1
|
Frisoli ML, Richmond JM, Harris JE. IL-12/IL-23-Independent Function of BATF3-Dependent Dendritic Cells Is Required for Initiation of Disease in a Mouse Model of Vitiligo. J Invest Dermatol 2024; 144:2574-2577.e2. [PMID: 38642799 DOI: 10.1016/j.jid.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 02/29/2024] [Accepted: 03/11/2024] [Indexed: 04/22/2024]
Affiliation(s)
- Michael L Frisoli
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - Jillian M Richmond
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA
| | - John E Harris
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, Massachusetts, USA.
| |
Collapse
|
2
|
Liu H, Lu Y, Zong J, Zhang B, Li X, Qi H, Yu T, Li Y. Engineering dendritic cell biomimetic membrane as a delivery system for tumor targeted therapy. J Nanobiotechnology 2024; 22:663. [PMID: 39465376 PMCID: PMC11520105 DOI: 10.1186/s12951-024-02913-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
Targeted immunotherapies make substantial strides in clinical cancer care due to their ability to counteract the tumor's capacity to suppress immune responses. Advances in biomimetic technology with minimally immunogenic and highly targeted, are addressing issues of targeted drug delivery and disrupting the tumor's immunosuppressive environment to trigger immune activation. Specifically, the use of dendritic cell (DC) membranes to coat nanoparticles ensures targeted delivery due to DC's unique ability to activate naive T cells, spotlighting their role in immunotherapy aimed at disrupting the tumor microenvironment. The potential of DC's biomimetic membrane to mediate immune activation and target tumors is gaining momentum, enhancing the effectiveness of cancer treatments in conjunction with other immune responses. This review delves into the methodologies behind crafting DC membranes and the fusion of dendritic and tumor cell membranes for encapsulating therapeutic nanoparticles. It explores their applications and recent advancements in combating cancer, offering an all-encompassing perspective on DC biomimetic nanosystems, immunotherapy driven by antigen presentation, and the collaborative efforts of drug delivery in chemotherapy and photodynamic therapies. Current evidence shows promise in augmenting combined therapeutic approaches for cancer treatment and holds translational potential for various cancer treatments in a clinical setting.
Collapse
Affiliation(s)
- Huiyang Liu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China
| | - Yiming Lu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China
| | - Jinbao Zong
- Clinical Laboratory, Central Laboratory, Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, 266000, People's Republic of China
| | - Bei Zhang
- Department of Immunology, School of Basic Medicine, Qingdao University, Qingdao, 266071, People's Republic of China
| | - Xiaolu Li
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China
| | - Hongzhao Qi
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China
| | - Tao Yu
- Department of Cardiac Ultrasound, The Affiliated Hospital of Qingdao University, No. 16 Jiangsu Road, Qingdao, 266000, People's Republic of China.
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, No. 38 Dengzhou Road, Qingdao, 266021, People's Republic of China.
| | - Yu Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, No.16 Jiangsu Road, Qingdao, People's Republic of China.
| |
Collapse
|
3
|
Zheng J, Wang M, Pang L, Wang S, Kong Y, Zhu X, Zhou X, Wang X, Chen C, Ning H, Zhao W, Zhai W, Qi Y, Wu Y, Gao Y. Identification of a novel DEC-205 binding peptide to develop dendritic cell-targeting nanovaccine for cancer immunotherapy. J Control Release 2024; 373:568-582. [PMID: 39067792 DOI: 10.1016/j.jconrel.2024.07.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 07/30/2024]
Abstract
Cancer vaccine is regarded as an effective immunotherapy approach mediated by dendritic cells (DCs) which are crucial for antigen presentation and the initiation of adaptive immune responses. However, lack of DC-targeting properties significantly hampers the efficacy of cancer vaccines. Here, by using the phage display technique, peptides targeting the endocytic receptor DEC-205 primarily found on cDC1s were initially screened. An optimized hydrolysis-resistant peptide, hr-8, was identified and conjugated to PLGA-loaded antigen (Ag) and CpG adjuvant nanoparticles, resulting in a DC-targeting nanovaccine. The nanovaccine hr-8-PLGA@Ag/CpG facilitates dendritic cell maturation and improves antigen cross-presentation. The nanovaccine can enhance the antitumor immune response mediated by CD8+ T cells by encapsulating the nanovaccine with either exogenous OVA protein antigen or endogenous gp100/E7 antigenic peptide. As a result, strong antitumor effects are observed in both anti-PD-1 responsive B16-OVA and anti-PD-1 non-responsive B16 and TC1 immunocompetent tumor models. In summary, this study presents the initial documentation of a nanovaccine that targets dendritic cells via the novel DEC-205 binding peptide. This approach offers a new method for developing cancer vaccines that can potentially improve the effectiveness of cancer immunotherapy.
Collapse
Affiliation(s)
- Jie Zheng
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingshuang Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Liwei Pang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Shuai Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yanan Kong
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xueqin Zhu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiuman Zhou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Chunxia Chen
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Haoming Ning
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China.
| | - Yanfeng Gao
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China.
| |
Collapse
|
4
|
Torres-Dias L, Souza RS, Moreira JCA, Paggi DDO, do Amaral JB, Bachi ALL, Augusto L, Shio MT. Synthetic hemozoin as a nanocarrier for cross-presentation. Immunobiology 2024; 229:152837. [PMID: 39089130 DOI: 10.1016/j.imbio.2024.152837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 08/03/2024]
Abstract
It is known that conventional antigen presentation involves phagocytosis of antigens followed by its internalization in endocytic compartments and presentation of epitopes through MHC class II molecules for CD4 T cells. However, since 1976 a cross-presentation pathway has been studied, in which CD8 T cells are activated via MHC class I with antigens acquired through phagocytosis or endocytosis by dendritic cells (DCs). Among some important molecules involved in the cross-presentation, the C-type lectin receptor of the Dectin-1 cluster (CLECs), particularly the CLEC9A receptor, not only is expressed in dendritic cells but also presents a pivotal role in this context. In special, CLEC12A has been highlighted as a malaria pigment hemozoin (HZ) receptor. During Plasmodium infection, hemozoin crystals defend the parasite against heme toxicity within erythrocytes, as well as the released native HZ elicits pro-inflammatory responses and can induce cross-presentation. Particularly, this crystal can be synthesized from hematin anhydride and mimics the native form, and the gaps generated between the nanocrystal domains during its synthesis allow for substance coupling followed by its coating. Therefore, this study aimed to assess whether synthetic hemozoin (sHz) or hematin anhydride could be a nanocarrier and promote cross-presentation in dendritic cells. Firstly, it was verified that sHz can carry coated and coupled antigens, the compounds can associate to LAMP1-positive vesicles and decrease overall intracellular pH, which can potentially enhance the cross-presentation of ovalbumin and Leishmania infantum antigens. Thus, this study adds important data in the molecular intricacies of antigen presentation by showing not only the sHz immunomodulatory properties but also its potential applications as an antigen carrier.
Collapse
Affiliation(s)
- Letícia Torres-Dias
- Post-Graduation Program in Health Science, Santo Amaro University (UNISA), São Paulo, Brazil
| | | | | | | | - Jônatas Bussador do Amaral
- ENT Research Lab. Department of Otorhinolaryngology -Head and Neck Surgery, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | | - Leonardo Augusto
- Department of Pathology, Microbiology, and Immunology. University of Nebraska Medical Center Omaha, United States of America
| | - Marina Tiemi Shio
- Post-Graduation Program in Health Science, Santo Amaro University (UNISA), São Paulo, Brazil.
| |
Collapse
|
5
|
Sohrabi S, Masoumi J, Naseri B, Ghorbaninezhad F, Alipour S, Kazemi T, Ahmadian Heris J, Aghebati Maleki L, Basirjafar P, Zandvakili R, Doustvandi MA, Baradaran B. STATs signaling pathways in dendritic cells: As potential therapeutic targets? Int Rev Immunol 2024; 43:138-159. [PMID: 37886903 DOI: 10.1080/08830185.2023.2274576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells (APCs), including heterogenous populations with phenotypic and functional diversity that coordinate bridging innate and adaptive immunity. Signal transducer and activator of transcriptions (STAT) factors as key proteins in cytokine signaling were shown to play distinct roles in the maturation and antigen presentation of DCs and play a pivotal role in modulating immune responses mediated by DCs such as differentiation of T cells to T helper (Th) 1, Th2 or regulatory T (Treg) cells. This review sheds light on the importance of STAT transcription factors' signaling pathways in different subtypes of DCs and highlights their targeting potential usages for improving DC-based immunotherapies for patients who suffer from cancer or diverse autoimmune conditions according to the type of the STAT transcription factor and its specific activating or inhibitory agent.
Collapse
Affiliation(s)
- Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Pedram Basirjafar
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Raziyeh Zandvakili
- Department of Immunology, School of Medicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | | | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Pereira MVA, Galvani RG, Gonçalves-Silva T, de Vasconcelo ZFM, Bonomo A. Tissue adaptation of CD4 T lymphocytes in homeostasis and cancer. Front Immunol 2024; 15:1379376. [PMID: 38690280 PMCID: PMC11058666 DOI: 10.3389/fimmu.2024.1379376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
The immune system is traditionally classified as a defense system that can discriminate between self and non-self or dangerous and non-dangerous situations, unleashing a tolerogenic reaction or immune response. These activities are mainly coordinated by the interaction between innate and adaptive cells that act together to eliminate harmful stimuli and keep tissue healthy. However, healthy tissue is not always the end point of an immune response. Much evidence has been accumulated over the years, showing that the immune system has complex, diversified, and integrated functions that converge to maintaining tissue homeostasis, even in the absence of aggression, interacting with the tissue cells and allowing the functional maintenance of that tissue. One of the main cells known for their function in helping the immune response through the production of cytokines is CD4+ T lymphocytes. The cytokines produced by the different subtypes act not only on immune cells but also on tissue cells. Considering that tissues have specific mediators in their architecture, it is plausible that the presence and frequency of CD4+ T lymphocytes of specific subtypes (Th1, Th2, Th17, and others) maintain tissue homeostasis. In situations where homeostasis is disrupted, such as infections, allergies, inflammatory processes, and cancer, local CD4+ T lymphocytes respond to this disruption and, as in the healthy tissue, towards the equilibrium of tissue dynamics. CD4+ T lymphocytes can be manipulated by tumor cells to promote tumor development and metastasis, making them a prognostic factor in various types of cancer. Therefore, understanding the function of tissue-specific CD4+ T lymphocytes is essential in developing new strategies for treating tissue-specific diseases, as occurs in cancer. In this context, this article reviews the evidence for this hypothesis regarding the phenotypes and functions of CD4+ T lymphocytes and compares their contribution to maintaining tissue homeostasis in different organs in a steady state and during tumor progression.
Collapse
Affiliation(s)
- Marina V. A. Pereira
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Rômulo G. Galvani
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Triciana Gonçalves-Silva
- National Center for Structural Biology and Bioimaging - CENABIO, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Zilton Farias Meira de Vasconcelo
- Laboratory of High Complexity, Fernandes Figueira National Institute for The Health of Mother, Child, and Adolescent, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Adriana Bonomo
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Carroll SL, Pasare C, Barton GM. Control of adaptive immunity by pattern recognition receptors. Immunity 2024; 57:632-648. [PMID: 38599163 PMCID: PMC11037560 DOI: 10.1016/j.immuni.2024.03.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
One of the most significant conceptual advances in immunology in recent history is the recognition that signals from the innate immune system are required for induction of adaptive immune responses. Two breakthroughs were critical in establishing this paradigm: the identification of dendritic cells (DCs) as the cellular link between innate and adaptive immunity and the discovery of pattern recognition receptors (PRRs) as a molecular link that controls innate immune activation as well as DC function. Here, we recount the key events leading to these discoveries and discuss our current understanding of how PRRs shape adaptive immune responses, both indirectly through control of DC function and directly through control of lymphocyte function. In this context, we provide a conceptual framework for how variation in the signals generated by PRR activation, in DCs or other cell types, can influence T cell differentiation and shape the ensuing adaptive immune response.
