1
|
Malaník M, Farková V, Křížová J, Kresová A, Šmejkal K, Kašparovský T, Dadáková K. Comparison of Metabolic Profiles of Fruits of Arctium lappa, Arctium minus, and Arctium tomentosum. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2024; 79:497-502. [PMID: 38589624 PMCID: PMC11178601 DOI: 10.1007/s11130-024-01175-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 04/10/2024]
Abstract
Metabolites of the edible and medicinal plant Arctium have been shown to possess beneficial activities. The phytochemical profile of Arctium lappa is well-explored and its fruits are known to contain mainly lignans, fatty acids, and sterols. But the fruits of other Arctium species have not been thoroughly investigated. Therefore, this study compares the metabolic profiles of the fruits of A. lappa, Arctium tomentosum, and Arctium minus. Targeted metabolomics led to the putative identification of 53 metabolites in the fruit extracts, the majority of these being lignans and fatty acids. Quantification of the major lignans showed that the year of collection had a significant effect on the lignan content. Furthermore, A. lappa fruits contained lesser amounts of arctigenin but greater amounts of arctigenin glycoside than A. minus fruits. Regarding the profile of fatty acids, A. minus fruits differed from the others in the presence of linolelaidic acid.
Collapse
Affiliation(s)
- Milan Malaník
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Veronika Farková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jitka Křížová
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Alice Kresová
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Šmejkal
- Department of Natural Drugs, Faculty of Pharmacy, Masaryk University, Brno, Czech Republic
| | - Tomáš Kašparovský
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Kateřina Dadáková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
2
|
Differential Inflammatory Responses in Cultured Endothelial Cells Exposed to Two Conjugated Linoleic Acids (CLAs) under a Pro-Inflammatory Condition. Int J Mol Sci 2022; 23:ijms23116101. [PMID: 35682781 PMCID: PMC9181016 DOI: 10.3390/ijms23116101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/21/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Conjugated linoleic acid (CLA) isomers have been shown to possess anti-atherosclerotic properties, which may be related to the downregulation of inflammatory pathways in different cell types, including endothelial cells (ECs). However, whether different CLA isomers have different actions is not entirely clear, with inconsistent reports to date. Furthermore, in cell culture studies, CLAs have often been used at fairly high concentrations. Whether lower concentrations of CLAs are able to affect EC responses is not clear. The aim of this study was to evaluate the effects of two CLAs (cis-9, trans-11 (CLA9,11) and trans-10, cis-12 (CLA10,12)) on the inflammatory responses of ECs. ECs (EA.hy926 cells) were cultured under standard conditions and exposed to CLAs (1 to 50 μM) for 48 h. Then, the cells were cultured for a further 6 or 24 h with tumour necrosis factor alpha (TNF-α, 1 ng/mL) as an inflammatory stimulant. ECs remained viable after treatments with 1 and 10 μM of each CLA, but not after treatment with 50 μM of CLA10,12. CLAs were incorporated into ECs in a concentration-dependent manner. CLA10,12 increased the levels of ICAM-1, IL-6, and RANTES in the culture medium, while CLA9,11 had null effects. Both CLAs (1 μM) decreased the appearance of NFκB1 mRNA, but only CLA9,11 maintained this downregulation at 10 μM. CLA10,12 had no effect on THP-1 cell adhesion to ECs while significantly decreasing the percentage of ECs expressing ICAM-1 and also levels of ICAM-1 expression per cell when used at 10 µM. Although CLA9,11 did not have any effect on ICAM-1 cell surface expression, it reduced THP-1 cell adhesion to the EA.hy926 cell monolayer at both concentrations. In summary, CLA10,12 showed some pro-inflammatory effects, while CLA9,11 exhibited null or anti-inflammatory effects. The results suggest that each CLA has different effects in ECs under a pro-inflammatory condition, highlighting the need to evaluate the effects of CLA isomers independently.
