1
|
Zorrilla E, Della Pietra A, Russo AF. Interplay between cannabinoids and the neuroimmune system in migraine. J Headache Pain 2024; 25:178. [PMID: 39407099 PMCID: PMC11481476 DOI: 10.1186/s10194-024-01883-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Migraine is a common and complex neurological disorder that has a high impact on quality of life. Recent advances with drugs that target the neuropeptide calcitonin gene-related peptide (CGRP) have helped, but treatment options remain insufficient. CGRP is released from trigeminal sensory fibers and contributes to peripheral sensitization, perhaps in part due to actions on immune cells in the trigeminovascular system. In this review, we will discuss the potential of cannabinoid targeting of immune cells as an innovative therapeutic target for migraine treatment. We will cover endogenous endocannabinoids, plant-derived phytocannabinoids and synthetically derived cannabinoids. The focus will be on six types of immune cells known to express multiple cannabinoid receptors: macrophages, monocytes, mast cells, dendritic cells, B cells, and T cells. These cells also contain receptors for CGRP and as such, cannabinoids might potentially modulate the efficacy of current CGRP-targeting drugs. Unfortunately, to date most studies on cannabinoids and immune cells have relied on cell cultures and only a single preclinical study has tested cannabinoid actions on immune cells in a migraine model. Encouragingly, in that study a synthetically created stable chiral analog of an endocannabinoid reduced meningeal mast cell degranulation. Likewise, clinical trials evaluating the safety and efficacy of cannabinoid-based therapies for migraine patients have been limited but are encouraging. Thus, the field is at its infancy and there are significant gaps in our understanding of the impact of cannabinoids on immune cells in migraine. Future research exploring the interactions between cannabinoids and immune cells could lead to more targeted and effective migraine treatments.
Collapse
Affiliation(s)
- Erik Zorrilla
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Adriana Della Pietra
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew F Russo
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, 52242, USA.
- Department of Neurology, University of Iowa, Iowa City, IA, 52242, USA.
- Veterans Affairs Healthcare System, Iowa City, IA, 52246, USA.
| |
Collapse
|
2
|
Dickinson K, Yee EJ, Vigil I, Schulick RD, Zhu Y. GPCRs: emerging targets for novel T cell immune checkpoint therapy. Cancer Immunol Immunother 2024; 73:253. [PMID: 39358616 PMCID: PMC11447192 DOI: 10.1007/s00262-024-03801-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/05/2024] [Indexed: 10/04/2024]
Abstract
Although immune checkpoint blockade (ICB) has become the mainstay of treatment for advanced solid organ malignancies, success in revitalizing the host anticancer immune response remains limited. G-protein coupled receptors (GPCRs) are a broad family of cell-surface proteins that have been regarded as main players in regulating the immune system, namely by mediating the activity of T lymphocytes. Among the most novel immunoregulatory GPCRs include GPR171, lysophosphatidic acid receptors (LPARs), GPR68, cannabinoid receptor 2 (CB2), and prostaglandin E receptors, many of which have shown promise in mediating antitumor response via activation of cytotoxic T cells, inhibiting immunosuppressive lymphocytes, and facilitating immune cell infiltration within the tumor microenvironment across multiple types of cancers. This paper reviews our current understanding of some of the most novel GPCRs-their expression patterns, evolving roles within the immune system and cancer, potential therapeutic applications, and perspective for future investigation.
Collapse
Affiliation(s)
- Kaitlyn Dickinson
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Elliott J Yee
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Isaac Vigil
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Richard D Schulick
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Yuwen Zhu
- Department of Surgery, Division of Surgical Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
| |
Collapse
|
3
|
Rakotoarivelo V, Mayer TZ, Simard M, Flamand N, Di Marzo V. The Impact of the CB 2 Cannabinoid Receptor in Inflammatory Diseases: An Update. Molecules 2024; 29:3381. [PMID: 39064959 PMCID: PMC11279428 DOI: 10.3390/molecules29143381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
The emergence of inflammatory diseases is a heavy burden on modern societies. Cannabis has been used for several millennia to treat inflammatory disorders such as rheumatism or gout. Since the characterization of cannabinoid receptors, CB1 and CB2, the potential of cannabinoid pharmacotherapy in inflammatory conditions has received great interest. Several studies have identified the importance of these receptors in immune cell migration and in the production of inflammatory mediators. As the presence of the CB2 receptor was documented to be more predominant in immune cells, several pharmacological agonists and antagonists have been designed to treat inflammation. To better define the potential of the CB2 receptor, three online databases, PubMed, Google Scholar and clinicaltrial.gov, were searched without language restriction. The full texts of articles presenting data on the endocannabinoid system, the CB2 receptor and its role in modulating inflammation in vitro, in animal models and in the context of clinical trials were reviewed. Finally, we discuss the clinical potential of the latest cannabinoid-based therapies in inflammatory diseases.
Collapse
Affiliation(s)
- Volatiana Rakotoarivelo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Thomas Z. Mayer
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
| | - Mélissa Simard
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Nicolas Flamand
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
| | - Vincenzo Di Marzo
- Centre de Recherche de l’Institut Universitaire De Cardiologie Et De Pneumologie de Québec, Département of Médecine, Université Laval, Québec City, QC G1V 4G5, Canada
- Canada Excellence Research Chair on the Microbiome-Endocannabinoidome Axis in Metabolic Health (CERC-MEND), Université Laval, Québec City, QC G1V 0V6, Canada
- Institut sur la Nutrition et les Aliments Fonctionnels, and Centre NUTRISS, École de Nutrition, Université Laval, Québec City, QC G1V 0V6, Canada
- Joint International Unit between the CNR of Italy and Université Laval on Chemical and Biomolecular Research on the Microbiome and Its Impact on Metabolic Health and Nutrition (UMI-MicroMeNu), Québec City, QC G1V 0V6, Canada
| |
Collapse
|
4
|
Volpedo G, Oljuskin T, Cox B, Mercado Y, Askwith C, Azodi N, Bernier M, Nakhasi HL, Gannavaram S, Satoskar AR. Leishmania mexicana promotes pain-reducing metabolomic reprogramming in cutaneous lesions. iScience 2023; 26:108502. [PMID: 38125023 PMCID: PMC10730346 DOI: 10.1016/j.isci.2023.108502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 03/30/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is characterized by extensive skin lesions, which are usually painless despite being associated with extensive inflammation. The molecular mechanisms responsible for this analgesia have not been identified. Through untargeted metabolomics, we found enriched anti-nociceptive metabolic pathways in L. mexicana-infected mice. Purines were elevated in infected macrophages and at the lesion site during chronic infection. These purines have anti-inflammatory and analgesic properties by acting through adenosine receptors, inhibiting TRPV1 channels, and promoting IL-10 production. We also found arachidonic acid (AA) metabolism enriched in the ear lesions compared to the non-infected controls. AA is a metabolite of anandamide (AEA) and 2-arachidonoylglycerol (2-AG). These endocannabinoids act on cannabinoid receptors 1 and 2 and TRPV1 channels to exert anti-inflammatory and analgesic effects. Our study provides evidence of metabolic pathways upregulated during L. mexicana infection that may mediate anti-nociceptive effects experienced by CL patients and identifies macrophages as a source of these metabolites.