Collapse
Affiliation(s)
- Shaina L Carroll
- Division of Immunology & Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, University of Cincinnati, College of Medicine, Cincinnati, OH USA
| | - Gregory M Barton
- Division of Immunology & Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720 USA.
| |
Collapse
|
8
|
Dabbaghipour R, Ahmadi E, Entezam M, Farzam OR, Sohrabi S, Jamali S, Sichani AS, Paydar H, Baradaran B. Concise review: The heterogenous roles of BATF3 in cancer oncogenesis and dendritic cells and T cells differentiation and function considering the importance of BATF3-dependent dendritic cells. Immunogenetics 2024; 76:75-91. [PMID: 38358555 DOI: 10.1007/s00251-024-01335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/23/2023] [Indexed: 02/16/2024]
Abstract
The transcription factor, known as basic leucine zipper ATF-like 3 (BATF3), is a crucial contributor to the development of conventional type 1 dendritic cells (cDC1), which is definitely required for priming CD8 + T cell-mediated immunity against intracellular pathogens and malignancies. In this respect, BATF3-dependent cDC1 can bring about immunological tolerance, an autoimmune response, graft immunity, and defense against infectious agents such as viruses, microbes, parasites, and fungi. Moreover, the important function of cDC1 in stimulating CD8 + T cells creates an excellent opportunity to develop a highly effective target for vaccination against intracellular pathogens and diseases. BATF3 has been clarified to control the development of CD8α+ and CD103+ DCs. The presence of BATF3-dependent cDC1 in the tumor microenvironment (TME) reinforces immunosurveillance and improves immunotherapy approaches, which can be beneficial for cancer immunotherapy. Additionally, BATF3 acts as a transcriptional inhibitor of Treg development by decreasing the expression of the transcription factor FOXP3. However, when overexpressed in CD8 + T cells, it can enhance their survival and facilitate their transition to a memory state. BATF3 induces Th9 cell differentiation by binding to the IL-9 promoter through a BATF3/IRF4 complex. One of the latest research findings is the oncogenic function of BATF3, which has been approved and illustrated in several biological processes of proliferation and invasion.
Collapse
Affiliation(s)
- Reza Dabbaghipour
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Ahmadi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mona Entezam
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Omid Rahbar Farzam
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sajjad Jamali
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Saber Sichani
- Department of Medical Genetics, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Biology, Texas A&M University, College Station, TX, 77843, USA
| | - Hadi Paydar
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
9
|
Amon L, Seichter A, Vurnek D, Heger L, Lächele L, Tochoedo NR, Kaszubowski T, Hatscher L, Baranska A, Tchitashvili G, Nimmerjahn F, Lehmann CHK, Dudziak D. Clec12A, CD301b, and FcγRIIB/III define the heterogeneity of murine DC2s and DC3s. Cell Rep 2024; 43:113949. [PMID: 38492222 DOI: 10.1016/j.celrep.2024.113949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Over the last decade, multiple studies have investigated the heterogeneity of murine conventional dendritic cells type 2 (cDC2s). However, their phenotypic similarity with monocytes and macrophages renders their clear identification challenging. By creating a protein atlas utilizing multiparameter flow cytometry, we show that ESAM+ cDC2s are a specialized feature of the spleen strongly differing in their proteome from other cDC2s. In contrast, all other tissues are populated by Clec12A+ cDC2s or Clec12A- cDC2s (high or low for Fcγ receptors, C-type lectin receptors, and CD11b, respectively), rendering Clec12A+ cDC2s classical sentinels. Further, expression analysis of CD301b, Clec12A, and FcγRIIB/III provides a conserved definition of cDC2 heterogeneity, including the discovery of putative FcγRIIB/III+ DC3s across tissues. Finally, our data reveal that cell identity (ontogeny) dictates the proteome that is further fine-tuned by the tissue environment on macrophages and dendritic cells (DCs), while monocytes and plasmacytoid DCs (pDCs) display subset intrinsic default settings.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Damir Vurnek
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lukas Lächele
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Nounagnon Romaric Tochoedo
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Tomasz Kaszubowski
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Giorgi Tchitashvili
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany
| | - Christian Herbert Kurt Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany; Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany.
| |
Collapse
|
10
|
Xu J, Hissong R, Bareis R, Creech A, Goughenour KD, Freeman CM, Olszewski MA. Batf3-dependent orchestration of the robust Th1 responses and fungal control during cryptococcal infection, the role of cDC1. mBio 2024; 15:e0285323. [PMID: 38349130 PMCID: PMC10936214 DOI: 10.1128/mbio.02853-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/22/2024] [Indexed: 03/14/2024] Open
Abstract
While type I conventional dendritic cells (cDC1s) are vital for generating adaptive immunity against intracellular pathogens and tumors, their role in defense against fungal pathogen Cryptococcus neoformans remains unclear. We investigated the role of the cDC1 subset in a fungus-restricting mouse model of cryptococcal infection. The cDC1 subset displayed a unique transcriptional signature with highly upregulated T-cell recruitment, polarization, and activation pathways compared to other DC subsets. Using Batf3-/- mice, which lack the cDC1 population, our results support that Batf3-dependent cDC1s are pivotal for the development of the effective immune response against cryptococcal infection, particularly within the lung and brain. Deficiency in Batf3 cDC1 led to diminished CD4 accumulation and decreased IFNγ production across multiple organs, supporting that cDC1s are a major driver of potent Th1 responses during cryptococcal infection. Consistently, mice lacking Batf3-cDC1 demonstrated markedly diminished fungicidal activity and weaker containment of the fungal pathogen. In conclusion, Batf3-dependent cDC1 can function as a linchpin in mounting Th1 response, ensuring effective fungal control during cryptococcal infection. Harnessing cDC1 pathways may present a promising strategy for interventions against this pathogen.IMPORTANCECryptococcus neoformans causes severe meningoencephalitis, accounting for an estimated 200,000 deaths each year. Central to mounting an effective defense against these infections is T-cell-mediated immunity, which is orchestrated by dendritic cells (DCs). The knowledge about the role of specific DC subsets in shaping anti-cryptococcal immunity is limited. Here, we demonstrate that Batf3 cDC1s are important drivers of protective Th1 CD4 T-cell responses required for clearance of cryptococcal infection. Deficiency of Batf3 cDC1 in the infected mice leads to significantly reduced Th1 response and exacerbated fungal growth to the point where depleting the remaining CD4 T cells no longer affects fungal burden. Unveiling this pivotal role of cDC1 in antifungal defense is likely to be important for the development of vaccines and therapies against life-threatening fungal pathogens.
Collapse
Affiliation(s)
- Jintao Xu
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Rylan Hissong
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Rachel Bareis
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
| | - Arianna Creech
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
| | - Kristie D. Goughenour
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Christine M. Freeman
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| | - Michal A. Olszewski
- Research Service, Department of Veterans Affairs Health System, Ann Arbor VA Health System, Ann Arbor, Michigan, USA
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Health System, Ann Arbor, Michigan, USA
| |
Collapse
|
11
|
DePeaux K, Delgoffe GM. Integrating innate and adaptive immunity in oncolytic virus therapy. Trends Cancer 2024; 10:135-146. [PMID: 37880008 PMCID: PMC10922271 DOI: 10.1016/j.trecan.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/27/2023]
Abstract
Oncolytic viruses (OVs), viruses engineered to lyse tumor cells, work hand in hand with the immune response. While for decades the field isolated lytic capability and viral spread to increase response to virotherapy, there is now a wealth of research that demonstrates the importance of immunity in the OV mechanism of action. In this review, we will cover how OVs interact with the innate immune system to fully activate the adaptive immune system and yield exceptional tumor clearances as well as look forward at combination therapies which can improve clinical responses.
Collapse
Affiliation(s)
- Kristin DePeaux
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Greg M Delgoffe
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
12
|
Ghasemi A, Martinez-Usatorre A, Li L, Hicham M, Guichard A, Marcone R, Fournier N, Torchia B, Martinez Bedoya D, Davanture S, Fernández-Vaquero M, Fan C, Janzen J, Mohammadzadeh Y, Genolet R, Mansouri N, Wenes M, Migliorini D, Heikenwalder M, De Palma M. Cytokine-armed dendritic cell progenitors for antigen-agnostic cancer immunotherapy. NATURE CANCER 2024; 5:240-261. [PMID: 37996514 PMCID: PMC10899110 DOI: 10.1038/s43018-023-00668-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 10/11/2023] [Indexed: 11/25/2023]
Abstract
Dendritic cells (DCs) are antigen-presenting myeloid cells that regulate T cell activation, trafficking and function. Monocyte-derived DCs pulsed with tumor antigens have been tested extensively for therapeutic vaccination in cancer, with mixed clinical results. Here, we present a cell-therapy platform based on mouse or human DC progenitors (DCPs) engineered to produce two immunostimulatory cytokines, IL-12 and FLT3L. Cytokine-armed DCPs differentiated into conventional type-I DCs (cDC1) and suppressed tumor growth, including melanoma and autochthonous liver models, without the need for antigen loading or myeloablative host conditioning. Tumor response involved synergy between IL-12 and FLT3L and was associated with natural killer and T cell infiltration and activation, M1-like macrophage programming and ischemic tumor necrosis. Antitumor immunity was dependent on endogenous cDC1 expansion and interferon-γ signaling but did not require CD8+ T cell cytotoxicity. Cytokine-armed DCPs synergized effectively with anti-GD2 chimeric-antigen receptor (CAR) T cells in eradicating intracranial gliomas in mice, illustrating their potential in combination therapies.
Collapse
Affiliation(s)
- Ali Ghasemi
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Amaia Martinez-Usatorre
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Luqing Li
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Mehdi Hicham
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Alan Guichard
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Rachel Marcone
- Agora Cancer Research Center, Lausanne, Switzerland
- Translational Data Science (TDS) Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Center, Lausanne, Switzerland
- Translational Data Science (TDS) Facility, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Bruno Torchia
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Darel Martinez Bedoya
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Suzel Davanture
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mirian Fernández-Vaquero
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Chaofan Fan
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jakob Janzen
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Yahya Mohammadzadeh
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Department of Oncology, University of Lausanne (UNIL) and Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Nahal Mansouri
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
| | - Mathias Wenes
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
| | - Denis Migliorini
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Center for Translational Research in Onco-Hematology, University of Geneva (UNIGE), Geneva, Switzerland
- Department of Oncology, Geneva University Hospital (HUG), Geneva, Switzerland
| | - Mathias Heikenwalder
- Division of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
- The M3 Research Center, Eberhard Karls University, Tübingen, Germany
- Cluster of Excellence iFIT (EXC 2180), Eberhard Karls University, Tübingen, Germany
| | - Michele De Palma
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
13
|
Wu J, Lu Z, Zhao H, Lu M, Gao Q, Che N, Wang J, Ma T. The expanding Pandora's toolbox of CD8 +T cell: from transcriptional control to metabolic firing. J Transl Med 2023; 21:905. [PMID: 38082437 PMCID: PMC10714647 DOI: 10.1186/s12967-023-04775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
CD8+ T cells are the executor in adaptive immune response, especially in anti-tumor immunity. They are the subset immune cells that are of high plasticity and multifunction. Their development, differentiation, activation and metabolism are delicately regulated by multiple factors. Stimuli from the internal and external environment could remodel CD8+ T cells, and correspondingly they will also make adjustments to the microenvironmental changes. Here we describe the most updated progresses in CD8+ T biology from transcriptional regulation to metabolism mechanisms, and also their interactions with the microenvironment, especially in cancer and immunotherapy. The expanding landscape of CD8+ T cell biology and discovery of potential targets to regulate CD8+ T cells will provide new viewpoints for clinical immunotherapy.
Collapse
Affiliation(s)
- Jinghong Wu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Zhendong Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Hong Zhao
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Mingjun Lu
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Qing Gao
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China
| | - Nanying Che
- Department of Pathology, Beijing Tuberculosis & Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, 101149, China
| | - Jinghui Wang
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| | - Teng Ma
- Cancer Research Center, Beijing Chest Hospital, Beijing Tuberculosis and Thoracic Tumor Research Institute, Capital Medical University, Beijing, 101149, China.
| |
Collapse
|
14
|
Tatsumi N, El-Fenej J, Davila-Pagan A, Kumamoto Y. Rapid activation of IL-2 receptor signaling by CD301b + DC-derived IL-2 dictates the outcome of helper T cell differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.564276. [PMID: 37961107 PMCID: PMC10634899 DOI: 10.1101/2023.10.26.564276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Effector T helper (Th) cell differentiation is fundamental to functional adaptive immunity. Different subsets of dendritic cells (DCs) preferentially induce different types of Th cells, but the fate instruction mechanism for Th type 2 (Th2) differentiation remains enigmatic, as the critical DC-derived cue has not been clearly identified. Here, we show that CD301b+ DCs, a major Th2-inducing DC subset, drive Th2 differentiation through cognate interaction by 'kick-starting' IL-2 receptor signaling in CD4T cells. Mechanistically, CD40 engagement induces IL-2 production selectively from CD301b+ DCs to maximize CD25 expression in CD4 T cells, which is required specifically for the Th2 fate decision. On the other hand, CD25 in CD301b+ DCs facilitates directed action of IL-2 toward cognate CD4T cells. Furthermore, CD301b+ DC-derived IL-2 skews CD4T cells away from the T follicular helper fate. These results highlight the critical role of DC-intrinsic CD40-IL-2 axis in bifurcation of Th cell fate.