Collapse
|
3
|
Lai HT, Imamura F, Korat AVA, Murphy RA, Tintle N, Bassett JK, Chen J, Kröger J, Chien KL, Senn M, Wood AC, Forouhi NG, Schulze MB, Harris WS, Vasan RS, Hu F, Giles GG, Hodge A, Djousse L, Brouwer IA, Qian F, Sun Q, Wu JH, Marklund M, Lemaitre RN, Siscovick DS, Fretts AM, Shadyab AH, Manson JE, Howard BV, Robinson JG, Wallace RB, Wareham NJ, Chen YDI, Rotter JI, Tsai MY, Micha R, Mozaffarian D. Trans Fatty Acid Biomarkers and Incident Type 2 Diabetes: Pooled Analysis of 12 Prospective Cohort Studies in the Fatty Acids and Outcomes Research Consortium (FORCE). Diabetes Care 2022; 45:854-863. [PMID: 35142845 PMCID: PMC9114723 DOI: 10.2337/dc21-1756] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/10/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Trans fatty acids (TFAs) have harmful biologic effects that could increase the risk of type 2 diabetes (T2D), but evidence remains uncertain. We aimed to investigate the prospective associations of TFA biomarkers and T2D by conducting an individual participant-level pooled analysis. RESEARCH DESIGN AND METHODS We included data from an international consortium of 12 prospective cohorts and nested case-control studies from six nations. TFA biomarkers were measured in blood collected between 1990 and 2008 from 25,126 participants aged ≥18 years without prevalent diabetes. Each cohort conducted de novo harmonized analyses using a prespecified protocol, and findings were pooled using inverse-variance weighted meta-analysis. Heterogeneity was explored by prespecified between-study and within-study characteristics. RESULTS During a mean follow-up of 13.5 years, 2,843 cases of incident T2D were identified. In multivariable-adjusted pooled analyses, no significant associations with T2D were identified for trans/trans-18:2, relative risk (RR) 1.09 (95% CI 0.94-1.25); cis/trans-18:2, 0.89 (0.73-1.07); and trans/cis-18:2, 0.87 (0.73-1.03). Trans-16:1n-9, total trans-18:1, and total trans-18:2 were inversely associated with T2D (RR 0.81 [95% CI 0.67-0.99], 0.86 [0.75-0.99], and 0.84 [0.74-0.96], respectively). Findings were not significantly different according to prespecified sources of potential heterogeneity (each P ≥ 0.1). CONCLUSIONS Circulating individual trans-18:2 TFA biomarkers were not associated with risk of T2D, while trans-16:1n-9, total trans-18:1, and total trans-18:2 were inversely associated. Findings may reflect the influence of mixed TFA sources (industrial vs. natural ruminant), a general decline in TFA exposure due to policy changes during this period, or the relatively limited range of TFA levels.
Collapse
Affiliation(s)
- Heidi T.M. Lai
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
- Department of Primary Care and Public Health, Imperial College London, London, U.K
| | - Fumiaki Imamura
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Andres V. Ardisson Korat
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Rachel A. Murphy
- School of Population & Public Health, Faculty of Medicine, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathan Tintle
- Department of Mathematics and Statistics, Dordt University, Sioux Center, IA
- Fatty Acid Research Institute, Sioux Falls, SD
| | - Julie K. Bassett
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Jiaying Chen
- Division of Aging, Brigham and Women's Hospital, Boston, MA
| | - Janine Kröger
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Kuo-Liong Chien
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei City, Republic of China
| | - Mackenzie Senn
- U.S. Department of Agriculture/Agriculture Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Alexis C. Wood
- U.S. Department of Agriculture/Agriculture Research Service Children’s Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Nita G. Forouhi
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Matthias B. Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - William S. Harris
- Fatty Acid Research Institute, Sioux Falls, SD
- Department of Internal Medicine, Sanford School of Medicine, University of South Dakota, Sioux Falls, SD
| | - Ramachandran S. Vasan
- Boston University School of Medicine, Boston, MA
- The Framingham Heart Study, Framingham, MA
| | - Frank Hu
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Graham G. Giles
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, The University of Melbourne, Parkville, Victoria, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, Victoria, Australia
| | - Allison Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, Victoria, Australia
| | - Luc Djousse
- Divisions of Aging, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Ingeborg A. Brouwer
- Department of Health Sciences, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam Public Health Research Institute, Amsterdam, the Netherlands
| | - Frank Qian
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Qi Sun
- Department of Nutrition and Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA
| | - Jason H.Y. Wu
- The George Institute for Global Health, the Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Matti Marklund
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