Collapse
Affiliation(s)
- Greta Volpedo
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Timur Oljuskin
- Animal Parasitic Disease Lab, Agricultural Research Service, USDA, Beltsville, MD, USA
| | - Blake Cox
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Yulian Mercado
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| | - Candice Askwith
- Department of Neuroscience, The Ohio State University, Columbus, OH 43210, USA
| | - Nazli Azodi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Matthew Bernier
- Mass Spectrometry and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA
| | - Hira L. Nakhasi
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Sreenivas Gannavaram
- Division of Emerging and Transfusion Transmitted Diseases, CBER, FDA, Silver Spring, MD, USA
| | - Abhay R. Satoskar
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Pathology, Wexner Medical Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Kolathingal-Thodika N, Usha PTA, Sujarani S, Suresh NN, Priya PM, Naseef PP, Kuruniyan MS, Ollakkode S, Elayadeth-Meethal M. A cyclophosphamide-induced immunosuppression Swiss Albino mouse model unveils a potential role for cow urine distillate as a feed additive. J Ayurveda Integr Med 2023; 14:100784. [PMID: 37611511 PMCID: PMC10469997 DOI: 10.1016/j.jaim.2023.100784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 05/14/2022] [Accepted: 07/08/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Traditional and natural immunomodulators are increasingly used as supplements in animal feeds and as interventions in the prevention and treatment of disease in animals. OBJECTIVE The aim of this study was to examine the immunomodulatory characteristics of distilled cow urine in vivo using two mouse models, a normal mouse model and an immunosuppressive mouse model. METHODOLOGY We divided 144 Swiss Albino mice weighing between 15 g and 30 g, aged between two and three months, into two groups of 72 mice each. In the first group, we subdivided the animals into six subgroups of 12 each. In this group paramerters such as, body weight, organ weights of liver and kidney, haemagglutination titre, Jerne plaque-forming assay, and bone marrow cellularity were measured. We divided the second group into six subgroups for the assessment of delayed-type hypersensitivity (DTH). RESULTS As compared to normal control mice, immunocompetent and immunosuppressed mice (given cow urine distillate) had significant increases in body weight, spleen weight, liver weight, total leucocyte count, lymphocyte count, serum protein, and globulin contents. In the treatment groups, the titre of antibodies, the number of antibody- producing cells, the cellularity of bone marrow, and foot pad thickness also increased. In the treatment group, both humoral and cellular immunity were altered compared to the control group, suggesting cow urine distillate to be a potential animal feed ingredient for immunoregulation. CONCLUSION This study was able to demonstrate the experimental validity of natural compounds as immunomodulators that can be used in feed supplements for animals. Various compounds could be tested for immunomodulatory effects using this technique in experimental animals.
Collapse
Affiliation(s)
- Naseema Kolathingal-Thodika
- Veterinary Surgeon, Veterinary Dispensary, Atholi, Department of Animal Husbandry, Kozhikode, 673315, Kerala, India; Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Wayanad, 673576, Kerala, India
| | - P T A Usha
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Wayanad, 673576, Kerala, India
| | - S Sujarani
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Wayanad, 673576, Kerala, India
| | - N Nair Suresh
- Department of Veterinary Pharmacology and Toxicology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Wayanad, 673576, Kerala, India
| | - P M Priya
- Department of Veterinary Microbiology, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Wayanad, 673576, Kerala, India
| | | | - Mohamed Saheer Kuruniyan
- Department of Dental Technology, College of Applied Medical Sciences, King Khalid University, Abha 61421, Saudi Arabia
| | - Shyju Ollakkode
- Department of Animal Breeding and Genetics, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Wayanad, 673576, Kerala, India
| | - Muhammed Elayadeth-Meethal
- Department of Animal Breeding and Genetics, College of Veterinary and Animal Sciences, Kerala Veterinary and Animal Sciences University, Wayanad, 673576, Kerala, India.
| |
Collapse
|
6
|
Osorio-Perez RM, Rodríguez-Manzo G, Espinosa-Riquer ZP, Cruz SL, González-Espinosa C. Endocannabinoid modulation of allergic responses: Focus on the control of FcεRI-mediated mast cell activation. Eur J Cell Biol 2023; 102:151324. [PMID: 37236045 DOI: 10.1016/j.ejcb.2023.151324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Allergic reactions are highly prevalent pathologies initiated by the production of IgE antibodies against harmless antigens (allergens) and the activation of the high-affinity IgE receptor (FcεRI) expressed in the surface of basophils and mast cells (MCs). Research on the mechanisms of negative control of those exacerbated inflammatory reactions has been intense in recent years. Endocannabinoids (eCBs) show important regulatory effects on MC-mediated immune responses, mainly inhibiting the production of pro-inflammatory mediators. However, the description of the molecular mechanisms involved in eCB control of MC activation is far from complete. In this review, we aim to summarize the available information regarding the role of eCBs in the modulation of FcεRI-dependent activation of that cell type, emphasizing the description of the eCB system and the existence of some of its elements in MCs. Unique characteristics of the eCB system and cannabinoid receptors (CBRs) localization and signaling in MCs are mentioned. The described and putative points of cross-talk between CBRs and FcεRI signaling cascades are also presented. Finally, we discuss some important considerations in the study of the effects of eCBs in MCs and the perspectives in the field.
Collapse
Affiliation(s)
- Rubi Monserrat Osorio-Perez
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Gabriela Rodríguez-Manzo
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Zyanya P Espinosa-Riquer
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Silvia L Cruz
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico
| | - Claudia González-Espinosa
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados del IPN, Unidad Sede Sur, Calzada de los Tenorios No. 235, Col. Granjas Coapa, Tlalpan, CP 14330 Mexico City, Mexico.
| |
Collapse
|
7
|
Oshaghi M, Kourosh-Arami M, Roozbehkia M. Role of neurotransmitters in immune-mediated inflammatory disorders: a crosstalk between the nervous and immune systems. Neurol Sci 2023; 44:99-113. [PMID: 36169755 DOI: 10.1007/s10072-022-06413-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/14/2022] [Indexed: 02/07/2023]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are a group of common heterogeneous disorders, characterized by an alteration of cellular homeostasis. Primarily, it has been shown that the release and diffusion of neurotransmitters from nervous tissue could result in signaling through lymphocyte cell-surface receptors and the modulation of immune function. This finding led to the idea that the neurotransmitters could serve as immunomodulators. It is now manifested that neurotransmitters can also be released from leukocytes and act as autocrine or paracrine modulators. Increasing data indicate that there is a crosstalk between inflammation and alterations in neurotransmission. The primary goal of this review is to demonstrate how these two pathways may converge at the level of the neuron and glia to involve in IMID. We review the role of neurotransmitters in IMID. The different effects that these compounds exert on a variety of immune cells are also reviewed. Current and future developments in understanding the cross-talk between the immune and nervous systems will undoubtedly identify new ways for treating immune-mediated diseases utilizing agonists or antagonists of neurotransmitter receptors.