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Jihad El-Fenej
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Alejandro Davila-Pagan
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ 07103
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103
| |
Collapse
|
15
|
Hu X, Jiang C, Gao Y, Xue X. Human dendritic cell subsets in the glioblastoma-associated microenvironment. J Neuroimmunol 2023; 383:578147. [PMID: 37643497 DOI: 10.1016/j.jneuroim.2023.578147] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 06/24/2023] [Accepted: 07/05/2023] [Indexed: 08/31/2023]
Abstract
Glioblastoma (GBM) is the most aggressive type of glioma (Grade IV). The presence of cytotoxic T lymphocyte (CTLs) has been associated with improved outcomes in patients with GBM, and it is believed that the activation of CTLs by dendritic cells may play a critical role in controlling the growth of GBM. DCs are professional antigen-presenting cells (APC) that orchestrate innate and adaptive anti-GBM immunity. DCs can subsequently differentiate into plasmacytoid DCs (pDC), conventional DC1 (cDC1), conventional (cDC2), and monocyte-derived DCs (moDC) depending on environmental exposure. The different subsets of DCs exhibit varying functional capabilities in antigen presentation and T cell activation in producing an antitumor response. In this review, we focus on recent studies describing the phenotypic and functional characteristics of DC subsets in humans and their respective antitumor immunity and immunotolerance roles in the GBM-associated microenvironment. The critical components of crosstalk between DC subsets that contribute significantly to GBM-specific immune responses are also highlighted in this review with reference to the latest literature. Since DCs could be prime targets for therapeutic intervention, it is worth summarizing the relevance of DC subsets with respect to GBM-associated immunologic tolerance and their therapeutic potential.
Collapse
Affiliation(s)
- Xiaopeng Hu
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China; Biosafety Level-3 Laboratory, Life Sciences Institute & Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China
| | - Chunmei Jiang
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China
| | - Yang Gao
- Department of Orthopedic Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian 271000, China.
| | - Xingkui Xue
- Medical Research Center, People's Hospital of Longhua, The Affiliated Hospital of Southern Medical University, Shenzhen 518000, China.
| |
Collapse
|
16
|
Moreo E, Jarit-Cabanillas A, Robles-Vera I, Uranga S, Guerrero C, Gómez AB, Mata-Martínez P, Minute L, Araujo-Voces M, Felgueres MJ, Esteso G, Uranga-Murillo I, Arias M, Pardo J, Martín C, Valés-Gómez M, Del Fresno C, Sancho D, Aguiló N. Intravenous administration of BCG in mice promotes natural killer and T cell-mediated antitumor immunity in the lung. Nat Commun 2023; 14:6090. [PMID: 37794033 PMCID: PMC10551006 DOI: 10.1038/s41467-023-41768-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 09/12/2023] [Indexed: 10/06/2023] Open
Abstract
Intravesical administration of Bacillus Calmette-Guérin (BCG) was one of the first FDA-approved immunotherapies and remains a standard treatment for bladder cancer. Previous studies have demonstrated that intravenous (IV) administration of BCG is well-tolerated and effective in preventing tuberculosis infection in animals. Here, we examine IV BCG in several preclinical lung tumor models. Our findings demonstrate that BCG inoculation reduced tumor growth and prolonged mouse survival in models of lung melanoma metastasis and orthotopic lung adenocarcinoma. Moreover, IV BCG treatment was well-tolerated with no apparent signs of acute toxicity. Mechanistically, IV BCG induced tumor-specific CD8+ T cell responses, which were dependent on type 1 conventional dendritic cells, as well as NK cell-mediated immunity. Lastly, we also show that IV BCG has an additive effect on anti-PD-L1 checkpoint inhibitor treatment in mouse lung tumors that are otherwise resistant to anti-PD-L1 as monotherapy. Overall, our study demonstrates the potential of systemic IV BCG administration in the treatment of lung tumors, highlighting its ability to enhance immune responses and augment immune checkpoint blockade efficacy.
Collapse
Affiliation(s)
- Eduardo Moreo
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Iñaki Robles-Vera
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Santiago Uranga
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Claudia Guerrero
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana Belén Gómez
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Luna Minute
- Hospital la Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Miguel Araujo-Voces
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
- Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Oncología (IUOPA), Universidad deOviedo, Oviedo, Spain
| | - María José Felgueres
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gloria Esteso
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Iratxe Uranga-Murillo
- Grupo de Inmunoterapia, Inmunidad y Cáncer, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Maykel Arias
- Grupo de Inmunoterapia, Inmunidad y Cáncer, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Julián Pardo
- Grupo de Inmunoterapia, Inmunidad y Cáncer, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Infecciosas, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martín
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain
| | - Mar Valés-Gómez
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Carlos Del Fresno
- Hospital la Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Nacho Aguiló
- Grupo de Genética de Micobacterias, Departamento de Microbiología, Pediatría, Radiología y Salud Pública, Facultad de Medicina, Universidad de Zaragoza, IIS-Aragon, Zaragoza, Spain.
- CIBER Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
17
|
Hao L, Zhong W, Woo J, Wei X, Ma H, Dong H, Guo W, Sun X, Yue R, Zhao J, Zhang Q, Zhou Z. Conventional type 1 dendritic cells protect against gut barrier disruption via maintaining Akkermansia muciniphila in alcoholic steatohepatitis. Hepatology 2023; 78:896-910. [PMID: 36626632 PMCID: PMC11140646 DOI: 10.1097/hep.0000000000000019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 10/07/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS Alcohol-perturbed gut immune homeostasis is associated with the development of alcoholic liver disease (ALD). However, the role of intestinal dendritic cells (DCs) in ALD progression is still unknown. This study aimed to investigate the cellular and molecular mechanisms through which intestinal DCs respond to alcohol exposure and contribute to the pathogenesis of ALD. APPROACH AND RESULTS After 8 weeks of alcohol consumption, the number of basic leucine zipper transcription factor ATF-like 3 ( Batf3 )-dependent conventional type 1 DCs (cDC1s) was dramatically decreased in the intestine but not the liver. cDC1 deficient Batf3 knockout mice along with wild-type mice were subjected to chronic-binge ethanol feeding to determine the role of intestinal cDC1s reduction in ALD. cDC1s deficiency exacerbated alcohol-induced gut barrier disruption, bacterial endotoxin translocation into the circulation, and liver injury. Adoptive transfer of cDC1s to alcohol-fed mice ameliorated alcohol-mediated gut barrier dysfunction and liver injury. Further studies revealed that intestinal cDC1s serve as a positive regulator of Akkermansia muciniphila ( A. muciniphila ). Oral administration of A. muciniphila markedly reversed alcoholic steatohepatitis in mice. Mechanistic studies revealed that cDC1s depletion exacerbated alcohol-downregulated intestinal antimicrobial peptides which play a crucial role in maintaining A. muciniphila abundance, by disrupting the IL-12-interferon gamma signaling pathway. Lastly, we identified that intestinal cDC1s were required for the protective role of Lactobacillus reuteri in alcoholic steatohepatitis. CONCLUSIONS This study demonstrated that cDC1s protect alcohol-induced liver injury by maintaining A. muciniphila abundance in mice. Targeting cDC1s may serve as a promising therapeutic approach for treating ALD.
Collapse
Affiliation(s)
- Liuyi Hao
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
- Department of Nutrition, Kannapolis, North Carolina, USA
| | - Jongmin Woo
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
| | - Xiaoyuan Wei
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Hao Ma
- Department of Epidemiology, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Haibo Dong
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
| | - Wei Guo
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
| | - Xinguo Sun
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
| | - Ruichao Yue
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, Arkansas, USA
| | - Qibin Zhang
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, North Carolina, USA
| | - Zhanxiang Zhou
- Center for Translational Biomedical Research, Kannapolis, North Carolina, USA
- Department of Nutrition, Kannapolis, North Carolina, USA
| |
Collapse
|
18
|
Medina Sanchez L, Siller M, Zeng Y, Brigleb PH, Sangani KA, Soto AS, Engl C, Laughlin CR, Rana M, Van Der Kraak L, Pandey SP, Bender MJ, Fitzgerald B, Hedden L, Fiske K, Taylor GM, Wright AP, Mehta ID, Rahman SA, Galipeau HJ, Mullett SJ, Gelhaus SL, Watkins SC, Bercik P, Nice TJ, Jabri B, Meisel M, Das J, Dermody TS, Verdú EF, Hinterleitner R. The gut protist Tritrichomonas arnold restrains virus-mediated loss of oral tolerance by modulating dietary antigen-presenting dendritic cells. Immunity 2023; 56:1862-1875.e9. [PMID: 37478853 PMCID: PMC10529081 DOI: 10.1016/j.immuni.2023.06.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/29/2023] [Accepted: 06/27/2023] [Indexed: 07/23/2023]
Abstract
Loss of oral tolerance (LOT) to gluten, driven by dendritic cell (DC) priming of gluten-specific T helper 1 (Th1) cell immune responses, is a hallmark of celiac disease (CeD) and can be triggered by enteric viral infections. Whether certain commensals can moderate virus-mediated LOT remains elusive. Here, using a mouse model of virus-mediated LOT, we discovered that the gut-colonizing protist Tritrichomonas (T.) arnold promotes oral tolerance and protects against reovirus- and murine norovirus-mediated LOT, independent of the microbiota. Protection was not attributable to antiviral host responses or T. arnold-mediated innate type 2 immunity. Mechanistically, T. arnold directly restrained the proinflammatory program in dietary antigen-presenting DCs, subsequently limiting Th1 and promoting regulatory T cell responses. Finally, analysis of fecal microbiomes showed that T. arnold-related Parabasalid strains are underrepresented in human CeD patients. Altogether, these findings will motivate further exploration of oral-tolerance-promoting protists in CeD and other immune-mediated food sensitivities.
Collapse
Affiliation(s)
- Luzmariel Medina Sanchez
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Magdalena Siller
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yanlin Zeng
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; School of Medicine, Tsinghua University, Beijing, China
| | - Pamela H Brigleb
- Graduate Program in Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Kishan A Sangani
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Ariadna S Soto
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Clarisse Engl
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Colin R Laughlin
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mohit Rana
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lauren Van Der Kraak
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Surya P Pandey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mackenzie J Bender
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Britney Fitzgerald
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Lee Hedden
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kay Fiske
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Gwen M Taylor
- Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Austin P Wright
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Isha D Mehta
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Syed A Rahman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Heather J Galipeau
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Steven J Mullett
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stacy L Gelhaus
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Health Sciences Mass Spectrometry Core, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simon C Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Premysl Bercik
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Timothy J Nice
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, OR, USA
| | - Bana Jabri
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Marlies Meisel
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Jishnu Das
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Center for Systems Immunology, Departments of Immunology and Computational & Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Terence S Dermody
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Elena F Verdú
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Reinhard Hinterleitner
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Institute of Infection, Inflammation, and Immunity, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA; Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
19
|
Tatsumi N, Kumamoto Y. Role of mouse dendritic cell subsets in priming naive CD4 T cells. Curr Opin Immunol 2023; 83:102352. [PMID: 37276821 PMCID: PMC10524374 DOI: 10.1016/j.coi.2023.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023]
Abstract
Conventional dendritic cells (cDCs) are potent antigen-presenting cells that consist of developmentally, phenotypically, and functionally distinct subsets. Following immunization, each subset of cDCs acquires the antigen and presents it to CD4T (CD4+ T (cells)) cells with distinct spatiotemporal kinetics in the secondary lymphoid organs, often causing multiple waves of antigen presentation to CD4T cells. Here, we review the current understanding of the kinetics of antigen presentation by each cDC subset and its functional consequences in priming naive CD4T cells, and discuss its implications in the differentiation of CD4T cells.
Collapse
Affiliation(s)
- Naoya Tatsumi
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Yosuke Kumamoto
- Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, NJ, USA; Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
20
|
Zhang Y, Xue W, Xu C, Nan Y, Mei S, Ju D, Wang S, Zhang X. Innate Immunity in Cancer Biology and Therapy. Int J Mol Sci 2023; 24:11233. [PMID: 37510993 PMCID: PMC10379825 DOI: 10.3390/ijms241411233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Immunotherapies including adaptive immune checkpoint inhibitors (ICIs) and chimeric antigen receptor (CAR) T cells, have developed the treatment of cancer in clinic, and most of them focus on activating T cell immunity. Although these strategies have obtained unprecedented clinical responses, only limited subsets of cancer patients could receive long-term benefits, highlighting the demand for identifying novel targets for the new era of tumor immunotherapy. Innate immunity has been demonstrated to play a determinative role in the tumor microenvironment (TME) and influence the clinical outcomes of tumor patients. A thorough comprehension of the innate immune cells that infiltrate tumors would allow for the development of new therapeutics. In this review, we outline the role and mechanism of innate immunity in TME. Moreover, we discuss innate immunity-based cancer immunotherapy in basic and clinical studies. Finally, we summarize the challenges in sufficiently motivating innate immune responses and the corresponding strategies and measures to improve anti-tumor efficacy. This review could aid the comprehension of innate immunity and inspire the creation of brand-new immunotherapies for the treatment of cancer.