- The George Institute for Global Health, the Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- Department of Public Health and Caring Sciences, Clinical Nutrition and Metabolism, Uppsala University, Uppsala, Sweden
| | - Rozenn N. Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA
| | | | - Amanda M. Fretts
- Cardiovascular Health Research Unit, Department of Epidemiology, University of Washington School of Public Health, Seattle, WA
| | - Aladdin H. Shadyab
- Family Medicine and Public Health, School of Medicine, University of California, San Diego, La Jolla, CA
| | - JoAnn E. Manson
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA
| | - Barbara V. Howard
- Georgetown University Medical Center, Georgetown University, Hyattsville, MD
| | | | | | - Nick J. Wareham
- MRC Epidemiology Unit, University of Cambridge, Cambridge, U.K
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA
| | - Michael Y. Tsai
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN
| | - Renata Micha
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | - Dariush Mozaffarian
- Friedman School of Nutrition Science and Policy, Tufts University, Boston, MA
| | | |
Collapse
|
4
|
Hoteit M, Zoghbi E, Rady A, Shankiti I, Ibrahim C, Al-Jawaldeh A. Assessment of Industrially Produced Trans Fatty Acids in Traditional Dishes, Arabic Sweets, and Market Food Products and Its Risks on Non-communicable Diseases in Lebanon. Front Nutr 2021; 8:727548. [PMID: 34746203 PMCID: PMC8566673 DOI: 10.3389/fnut.2021.727548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Industrially produced trans fatty acids (IP-TFAs) are a major dietary contributor to non-communicable diseases worldwide. To address the industrially produced trans fatty acids food sources in Lebanon, a mapping exercise was enrolled between January 2019 and April 2021 to establish a national database. The 2019 survey was a pooled data from five separate sources and had relatively 30 types of traditional dishes. In contrast, the subsequent surveys in 2020 had a sample of 35 types of Arabic sweets and 80 types of market food products. The 2021 survey covered all types of butter and margarine available in the Lebanese markets. Our findings show that about 93% of the products tested in Lebanon, between 2019 and 2021, met the World Health Organization recommendations, while about 7% exceeded the limit. The mean level of the IP-TFAs elaidic and linolelaidic acids in most traditional dishes (0.9%), Arabic sweets (0.6%), butter, and margarine (1.6%), and market foods (0.52%) were relatively low compared with other countries. Although trans fatty acids have a small impact on heart disease mortality in Lebanon, they are unquestionably significant. The persistence of food products with high quantities of trans fatty acids poses a health risk to Lebanese citizens. Fortunately, proper laws in Lebanon can easily remedy this situation.
Collapse
Affiliation(s)
- Maha Hoteit
- PHENOL Research Group (Public Health Nutrition Program-Lebanon), Faculty of Public Health, Lebanese University, Beirut, Lebanon
| | - Edwina Zoghbi
- Country Office for Lebanon, World Health Organization, Beirut, Lebanon
| | - Alissar Rady
- Country Office for Lebanon, World Health Organization, Beirut, Lebanon
| | - Iman Shankiti
- Country Office for Lebanon, World Health Organization, Beirut, Lebanon
| | - Carla Ibrahim
- PHENOL Research Group (Public Health Nutrition Program-Lebanon), Faculty of Public Health, Lebanese University, Beirut, Lebanon.,Faculty of Arts and Sciences, Department of Nutrition and Food Sciences, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Ayoub Al-Jawaldeh
- World Health Organization Regional Office for the Eastern Mediterranean, Cairo, Egypt
| |
Collapse
|
5
|
Hoteit M, Zoghbi E, Rady A, Shankiti I, Ibrahim C, Al-Jawaldeh A. Non-Conjugated-Industrially-Produced-Trans Fatty in Lebanese Foods: The Case of Elaidic and Linolelaidic Acids. Nutrients 2021; 13:3664. [PMID: 34684664 PMCID: PMC8536972 DOI: 10.3390/nu13103664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/17/2022] Open
Abstract
To determine Industrially-Produced Trans fatty acids (IP-TFAs) distribution of Lebanese traditional foods, especially regarding Elaidic acid (EA; 9t18:1) and Linolelaidic acid (LEA; 9t12t18:2), a mapping exercise was enrolled between January 2019 and April 2021 in which 145 food samples of three categories (traditional dishes, Arabic sweets, and market food products) were analyzed using Gas chromatography methods. Results showed that about 93% of the products tested in Lebanon, between 2019 and 2021, met the World Health Organization recommendations, while about 7% exceeded the limit. The mean level of the IP-TFAs Elaidic and Linolelaidic acid in most Traditional dishes (0.9%), Arabic sweets (0.6%), butter and margarine (1.6%), and market foods (0.52%) were relatively low compared with other countries. Despite that, the relative impact of IP-TFAs on heart diseases mortality in Lebanon is limited but unambiguously still substantial. The persistence of food products with high IP-TFAs levels threatens the health of Lebanese people. Fortunately, this problem is fairly easy to solve in Lebanon via proper legislation.