Collapse
Affiliation(s)
- Mojgan Oshaghi
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Maryam Roozbehkia
- Department of Medical Laboratory Science, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Navarini L, Vomero M, Di Donato S, Currado D, Berardicurti O, Marino A, Bearzi P, Biaggi A, Ferrito M, Ruscitti P, Fava M, Leuti A, Cipriani P, Maccarrone M, Giacomelli R. 2-Arachidonoylglycerol Reduces the Production of Interferon-Gamma in T Lymphocytes from Patients with Systemic Lupus Erythematosus. Biomedicines 2022; 10:biomedicines10071675. [PMID: 35884978 PMCID: PMC9312521 DOI: 10.3390/biomedicines10071675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022] Open
Abstract
Background: the endocannabinoid 2-arachidonoylglycerol (2-AG) plays a pivotal role in immune cells regulation. The plasma levels of 2-AG are increased in patients with systemic lupus erythematosus (SLE) and correlate with disease activity. Moreover, in plasmacytoid dendritic cells from SLE patients, 2-AG is able to control the production of type 1 interferon (IFN) through CB2 activation. The aim of this study was to evaluate the potential role of 2-AG on T lymphocytes from SLE patients. Methods: peripheral blood mononuclear cells (PBMCs) from SLE participants and age- and sex-matched healthy donors (HD) were isolated by Ficoll–Hypaque density-gradient centrifugation. The PBMCs were treated with increasing concentrations of 2-AG, and AM251 and AM630 were used to antagonize CB1 and CB2, respectively. Flow cytometry was used to assess the expression of CD3, CD4, CD8, CD25, IFN-ɣ, IL-4, and IL-17A. Results: 2-AG (1 μM) decreased IFN-ɣ expression (p = 0.0005) in the Th1 lymphocytes of SLE patients. 2-AG did not modulate the cytokine expression of any other T lymphocyte population from either SLE or HD. Treatment with both 2-AG and AM630 increased the IFN-ɣ expression in Th1 lymphocytes of SLE patients (p = 0.03). Discussion: 2-AG is able to modulate type 2 IFN production from CD4+ T lymphocytes from SLE patients through CB2 activation.
Collapse
Affiliation(s)
- Luca Navarini
- Rheumatology, Immunology, and Clinical Medicine Research Unit, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy; (M.V.); (S.D.D.); (D.C.); (O.B.); (A.M.); (P.B.); (A.B.); (M.F.); (R.G.)
- Immunorheumatology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Roma, Italy
- Correspondence:
| | - Marta Vomero
- Rheumatology, Immunology, and Clinical Medicine Research Unit, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy; (M.V.); (S.D.D.); (D.C.); (O.B.); (A.M.); (P.B.); (A.B.); (M.F.); (R.G.)
| | - Stefano Di Donato
- Rheumatology, Immunology, and Clinical Medicine Research Unit, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy; (M.V.); (S.D.D.); (D.C.); (O.B.); (A.M.); (P.B.); (A.B.); (M.F.); (R.G.)
| | - Damiano Currado
- Rheumatology, Immunology, and Clinical Medicine Research Unit, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy; (M.V.); (S.D.D.); (D.C.); (O.B.); (A.M.); (P.B.); (A.B.); (M.F.); (R.G.)
| | - Onorina Berardicurti
- Rheumatology, Immunology, and Clinical Medicine Research Unit, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy; (M.V.); (S.D.D.); (D.C.); (O.B.); (A.M.); (P.B.); (A.B.); (M.F.); (R.G.)
| | - Annalisa Marino
- Rheumatology, Immunology, and Clinical Medicine Research Unit, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy; (M.V.); (S.D.D.); (D.C.); (O.B.); (A.M.); (P.B.); (A.B.); (M.F.); (R.G.)
| | - Pietro Bearzi
- Rheumatology, Immunology, and Clinical Medicine Research Unit, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy; (M.V.); (S.D.D.); (D.C.); (O.B.); (A.M.); (P.B.); (A.B.); (M.F.); (R.G.)
| | - Alice Biaggi
- Rheumatology, Immunology, and Clinical Medicine Research Unit, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy; (M.V.); (S.D.D.); (D.C.); (O.B.); (A.M.); (P.B.); (A.B.); (M.F.); (R.G.)
| | - Matteo Ferrito
- Rheumatology, Immunology, and Clinical Medicine Research Unit, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy; (M.V.); (S.D.D.); (D.C.); (O.B.); (A.M.); (P.B.); (A.B.); (M.F.); (R.G.)
- Department of Clinical Sciences and Community Health, Division of Clinical Rheumatology, ASST Istituto Gaetano Pini–CTO, University of Milan, 20122 Milan, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, Università Degli Studi Dell’Aquila, 67100 L’Aquila, Italy; (P.R.); (P.C.)
| | - Marina Fava
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (M.F.); (A.L.); (M.M.)
| | - Alessandro Leuti
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (M.F.); (A.L.); (M.M.)
- Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, Università Degli Studi Dell’Aquila, 67100 L’Aquila, Italy; (P.R.); (P.C.)
| | - Mauro Maccarrone
- European Center for Brain Research (CERC)/Santa Lucia Foundation IRCCS, 00143 Rome, Italy; (M.F.); (A.L.); (M.M.)
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Roberto Giacomelli
- Rheumatology, Immunology, and Clinical Medicine Research Unit, Department of Medicine, Campus Bio-Medico University, 00128 Rome, Italy; (M.V.); (S.D.D.); (D.C.); (O.B.); (A.M.); (P.B.); (A.B.); (M.F.); (R.G.)
- Immunorheumatology Unit, Fondazione Policlinico Universitario Campus Bio-Medico, 00128 Roma, Italy
| |
Collapse
|
9
|
Lowin T, Kok C, Smutny S, Pongratz G. Impact of Δ 9-Tetrahydrocannabinol on Rheumatoid Arthritis Synovial Fibroblasts Alone and in Co-Culture with Peripheral Blood Mononuclear Cells. Biomedicines 2022; 10:1118. [PMID: 35625855 PMCID: PMC9138512 DOI: 10.3390/biomedicines10051118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 12/05/2022] Open
Abstract
δ9-Tetrahydrocannabinol (THC) has demonstrated anti-inflammatory effects in animal models of arthritis, but its mechanism of action and cellular targets are still unclear. The purpose of this study is to elucidate the effects of THC (0.1-25 µM) on synovial fibroblasts from patients with rheumatoid arthritis (RASF) and peripheral blood mononuclear cells (PBMC) from healthy donors in respect to proliferation, calcium mobilization, drug uptake, cytokine and immunoglobulin production. Intracellular calcium and drug uptake were determined by fluorescent dyes Cal-520 and PoPo3, respectively. Cytokine and immunoglobulin production were evaluated by ELISA. Cannabinoid receptors 1 and 2 (CB1 and CB2) were detected by flow cytometry. RASF express CB1 and CB2 and the latter was increased by tumor necrosis factor (TNF). In RASF, THC (≥5 µM) increased intracellular calcium levels/PoPo3 uptake in a TRPA1-dependent manner and reduced interleukin-8 (IL-8) and matrix metalloprotease 3 (MMP-3) production at high concentrations (25 µM). Proliferation was slightly enhanced at intermediate THC concentrations (1-10 µM) but was completely abrogated at 25 µM. In PBMC alone, THC decreased interleukin-10 (IL-10) production and increased immunoglobulin G (IgG). In PBMC/RASF co-culture, THC decreased TNF production when cells were stimulated with interferon-γ (IFN-γ) or CpG. THC provides pro- and anti-inflammatory effects in RASF and PBMC. This is dependent on the activating stimulus and concentration of THC. Therefore, THC might be used to treat inflammation in RA but it might need titrating to determine the effective concentration.