Collapse
Affiliation(s)
- Yuxia Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Wenjing Xue
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Caili Xu
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Yanyang Nan
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shuang Mei
- Shanghai Tinova Immune Therapeutics Co., Ltd., Shanghai 201413, China
| | - Dianwen Ju
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Shaofei Wang
- Department of Cellular and Genetic Medicine, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Xuyao Zhang
- Department of Biological Medicines & Shanghai Engineering Research Center of Immunotherapeutics, School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
21
|
Morici LA, McLachlan JB. Non-mucosal vaccination strategies to enhance mucosal immunity. VACCINE INSIGHTS 2023; 2:229-236. [PMID: 37881504 PMCID: PMC10599649 DOI: 10.18609/vac.2023.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The SARS-CoV-2 pandemic has highlighted the need for improved vaccines that can elicit long-lasting mucosal immunity. Although mucosal delivery of vaccines represents a plausible method to enhance mucosal immunity, recent studies utilizing intradermal vaccine delivery or incorporation of unique adjuvants suggest that mucosal immunity may be achieved by vaccination via non-mucosal routes. In this expert insight, we highlight emerging evidence from pre-clinical studies that warrant further mechanistic investigation to improve next-generation vaccines against mucosal pathogens, especially those with pandemic potential.
Collapse
Affiliation(s)
- Lisa A Morici
- Tulane University School of Medicine, Department of Microbiology and Immunology, 1430 Tulane Avenue, New Orleans, LA, USA
| | - James B McLachlan
- Tulane University School of Medicine, Department of Microbiology and Immunology, 1430 Tulane Avenue, New Orleans, LA, USA
| |
Collapse
|
22
|
Magen A, Hamon P, Fiaschi N, Soong BY, Park MD, Mattiuz R, Humblin E, Troncoso L, D'souza D, Dawson T, Kim J, Hamel S, Buckup M, Chang C, Tabachnikova A, Schwartz H, Malissen N, Lavin Y, Soares-Schanoski A, Giotti B, Hegde S, Ioannou G, Gonzalez-Kozlova E, Hennequin C, Le Berichel J, Zhao Z, Ward SC, Fiel I, Kou B, Dobosz M, Li L, Adler C, Ni M, Wei Y, Wang W, Atwal GS, Kundu K, Cygan KJ, Tsankov AM, Rahman A, Price C, Fernandez N, He J, Gupta NT, Kim-Schulze S, Gnjatic S, Kenigsberg E, Deering RP, Schwartz M, Marron TU, Thurston G, Kamphorst AO, Merad M. Intratumoral dendritic cell-CD4 + T helper cell niches enable CD8 + T cell differentiation following PD-1 blockade in hepatocellular carcinoma. Nat Med 2023; 29:1389-1399. [PMID: 37322116 PMCID: PMC11027932 DOI: 10.1038/s41591-023-02345-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 92.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 04/10/2023] [Indexed: 06/17/2023]
Abstract
Despite no apparent defects in T cell priming and recruitment to tumors, a large subset of T cell rich tumors fail to respond to immune checkpoint blockade (ICB). We leveraged a neoadjuvant anti-PD-1 trial in patients with hepatocellular carcinoma (HCC), as well as additional samples collected from patients treated off-label, to explore correlates of response to ICB within T cell-rich tumors. We show that ICB response correlated with the clonal expansion of intratumoral CXCL13+CH25H+IL-21+PD-1+CD4+ T helper cells ("CXCL13+ TH") and Granzyme K+ PD-1+ effector-like CD8+ T cells, whereas terminally exhausted CD39hiTOXhiPD-1hiCD8+ T cells dominated in nonresponders. CD4+ and CD8+ T cell clones that expanded post-treatment were found in pretreatment biopsies. Notably, PD-1+TCF-1+ (Progenitor-exhausted) CD8+ T cells shared clones mainly with effector-like cells in responders or terminally exhausted cells in nonresponders, suggesting that local CD8+ T cell differentiation occurs upon ICB. We found that these Progenitor CD8+ T cells interact with CXCL13+ TH within cellular triads around dendritic cells enriched in maturation and regulatory molecules, or "mregDC". These results suggest that discrete intratumoral niches that include mregDC and CXCL13+ TH control the differentiation of tumor-specific Progenitor exhasuted CD8+ T cells following ICB.
Collapse
Affiliation(s)
- Assaf Magen
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Pauline Hamon
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nathalie Fiaschi
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Brian Y Soong
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Matthew D Park
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raphaël Mattiuz
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Etienne Humblin
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Leanna Troncoso
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Darwin D'souza
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Travis Dawson
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joel Kim
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Hamel
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mark Buckup
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christie Chang
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alexandra Tabachnikova
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hara Schwartz
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nausicaa Malissen
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yonit Lavin
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Alessandra Soares-Schanoski
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bruno Giotti
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Samarth Hegde
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giorgio Ioannou
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edgar Gonzalez-Kozlova
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Clotilde Hennequin
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jessica Le Berichel
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhen Zhao
- The Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephen C Ward
- The Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Isabel Fiel
- The Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Baijun Kou
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Michael Dobosz
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Lianjie Li
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Christina Adler
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Min Ni
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Yi Wei
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Wei Wang
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Gurinder S Atwal
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Kunal Kundu
- VI NEXT, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Kamil J Cygan
- VI NEXT, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adeeb Rahman
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | | | | | - Namita T Gupta
- Molecular Profiling & Data Science, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Seunghee Kim-Schulze
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sacha Gnjatic
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ephraim Kenigsberg
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raquel P Deering
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA
| | - Myron Schwartz
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Thomas U Marron
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Division of Hematology/Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Gavin Thurston
- Department of Oncology & Angiogenesis, Regeneron Pharmaceuticals Inc., Tarrytown, NY, USA.
| | - Alice O Kamphorst
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Miriam Merad
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Institute for Thoracic Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
23
|
Cheng H, Chen W, Lin Y, Zhang J, Song X, Zhang D. Signaling pathways involved in the biological functions of dendritic cells and their implications for disease treatment. MOLECULAR BIOMEDICINE 2023; 4:15. [PMID: 37183207 PMCID: PMC10183318 DOI: 10.1186/s43556-023-00125-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/02/2023] [Indexed: 05/16/2023] Open
Abstract
The ability of dendritic cells (DCs) to initiate and regulate adaptive immune responses is fundamental for maintaining immune homeostasis upon exposure to self or foreign antigens. The immune regulatory function of DCs is strictly controlled by their distribution as well as by cytokines, chemokines, and transcriptional programming. These factors work in conjunction to determine whether DCs exert an immunosuppressive or immune-activating function. Therefore, understanding the molecular signals involved in DC-dependent immunoregulation is crucial in providing insight into the generation of organismal immunity and revealing potential clinical applications of DCs. Considering the many breakthroughs in DC research in recent years, in this review we focused on three basic lines of research directly related to the biological functions of DCs and summarized new immunotherapeutic strategies involving DCs. First, we reviewed recent findings on DC subsets and identified lineage-restricted transcription factors that guide the development of different DC subsets. Second, we discussed the recognition and processing of antigens by DCs through pattern recognition receptors, endogenous/exogenous pathways, and the presentation of antigens through peptide/major histocompatibility complexes. Third, we reviewed how interactions between DCs and T cells coordinate immune homeostasis in vivo via multiple pathways. Finally, we summarized the application of DC-based immunotherapy for autoimmune diseases and tumors and highlighted potential research prospects for immunotherapy that targets DCs. This review provides a useful resource to better understand the immunomodulatory signals involved in different subsets of DCs and the manipulation of these immune signals can facilitate DC-based immunotherapy.
Collapse
Affiliation(s)
- Hao Cheng
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wenjing Chen
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yubin Lin
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jianan Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoshuang Song
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Dunfang Zhang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
24
|
Wijesooriya H, Samaranayake N, Karunaweera ND. Cytokine and phenotypic cell profiles in human cutaneous leishmaniasis caused by Leishmania donovani. PLoS One 2023; 18:e0270722. [PMID: 36602989 PMCID: PMC9815652 DOI: 10.1371/journal.pone.0270722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 11/20/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The innate immune mediators are likely to influence the clinical phenotype of leishmaniasis by primary responses which limit or facilitate the spread of the parasite, as well as by modulating adaptive immunity. This study investigated the response of key innate immune cells in a focus which regularly reports localised cutaneous leishmaniasis (LCL) caused by Leishmania donovani, a species which typically causes visceral disease. METHODS Peripheral blood mononuclear cell (PBMC) derived macrophages and dendritic cells from patients with LCL and healthy controls from endemic and non-endemic areas, were stimulated with soluble Leishmania antigen (SLA). Inflammatory mediators produced by macrophages (TNF-α/TGF-β/IL-10, ELISA; NO, Griess method) and dendritic cells (IL-12p70, IL-10, flowcytometry) and macrophage expression of surface markers of polarization, activation and maturation (flowcytometry) were determined at 24h, 48h and 72h and compared. Study was conducted prospectively from 2015-2019. RESULTS Patient derived macrophages and dendritic cells produced higher levels of both pro and anti-inflammatory mediators compared to controls (p<0.05) with the best discrimination for active disease observed at 72h. Data demonstrated an early activation of macrophages and a subsequent pro-inflammatory bias, as indicated by temporal profiles of TNF-α/TGF-β and TNF-α/IL-10 ratios and higher proportions of classical (M1) macrophages. Higher TGF-β levels were observed in cells from patients with ulcerated or persistent lesions. Immune responses by cells derived from controls in endemic and non-endemic regions did not differ significantly from each other. CONCLUSIONS The overall immunophenotypic profile suggests that LCL observed in the country is the result of a balancing immune response between pro-inflammatory and regulatory mediators. The mediators which showed distinct profiles in patients warrant further investigation as potential candidates for immunotherapeutic approaches. A comparison with visceral leishmaniasis caused by the same species, would provide further evidence on the differential role of these mediators in the resulting clinical phenotype.
Collapse
Affiliation(s)
- Hiruni Wijesooriya
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Nilakshi Samaranayake
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| | - Nadira D. Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
25
|
Biscari L, Maza MC, Farré C, Kaufman CD, Amigorena S, Fresno M, Gironès N, Alloatti A. Sec22b-dependent antigen cross-presentation is a significant contributor of T cell priming during infection with the parasite Trypanosoma cruzi. Front Cell Dev Biol 2023; 11:1138571. [PMID: 36936692 PMCID: PMC10014565 DOI: 10.3389/fcell.2023.1138571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Antigen cross-presentation is a vital mechanism of dendritic cells and other antigen presenting cells to orchestrate the priming of cytotoxic responses towards killing of infected or cancer cells. In this process, exogenous antigens are internalized by dendritic cells, processed, loaded onto MHC class I molecules and presented to CD8+ T cells to activate them. Sec22b is an ER-Golgi Intermediate Compartment resident SNARE protein that, in partnership with sintaxin4, coordinates the recruitment of the transporter associated with antigen processing protein and the peptide loading complex to phagosomes, where antigenic peptides that have been proteolyzed in the cytosol are loaded in MHC class I molecules and transported to the cell membrane. The silencing of Sec22b in dendritic cells primary cultures and conditionally in dendritic cells of C57BL/6 mice, critically impairs antigen cross-presentation, but neither affects other antigen presentation routes nor cytokine production and secretion. Mice with Sec22b conditionally silenced in dendritic cells (Sec22b-/-) show deficient priming of CD8+ T lymphocytes, fail to control tumor growth, and are resistant to anti-checkpoint immunotherapy. In this work, we show that Sec22b-/- mice elicit a deficient specific CD8+ T cell response when challenged with sublethal doses of Trypanosoma cruzi trypomastigotes that is associated with increased blood parasitemia and diminished survival.
Collapse
Affiliation(s)
- Lucía Biscari
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Ma Carmen Maza
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
| | - Cecilia Farré
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- Centro de Investigación y Producción de Reactivos Biológicos, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, Rosario, Argentina
| | - Cintia Daniela Kaufman
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
| | - Sebastian Amigorena
- Institut Curie, INSERM U932, Immunity and Cancer, PSL University, Paris, France
| | - Manuel Fresno
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, Madrid, Spain
| | - Núria Gironès
- Departamento de Biología Molecular, Universidad Autónoma de Madrid (UAM), Madrid, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Universitario de la Princesa, Madrid, Spain
| | - Andrés Alloatti
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER), CONICET, Universidad Nacional de Rosario, Rosario, Argentina
- *Correspondence: Andrés Alloatti,
| |
Collapse
|
26
|
Redondo-Urzainqui A, Hernández-García E, Cook ECL, Iborra S. Dendritic cells in energy balance regulation. Immunol Lett 2023; 253:19-27. [PMID: 36586424 DOI: 10.1016/j.imlet.2022.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/21/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022]
Abstract
Besides their well-known role in initiating adaptive immune responses, several groups have studied the role of dendritic cells (DCs) in the context of chronic metabolic inflammation, such as in diet-induced obesity (DIO) or metabolic-associated fatty liver disease. DCs also have an important function in maintaining metabolic tissue homeostasis in steady-state conditions. In this review, we will briefly describe the different DC subsets, the murine models available to assess their function, and discuss the role of DCs in regulating energy balance and maintaining tissue homeostasis.
