underlying genetic factors, which affect clinical outcomes, remain to be fully elucidated. To identify these genetic factors in E. histolytica, we used Illumina next-generation sequencing to conduct a comparative genomic analysis of two clinical isolates obtained from diarrheal and asymptomatic patients (strains KU50 and KU27, respectively). By mapping KU50 and KU27 reads to the genome of a reference HM-1:IMSS strain, we identified two genes (EHI_089440 and EHI_176590) that were absent in strain KU27. In KU27, a single AIG1 (avrRpt2-induced gene 1) family gene (EHI_176590) was found to be deleted, from a tandem array of three AIG1 genes, by homologous recombination between the two flanking genes. Overexpression of the EHI_176590 gene, in strain HM-1:IMSS cl6, resulted in increased formation of cell-surface protrusions and enhanced adhesion to human erythrocytes. The EHI_176590 gene was detected by PCR in 56% of stool samples from symptomatic patients infected with E. histolytica, but only in 15% of stool samples from asymptomatic individuals. This suggests that the presence of the EHI_176590 gene is correlated with the outcomes of infection. Taken together, these data strongly indicate that the AIG1 family protein plays a pivotal role in E. histolytica virulence via regulation of host cell adhesion. Our in-vivo experiments, using a hamster liver abscess model, showed that overexpression or gene silencing of EHI_176590 reduced and increased liver abscess formation, respectively. This suggests that the AIG1 genes may have contrasting roles in virulence depending on the genetic background of the parasite and host environment.
Collapse
Affiliation(s)
- Kumiko Nakada-Tsukui
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Laboratory of Bacterial Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Emi Sato-Ebine
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Dar-der Ji
- Center for Research and Diagnostics, Centers for Disease Control, Taipei, Taiwan
| | - Kentaro Tomii
- Artificial Intelligence Research Center (AIRC) and Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| | - Makoto Kuroda
- Laboratory of Bacterial Genomics, Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tomoyoshi Nozaki
- Department of Parasitology, National Institute of Infectious Diseases, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
McDowell IC, Modak TH, Lane CE, Gomez-Chiarri M. Multi-species protein similarity clustering reveals novel expanded immune gene families in the eastern oyster Crassostrea virginica. FISH & SHELLFISH IMMUNOLOGY 2016; 53:13-23. [PMID: 27033806 DOI: 10.1016/j.fsi.2016.03.157] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 03/24/2016] [Accepted: 03/24/2016] [Indexed: 06/05/2023]
Abstract
Comparative genomics research in non-model species has highlighted how invertebrate hosts possess complex diversified repertoires of immune molecules. The levels of diversification in particular immune gene families appear to differ between invertebrate lineages and even between species within lineages, reflecting differences not only in evolutionary histories, but also in life histories, environmental niches, and pathogen exposures. The goal of this research was to identify immune-related gene families experiencing high levels of diversification in eastern oysters, Crassostrea virginica. Families containing 1) transcripts differentially expressed in eastern oysters in response to bacterial challenge and 2) a larger number of transcripts compared to other species included those coding for the C1q and C-type lectin domain containing proteins (C1qDC and CTLDC), GTPase of the immune-associated proteins (GIMAP), scavenger receptors (SR), fibrinogen-C domain containing proteins (also known as FREPs), dopamine beta-hydrolase (DBH), interferon-inducible 44 (IFI44), serine protease inhibitors, apextrin, and dermatopontin. Phylogenetic analysis of two of the families significantly expanded in bivalves, IFI44 and GIMAP, showed a patchy distribution within both protostomes and deuterostomes, suggesting multiple independent losses and lineage-specific expansions. Increased availability of genomic information for a broader range of non-model species broadly distributed through vertebrate and invertebrate phyla will likely lead to improved knowledge on mechanisms of immune-gene diversification.