Collapse
Affiliation(s)
- Torsten Lowin
- Poliklinik, Funktionsbereich & Hiller Forschungszentrum für Rheumatologie, University Hospital Duesseldorf, 40225 Duesseldorf, Germany; (C.K.); (S.S.); (G.P.)
| | | | | | | |
Collapse
|
10
|
Khunluck T, Lertsuwan K, Chutoe C, Sooksawanwit S, Inson I, Teerapornpuntakit J, Tohtong R, Charoenphandhu N. Activation of cannabinoid receptors in breast cancer cells improves osteoblast viability in cancer-bone interaction model while reducing breast cancer cell survival and migration. Sci Rep 2022; 12:7398. [PMID: 35513484 PMCID: PMC9072415 DOI: 10.1038/s41598-022-11116-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 04/05/2022] [Indexed: 12/13/2022] Open
Abstract
The endocannabinoid system has been postulated to help restrict cancer progression and maintain osteoblastic function during bone metastasis. Herein, the effects of cannabinoid receptor (CB) type 1 and 2 activation on breast cancer cell and osteoblast interaction were investigated by using ACEA and GW405833 as CB1 and CB2 agonists, respectively. Our results showed that breast cancer cell (MDA-MB-231)-derived conditioned media markedly decreased osteoblast-like UMR-106 cell viability. In contrast, media from MDA-MB-231 cells pre-treated with GW405833 improved UMR-106 cell viability. MDA-MB-231 cells were apparently more susceptible to both CB agonists than UMR-106 cells. Thereafter, we sought to answer the question as to how CB agonists reduced MDA-MB-231 cell virulence. Present data showed that co-activation of CB1 and CB2 exerted cytotoxic effects on MDA-MB-231 cells by increasing apoptotic cell death through suppression of the NF-κB signaling pathway in an ROS-independent mechanism. ACEA or GW405833 alone or in combination also inhibited MDA-MB-231 cell migration. Thus, it can be concluded that the endocannabinoid system is able to provide protection during breast cancer bone metastasis by interfering cancer and bone cell interaction as well as by the direct suppression of cancer cell growth and migration.
Collapse
Affiliation(s)
- Tueanjai Khunluck
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Faculty of Nursing, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Kornkamon Lertsuwan
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand. .,Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand.
| | - Chartinun Chutoe
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Supagarn Sooksawanwit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Ingon Inson
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Jarinthorn Teerapornpuntakit
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok, Thailand
| | - Rutaiwan Tohtong
- Department of Biochemistry, Faculty of Science, Mahidol University, Rama VI Road, Bangkok, 10400, Thailand
| | - Narattaphol Charoenphandhu
- Center of Calcium and Bone Research (COCAB), Faculty of Science, Mahidol University, Bangkok, 10400, Thailand.,Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand.,The Academy of Science, The Royal Society of Thailand, Bangkok, Thailand
| |
Collapse
|
11
|
Inflammation and Nitro-oxidative Stress as Drivers of Endocannabinoid System Aberrations in Mood Disorders and Schizophrenia. Mol Neurobiol 2022; 59:3485-3503. [PMID: 35347586 DOI: 10.1007/s12035-022-02800-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 03/13/2022] [Indexed: 01/02/2023]
Abstract
The endocannabinoid system (ECS) is composed of the endocannabinoid ligands anandamide (AEA) and 2-arachidonoylgycerol (2-AG), their target cannabinoid receptors (CB1 and CB2) and the enzymes involved in their synthesis and metabolism (N-acyltransferase and fatty acid amide hydrolase (FAAH) in the case of AEA and diacylglycerol lipase (DAGL) and monoacylglycerol lipase (MAGL) in the case of 2-AG). The origins of ECS dysfunction in major neuropsychiatric disorders remain to be determined, and this paper explores the possibility that they may be associated with chronically increased nitro-oxidative stress and activated immune-inflammatory pathways, and it examines the mechanisms which might be involved. Inflammation and nitro-oxidative stress are associated with both increased CB1 expression, via increased activity of the NADPH oxidases NOX4 and NOX1, and increased CNR1 expression and DNA methylation; and CB2 upregulation via increased pro-inflammatory cytokine levels, binding of the transcription factor Nrf2 to an antioxidant response element in the CNR2 promoter region and the action of miR-139. CB1 and CB2 have antagonistic effects on redox signalling, which may result from a miRNA-enabled negative feedback loop. The effects of inflammation and oxidative stress are detailed in respect of AEA and 2-AG levels, via effects on calcium homeostasis and phospholipase A2 activity; on FAAH activity, via nitrosylation/nitration of functional cysteine and/or tyrosine residues; and on 2-AG activity via effects on MGLL expression and MAGL. Finally, based on these detailed molecular neurobiological mechanisms, it is suggested that cannabidiol and dimethyl fumarate may have therapeutic potential for major depressive disorder, bipolar disorder and schizophrenia.
Collapse
|
12
|
Sionov RV, Steinberg D. Anti-Microbial Activity of Phytocannabinoids and Endocannabinoids in the Light of Their Physiological and Pathophysiological Roles. Biomedicines 2022; 10:biomedicines10030631. [PMID: 35327432 PMCID: PMC8945038 DOI: 10.3390/biomedicines10030631] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance has become an increasing challenge in the treatment of various infectious diseases, especially those associated with biofilm formation on biotic and abiotic materials. There is an urgent need for new treatment protocols that can also target biofilm-embedded bacteria. Many secondary metabolites of plants possess anti-bacterial activities, and especially the phytocannabinoids of the Cannabis sativa L. varieties have reached a renaissance and attracted much attention for their anti-microbial and anti-biofilm activities at concentrations below the cytotoxic threshold on normal mammalian cells. Accordingly, many synthetic cannabinoids have been designed with the intention to increase the specificity and selectivity of the compounds. The structurally unrelated endocannabinoids have also been found to have anti-microbial and anti-biofilm activities. Recent data suggest for a mutual communication between the endocannabinoid system and the gut microbiota. The present review focuses on the anti-microbial activities of phytocannabinoids and endocannabinoids integrated with some selected issues of their many physiological and pharmacological activities.