Collapse
Affiliation(s)
- Maha Hoteit
- PHENOL Research Group (Public Health Nutrition Program-Lebanon), Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon; (M.H.); (C.I.)
| | - Edwina Zoghbi
- Country Office for Lebanon, World Health Organization, Beirut 5391, Lebanon; (E.Z.); (A.R.); (I.S.)
| | - Alissar Rady
- Country Office for Lebanon, World Health Organization, Beirut 5391, Lebanon; (E.Z.); (A.R.); (I.S.)
| | - Iman Shankiti
- Country Office for Lebanon, World Health Organization, Beirut 5391, Lebanon; (E.Z.); (A.R.); (I.S.)
| | - Carla Ibrahim
- PHENOL Research Group (Public Health Nutrition Program-Lebanon), Faculty of Public Health, Lebanese University, Beirut 6573, Lebanon; (M.H.); (C.I.)
- Department of Nutrition and Food Sciences, Faculty of Arts and Sciences, Holy Spirit University of Kaslik, Jounieh P.O. Box 446, Lebanon
| | - Ayoub Al-Jawaldeh
- World Health Organization Regional Office for the Eastern Mediterranean, Cairo 11371, Egypt
| |
Collapse
|
6
|
Pipoyan D, Stepanyan S, Stepanyan S, Beglaryan M, Costantini L, Molinari R, Merendino N. The Effect of Trans Fatty Acids on Human Health: Regulation and Consumption Patterns. Foods 2021; 10:2452. [PMID: 34681504 PMCID: PMC8535577 DOI: 10.3390/foods10102452] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Health effects of trans fatty acids (TFAs) on human organisms can vary according to their type, structure, composition, and origin. Even though the adverse health effects of industrial TFAs (iTFAs) have been widely discussed, the health effects of natural TFAs (nTFAs) are still questionable. Hence, it is important to review the literature and provide an overall picture on the health effects of different TFAs coming from industrial and ruminant sources, underlining those types that have adverse health effects as well as suggesting methods for reducing their harmful effects. Multiple databases (PubMed, Medline, Cochrane Library, etc.) were searched with the key words "trans fatty acid sources", "ruminant", "industrial", "conjugated trans linoleic acid", "human", "coronary heart disease", "cancer", etc. Reference lists of the studies were scanned discussing the health effects of iTFAs and nTFAs. The review of the literature showed that iTFAs are found to be more harmful than ruminant-produced nTFAs. Although several beneficial effects (such as reduced risk of diabetes) for nTFAs have been observed, they should be used with caution. Since during labeling it is usually not mentioned whether the TFAs contained in food are of industrial or natural origin, the general suggestion is to reduce their consumption.
Collapse
Affiliation(s)
- Davit Pipoyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (S.S.); (S.S.); (M.B.)
| | - Stella Stepanyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (S.S.); (S.S.); (M.B.)
| | - Seda Stepanyan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (S.S.); (S.S.); (M.B.)
| | - Meline Beglaryan
- Center for Ecological-Noosphere Studies of NAS RA, Abovyan 68, Yerevan 0025, Armenia; (D.P.); (S.S.); (S.S.); (M.B.)
| | - Lara Costantini
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy; (L.C.); (R.M.)
| | - Romina Molinari
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy; (L.C.); (R.M.)
| | - Nicolò Merendino
- Department of Ecological and Biological Sciences (DEB), Tuscia University, Largo dell’Università snc, 01100 Viterbo, Italy; (L.C.); (R.M.)
| |
Collapse
|
7
|
Eighteen‑carbon trans fatty acids and inflammation in the context of atherosclerosis. Prog Lipid Res 2019; 76:101009. [PMID: 31669459 DOI: 10.1016/j.plipres.2019.101009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 09/17/2019] [Accepted: 09/19/2019] [Indexed: 12/12/2022]
Abstract
Endothelial dysfunction is a pro-inflammatory state characterized by chronic activation of the endothelium, which leads to atherosclerosis and cardiovascular disease (CVD). Intake of trans fatty acids (TFAs) is associated with an increased risk of CVD. This risk is usually associated with industrial TFAs (iTFAs) rather than ruminant TFAs (rTFAs); however it is not clear how specific TFA isomers differ in their biological activity and mechanisms of action with regard to inflammation. Here we review the literature on 18‑carbon TFAs, including the research associating their intake or levels with CVD and studies relating 18‑carbon TFA exposure to modulation of inflammatory processes. The evidence associating iTFAs with CVD risk factors is fairly consistent and studies in humans usually show a relation between iTFAs and higher levels of inflammatory markers. In contrast, studies in humans, animals and in vitro suggest that rTFAs have null or mildly beneficial effects in cardiovascular health, metabolic parameters and inflammatory markers, although the evidence is not always consistent. More studies are needed to better identify the beneficial and detrimental effects of the different TFAs, including those with 18 carbons.