Collapse
Affiliation(s)
- Ana Redondo-Urzainqui
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Elena Hernández-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Emma Clare Laura Cook
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, 28040, Spain.
| |
Collapse
|
27
|
Kwak HW, Hong SH, Park HJ, Park HJ, Bang YJ, Kim JY, Lee YS, Bae SH, Yoon H, Nam JH. Adjuvant effect of IRES-based single-stranded RNA on melanoma immunotherapy. BMC Cancer 2022; 22:1041. [PMID: 36199130 PMCID: PMC9533600 DOI: 10.1186/s12885-022-10140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
Abstract
Background Adjuvant therapies such as radiation therapy, chemotherapy, and immunotherapy are usually given after cancer surgery to improve the survival of cancer patients. However, despite advances in several adjuvant therapies, they are still limited in the prevention of recurrences. Methods We evaluated the immunological effects of RNA-based adjuvants in a murine melanoma model. Single-stranded RNA (ssRNA) were constructed based on the cricket paralysis virus (CrPV) internal ribosome entry site (IRES). Populations of immune cells in bone marrow cells and lymph node cells following immunization with CrPVIRES-ssRNA were determined using flow cytometry. Activated cytokine levels were measured using ELISA and ELISpot. The tumor protection efficacy of CrPVIRES-ssRNA was analyzed based on any reduction in tumor size or weight, and overall survival. Results CrPVIRES-ssRNA treatment stimulated antigen-presenting cells in the drain lymph nodes associated with activated antigen-specific dendritic cells. Next, we evaluated the expression of CD40, CD86, and XCR1, showing that immunization with CrPVIRES-ssRNA enhanced antigen presentation by CD8a+ conventional dendritic cell 1 (cDC1), as well as activated antigen-specific CD8 T cells. In addition, CrPVIRES-ssRNA treatment markedly increased the frequency of antigen-specific CD8 T cells and interferon-gamma (IFN-γ) producing cells, which promoted immune responses and reduced tumor burden in melanoma-bearing mice. Conclusions This study provides evidence that the CrPVIRES-ssRNA adjuvant has potential for use in therapeutic cancer vaccines. Moreover, CrPVIRES-ssRNA possesses protective effects on various cancer cell models. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-10140-2.
Collapse
Affiliation(s)
- Hye Won Kwak
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea
| | - So-Hee Hong
- Department of Microbiology, College of Medicine, Ewha Womans University, Seoul, 07804, Republic of Korea
| | - Hyo-Jung Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hyeong-Jun Park
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea
| | - Yoo-Jin Bang
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea
| | - Jae-Yong Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea
| | - Yu-Sun Lee
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Seo-Hyeon Bae
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea.,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea
| | - Hyunho Yoon
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea. .,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea.
| | - Jae-Hwan Nam
- Department of Medical and Biological Sciences, The Catholic University of Korea, 43-1 Yeokgok-dong, Wonmi-gu, Bucheon, 14662, Republic of Korea. .,BK Plus Department of Biotechnology, The Catholic University of Korea, Gyeonggi-do, Bucheon, Republic of Korea. .,, SML biopharm, Gyeonggi-do, Gwangmyeong, Republic of Korea.
| |
Collapse
|
28
|
Dendritic Cells: The Long and Evolving Road towards Successful Targetability in Cancer. Cells 2022; 11:cells11193028. [PMID: 36230990 PMCID: PMC9563837 DOI: 10.3390/cells11193028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/19/2022] [Accepted: 09/22/2022] [Indexed: 11/16/2022] Open
Abstract
Dendritic cells (DCs) are a unique myeloid cell lineage that play a central role in the priming of the adaptive immune response. As such, they are an attractive target for immune oncology based therapeutic approaches. However, targeting these cells has proven challenging with many studies proving inconclusive or of no benefit in a clinical trial setting. In this review, we highlight the known and unknown about this rare but powerful immune cell. As technologies have expanded our understanding of the complexity of DC development, subsets and response features, we are now left to apply this knowledge to the design of new therapeutic strategies in cancer. We propose that utilization of these technologies through a multiomics approach will allow for an improved directed targeting of DCs in a clinical trial setting. In addition, the DC research community should consider a consensus on subset nomenclature to distinguish new subsets from functional or phenotypic changes in response to their environment.
Collapse
|
29
|
Al Moussawy M, Abdelsamed HA. Non-cytotoxic functions of CD8 T cells: “repentance of a serial killer”. Front Immunol 2022; 13:1001129. [PMID: 36172358 PMCID: PMC9511018 DOI: 10.3389/fimmu.2022.1001129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 12/01/2022] Open
Abstract
Cytotoxic CD8 T cells (CTLs) are classically described as the “serial killers” of the immune system, where they play a pivotal role in protective immunity against a wide spectrum of pathogens and tumors. Ironically, they are critical drivers of transplant rejection and autoimmune diseases, a scenario very similar to the famous novel “The strange case of Dr. Jekyll and Mr. Hyde”. Until recently, it has not been well-appreciated whether CTLs can also acquire non-cytotoxic functions in health and disease. Several investigations into this question revealed their non-cytotoxic functions through interactions with various immune and non-immune cells. In this review, we will establish a new classification for CD8 T cell functions including cytotoxic and non-cytotoxic. Further, we will discuss this novel concept and speculate on how these functions could contribute to homeostasis of the immune system as well as immunological responses in transplantation, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Mouhamad Al Moussawy
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hossam A. Abdelsamed
- Department of Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Starzl Transplantation Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, School of Medicine, Pittsburgh, PA, United States
- *Correspondence: Hossam A. Abdelsamed,
| |
Collapse
|
30
|
Wilson KR, Gressier E, McConville MJ, Bedoui S. Microbial Metabolites in the Maturation and Activation of Dendritic Cells and Their Relevance for Respiratory Immunity. Front Immunol 2022; 13:897462. [PMID: 35880171 PMCID: PMC9307905 DOI: 10.3389/fimmu.2022.897462] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/10/2022] [Indexed: 12/12/2022] Open
Abstract
The respiratory tract is a gateway for viruses and bacteria from the external environment to invade the human body. Critical to the protection against these invaders are dendritic cells (DCs) - a group of highly specialized myeloid cells that monitors the lung microenvironment and relays contextual and antigenic information to T cells. Following the recognition of danger signals and/or pathogen molecular associated patterns in the lungs, DCs undergo activation. This process arms DCs with the unique ability to induce the proliferation and differentiation of T cells responding to matching antigen in complex with MHC molecules. Depending on how DCs interact with T cells, the ensuing T cell response can be tolerogenic or immunogenic and as such, the susceptibility and severity of respiratory infections is influenced by the signals DCs receive, integrate, and then convey to T cells. It is becoming increasingly clear that these facets of DC biology are heavily influenced by the cellular components and metabolites produced by the lung and gut microbiota. In this review, we discuss the roles of different DC subsets in respiratory infections and outline how microbial metabolites impact the development, propensity for activation and subsequent activation of DCs. In particular, we highlight these concepts in the context of respiratory immunity.
Collapse
Affiliation(s)
- Kayla R. Wilson
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Kayla R. Wilson,
| | - Elise Gressier
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| | - Malcolm J. McConville
- Department of Biochemistry and Pharmacology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne, Melbourne, VIC, Australia
| | - Sammy Bedoui
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
31
|
Dendritic Cell-Based Immunotherapy in Hot and Cold Tumors. Int J Mol Sci 2022; 23:ijms23137325. [PMID: 35806328 PMCID: PMC9266676 DOI: 10.3390/ijms23137325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells mediate innate and adaptive immune responses and are directly involved in the activation of cytotoxic T lymphocytes that kill tumor cells. Dendritic cell-based cancer immunotherapy has clinical benefits. Dendritic cell subsets are diverse, and tumors can be hot or cold, depending on their immunogenicity; this heterogeneity affects the success of dendritic cell-based immunotherapy. Here, we review the ontogeny of dendritic cells and dendritic cell subsets. We also review the characteristics of hot and cold tumors and briefly introduce therapeutic trials related to hot and cold tumors. Lastly, we discuss dendritic cell-based cancer immunotherapy in hot and cold tumors.
Collapse
|
32
|
Combination of OX40 Co-Stimulation, Radiotherapy, and PD-1 Inhibition in a Syngeneic Murine Triple-Negative Breast Cancer Model. Cancers (Basel) 2022; 14:cancers14112692. [PMID: 35681672 PMCID: PMC9179485 DOI: 10.3390/cancers14112692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/27/2022] [Indexed: 12/10/2022] Open
Abstract
Simple Summary This experimental study was designed in order to investigate the efficacy of the triple combination of radiation (SBRT), PD-1 blockade, and OX40 co-stimulation in a syngeneic murine model using ‘immunologically cold’ triple-negative breast cancer cells. SBRT can induce immunogenic tumor cell deaths and act as an in situ vaccine while OX40 signaling has been shown to improve anticancer immunity combined with PD-1 inhibition via multiple preclinical studies. In our study, triple combination therapy significantly improved primary/abscopal tumor control and reduced lung metastases compared to single or dual therapies. This was found to be through an increased ratio of CD8+ T cells to regulatory T cells and a reduced proportion of exhausted T cells in the tumor microenvironment. Abstract Immune checkpoint inhibitors have been successful in a wide range of tumor types but still have limited efficacy in immunologically cold tumors, such as breast cancers. We hypothesized that the combination of agonistic anti-OX40 (α-OX40) co-stimulation, PD-1 blockade, and radiotherapy would improve the therapeutic efficacy of the immune checkpoint blockade in a syngeneic murine triple-negative breast cancer model. Murine triple-negative breast cancer cells (4T1) were grown in immune-competent BALB/c mice, and tumors were irradiated with 24 Gy in three fractions. PD-1 blockade and α-OX40 were administered five times every other day. Flow cytometric analyses and immunohistochemistry were used to monitor subsequent changes in the immune cell repertoire. The combination of α-OX40, radiotherapy, and PD-1 blockade significantly improved primary tumor control, abscopal effects, and long-term survival beyond 2 months (60%). In the tumor microenvironment, the ratio of CD8+ T cells to CD4 + FOXP3+ regulatory T cells was significantly elevated and exhausted CD8+ T cells (PD-1+, CTLA-4+, TIM-3+, or LAG-3+ cells) were significantly reduced in the triple combination group. Systemically, α-OX40 co-stimulation and radiation significantly increased the CD103+ dendritic cell response in the spleen and plasma IFN-γ, respectively. Together, our results suggest that the combination of α-OX40 co-stimulation and radiation is a viable approach to overcome therapeutic resistance to PD-1 blockade in immunologically cold tumors, such as triple-negative breast cancer.
Collapse
|
33
|
Hartmeier PR, Kosanovich JL, Velankar KY, Armen-Luke J, Lipp MA, Gawalt ES, Giannoukakis N, Empey KM, Meng WS. Immune Cells Activating Biotin-Decorated PLGA Protein Carrier. Mol Pharm 2022; 19:2638-2650. [PMID: 35621214 PMCID: PMC10105284 DOI: 10.1021/acs.molpharmaceut.2c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nanoparticle formulations have long been proposed as subunit vaccine carriers owing to their ability to entrap proteins and codeliver adjuvants. Poly(lactic-co-glycolic acid) (PLGA) remains one of the most studied polymers for controlled release and nanoparticle drug delivery, and numerous studies exist proposing PLGA particles as subunit vaccine carriers. In this work we report using PLGA nanoparticles modified with biotin (bNPs) to deliver proteins via adsorption and stimulate professional antigen-presenting cells (APCs). We present evidence showing bNPs are capable of retaining proteins through the biotin-avidin interaction. Surface accessible biotin bound both biotinylated catalase (bCAT) through avidin and streptavidin horseradish peroxidase (HRP). Analysis of the HRP found that activity on the bNPs was preserved once captured on the surface of bNP. Further, bNPs were found to have self-adjuvant properties, evidenced by bNP induced IL-1β, IL-18, and IL-12 production in vitro in APCs, thereby licensing the cells to generate Th1-type helper T cell responses. Cytokine production was reduced in avidin precoated bNPs (but not with other proteins), suggesting that the proinflammatory response is due in part to exposed biotin on the surface of bNPs. bNPs injected subcutaneously were localized to draining lymph nodes detectable after 28 days and were internalized by bronchoalveolar lavage dendritic cells and macrophages in mice in a dose-dependent manner when delivered intranasally. Taken together, these data provide evidence that bNPs should be explored further as potential adjuvanting carriers for subunit vaccines.