Collapse
|
24
|
Chen XL, Serrano D, Ghobadi F, Mayhue M, Hoebe K, Ilangumaran S, Ramanathan S. TCR and IL-7 Signaling Are Altered in the Absence of Functional GTPase of the Immune Associated Nucleotide Binding Protein 5 (GIMAP5). PLoS One 2016; 11:e0151837. [PMID: 27023180 PMCID: PMC4811415 DOI: 10.1371/journal.pone.0151837] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/05/2016] [Indexed: 01/09/2023] Open
Abstract
GTPase of the immune associated nucleotide binding protein (GIMAP) family of proteins are expressed essentially in cells of the hematopoietic system. Mutation in the founding member of this gene family, Gimap5, results in the lymphopenic phenotype in Bio-Breeding diabetes prone rats. In mice, deletion of functional Gimap5 gene affects the survival and renewal of hematopoietic stem cells in addition to the defects observed in T cells. Here we show that T cells from OTII TCR-transgenic Gimap5sph/sph mice do not proliferate in response to its cognate antigen. Furthermore, T cells from Gimap5 mutant rats and mice show decreased phosphorylation of STAT5 following stimulation with IL-7. Our results suggest that functional Gimap5 is required for optimal signaling through TCR and IL-7R in T cells.
Collapse
Affiliation(s)
- Xi-Lin Chen
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Daniel Serrano
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Farnaz Ghobadi
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Marian Mayhue
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Kasper Hoebe
- Department of Pediatrics, Division of Cellular and Molecular Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, United States of America
| | - Subburaj Ilangumaran
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
| | - Sheela Ramanathan
- Immunology Division, Department of Pediatrics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- Centre de recherche clinique, Université de Sherbrooke, Sherbrooke, J1H 5N4, Québec, Canada
- * E-mail:
| |
Collapse
|
25
|
de Vries PS, Chasman DI, Sabater-Lleal M, Chen MH, Huffman JE, Steri M, Tang W, Teumer A, Marioni RE, Grossmann V, Hottenga JJ, Trompet S, Müller-Nurasyid M, Zhao JH, Brody JA, Kleber ME, Guo X, Wang JJ, Auer PL, Attia JR, Yanek LR, Ahluwalia TS, Lahti J, Venturini C, Tanaka T, Bielak LF, Joshi PK, Rocanin-Arjo A, Kolcic I, Navarro P, Rose LM, Oldmeadow C, Riess H, Mazur J, Basu S, Goel A, Yang Q, Ghanbari M, Willemsen G, Rumley A, Fiorillo E, de Craen AJM, Grotevendt A, Scott R, Taylor KD, Delgado GE, Yao J, Kifley A, Kooperberg C, Qayyum R, Lopez LM, Berentzen TL, Räikkönen K, Mangino M, Bandinelli S, Peyser PA, Wild S, Trégouët DA, Wright AF, Marten J, Zemunik T, Morrison AC, Sennblad B, Tofler G, de Maat MPM, de Geus EJC, Lowe GD, Zoledziewska M, Sattar N, Binder H, Völker U, Waldenberger M, Khaw KT, Mcknight B, Huang J, Jenny NS, Holliday EG, Qi L, Mcevoy MG, Becker DM, Starr JM, Sarin AP, Hysi PG, Hernandez DG, Jhun MA, Campbell H, Hamsten A, Rivadeneira F, Mcardle WL, Slagboom PE, Zeller T, Koenig W, Psaty BM, Haritunians T, Liu J, Palotie A, Uitterlinden AG, Stott DJ, Hofman A, Franco OH, Polasek O, Rudan I, Morange PE, Wilson JF, Kardia SLR, Ferrucci L, Spector TD, Eriksson JG, Hansen T, Deary IJ, Becker LC, Scott RJ, Mitchell P, März W, Wareham NJ, Peters A, Greinacher A, Wild PS, Jukema JW, Boomsma DI, Hayward C, Cucca F, Tracy R, Watkins H, Reiner AP, Folsom AR, Ridker PM, O'Donnell CJ, Smith NL, Strachan DP, Dehghan A. A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration. Hum Mol Genet 2015; 25:358-70. [PMID: 26561523 DOI: 10.1093/hmg/ddv454] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/27/2015] [Indexed: 12/11/2022] Open
Abstract
Genome-wide association studies have previously identified 23 genetic loci associated with circulating fibrinogen concentration. These studies used HapMap imputation and did not examine the X-chromosome. 1000 Genomes imputation provides better coverage of uncommon variants, and includes indels. We conducted a genome-wide association analysis of 34 studies imputed to the 1000 Genomes Project reference panel and including ∼120 000 participants of European ancestry (95 806 participants with data on the X-chromosome). Approximately 10.7 million single-nucleotide polymorphisms and 1.2 million indels were examined. We identified 41 genome-wide significant fibrinogen loci; of which, 18 were newly identified. There were no genome-wide significant signals on the X-chromosome. The lead variants of five significant loci were indels. We further identified six additional independent signals, including three rare variants, at two previously characterized loci: FGB and IRF1. Together the 41 loci explain 3% of the variance in plasma fibrinogen concentration.