Collapse
|
13
|
Sultan M, Wilson K, Abdulla OA, Busbee PB, Hall A, Carter T, Singh N, Chatterjee S, Nagarkatti P, Nagarkatti M. Endocannabinoid Anandamide Attenuates Acute Respiratory Distress Syndrome through Modulation of Microbiome in the Gut-Lung Axis. Cells 2021; 10:3305. [PMID: 34943813 PMCID: PMC8699344 DOI: 10.3390/cells10123305] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a serious lung condition characterized by severe hypoxemia leading to limitations of oxygen needed for lung function. In this study, we investigated the effect of anandamide (AEA), an endogenous cannabinoid, on Staphylococcal enterotoxin B (SEB)-mediated ARDS in female mice. Single-cell RNA sequencing data showed that the lung epithelial cells from AEA-treated mice showed increased levels of antimicrobial peptides (AMPs) and tight junction proteins. MiSeq sequencing data on 16S RNA and LEfSe analysis demonstrated that SEB caused significant alterations in the microbiota, with increases in pathogenic bacteria in both the lungs and the gut, while treatment with AEA reversed this effect and induced beneficial bacteria. AEA treatment suppressed inflammation both in the lungs as well as gut-associated mesenteric lymph nodes (MLNs). AEA triggered several bacterial species that produced increased levels of short-chain fatty acids (SCFAs), including butyrate. Furthermore, administration of butyrate alone could attenuate SEB-mediated ARDS. Taken together, our data indicate that AEA treatment attenuates SEB-mediated ARDS by suppressing inflammation and preventing dysbiosis, both in the lungs and the gut, through the induction of AMPs, tight junction proteins, and SCFAs that stabilize the gut-lung microbial axis driving immune homeostasis.
Collapse
Affiliation(s)
- Muthanna Sultan
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Kiesha Wilson
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Osama A. Abdulla
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Philip Brandon Busbee
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Alina Hall
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Taylor Carter
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Narendra Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, USA;
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of South Carolina School of Medicine, Columbia, SC 29209, USA; (M.S.); (K.W.); (O.A.A.); (P.B.B.); (A.H.); (T.C.); (N.S.); (P.N.)
| |
Collapse
|
14
|
Rahaman O, Ganguly D. Endocannabinoids in immune regulation and immunopathologies. Immunology 2021; 164:242-252. [PMID: 34053085 DOI: 10.1111/imm.13378] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 04/19/2021] [Accepted: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Endocannabinoids are key bioactive components of the endocannabinoid system, and the profound influence of endocannabinoids on the modulation of the immune system is being increasingly appreciated. The knowledge of endocannabinoid-immune cell crosstalk will pave the way to therapeutic implications of modulators of this pathway in autoimmune and chronic inflammatory disorders. Endocannabinoids seem to exert both anti-inflammatory and pro-inflammatory effects in specific contexts, based on specific receptor engagement and the downstream signalling pathways involved. In this review, we summarized the biosynthesis, signalling and degradation of two well-studied endocannabinoids-anandamide and 2-arachidonylglycerol in immune cells. Then, we discussed the effects of these two endocannabinoids on the functioning of major innate and adaptive immune cells, along with the choice of receptors employed in such interactions. Finally, we outline our current knowledge on the involvement of anandamide and 2-arachidonylglycerol in context of inflammation, allergies, autoimmunity and metabolic disorders.
Collapse
Affiliation(s)
- Oindrila Rahaman
- Dendritic Cell Biology Laboratory, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Dipyaman Ganguly
- Dendritic Cell Biology Laboratory, IICB-Translational Research Unit of Excellence, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
15
|
Febo E, Crisi PE, Oddi S, Pietra M, Galiazzo G, Piscitelli F, Gramenzi A, Prinzio RD, Di Tommaso M, Bernabò N, Bisogno T, Maccarrone M, Boari A. Circulating Endocannabinoids as Diagnostic Markers of Canine Chronic Enteropathies: A Pilot Study. Front Vet Sci 2021; 8:655311. [PMID: 34124221 PMCID: PMC8187750 DOI: 10.3389/fvets.2021.655311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/04/2021] [Indexed: 12/11/2022] Open
Abstract
Chronic enteropathies (CEs) in dogs, according to the treatment response to consecutive trials, are classified as food-responsive (FRE), antibiotic-responsive (ARE), and immunosuppressive-responsive (IRE) enteropathy. In addition to this classification, dogs with loss of protein across the gut are grouped as protein-losing enteropathy (PLE). At present, the diagnosis of CEs is time-consuming, costly and sometimes invasive, also because non-invasive biomarkers with high sensitivity and specificity are not yet available. Therefore, this study aimed at assessing the levels of circulating endocannabinoids in plasma as potential diagnostic markers of canine CEs. Thirty-three dogs with primary chronic gastrointestinal signs presented to Veterinary Teaching Hospitals of Teramo and Bologna (Italy) were prospectively enrolled in the study, and 30 healthy dogs were included as a control group. Plasma levels of N-arachidonoylethanolamine (AEA), 2-arachidonoylglycerol (2-AG), N-palmitoylethanolamine (PEA), and N-oleoylethanolamine (OEA) were measured at the time of the first visit in dogs with different CEs, as well as in healthy subjects. Plasma levels of 2-AG (p = 0.001) and PEA (p = 0.008) were increased in canine CEs compared to healthy dogs. In particular, PEA levels were increased in the FRE group compared to healthy dogs (p = 0.04), while 2-AG was higher in IRE than in healthy dogs (p = 0.0001). Dogs affected by FRE also showed decreased 2-AG (p = 0.0001) and increased OEA levels (p = 0.0018) compared to IRE dogs. Moreover, dogs with PLE showed increased 2-AG (p = 0.033) and decreased AEA (p = 0.035), OEA (p = 0.016) and PEA (p = 0.023) levels, when compared to dogs affected by CEs without loss of proteins. The areas under ROC curves for circulating 2-AG (0.91; 95% confidence interval [CI], 0.79–1.03) and OEA (0.81; 95% CI, 0.65–0.97) showed a good accuracy in distinguishing the different forms of CEs under study (FRE, ARE and IRE), at the time of the first visit. The present study demonstrated that endocannabinoid signaling is altered in canine CEs, and that CE subtypes showed distinct profiles of 2-AG, PEA and OEA plasma levels, suggesting that these circulating bioactive lipids might have the potential to become candidate biomarkers for canine CEs.