Collapse
Affiliation(s)
- Paul R Hartmeier
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jessica L Kosanovich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Ketki Y Velankar
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Jennifer Armen-Luke
- Department of Chemistry and Biochemistry, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| | - Madeline A Lipp
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Ellen S Gawalt
- Department of Chemistry and Biochemistry, Bayer School of Natural and Environmental Sciences, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Nick Giannoukakis
- Allegheny-Singer Research Institute, Allegheny Health Network, Pittsburgh, Pennsylvania 15212, United States.,Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Kerry M Empey
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States.,Department of Immunology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| | - Wilson S Meng
- Graduate School of Pharmaceutical Sciences, School of Pharmacy, Duquesne University, Pittsburgh, Pennsylvania 15282, United States.,McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15219, United States
| |
Collapse
|
34
|
Huang JY, Lyons-Cohen MR, Gerner MY. Information flow in the spatiotemporal organization of immune responses. Immunol Rev 2022; 306:93-107. [PMID: 34845729 PMCID: PMC8837692 DOI: 10.1111/imr.13046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
Immune responses must be rapid, tightly orchestrated, and tailored to the encountered stimulus. Lymphatic vessels facilitate this process by continuously collecting immunological information (ie, antigens, immune cells, and soluble mediators) about the current state of peripheral tissues, and transporting these via the lymph across the lymphatic system. Lymph nodes (LNs), which are critical meeting points for innate and adaptive immune cells, are strategically located along the lymphatic network to intercept this information. Within LNs, immune cells are spatially organized, allowing them to efficiently respond to information delivered by the lymph, and to either promote immune homeostasis or mount protective immune responses. These responses involve the activation and functional cooperation of multiple distinct cell types and are tailored to the specific inflammatory conditions. The natural patterns of lymph flow can also generate spatial gradients of antigens and agonists within draining LNs, which can in turn further regulate innate cell function and localization, as well as the downstream generation of adaptive immunity. In this review, we explore how information transmitted by the lymph shapes the spatiotemporal organization of innate and adaptive immune responses in LNs, with particular focus on steady state and Type-I vs. Type-II inflammation.
Collapse
Affiliation(s)
| | | | - Michael Y Gerner
- Corresponding author: Michael Gerner, , Address: 750 Republican Street Seattle, WA 98109, Phone: 206-685-3610
| |
Collapse
|
35
|
Persistent Cutaneous Leishmania major Infection Promotes Infection-Adapted Myelopoiesis. Microorganisms 2022; 10:microorganisms10030535. [PMID: 35336108 PMCID: PMC8954948 DOI: 10.3390/microorganisms10030535] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/11/2022] [Accepted: 02/26/2022] [Indexed: 11/16/2022] Open
Abstract
Hematopoietic stem/progenitor cells (HSPC) are responsible for the generation of most immune cells throughout the lifespan of the organism. Inflammation can activate bone marrow HSPCs, leading to enhanced myelopoiesis to replace cells, such as neutrophils, which are attracted to inflamed tissues. We have previously shown that HSPC activation promotes parasite persistence and expansion in experimental visceral leishmaniasis through the increased production of permissive monocytes. However, it is not clear if the presence of the parasite in the bone marrow was required for infection-adapted myelopoiesis. We therefore hypothesized that persistent forms of Leishmania major (cutaneous leishmaniasis) could also activate HSPCs and myeloid precursors in the C57Bl/6 mouse model of intradermal infection in the ear. The accrued influx of myeloid cells to the lesion site corresponded to an increase in myeloid-biased HSPCs in the bone marrow and spleen in mice infected with a persistent strain of L. major, together with an increase in monocytes and monocyte-derived myeloid cells in the spleen. Analysis of the bone marrow cytokine and chemokine environment revealed an attenuated type I and type II interferon response in the mice infected with the persistent strain compared to the self-healing strain, while both strains induced a rapid upregulation of myelopoietic cytokines, such as IL-1β and GM-CSF. These results demonstrate that an active infection in the bone marrow is not necessary for the induction of infection-adapted myelopoiesis, and underline the importance of considering alterations to the bone marrow output when analyzing in vivo host-pathogen interactions.
Collapse
|
36
|
Tesfaye DY, Bobic S, Lysén A, Huszthy PC, Gudjonsson A, Braathen R, Bogen B, Fossum E. Targeting Xcr1 on Dendritic Cells Rapidly Induce Th1-Associated Immune Responses That Contribute to Protection Against Influenza Infection. Front Immunol 2022; 13:752714. [PMID: 35296089 PMCID: PMC8918470 DOI: 10.3389/fimmu.2022.752714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/02/2022] [Indexed: 11/13/2022] Open
Abstract
Targeting antigen to conventional dendritic cells (cDCs) can improve antigen-specific immune responses and additionally be used to influence the polarization of the immune responses. However, the mechanisms by which this is achieved are less clear. To improve our understanding, we here evaluate molecular and cellular requirements for CD4+ T cell and antibody polarization after immunization with Xcl1-fusion vaccines that specifically target cDC1s. Xcl1-fusion vaccines induced an IgG2a/IgG2b-dominated antibody response and rapid polarization of Th1 cells both in vitro and in vivo. For comparison, we included fliC-fusion vaccines that almost exclusively induced IgG1, despite inducing a more mixed polarization of T cells. Th1 polarization and IgG2a induction with Xcl1-fusion vaccines required IL-12 secretion but were nevertheless maintained in BATF3-/- mice which lack IL-12-secreting migratory DCs. Interestingly, induction of IgG2a-dominated responses was highly dependent on the early kinetics of Th1 induction and was important for optimal protection in an influenza infection model. Early Th1 induction was dominant, since a combined Xcl1- and fliC-fusion vaccine induced IgG2a/IgG2b polarized antibody responses similar to Xcl1-fusion vaccines alone. In summary, our results demonstrate that targeting antigen to Xcr1+ cDC1s is an efficient strategy for enhancing IgG2a antibody responses through rapid Th1 induction, which can be utilized for improved vaccine design.
Collapse
Affiliation(s)
- Demo Yemane Tesfaye
- Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Sonja Bobic
- Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anna Lysén
- Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Peter Csaba Huszthy
- Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Arnar Gudjonsson
- Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Ranveig Braathen
- Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Bjarne Bogen
- Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
- Center for Immune Regulation, Institute of Immunology, University of Oslo and Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Even Fossum
- Department of Immunology, Division of Laboratory Medicine, Oslo University Hospital, Oslo, Norway
- Kristian Gerhard Jebsen Center for Research on Influenza Vaccines, University of Oslo and Oslo University Hospital, Oslo, Norway
- *Correspondence: Even Fossum,
| |
Collapse
|
37
|
Gullicksrud JA, Sateriale A, Engiles JB, Gibson AR, Shaw S, Hutchins ZA, Martin L, Christian DA, Taylor GA, Yamamoto M, Beiting DP, Striepen B, Hunter CA. Enterocyte-innate lymphoid cell crosstalk drives early IFN-γ-mediated control of Cryptosporidium. Mucosal Immunol 2022; 15:362-372. [PMID: 34750455 PMCID: PMC8881313 DOI: 10.1038/s41385-021-00468-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/14/2021] [Accepted: 09/03/2021] [Indexed: 02/04/2023]
Abstract
The intestinal parasite, Cryptosporidium, is a major contributor to global child mortality and causes opportunistic infection in immune deficient individuals. Innate resistance to Cryptosporidium, which specifically invades enterocytes, is dependent on the production of IFN-γ, yet whether enterocytes contribute to parasite control is poorly understood. In this study, utilizing a mouse-adapted strain of C. parvum, we show that epithelial-derived IL-18 synergized with IL-12 to stimulate innate lymphoid cell (ILC) production of IFN-γ required for early parasite control. The loss of IFN-γ-mediated STAT1 signaling in enterocytes, but not dendritic cells or macrophages, antagonized early parasite control. Transcriptional profiling of enterocytes from infected mice identified an IFN-γ signature and enrichment of the anti-microbial effectors IDO, GBP, and IRG. Deletion experiments identified a role for Irgm1/m3 in parasite control. Thus, enterocytes promote ILC production of IFN-γ that acts on enterocytes to restrict the growth of Cryptosporidium.
Collapse
Affiliation(s)
- Jodi A Gullicksrud
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Sateriale
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- The Francis Crick Institute, London, UK
| | - Julie B Engiles
- Department of Pathobiology, New Bolton Center, School of Veterinary Medicine, University of Pennsylvania, Kennett Square, PA, USA
| | - Alexis R Gibson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary A Hutchins
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Jill Robests Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, New York, NY, USA
| | - Lindsay Martin
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David A Christian
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gregory A Taylor
- Departments of Medicine, Molecular Genetics and Microbiology and Immunology and Center for the Study of Aging and Human Development, Duke University Medical Center, Durham, NC, USA
- Geriatric Research, Education, and Clinical Center, Durham VA Health Care System, Durham, NC, USA
| | - Masahiro Yamamoto
- Department of Immunoparasitology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daniel P Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher A Hunter
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
38
|
Conventional type 1 dendritic cells protect against age-related adipose tissue dysfunction and obesity. Cell Mol Immunol 2022; 19:260-275. [PMID: 34983945 PMCID: PMC8803960 DOI: 10.1038/s41423-021-00812-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 02/08/2023] Open
Abstract
Conventional dendritic cells (cDCs) scan and integrate environmental cues in almost every tissue, including exogenous metabolic signals. While cDCs are critical in maintaining immune balance, their role in preserving energy homeostasis is unclear. Here, we showed that Batf3-deficient mice lacking conventional type 1 DCs (cDC1s) had increased body weight and adiposity during aging. This led to impaired energy expenditure and glucose tolerance, insulin resistance, dyslipidemia, and liver steatosis. cDC1 deficiency caused adipose tissue inflammation that was preceded by a paucity of NK1.1+ invariant NKT (iNKT) cells. Accordingly, among antigen-presenting cells, cDC1s exhibited notable induction of IFN-γ production by iNKT cells, which plays a metabolically protective role in lean adipose tissue. Flt3L treatment, which expands the dendritic cell (DC) compartment, mitigated diet-induced obesity and hyperlipidemia in a Batf3-dependent manner. This effect was partially mediated by NK1.1+ cells. These results reveal a new critical role for the cDC1-iNKT cell axis in the regulation of adipose tissue homeostasis.
Collapse
|
39
|
Osero BO, Cele Z, Aruleba RT, Maine RA, Ozturk M, Lutz MB, Brombacher F, Hurdayal R. Interleukin-4 Responsive Dendritic Cells Are Dispensable to Host Resistance Against Leishmania mexicana Infection. Front Immunol 2022; 12:759021. [PMID: 35154068 PMCID: PMC8831752 DOI: 10.3389/fimmu.2021.759021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
IL-4 and IL-13 cytokines have been associated with a non-healing phenotype in murine leishmaniasis in L. mexicana -infected BALB/c mice as demonstrated in IL-4−/−, IL-13−/− and IL-4Rα-/- global knockout mouse studies. However, it is unclear from the studies which cell-type-specific IL-4/IL-13 signaling mediates protection to L. mexicana. Previous studies have ruled out a role for IL-4-mediated protection on CD4+ T cells during L. mexicana infections. A candidate for this role may be non-lymphocyte cells, particularly DCs, as was previously shown in L. major infections, where IL-4 production drives dendritic cell-IL-12 production thereby mediating a type 1 immune response. However, it is unclear if this IL-4-instruction of type 1 immunity also occurs in CL caused by L. mexicana, since the outcome of cutaneous leishmaniasis often depends on the infecting Leishmania species. Thus, BALB/c mice with cell-specific deletion of the IL-4Rα on CD11c+ DCs (CD11ccreIL-4Rα-/lox) were infected with L. mexicana promastigotes in the footpad and the clinical phenotype, humoral and cellular immune responses were investigated, compared to the littermate control. Our results show that CL disease progression in BALB/c mice is independent of IL-4Rα signaling on DCs as CD11ccreIL-4Rα-/lox mice had similar footpad lesion progression, parasite loads, humoral responses (IgE, IgG1, IgG 2a/b), and IFN-γ cytokine secretion in comparison to littermate controls. Despite this comparable phenotype, surprisingly, IL-4 production in CD11ccreIL-4Rα-/lox mice was significantly increased with an increasing trend of IL-13 when compared to littermate controls. Moreover, the absence of IL-4Rα signaling did not significantly alter the frequency of CD4 and CD8 lymphocytes nor their activation, or memory phenotype compared to littermate controls. However, these populations were significantly increased in CD11ccreIL-4Rα-/lox mice due to greater total cell infiltration into the lymph node. A similar trend was observed for B cells whereas the recruitment of myeloid populations (macrophages, DCs, neutrophils, and Mo-DCs) into LN was comparable to littermate IL-4Rα-/lox mice. Interestingly, IL-4Rα-deficient bone marrow-derived dendritic cells (BMDCs), stimulated with LPS or L. mexicana promastigotes in presence of IL-4, showed similar levels of IL-12p70 and IL-10 to littermate controls highlighting that IL-4-mediated DC instruction was not impaired in response to L. mexicana. Similarly, IL-4 stimulation did not affect the maturation or activation of IL-4Rα-deficient BMDCs during L. mexicana infection nor their effector functions in production of nitrite and arginine-derived metabolite (urea). Together, this study suggests that IL-4 Rα signaling on DCs is not key in the regulation of immune-mediated protection in mice against L. mexicana infection.