Collapse
Affiliation(s)
| | - Daniel I Chasman
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA, Harvard Medical School, Boston, MA, USA
| | - Maria Sabater-Lleal
- Department of Medicine, Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit and
| | - Ming-Huei Chen
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA, Framingham Heart Study, Population Sciences Branch, Division of Intramural Research National Heart Lung and Blood Institute, National Institutes of Health, Framingham, MA, USA
| | - Jennifer E Huffman
- Framingham Heart Study, Population Sciences Branch, Division of Intramural Research National Heart Lung and Blood Institute, National Institutes of Health, Framingham, MA, USA, MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | - Maristella Steri
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionaledelle Ricerche, Monserrato, Cagliari, Italy
| | - Weihong Tang
- Division of Epidemiology and Community Health and
| | | | - Riccardo E Marioni
- Centre for Cognitive Ageing and Cognitive Epidemiology, Centre for Genomic and Experimental Medicine, Queensland Brain Institute, University of Queensland, Brisbane, Australia
| | | | - Jouke J Hottenga
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - Stella Trompet
- Department of Cardiology, Department of Gerontology and Geriatrics and
| | - Martina Müller-Nurasyid
- Institute of Genetic Epidemiology, Department of Medicine I, Ludwig-Maximilians-University Munich, Munich, Germany, DZHK (German Centre for Cardiovascular Research) and
| | - Jing Hua Zhao
- MRC Epidemiology Unit, School of Clinical Medicine and
| | | | - Marcus E Kleber
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xiuqing Guo
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles Biomedical Research Institute at Harbor/UCLA Medical Center, Torrance, CA, USA
| | - Jie Jin Wang
- Department of Ophthalmology, Centre for Vision Research, Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Paul L Auer
- Zilber School of Public Health, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - John R Attia
- Public Health Stream and School of Medicine and Public Health and
| | - Lisa R Yanek
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tarunveer S Ahluwalia
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences and Copenhagen Prospective Studies on Asthma in Childhood, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark, The Danish Pediatric Asthma Center, Gentofte Hospital, The Capital Region, Copenhagen, Denmark
| | - Jari Lahti
- Institute of Behavioural Sciences, Folkhälsan Research Centre, Helsinki, Finland
| | - Cristina Venturini
- Institute of Opthalmology, UCL, London, UK, Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Lawrence F Bielak
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter K Joshi
- Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics, Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics
| | - Ares Rocanin-Arjo
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Paris F-75013, France, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris F-75013, France, Institute for Cardiometabolism and Nutrition (ICAN), Paris F-75013, France
| | - Ivana Kolcic
- Department of Public Health, Faculty of Medicine
| | - Pau Navarro
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | - Lynda M Rose
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | | | | | - Johanna Mazur
- Institute of Medical Biostatistics, Epidemiology and Informatics and
| | - Saonli Basu
- Division of Biostatistics, University of Minnesota, Minneapolis, MN, USA
| | - Anuj Goel
- Cardiovascular Medicine Department/Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Qiong Yang
- Framingham Heart Study, Population Sciences Branch, Division of Intramural Research National Heart Lung and Blood Institute, National Institutes of Health, Framingham, MA, USA, Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Mohsen Ghanbari
- Department of Epidemiology, Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gonneke Willemsen
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - Ann Rumley
- Institute of Cardiovascular and Medical Sciences and
| | - Edoardo Fiorillo
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionaledelle Ricerche, Monserrato, Cagliari, Italy
| | | | | | - Robert Scott
- MRC Epidemiology Unit, School of Clinical Medicine and
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences and
| | - Graciela E Delgado
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jie Yao
- Institute for Translational Genomics and Population Sciences and
| | - Annette Kifley
- Department of Ophthalmology, Centre for Vision Research, Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | | | - Rehan Qayyum