Collapse
|
8
|
Qiu B, Wang Q, Liu W, Xu TC, Liu LN, Zong AZ, Jia M, Li J, Du FL. Biological effects of trans fatty acids and their possible roles in the lipid rafts in apoptosis regulation. Cell Biol Int 2018; 42:904-912. [PMID: 29500886 DOI: 10.1002/cbin.10958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 02/24/2018] [Indexed: 12/25/2022]
Abstract
A large number of recent studies are focused on evaluating the mechanism of action of trans fatty acids (TFAs) on the progression of apoptosis. A strong positive association has been reported between TFA and coronary heart disease (CHD), obesity and nonalcoholic steatohepatitis and so on. The present study reviewed the biological effects of trans fatty acids (TFA) and their possible roles in lipid rafts in regulating apoptosis. The following aspects of TFA were included: the research about TFA and diseases affecting serum lipid levels, inducing system inflammation and immune response, and the correlation between TFA and apoptosis. The primary purpose of the review article was to comprehensively evaluate the potential correlation between lipid rafts and apoptosis induced by different structures of TFA and provide some new research progress and future directions about it.
Collapse
Affiliation(s)
- Bin Qiu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Agro-Products Processing Technology of Shandong Province, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan, 250100, PR China
| | - Qing Wang
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Agro-Products Processing Technology of Shandong Province, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan, 250100, PR China
| | - Wei Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Agro-Products Processing Technology of Shandong Province, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan, 250100, PR China
| | - Tong-Cheng Xu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Agro-Products Processing Technology of Shandong Province, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan, 250100, PR China
| | - Li-Na Liu
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Agro-Products Processing Technology of Shandong Province, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan, 250100, PR China
| | - Ai-Zhen Zong
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Agro-Products Processing Technology of Shandong Province, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan, 250100, PR China
| | - Min Jia
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Agro-Products Processing Technology of Shandong Province, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan, 250100, PR China
| | - Jing Li
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, 330047, PR China
| | - Fang-Ling Du
- Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Agro-Products Processing Technology of Shandong Province, 202, Gongye North Road, Jinan, 250100, PR China.,Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture, 202 Gongye North Road, Jinan, 250100, PR China
| |
Collapse
|
9
|
Li J, Hu SB, He YM, Zhuo CF, Zhou RL, Chen F, Li HY, Deng ZY. 9c11tCLA modulates 11t18:1 and 9t18:1 induced inflammations differently in human umbilical vein endothelial cells. Sci Rep 2018; 8:1535. [PMID: 29367652 PMCID: PMC5784167 DOI: 10.1038/s41598-018-19729-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 01/04/2018] [Indexed: 02/02/2023] Open
Abstract
Endothelial inflammation is recognized as the initial stage of a multistep process leading to coronary heart disease (CHD). Recently, the different effects of industrial trans fatty acids (elaidic acid, 9t18:1) and ruminant trans fatty acids (vaccenic acid, 11t18:1) on CHD have been reported in epidemiological and animal studies, however, the mechanism was not fully studied. Therefore, the objective of this study was to explore the underlying mechanism by which 9t18:1 and 11t18:1 affect human umbilical vein endothelial cells (HUVECs) inflammation. We found that 9c11t-CLA modulated the inflammation of HUVECs induced by 9t18:1 and 11t18:1. Fatty acid composition, pro-inflammatory factors, phosphorylation of MAPKs, and the TLR4 level in HUVECs altered by 11t18:1 induction, collectively suggest that the bio-conversion of 11t18:1 to 9c11tCLA might be the cause why 11t18:1 and 9t18:1 have distinct influences on endothelial injuries. It was concluded that it is biosynthesis of 9c11t CLA from11t18:1, and the modulation of TLR4-MAPK pathway by 9c11t CLA, which at least partially account for the slight effect of 11t18:1 on endothelial inflammation.
Collapse
Affiliation(s)
- Jing Li
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Sheng-Ben Hu
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Yue-Ming He
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Cheng-Fei Zhuo
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Ruo-Lin Zhou
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Fang Chen
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Hong-Yan Li
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China
| | - Ze-Yuan Deng
- State Key Lab of Food Science and Technology, Nanchang University, Nanchang, 330047, China. .,Institute for Advanced Study, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|