Collapse
Affiliation(s)
- Bernard Ong’ondo Osero
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Zama Cele
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Raphael Taiwo Aruleba
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Rebeng A. Maine
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Manfred B. Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | - Frank Brombacher
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- *Correspondence: Frank Brombacher, ; Ramona Hurdayal,
| | - Ramona Hurdayal
- Division of Immunology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), South African Medical Research Council (SAMRC) on Immunology of Infectious Diseases, University of Cape Town, Cape Town, South Africa
- International Centre for Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa
- Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI), Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Department of Molecular and Cell Biology, University of Cape Town, Cape Town, South Africa
- *Correspondence: Frank Brombacher, ; Ramona Hurdayal,
| |
Collapse
|
40
|
Qi X, Wang XQ, Jin L, Gao LX, Guo HF. Uncovering potential single nucleotide polymorphisms, copy number variations and related signaling pathways in primary Sjogren's syndrome. Bioengineered 2021; 12:9313-9331. [PMID: 34723755 PMCID: PMC8809958 DOI: 10.1080/21655979.2021.2000245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Primary Sjogren’s syndrome (pSS) is a complex systemic autoimmune disease, which is difficult to accurately diagnose due to symptom diversity in patients, especially at earlier stages. We tried to find potential single nucleotide polymorphisms (SNPs), copy number variations (CNVs) and related signaling pathways. Genomic DNA was extracted from peripheral blood of 12 individuals (7 individuals from 3 pSS pedigrees and 5 sporadic cases) for whole-exome sequencing (WES) analysis. SNPs and CNVs were identified, followed by functional annotation of genes with SNPs and CNVs. Gene expression profile (involving 64 normal controls and 166 cases) was downloaded from the Gene Expression Omnibus database (GEO) dataset for differentially expression analysis. Sanger sequencing and in vitro validation was used to validate the identified SNPs and differentially expressed genes, respectively. A total of 5 SNPs were identified in both pedigrees and sporadic cases, such as FES, PPM1J, and TRAPPC9. A total of 3402 and 19 CNVs were identified in pedigrees and sporadic cases, respectively. Fifty-one differentially expressed genes were associated with immunity, such as BATF3, LAP3, BATF2, PARP9, and IL15RA. AMPK signaling pathway and cell adhesion molecules (CAMs) were the most significantly enriched signaling pathways of identified SNPs. Identified CNVs were associated with systemic lupus erythematosus, mineral absorption, and HTLV-I infection. IL2-STAT5 signaling, interferon-gamma response, and interferon-alpha response were significantly enriched immune related signaling pathways of identified differentially expressed genes. In conclusion, our study found some potential SNPs, CNVs, and related signaling pathways, which could be useful in understanding the pathological mechanism of pSS.
Collapse
Affiliation(s)
- Xuan Qi
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Xi-Qin Wang
- Internal Medicine, Yuhua Yunfang Integrated Traditional Chinese and Western Medicine Clinic, Shijiazhuang, Hebei, China
| | - Lu Jin
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Li-Xia Gao
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Hui-Fang Guo
- Department of Rheumatism and Immunology, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
41
|
Singh TP, Carvalho AM, Sacramento LA, Grice EA, Scott P. Microbiota instruct IL-17A-producing innate lymphoid cells to promote skin inflammation in cutaneous leishmaniasis. PLoS Pathog 2021; 17:e1009693. [PMID: 34699567 PMCID: PMC8570469 DOI: 10.1371/journal.ppat.1009693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/05/2021] [Accepted: 10/12/2021] [Indexed: 12/26/2022] Open
Abstract
Innate lymphoid cells (ILCs) comprise a heterogeneous population of immune cells that maintain barrier function and can initiate a protective or pathological immune response upon infection. Here we show the involvement of IL-17A-producing ILCs in microbiota-driven immunopathology in cutaneous leishmaniasis. IL-17A-producing ILCs were RORγt+ and were enriched in Leishmania major infected skin, and topical colonization with Staphylococcus epidermidis before L. major infection exacerbated the skin inflammatory responses and IL-17A-producing RORγt+ ILC accumulation without impacting type 1 immune responses. IL-17A responses in ILCs were directed by Batf3 dependent CD103+ dendritic cells and IL-23. Moreover, experiments using Rag1-/- mice established that IL-17A+ ILCs were sufficient in driving the inflammatory responses as depletion of ILCs or neutralization of IL-17A diminished the microbiota mediated immunopathology. Taken together, this study indicates that the skin microbiota promotes RORγt+ IL-17A-producing ILCs, which augment the skin inflammation in cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Tej Pratap Singh
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (TPS); (PS)
| | - Augusto M. Carvalho
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Laís Amorim Sacramento
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elizabeth A. Grice
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Phillip Scott
- Department of Pathobiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail: (TPS); (PS)
| |
Collapse
|
42
|
Carneiro MB, Peters NC. The Paradox of a Phagosomal Lifestyle: How Innate Host Cell- Leishmania amazonensis Interactions Lead to a Progressive Chronic Disease. Front Immunol 2021; 12:728848. [PMID: 34557194 PMCID: PMC8452962 DOI: 10.3389/fimmu.2021.728848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Intracellular phagosomal pathogens represent a formidable challenge for innate immune cells, as, paradoxically, these phagocytic cells can act as both host cells that support pathogen replication and, when properly activated, are the critical cells that mediate pathogen elimination. Infection by parasites of the Leishmania genus provides an excellent model organism to investigate this complex host-pathogen interaction. In this review we focus on the dynamics of Leishmania amazonensis infection and the host innate immune response, including the impact of the adaptive immune response on phagocytic host cell recruitment and activation. L. amazonensis infection represents an important public health problem in South America where, distinct from other Leishmania parasites, it has been associated with all three clinical forms of leishmaniasis in humans: cutaneous, muco-cutaneous and visceral. Experimental observations demonstrate that most experimental mouse strains are susceptible to L. amazonensis infection, including the C57BL/6 mouse, which is resistant to other species such as Leishmania major, Leishmania braziliensis and Leishmania infantum. In general, the CD4+ T helper (Th)1/Th2 paradigm does not sufficiently explain the progressive chronic disease established by L. amazonensis, as strong cell-mediated Th1 immunity, or a lack of Th2 immunity, does not provide protection as would be predicted. Recent findings in which the balance between Th1/Th2 immunity was found to influence permissive host cell availability via recruitment of inflammatory monocytes has also added to the complexity of the Th1/Th2 paradigm. In this review we discuss the roles played by innate cells starting from parasite recognition through to priming of the adaptive immune response. We highlight the relative importance of neutrophils, monocytes, dendritic cells and resident macrophages for the establishment and progressive nature of disease following L. amazonensis infection.
Collapse
Affiliation(s)
- Matheus B Carneiro
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Nathan C Peters
- Snyder Institute for Chronic Diseases, Departments of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine and Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
43
|
Brassard J, Roy J, Lemay AM, Beaulieu MJ, Bernatchez E, Veillette M, Duchaine C, Blanchet MR. Exposure to the Gram-Negative Bacteria Pseudomonas aeruginosa Influences the Lung Dendritic Cell Population Signature by Interfering With CD103 Expression. Front Cell Infect Microbiol 2021; 11:617481. [PMID: 34295830 PMCID: PMC8291145 DOI: 10.3389/fcimb.2021.617481] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 06/15/2021] [Indexed: 11/25/2022] Open
Abstract
Lung dendritic cells (DCs) are divided into two major populations, which include CD103+XCR1+ cDC1s and CD11b+Sirpα+ cDC2s. The maintenance of their relative proportions is dynamic and lung inflammation, such as caused by exposure to lipopolysaccharide (LPS), a component of the outer membrane of Gram-negative bacteria, can have a significant impact on the local cDC signature. Alterations in the lung cDC signature could modify the capacity of the immune system to respond to various pathogens. We consequently aimed to assess the impact of the Gram-negative bacteria Pseudomonas aeruginosa on lung cDC1 and cDC2 populations, and to identify the mechanisms leading to alterations in cDC populations. We observed that exposure to P. aeruginosa decreased the proportions of CD103+XCR1+ cDC1s, while increasing that of CD11b+ DCs. We identified two potential mechanisms involved in this modulation of lung cDC populations. First, we observed an increase in bone marrow pre-DC IRF4 expression suggesting a higher propensity of pre-DCs to differentiate towards the cDC2 lineage. This observation was combined with a reduced capacity of lung XCR1+ DC1s to express CD103. In vitro, we demonstrated that GM-CSF-induced CD103 expression on cDCs depends on GM-CSF receptor internalization and RUNX1 activity. Furthermore, we observed that cDCs stimulation with LPS or P. aeruginosa reduced the proportions of intracellular GM-CSF receptor and decreased RUNX1 mRNA expression. Altogether, these results suggest that alterations in GM-CSF receptor intracellular localization and RUNX1 signaling could be involved in the reduced CD103 expression on cDC1 in response to P. aeruginosa. To verify whether the capacity of cDCs to express CD103 following P. aeruginosa exposure impacts the immune response, WT and Cd103-/- mice were exposed to P. aeruginosa. Lack of CD103 expression led to an increase in the number of neutrophils in the airways, suggesting that lack of CD103 expression on cDC1s could favor the innate immune response to this bacterium.
Collapse
Affiliation(s)
- Julyanne Brassard
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| | - Joanny Roy
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| | - Anne-Marie Lemay
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| | - Marie-Josée Beaulieu
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| | - Emilie Bernatchez
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| | - Marc Veillette
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| | - Caroline Duchaine
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| | - Marie-Renée Blanchet
- Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, QC, Canada
| |
Collapse
|
44
|
Salah A, Wang H, Li Y, Ji M, Ou WB, Qi N, Wu Y. Insights Into Dendritic Cells in Cancer Immunotherapy: From Bench to Clinical Applications. Front Cell Dev Biol 2021; 9:686544. [PMID: 34262904 PMCID: PMC8273339 DOI: 10.3389/fcell.2021.686544] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 05/11/2021] [Indexed: 01/05/2023] Open
Abstract
Dendritic cells (DCs) are efficient antigen-presenting cells (APCs) and potent activators of naïve T cells. Therefore, they act as a connective ring between innate and adaptive immunity. DC subsets are heterogeneous in their ontogeny and functions. They have proven to potentially take up and process tumor-associated antigens (TAAs). In this regard, researchers have developed strategies such as genetically engineered or TAA-pulsed DC vaccines; these manipulated DCs have shown significant outcomes in clinical and preclinical models. Here, we review DC classification and address how DCs are skewed into an immunosuppressive phenotype in cancer patients. Additionally, we present the advancements in DCs as a platform for cancer immunotherapy, emphasizing the technologies used for in vivo targeting of endogenous DCs, ex vivo generated vaccines from peripheral blood monocytes, and induced pluripotent stem cell-derived DCs (iPSC-DCs) to boost antitumoral immunity.
Collapse
Affiliation(s)
- Ahmed Salah
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hao Wang
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China.,Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China.,Asia Stem Cell Therapies Co., Limited, Shanghai, China
| | - Yanqin Li
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Meng Ji
- Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China
| | - Wen-Bin Ou
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Nianmin Qi
- Hangzhou Biaomo Biosciences Co., Ltd., Hangzhou, China.,Asia Stem Cell Therapies Co., Limited, Shanghai, China
| | - Yuehong Wu
- Department of Biochemistry and Molecular Biology, College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
45
|
Altered ratio of dendritic cell subsets in skin-draining lymph nodes promotes Th2-driven contact hypersensitivity. Proc Natl Acad Sci U S A 2021; 118:2021364118. [PMID: 33431694 DOI: 10.1073/pnas.2021364118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) specialize in the production of type I IFN (IFN-I). pDCs can be depleted in vivo by injecting diphtheria toxin (DT) in a mouse in which pDCs express a diphtheria toxin receptor (DTR) transgene driven by the human CLEC4C promoter. This promoter is enriched for binding sites for TCF4, a transcription factor that promotes pDC differentiation and expression of pDC markers, including CLEC4C. Here, we found that injection of DT in CLEC4C-DTR+ mice markedly augmented Th2-dependent skin inflammation in a model of contact hypersensitivity (CHS) induced by the hapten fluorescein isothiocyanate. Unexpectedly, this biased Th2 response was independent of reduced IFN-I accompanying pDC depletion. In fact, DT treatment altered the representation of conventional dendritic cells (cDCs) in the skin-draining lymph nodes during the sensitization phase of CHS; there were fewer Th1-priming CD326+ CD103+ cDC1 and more Th2-priming CD11b+ cDC2. Single-cell RNA-sequencing of CLEC4C-DTR+ cDCs revealed that CD326+ DCs, like pDCs, expressed DTR and were depleted together with pDCs by DT treatment. Since CD326+ DCs did not express Tcf4, DTR expression might be driven by yet-undefined transcription factors activating the CLEC4C promoter. These results demonstrate that altered DC representation in the skin-draining lymph nodes during sensitization to allergens can cause Th2-driven CHS.