Collapse
Affiliation(s)
- Elettra Febo
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| | | | - Sergio Oddi
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.,European Center for Brain Research/Santa Lucia Foundation Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Marco Pietra
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Giorgia Galiazzo
- Department of Veterinary Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fabiana Piscitelli
- Institute of Biomolecular Chemistry, National Research Council, Pozzuoli, Italy
| | | | | | | | - Nicola Bernabò
- Faculty of Bioscience, and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.,Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Tiziana Bisogno
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | - Mauro Maccarrone
- European Center for Brain Research/Santa Lucia Foundation Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Andrea Boari
- Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy
| |
Collapse
|
16
|
Sultan M, Alghetaa H, Mohammed A, Abdulla OA, Wisniewski PJ, Singh N, Nagarkatti P, Nagarkatti M. The Endocannabinoid Anandamide Attenuates Acute Respiratory Distress Syndrome by Downregulating miRNA that Target Inflammatory Pathways. Front Pharmacol 2021; 12:644281. [PMID: 33995054 PMCID: PMC8113864 DOI: 10.3389/fphar.2021.644281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/22/2021] [Indexed: 12/27/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is defined as a type of respiratory failure that is caused by a variety of insults such as pneumonia, sepsis, trauma and certain viral infections. In this study, we investigated the effect of an endocannabinoid, anandamide (AEA), on ARDS induced in the mouse by Staphylococcus Enterotoxin B (SEB). Administration of a single intranasal dose of SEB in mice and treated with exogenous AEA at a dose of 40 mg/kg body weight led to the amelioration of ARDS in mice. Clinically, plethysmography results indicated that there was an improvement in lung function after AEA treatment accompanied by a decrease of inflammatory cell infiltrate. There was also a significant decrease in pro-inflammatory cytokines IL-2, TNF-α, and IFN-γ, and immune cells including CD4+ T cells, CD8+ T cells, Vβ8+ T cells, and NK+ T cells in the lungs. Concurrently, an increase in anti-inflammatory phenotypes such as CD11b + Gr1+ Myeloid-derived Suppressor Cells (MDSCs), CD4 + FOXP3 + Tregs, and CD4+IL10 + cells was observed in the lungs. Microarray data showed that AEA treatment in ARDS mice significantly altered numerous miRNA including downregulation of miRNA-23a-3p, which caused an upregulation of arginase (ARG1), which encodes for arginase, a marker for MDSCs, as well as TGF-β2, which induces Tregs. AEA also caused down-regulation of miRNA-34a-5p which led to induction of FoxP3, a master regulator of Tregs. Transfection of T cells using miRNA-23a-3p or miRNA-34a-5p mimics and inhibitors confirmed that these miRNAs targeted ARG1, TGFβ2 and FoxP3. In conclusion, the data obtained from this study suggests that endocannabinoids such as AEA can attenuate ARDS induced by SEB by suppressing inflammation through down-regulation of key miRNA that regulate immunosuppressive pathways involving the induction of MDSCs and Tregs.
Collapse
Affiliation(s)
- Muthanna Sultan
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| | - Hasan Alghetaa
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| | - Amirah Mohammed
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| | - Osama A Abdulla
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| | - Paul J Wisniewski
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| | - Narendra Singh
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, School of Medicine, University of SC, Columbia, SC, United States
| |
Collapse
|
17
|
Paland N, Pechkovsky A, Aswad M, Hamza H, Popov T, Shahar E, Louria-Hayon I. The Immunopathology of COVID-19 and the Cannabis Paradigm. Front Immunol 2021; 12:631233. [PMID: 33643316 PMCID: PMC7907157 DOI: 10.3389/fimmu.2021.631233] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
Coronavirus disease-19 caused by the novel RNA betacoronavirus SARS-CoV2 has first emerged in Wuhan, China in December 2019, and since then developed into a worldwide pandemic with >99 million people afflicted and >2.1 million fatal outcomes as of 24th January 2021. SARS-CoV2 targets the lower respiratory tract system leading to pneumonia with fever, cough, and dyspnea. Most patients develop only mild symptoms. However, a certain percentage develop severe symptoms with dyspnea, hypoxia, and lung involvement which can further progress to a critical stage where respiratory support due to respiratory failure is required. Most of the COVID-19 symptoms are related to hyperinflammation as seen in cytokine release syndrome and it is believed that fatalities are due to a COVID-19 related cytokine storm. Treatments with anti-inflammatory or anti-viral drugs are still in clinical trials or could not reduce mortality. This makes it necessary to develop novel anti-inflammatory therapies. Recently, the therapeutic potential of phytocannabinoids, the unique active compounds of the cannabis plant, has been discovered in the area of immunology. Phytocannabinoids are a group of terpenophenolic compounds which biological functions are conveyed by their interactions with the endocannabinoid system in humans. Here, we explore the anti-inflammatory function of cannabinoids in relation to inflammatory events that happen during severe COVID-19 disease, and how cannabinoids might help to prevent the progression from mild to severe disease.
Collapse
Affiliation(s)
- Nicole Paland
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Antonina Pechkovsky
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Miran Aswad
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Haya Hamza
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Tania Popov
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
| | - Eduardo Shahar
- Clinical Immunology Unit, Rambam Health Care Campus, Haifa, Israel
| | - Igal Louria-Hayon
- Medical Cannabis Research and Innovation Center, Rambam Health Care Campus, Haifa, Israel
- Clinical Research Institute at Rambam (CRIR), Rambam Health Care Campus, Haifa, Israel
- Department of Hematology, Rambam Health Care Campus, Haifa, Israel
| |
Collapse
|
18
|
Nagarkatti P, Miranda K, Nagarkatti M. Use of Cannabinoids to Treat Acute Respiratory Distress Syndrome and Cytokine Storm Associated with Coronavirus Disease-2019. Front Pharmacol 2020; 11:589438. [PMID: 33240092 PMCID: PMC7677512 DOI: 10.3389/fphar.2020.589438] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/25/2020] [Indexed: 12/17/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a highly infectious respiratory disease caused by the severe acute respiratory syndrome coronavirus 2. A significant proportion of COVID-19 patients develop Acute Respiratory Distress Syndrome (ARDS) resulting from hyperactivation of the immune system and cytokine storm, which leads to respiratory and multi-organ failure, and death. Currently, there are no effective treatments against hyperimmune syndrome and ARDS. We propose that because immune cells express cannabinoid receptors and their agonists are known to exhibit potent anti-inflammatory activity, targeting cannabinoid receptors, and endocannabinoids deserve intense investigation as a novel approach to treat systemic inflammation, cytokine storm, and ARDS in patients with COVID-19.
Collapse
Affiliation(s)
- Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States.,University of South Carolina, Columbia, SC, United States
| | - Kathryn Miranda
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina School of Medicine, Columbia, SC, United States
| |
Collapse
|
19
|
Almogi-Hazan O, Or R. Cannabis, the Endocannabinoid System and Immunity-the Journey from the Bedside to the Bench and Back. Int J Mol Sci 2020; 21:ijms21124448. [PMID: 32585801 PMCID: PMC7352399 DOI: 10.3390/ijms21124448] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 12/13/2022] Open
Abstract
The Cannabis plant contains numerous components, including cannabinoids and other active molecules. The phyto-cannabinoid activity is mediated by the endocannabinoid system. Cannabinoids affect the nervous system and play significant roles in the regulation of the immune system. While Cannabis is not yet registered as a drug, the potential of cannabinoid-based medicines for the treatment of various conditions has led many countries to authorize their clinical use. However, the data from basic and medical research dedicated to medical Cannabis is currently limited. A variety of pathological conditions involve dysregulation of the immune system. For example, in cancer, immune surveillance and cancer immuno-editing result in immune tolerance. On the other hand, in autoimmune diseases increased immune activity causes tissue damage. Immuno-modulating therapies can regulate the immune system and therefore the immune-regulatory properties of cannabinoids, suggest their use in the therapy of immune related disorders. In this contemporary review, we discuss the roles of the endocannabinoid system in immunity and explore the emerging data about the effects of cannabinoids on the immune response in different pathologies. In addition, we discuss the complexities of using cannabinoid-based treatments in each of these conditions.