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lorna M Lopez
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychiatry, Royal College of Surgeons in Ireland, Education and Research Centre, Beaumont Hospital, Dublin, Ireland, University College Dublin, UCD Conway Institute, Centre for Proteome Research, UCD, Belfield, Dublin, Ireland
| | - Tina L Berentzen
- Institute of Preventive Medicine, Bispebjerg and Frederiksberg Hospital, The Capital Region, Copenhagen, Denmark
| | | | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | | | - Patricia A Peyser
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Sarah Wild
- Centre for Population Health Sciences, Usher Institute of Population Health Sciences and Informatics
| | - David-Alexandre Trégouët
- Institut National pour la Santé et la Recherche Médicale (INSERM), Unité Mixte de Recherche en Santé (UMR_S) 1166, Paris F-75013, France, Sorbonne Universités, Université Pierre et Marie Curie (UPMC Univ Paris 06), UMR_S 1166, Team Genomics & Pathophysiology of Cardiovascular Diseases, Paris F-75013, France, Institute for Cardiometabolism and Nutrition (ICAN), Paris F-75013, France
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | - Jonathan Marten
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | | | - Alanna C Morrison
- Human Genetics Center, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Bengt Sennblad
- Department of Medicine, Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit and Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Geoffrey Tofler
- Royal North Shore Hospital, Sydney University, Sydney, Australia
| | | | - Eco J C de Geus
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands, EMGO+ institute, VU University & VU Medical Center, Amsterdam
| | - Gordon D Lowe
- Institute of Cardiovascular and Medical Sciences and
| | - Magdalena Zoledziewska
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionaledelle Ricerche, Monserrato, Cagliari, Italy
| | - Naveed Sattar
- Faculty of Medicine, BHF Glasgow Cardiovascular Research Centre, Glasgow, UK
| | - Harald Binder
- Institute of Medical Biostatistics, Epidemiology and Informatics and
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics and
| | - Melanie Waldenberger
- Institute of Epidemiology II and Research Unit of Molecular Epidemiology, Helmholtz ZentrumMünchen - German Research Center for Environmental Health, Neuherberg, Germany
| | - Kay-Tee Khaw
- Clinical Gerontology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | | | - Jie Huang
- Department of Human Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | | | - Elizabeth G Holliday
- Public Health Stream, Hunter Medical Research Institute, School of Medicine and Public Health and
| | - Lihong Qi
- Division of Biostatistics, Department of Public Health Sciences, UC Davis, Davis, CA, USA
| | - Mark G Mcevoy
- School of Medicine and Public Health, University of Newcastle, Newcastle, Australia
| | - Diane M Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John M Starr
- Centre for Cognitive Ageing and Cognitive Epidemiology, Alzheimer Scotland Dementia Research Centre and
| | - Antti-Pekka Sarin
- Institute for Molecular Medicine Finland (FIMM) and Public Health Genomics Unit, National Institute for Health and Welfare, Helsinki, Finland
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Min A Jhun
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Harry Campbell
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics
| | - Anders Hamsten
- Department of Medicine, Cardiovascular Genetics and Genomics Group, Atherosclerosis Research Unit and
| | - Fernando Rivadeneira
- Department of Epidemiology, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, Rotterdam, The Netherlands
| | - Wendy L Mcardle
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - P Eline Slagboom
- Department of Molecular Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Tanja Zeller
- Department of General and Interventional Cardiology, University Heart Centre, University Medical Center Hamburg-Eppendorf, Hamburg, Germany, German Center for Cardiovascular Research (DZHK), Partner Site Hamburg, Lübeck, Kiel, Hamburg, Germany
| | - Wolfgang Koenig
- German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, Munich, Germany, Department of Internal Medicine II - Cardiology, University of Ulm Medical Centre, Ulm, Germany, Deutsches Herzzentrum München, Technische Universität München, Munich, Germany
| | - Bruce M Psaty
- Department of Medicine, Epidemiology, and Health Services and Group Health Research Institute, Group Health Cooperative, Seattle, WA, USA
| | - Talin Haritunians
- Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jingmin Liu
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | | | - André G Uitterlinden
- Department of Epidemiology, Department of Internal Medicine, Erasmus MC, Wytemaweg 80, Rotterdam, The Netherlands
| | - David J Stott
- Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, Glasgow, UK
| | | | | | - Ozren Polasek
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics, Department of Public Health, Faculty of Medicine, Centre for Global Health, University of Split, Split, Croatia
| | - Igor Rudan
- Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics
| | - Pierre-Emmanuel Morange
- Laboratory of Haematology, La Timone Hospital, Marseille F-13385, France, INSERM, UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, Marseille F-13385, France, Aix-Marseille University, UMR_S 1062, Nutrition Obesity and Risk of Thrombosis, Marseille F-13385, France
| | - James F Wilson
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Centre for Global Health Research, Usher Institute of Population Health Sciences and Informatics
| | - Sharon L R Kardia
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, Kings College London, London, UK
| | - Johan G Eriksson
- Department of General Practice and Primary Health Care, University of Helsinki, Helsinki, Finland, Folkhälsan Research Centre, Helsinki, Finland, National Institute for Health and Welfare, Helsinki, Finland, Unit of General Practice, Helsinki University Central Hospital, Helsinki, Finland
| | - Torben Hansen
- Novo Nordisk Foundation Centre for Basic Metabolic Research, Section of Metabolic Genetics, Faculty of Health and Medical Sciences and
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK
| | - Lewis C Becker
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rodney J Scott
- Information based Medicine Program, Hunter Medical Research Institute, New Lambton Heights, Australia, School of Biomedical Sciences and Pharmacy, University of Newcastle, New Lambton Heights, Australia
| | - Paul Mitchell
- Department of Ophthalmology, Centre for Vision Research, Westmead Millennium Institute for Medical Research, University of Sydney, Sydney, Australia
| | - Winfried März
- Vth Department of Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany, Synlab Academy, Synlab Services LLC, Mannheim, Germany, Clinical Institute of Medical, Chemical Laboratory Diagnostics, Medical University of Graz, Graz, Austria
| | | | - Annette Peters
- Institute of Epidemiology II and DZHK (German Centre for Cardiovascular Research) and
| | - Andreas Greinacher
- Institute for Immunology and Transfusion Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Philipp S Wild
- Center for Thrombosis and Hemostasis (CTH), Preventive Cardiology and Preventive Medicine, Department of Medicine 2, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany, German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany
| | - J Wouter Jukema
- Department of Cardiology, Durrer Center for Cardiogenetic Research, Amsterdam, The Netherlands, Interuniversity Cardiology Institute of The Netherlands, Utrecht, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Netherlands Twin Register, VU University, Amsterdam, The Netherlands
| | - Caroline Hayward
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionaledelle Ricerche, Monserrato, Cagliari, Italy
| | - Russell Tracy
- Department of Pathology and Laboratory Medicine, Center for Clinical and Translational Sciences, University of Vermont College of Medicine, Colchester, VT, USA
| | - Hugh Watkins
- Cardiovascular Medicine Department/Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Alex P Reiner
- Fred Hutchinson Cancer Research Center, Seattle, WA, USA, University of Washington, Seattle, WA, USA
| | | | - Paul M Ridker
- Division of Preventive Medicine, Brigham and Women's Hospital, Boston, MA, USA, Harvard Medical School, Boston, MA, USA
| | - Christopher J O'Donnell
- Framingham Heart Study, Population Sciences Branch, Division of Intramural Research National Heart Lung and Blood Institute, National Institutes of Health, Framingham, MA, USA, National Heart, Lung and Blood Institute, Division of Intramural Research, Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - Nicholas L Smith
- Department of Epidemiology, University of Washington, Seattle, WA, USA, Institute of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, Glasgow, UK, Department of Veterans Affairs, Office of Research and Development, Seattle Epidemiologic Research and Information Center, Seattle, WA, USA and
| | - David P Strachan
- Population Health Research Institute, St George's University of London, London, UK
| | | |
Collapse
|