Collapse
|
46
|
Cueto FJ, Del Fresno C, Brandi P, Combes AJ, Hernández-García E, Sánchez-Paulete AR, Enamorado M, Bromley CP, Gomez MJ, Conde-Garrosa R, Mañes S, Zelenay S, Melero I, Iborra S, Krummel MF, Sancho D. DNGR-1 limits Flt3L-mediated antitumor immunity by restraining tumor-infiltrating type I conventional dendritic cells. J Immunother Cancer 2021; 9:e002054. [PMID: 33980589 PMCID: PMC8118081 DOI: 10.1136/jitc-2020-002054] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2021] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Conventional type 1 dendritic cells (cDC1s) are central to antitumor immunity and their presence in the tumor microenvironment associates with improved outcomes in patients with cancer. DNGR-1 (CLEC9A) is a dead cell-sensing receptor highly restricted to cDC1s. DNGR-1 has been involved in both cross-presentation of dead cell-associated antigens and processes of disease tolerance, but its role in antitumor immunity has not been clarified yet. METHODS B16 and MC38 tumor cell lines were inoculated subcutaneously into wild-type (WT) and DNGR-1-deficient mice. To overexpress Flt3L systemically, we performed gene therapy through the hydrodynamic injection of an Flt3L-encoding plasmid. To characterize the immune response, we performed flow cytometry and RNA-Seq of tumor-infiltrating cDC1s. RESULTS Here, we found that cross-presentation of tumor antigens in the steady state was DNGR-1-independent. However, on Flt3L systemic overexpression, tumor growth was delayed in DNGR-1-deficient mice compared with WT mice. Of note, this protection was recapitulated by anti-DNGR-1-blocking antibodies in mice following Flt3L gene therapy. This improved antitumor immunity was associated with Batf3-dependent enhanced accumulation of CD8+ T cells and cDC1s within tumors. Mechanistically, the deficiency in DNGR-1 boosted an Flt3L-induced specific inflammatory gene signature in cDC1s, including Ccl5 expression. Indeed, the increased infiltration of cDC1s within tumors and their protective effect rely on CCL5/CCR5 chemoattraction. Moreover, FLT3LG and CCL5 or CCR5 gene expression signatures correlate with an enhanced cDC1 signature and a favorable overall survival in patients with cancer. Notably, cyclophosphamide elevated serum Flt3L levels and, in combination with the absence of DNGR-1, synergized against tumor growth. CONCLUSION DNGR-1 limits the accumulation of tumor-infiltrating cDC1s promoted by Flt3L. Thus, DNGR-1 blockade may improve antitumor immunity in tumor therapy settings associated to high Flt3L expression.
Collapse
MESH Headings
- Animals
- Basic-Leucine Zipper Transcription Factors/genetics
- Basic-Leucine Zipper Transcription Factors/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Cell Line, Tumor
- Chemokine CCL5/genetics
- Chemokine CCL5/metabolism
- Coculture Techniques
- Colonic Neoplasms/genetics
- Colonic Neoplasms/immunology
- Colonic Neoplasms/metabolism
- Colonic Neoplasms/therapy
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Gene Expression Regulation, Neoplastic
- Genetic Therapy
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Melanoma, Experimental/genetics
- Melanoma, Experimental/immunology
- Melanoma, Experimental/metabolism
- Melanoma, Experimental/therapy
- Membrane Proteins/genetics
- Membrane Proteins/metabolism
- Mice, Inbred C57BL
- Mice, Knockout
- Phenotype
- Receptors, CCR5/genetics
- Receptors, CCR5/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Repressor Proteins/genetics
- Repressor Proteins/metabolism
- Signal Transduction
- Skin Neoplasms/genetics
- Skin Neoplasms/immunology
- Skin Neoplasms/metabolism
- Skin Neoplasms/therapy
- Tumor Burden
- Tumor Escape
- Tumor Microenvironment
- Mice
Collapse
Affiliation(s)
- Francisco J Cueto
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Carlos Del Fresno
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Hospital la Paz Institute for Health Research (IdiPAZ), Madrid, Spain
| | - Paola Brandi
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Alexis J Combes
- Department of Pathology, University of California, San Francisco, California, USA
- ImmunoX Initiative, University of California, San Francisco, California, USA
- UCSF CoLabs, University of California, San Francisco, California, USA
| | - Elena Hernández-García
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Alfonso R Sánchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | - Michel Enamorado
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
- Metaorganism Immunity Section, Laboratory of Host Immunity and Microbiome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Christian P Bromley
- Cancer Inflammation and Immunity Group, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Manuel J Gomez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Ruth Conde-Garrosa
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/CSIC, Darwin, Madrid, Spain
| | - Santiago Zelenay
- Cancer Inflammation and Immunity Group, CRUK Manchester Institute, The University of Manchester, Manchester, UK
| | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
- Instituto de Investigación Sanitaria de Navarra, Pamplona, Spain
- University Clinic, University of Navarra, Pamplona, Spain
- Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| | - Salvador Iborra
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Matthew F Krummel
- Department of Pathology, University of California, San Francisco, California, USA
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| |
Collapse
|
47
|
Hatscher L, Amon L, Heger L, Dudziak D. Inflammasomes in dendritic cells: Friend or foe? Immunol Lett 2021; 234:16-32. [PMID: 33848562 DOI: 10.1016/j.imlet.2021.04.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/31/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
Inflammasomes are cytosolic multiprotein complexes that crucially contribute to host defense against pathogens but are also involved in the pathogenesis of autoinflammatory diseases. Inflammasome formation leads to activation of effector caspases (caspase-1, 4, 5, or 11), the proteolytic maturation of IL-1β and IL-18 as well as cleavage of the pore-forming protein Gasdermin D. Dendritic cells are major regulators of immune responses as they bridge innate and adaptive immunity. We here summarize the current knowledge on inflammasome expression and formation in murine bone marrow-, human monocyte-derived as well as murine and human primary dendritic cells. Further, we discuss both, the beneficial and detrimental, involvement of inflammasome activation in dendritic cells in cancer, infections, and autoimmune diseases. As inflammasome activation is typically accompanied by Gasdermin d-mediated pyroptosis, which is an inflammatory form of programmed cell death, inflammasome formation in dendritic cells seems ill-advised. Therefore, we propose that hyperactivation, which is inflammasome activation without the induction of pyroptosis, may be a general model of inflammasome activation in dendritic cells to enhance Th1, Th17 as well as cytotoxic T cell responses.
Collapse
Affiliation(s)
- Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany.
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander University of Erlangen-Nürnberg, 91052, Erlangen, Germany; Medical Immunology Campus Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), Germany.
| |
Collapse
|
48
|
Jaime-Sanchez P, Uranga-Murillo I, Aguilo N, Khouili SC, Arias MA, Sancho D, Pardo J. Cell death induced by cytotoxic CD8 + T cells is immunogenic and primes caspase-3-dependent spread immunity against endogenous tumor antigens. J Immunother Cancer 2021; 8:jitc-2020-000528. [PMID: 32241808 PMCID: PMC7174069 DOI: 10.1136/jitc-2020-000528] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2020] [Indexed: 12/21/2022] Open
Abstract
Background Elimination of cancer cells by some stimuli like chemotherapy and radiotherapy activates anticancer immunity after the generation of damage‐associated molecular patterns, a process recently named immunogenic cell death (ICD). Despite the recent advances in cancer immunotherapy, very little is known about the immunological consequences of cell death activated by cytotoxic CD8+ T (Tc) cells on cancer cells, that is, if Tc cells induce ICD on cancer cells and the molecular mechanisms involved. Methods ICD induced by Tc cells on EL4 cells was analyzed in tumor by vaccinating mice with EL4 cells killed in vitro or in vivo by Ag-specific Tc cells. EL4 cells and mutants thereof overexpressing Bcl-XL or a dominant negative mutant of caspase-3 and wild-type mice, as well as mice depleted of Tc cells and mice deficient in perforin, TLR4 and BATF3 were used. Ex vivo cytotoxicity of spleen cells from immunized mice was analyzed by flow cytometry. Expression of ICD signals (calreticulin, HMGB1 and interleukin (IL)-1β) was analyzed by flow cytometry and ELISA. Results Mice immunized with EL4.gp33 cells killed in vitro or in vivo by gp33-specific Tc cells were protected from parental EL4 tumor development. This result was confirmed in vivo by using ovalbumin (OVA) as another surrogate antigen. Perforin and TLR4 and BATF3-dependent type 1 conventional dendritic cells (cDC1s) were required for protection against tumor development, indicating cross-priming of Tc cells against endogenous EL4 tumor antigens. Tc cells induced ICD signals in EL4 cells. Notably, ICD of EL4 cells was dependent on caspase-3 activity, with reduced antitumor immunity generated by caspase-3–deficient EL4 cells. In contrast, overexpression of Bcl-XL in EL4 cells had no effect on induction of Tc cell antitumor response and protection. Conclusions Elimination of tumor cells by Ag-specific Tc cells is immunogenic and protects against tumor development by generating new Tc cells against EL4 endogenous antigens. This finding helps to explain the enhanced efficacy of T cell-dependent immunotherapy and provide a molecular basis to explain the epitope spread phenomenon observed during vaccination and chimeric antigen receptor (CAR)-T cell therapy. In addition, they suggest that caspase-3 activity in the tumor may be used as a biomarker to predict cancer recurrence during T cell-dependent immunotherapies.
Collapse
Affiliation(s)
| | | | - Nacho Aguilo
- CIBA, Instituto de Investigacion Sanitaria Aragon, Zaragoza, Spain.,Microbiology, Preventive Medicine and Public Health, Medicine Faculty, University of Zaragoza, Zaragoza, Spain.,CIBER Respiratory Diseases, Madrid, Spain
| | - Sofia C Khouili
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | | | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - Julian Pardo
- Fundacion ARAID / IIS Aragon / CIBA, Universidad de Zaragoza, Zaragoza, Spain .,CIBER-BBN, Madrid, Spain
| |
Collapse
|
49
|
Abstract
For over 35 years since Mosmann and Coffman proposed the seminal “type 1 T helper (Th1)/type 2 T helper (Th2)” hypothesis in 1986, the immunological community has appreciated that naïve CD4 T cells need to make important decisions upon their activation, namely to differentiate towards a Th1, Th2, Th17 (interleukin-17-producing T helper), follicular T helper (Tfh), or regulatory T cell (Treg) fate to orchestrate a variety of adaptive immune responses. The major molecular underpinnings of the Th1/Th2 effector fate choice had been initially characterized using excellent reductionist in vitro culture systems, through which the transcription factors T-bet and GATA3 were identified as the master regulators for the differentiation of Th1 and Th2 cells, respectively. However, Th1/Th2 cell differentiation and their cellular heterogeneity are usually determined by a combinatorial expression of multiple transcription factors, particularly in vivo, where dendritic cell (DC) and innate lymphoid cell (ILC) subsets can also influence T helper lineage choices. In addition, inflammatory cytokines that are capable of inducing Th17 cell differentiation are also found to be induced during typical Th1- or Th2-related immune responses, resulting in an alternative differentiation pathway, transiting from a Th17 cell phenotype towards Th1 or Th2 cells. In this review, we will discuss the recent advances in the field, focusing on some new players in the transcriptional network, contributions of DCs and ILCs, and alternative differentiation pathways towards understanding the Th1/Th2 effector choice in vivo.
Collapse
Affiliation(s)
- Matthew J Butcher
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
50
|
Abstract
As the professional antigen-presenting cells of the immune system, dendritic cells (DCs) sense the microenvironment and shape the ensuing adaptive immune response. DCs can induce both immune activation and immune tolerance according to the peripheral cues. Recent work has established that DCs comprise several phenotypically and functionally heterogeneous subsets that differentially regulate T lymphocyte differentiation. This review summarizes both mouse and human DC subset phenotypes, development, diversification, and function. We focus on advances in our understanding of how different DC subsets regulate distinct CD4+ T helper (Th) cell differentiation outcomes, including Th1, Th2, Th17, T follicular helper, and T regulatory cells. We review DC subset intrinsic properties, local tissue microenvironments, and other immune cells that together determine Th cell differentiation during homeostasis and inflammation.
Collapse
Affiliation(s)
- Xiangyun Yin
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Shuting Chen
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| | - Stephanie C Eisenbarth
- Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06520, USA;
| |
Collapse
|