Collapse
|
20
|
Hanlon EC. Impact of circadian rhythmicity and sleep restriction on circulating endocannabinoid (eCB) N-arachidonoylethanolamine (anandamide). Psychoneuroendocrinology 2020; 111:104471. [PMID: 31610409 PMCID: PMC7001881 DOI: 10.1016/j.psyneuen.2019.104471] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 09/26/2019] [Accepted: 10/01/2019] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The endocannabinoid (eCB) system is involved in diverse aspects of human physiology and behavior but little is known about the impact of circadian rhythmicity on the system. The two most studied endocannabinoids, AEA (ananamide) and 2-AG (2-arachidonoylglycerol), can be measured in peripheral blood however the functional relevance of peripheral eCB levels is not clear. Having previously detailed the 24-h profile of serum 2-AG, here we report the 24-h serum profile of AEA to determine if these two endocannabinoids vary in parallel across the biological day including a nocturnal 8.5-h sleep period. Further, we assessed and compared the effect of a physiological challenge, in the form of sleep restriction to 4.5-h, on these two profiles. METHODS In this randomized crossover study, we examined serum concentrations of AEA across a 24-h period in fourteen young adults. Congeners of AEA, the structural analogs oleoylethanolamide (OEA) and palmitoylethanolamide (PEA) were simultaneously assayed. Prior to 24-h blood sampling, each participant was exposed to two nights of normal (8.5 h) or restricted sleep (4.5 h). The two sleep conditions were separated by at least one month. In both sleep conditions, during the period of blood sampling, each individual ate the same high-carbohydrate meal at 0900, 1400, and 1900. RESULTS Mean 24-h concentrations of AEA were 0.697 ± 0.11 pmol/ml. A reproducible biphasic 24-h profile of AEA was observed with a first peak occurring during early sleep (0200) and a second peak in the mid-afternoon (1500) while a nadir was detected in the mid-morning (1000). The 24-h profiles for both OEA and PEA followed a similar pattern to that observed for AEA. AEA, OEA, and PEA levels were not affected by sleep restriction at any time of day, contrasting with the elevation of early afternoon levels previously observed for 2-AG. CONCLUSIONS The 24-h rhythm of AEA is markedly different from that of 2-AG, being of lesser amplitude and biphasic, rather than monophasic. These observations suggest distinct regulatory pathways of the two eCB and indicate that time of day needs to be carefully controlled in studies attempting to delineate their relative roles. Moreover, unlike 2-AG, AEA is not altered by sleep restriction, suggesting that physiological perturbations may affect AEA and 2-AG differently. Similar 24-h profiles were observed for OEA and PEA following normal and restricted sleep, further corroborating the validity of the wave-shape and lack of response to sleep loss observed for the AEA profile. Therapeutic approaches involving agonism or antagonism of peripheral eCB signaling will likely need to be tailored according to time of day.
Collapse
Affiliation(s)
- Erin C Hanlon
- University of Chicago, Department of Medicine, MC 1027, Section of Endocrinology, Diabetes, and Metabolism, 5841 S Maryland Ave, Chicago, IL 60637, United States.
| |
Collapse
|
21
|
Endocannabinoid 2-arachidonoylglycerol is elevated in the coronary circulation during acute coronary syndrome. PLoS One 2019; 14:e0227142. [PMID: 31887202 PMCID: PMC6936850 DOI: 10.1371/journal.pone.0227142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/12/2019] [Indexed: 11/19/2022] Open
Abstract
Objectives The endocannabinoid system modulates coronary circulatory function and atherogenesis. The two major endocannabinoids (eCB), 2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamide (AEA), are increased in venous blood from patients with coronary artery disease (CAD). However, given their short half-life and their autocrine/paracrine mechanism of action, eCB levels in venous blood samples might not reflect arterial or coronary eCB concentrations. The aim of this cross-sectional study was to identify the local concentration profile of eCB and to detect whether and how this concentration profile changes in CAD and NSTEMI versus patients without CAD. Methods and results 83 patients undergoing coronary angiography were included in this study. Patients were divided into three groups based on their definite diagnosis of a) no CAD, b) stable CAD, or c) non-ST-segment elevation myocardial infarction (NSTEMI). Blood was drawn from the arterial sheath and the aorta in all patients and additionally distal to the culprit coronary lesion in CAD- and NSTEMI patients. 2-AG levels varied significantly between patient groups and between the sites of blood extraction. The lowest levels were detected in patients without CAD; the highest 2-AG concentrations were detected in NSTEMI patients and in the coronary arteries. Peripheral 2-AG levels were significantly higher in NSTEMI patients (107.4 ± 28.4 pmol/ml) than in CAD- (17.4 ± 5.4 pmol/ml; p < 0.001), or no-CAD patients (23.9 ± 7.1 pmol/ml; p < 0.001). Moreover, coronary 2-AG levels were significantly higher in NSTEMI patients than in CAD patients (369.3 ± 57.2 pmol/ml vs. 240.1 ± 25.3 pmol/ml; p = 0.024). Conclusions 2-AG showed significant variability in arterial blood samples drawn from distinct locations. Possibly, lesional macrophages synthesise 2-AG locally, which thereby contributes to endothelial dysfunction and local inflammation.
Collapse
|
22
|
García-Domínguez M, Aguirre A, Lastra A, Hidalgo A, Baamonde A, Menéndez L. The Systemic Administration of the Chemokine CCL1 Evokes Thermal Analgesia in Mice Through the Activation of the Endocannabinoid System. Cell Mol Neurobiol 2019; 39:1115-1124. [PMID: 31203533 DOI: 10.1007/s10571-019-00706-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
Apart from its involvement in immune functions, the chemokine CCL1 can participate in the modulation of nociceptive processing. Previous studies have demonstrated the hypernociceptive effect produced by CCL1 in the spinal cord, but its possible action on peripheral nociception has not yet been characterized. We describe here that the subcutaneous administration of CCL1 (1-10 µg/kg) produces dose-dependent and long-lasting increases in thermal withdrawal latencies measured by the unilateral hot plate test in mice. The antinociceptive nature of this effect is further supported by the reduction of spinal neurons expressing Fos protein in response to a noxious thermal stimulus observed after the administration of 10 µg/kg of CCL1. CCL1-induced antinociception was inhibited after systemic, but not spinal administration of the selective antagonist R243 (0.1-1 mg/kg), demonstrating the participation of peripheral CCR8 receptors. The absence of this analgesic effect in mice treated with a dose of cyclophosphamide that produces a drastic depletion of leukocytes suggests its dependency on white blood cells. Furthermore, whereas the antinociceptive effect of CCL1 was unaffected after the treatment with either the antagonist of opioid receptors naloxone or the cannabinoid type 1 receptor blocker AM251, it was dose-dependently inhibited after the administration of the CB2 receptor antagonist SR144528 (0.1-1 mg/kg). The detection by ELISA of an increased presence of the endocannabinoid 2-arachidonoylglycerol after the administration of an analgesic dose of CCL1 supports the notion that CCL1 can evoke thermal analgesia through the release of this endocannabinoid from circulating leukocytes.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Alina Aguirre
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Ana Lastra
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Agustín Hidalgo
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain.
| |
Collapse
|
23
|
Kerage D, Sloan EK, Mattarollo SR, McCombe PA. Interaction of neurotransmitters and neurochemicals with lymphocytes. J Neuroimmunol 2019; 332:99-111. [PMID: 30999218 DOI: 10.1016/j.jneuroim.2019.04.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 12/14/2022]
Abstract
Neurotransmitters and neurochemicals can act on lymphocytes by binding to receptors expressed by lymphocytes. This review describes lymphocyte expression of receptors for a selection of neurotransmitters and neurochemicals, the anatomical locations where lymphocytes can interact with neurotransmitters, and the effects of the neurotransmitters on lymphocyte function. Implications for health and disease are also discussed.
Collapse
Affiliation(s)
- Daniel Kerage
- The University of Queensland Diamantina Institute, Brisbane, Australia; Transplant Research Program, Boston Children's Hospital, Boston, MA, United States of America
| | - Erica K Sloan
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; Division of Surgery, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; Cousins Center for Neuroimmunology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, USA
| | | | - Pamela A McCombe
- The University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Australia; Royal Brisbane and Women's Hospital, Herston, Brisbane, Australia.
| |
Collapse
|
24
|
Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacology 2018; 43:155-172. [PMID: 28653665 PMCID: PMC5719092 DOI: 10.1038/npp.2017.130] [Citation(s) in RCA: 264] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Revised: 05/29/2017] [Accepted: 06/09/2017] [Indexed: 12/15/2022]
Abstract
The goal of this review is to summarize studies in which concentrations of circulating endocannabinoids in humans have been examined in relationship to physiological measurements and pathological status. The roles of endocannabinoids in the regulation of energy intake and storage have been well studied and the data obtained consistently support the hypothesis that endocannabinoid signaling is associated with increased consumption and storage of energy. Physical exercise mobilizes endocannabinoids, which could contribute to refilling of energy stores and also to the analgesic and mood-elevating effects of exercise. Circulating concentrations of 2-arachidonoylglycerol are very significantly circadian and dysregulated when sleep is disrupted. Other conditions under which circulating endocannabinoids are altered include inflammation and pain. A second important role for endocannabinoid signaling is to restore homeostasis following stress. Circulating endocannabinoids are stress-responsive and there is evidence that their concentrations are altered in disorders associated with excessive stress, including post-traumatic stress disorder. Although determination of circulating endocannabinoids can provide important information about the state of endocannabinoid signaling and thus allow for hypotheses to be defined and tested, the large number of physiological factors that contribute to their circulating concentrations makes it difficult to use them in isolation as a biomarker for a specific disorder.
Collapse
|
25
|
Mehrpouya-Bahrami P, Chitrala KN, Ganewatta MS, Tang C, Murphy EA, Enos RT, Velazquez KT, McCellan J, Nagarkatti M, Nagarkatti P. Blockade of CB1 cannabinoid receptor alters gut microbiota and attenuates inflammation and diet-induced obesity. Sci Rep 2017; 7:15645. [PMID: 29142285 PMCID: PMC5688117 DOI: 10.1038/s41598-017-15154-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 10/23/2017] [Indexed: 01/22/2023] Open
Abstract
Obesity is characterized by chronic low-grade, systemic inflammation, altered gut microbiota, and gut barrier disruption. Additionally, obesity is associated with increased activity of endocannabinoid system (eCB). However, the clear connection between gut microbiota and the eCB system in the regulation of energy homeostasis and adipose tissue inflammation and metabolism, remains to be established. We investigated the effect of treatment of mice with a cannabinoid receptor 1 (CB1) antagonist on Diet-Induced Obesity (DIO), specifically whether such a treatment that blocks endocannabinoid activity can induce changes in gut microbiota and anti-inflammatory state in adipose tissue. Blockade of CB1 attenuated DIO, inflammatory cytokines and trafficking of M1 macrophages into adipose tissue. Decreased inflammatory tone was associated with a lower intestinal permeability and decreased metabolic endotoxemia as evidenced by reduced plasma LPS level, and improved hyperglycemia and insulin resistance. 16S rRNA metagenomics sequencing revealed that CB1 blockade dramatically increased relative abundance of Akkermansia muciniphila and decreased Lanchnospiraceae and Erysipelotrichaceae in the gut. Together, the current study suggests that blocking of CB1 ameliorates Diet-Induced Obesity and metabolic disorder by modulating macrophage inflammatory mediators, and that this effect is associated with alterations in gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Pegah Mehrpouya-Bahrami
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | | | - Mitra S Ganewatta
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - E Angela Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Reilly T Enos
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Kandy T Velazquez
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Jamie McCellan
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology, and Immunology, School of Medicine, Columbia, SC, USA.
| |
Collapse
|
26
|
Li Q, Wang Y, Chen Y, Teng M, He J, Wang X, Kong F, Teng L, Wang D. Investigation of the immunomodulatory activity of Tricholoma matsutake mycelium in cyclophosphamide-induced immunosuppressed mice. Mol Med Rep 2017; 16:4320-4326. [DOI: 10.3892/mmr.2017.7090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
|
27
|
Transient Cannabinoid Receptor 2 Blockade during Immunization Heightens Intensity and Breadth of Antigen-specific Antibody Responses in Young and Aged mice. Sci Rep 2017; 7:42584. [PMID: 28209996 PMCID: PMC5314369 DOI: 10.1038/srep42584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/12/2017] [Indexed: 01/05/2023] Open
Abstract
The hallmark of vaccines is their ability to prevent the spread of infectious pathogens and thereby serve as invaluable public health tool. Despite their medical relevance, there is a gap in our understanding of the physiological factors that mediate innate and adaptive immune response to vaccines. The endocannabinoid (eCB) system is a critical modulator of homeostasis in vertebrates. Our results indicate that macrophages and dendritic cells produce the endocannabinoid, 2-arachidonoyl-sn-glycerol (2-AG) upon antigen activation. We have also established that 2-AG levels are upregulated in the serum and in the lymph node of mice during vaccination. We hypothesized that the intrinsic release of eCBs from immune cells during activation by pathogenic antigens mitigate inflammation, but also suppress overall innate and adaptive immune response. Here we demonstrate, for the first time, that transient administration of the cannabinoid receptor 2 antagonist AM630 (10 mg/kg) or inverse agonist JTE907 (3 mg/kg) during immunization heightens the intensity and breadth of antigen-specific immune responses in young and aged mice through the upregulation of immunomodulatory genes in secondary lymphoid tissues.
Collapse
|