1
|
Schulte AM, Vivien Q, Leene JH, Alachouzos G, Feringa BL, Szymanski W. Photocleavable Protecting Groups Using a Sulfite Self-Immolative Linker for High Uncaging Quantum Yield and Aqueous Solubility. Angew Chem Int Ed Engl 2024; 63:e202411380. [PMID: 39140843 DOI: 10.1002/anie.202411380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/15/2024]
Abstract
Using light as an external stimulus to control (bio)chemical processes offers many distinct advantages. Most importantly, it allows for spatiotemporal control simply through operating the light source. Photocleavable protecting groups (PPGs) are a cornerstone class of compounds that are used to achieve photocontrol over (bio)chemical processes. PPGs are able to release a payload of interest upon light irradiation. The successful application of PPGs hinges on their efficiency of payload release, captured in the uncaging Quantum Yield (QY). Heterolytic PPGs efficiently release low pKa payloads, but their efficiency drops significantly for payloads with higher pKa values, such as alcohols. For this reason, alcohols are usually attached to PPGs via a carbonate linker. The self-immolative nature of the carbonate linker results in concurrent release of CO2 with the alcohol payload upon irradiation. We introduce herein novel PPGs containing sulfites as self-immolative linkers for photocaged alcohol payloads, for which we discovered that the release of the alcohol proceeds with higher uncaging QY than an identical payload released from a carbonate-linked PPG. Furthermore, we demonstrate that uncaging of the sulfite-linked PPGs results in the release of SO2 and show that the sulfite linker improves water solubility as compared to the carbonate-based systems.
Collapse
Affiliation(s)
- Albert Marten Schulte
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Quentin Vivien
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
| | - Julia H Leene
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Wiktor Szymanski
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department of Medicinal Chemistry, Photopharmacology and Imaging, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands
- Department of Radiology, Medical Imaging Center, University Medical Center, Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
2
|
Maller C, Marouda E, Köhn M. Photo-Claisen Rearrangement in a Coumarin-Caged Peptide Leads to a Surprising Enzyme Hyperactivation. Chembiochem 2024; 25:e202400561. [PMID: 39172538 DOI: 10.1002/cbic.202400561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/22/2024] [Accepted: 08/22/2024] [Indexed: 08/24/2024]
Abstract
Protein phosphatase-1 (PP1) is a ubiquitous enzyme that counteracts hundreds of kinases in cells. PP1 interacts with regulatory proteins via an RVxF peptide motif that binds to a hydrophobic groove on the enzyme. PP1-disrupting peptides (PDPs) compete with these regulatory proteins, leading to the release of the active PP1 subunit and promoting substrate dephosphorylation. Building on previous strategies employing the ortho-nitrobenzyl (o-Nb) group as a photocage to control PDP activity, we introduced coumarin derivatives into a PDP via an ether bond to explore their effects on PP1 activity. Surprisingly, our study revealed that the coumarin-caged peptides (PDP-DEACM and PDP-CM) underwent a photo-Claisen rearrangement, resulting in an unexpected hyperactivation of PP1. Our findings underscore the importance of linker design in controlling uncaging efficiency of photocages and highlight the need for comprehensive in vitro analysis before cellular experiments.
Collapse
Affiliation(s)
- Corina Maller
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, Freiburg, 79104, Germany
- Faculty of Chemistry and Pharmacy, Hermann-Staudinger Graduate School, University of Freiburg, Hebelstrasse 27, Freiburg, 79104, Germany
| | - Eirini Marouda
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, Freiburg, 79104, Germany
| | - Maja Köhn
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Schänzlestrasse 18, Freiburg, 79104, Germany
| |
Collapse
|
3
|
Schmitt C, Mauker P, Vepřek NA, Gierse C, Meiring JCM, Kuch J, Akhmanova A, Dehmelt L, Thorn-Seshold O. A Photocaged Microtubule-Stabilising Epothilone Allows Spatiotemporal Control of Cytoskeletal Dynamics. Angew Chem Int Ed Engl 2024; 63:e202410169. [PMID: 38961560 DOI: 10.1002/anie.202410169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The cytoskeleton is essential for spatial and temporal organisation of a wide range of cellular and tissue-level processes, such as proliferation, signalling, cargo transport, migration, morphogenesis, and neuronal development. Cytoskeleton research aims to study these processes by imaging, or by locally manipulating, the dynamics and organisation of cytoskeletal proteins with high spatiotemporal resolution: which matches the capabilities of optical methods. To date, no photoresponsive microtubule-stabilising tool has united all the features needed for a practical high-precision reagent: a low potency and biochemically stable non-illuminated state; then an efficient, rapid, and clean photoresponse that generates a high potency illuminated state; plus good solubility at suitable working concentrations; and efficient synthetic access. We now present CouEpo, a photocaged epothilone microtubule-stabilising reagent that combines these needs. Its potency increases approximately 100-fold upon irradiation by violet/blue light to reach low-nanomolar values, allowing efficient photocontrol of microtubule dynamics in live cells, and even the generation of cellular asymmetries in microtubule architecture and cell dynamics. CouEpo is thus a high-performance tool compound that can support high-precision research into many microtubule-associated processes, from biophysics to transport, cell motility, and neuronal physiology.
Collapse
Affiliation(s)
- Carina Schmitt
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Philipp Mauker
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Nynke A Vepřek
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Carolin Gierse
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, Dortmund, 44227, Germany
| | - Joyce C M Meiring
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Jürgen Kuch
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| | - Anna Akhmanova
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, Netherlands
| | - Leif Dehmelt
- Department of Chemistry and Chemical Biology, Technical University Dortmund, Otto-Hahn-Str. 4a, Dortmund, 44227, Germany
| | - Oliver Thorn-Seshold
- Department of Pharmacy, Ludwig-Maximilians University of Munich, Butenandtstrasse 7, Munich, 81377, Germany
| |
Collapse
|
4
|
Breton-Patient C, Billotte S, Duchambon P, Fontaine G, Bombard S, Piguel S. Light-Activatable Photocaged UNC2025 for Triggering TAM Kinase Inhibition in Bladder Cancer. Chembiochem 2024; 25:e202300855. [PMID: 38363151 DOI: 10.1002/cbic.202300855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/17/2024]
Abstract
Photopharmacology is an emerging field that utilizes photo-responsive molecules to enable control over the activity of a drug using light. The aim is to limit the therapeutic action of a drug at the level of diseased tissues and organs. Considering the well-known implications of protein kinases in cancer and the therapeutic issues associated with protein kinase inhibitors, the photopharmacology is seen as an innovative and alternative solution with great potential in oncology. In this context, we developed the first photocaged TAM kinase inhibitors based on UNC2025, a first-in-class small molecule kinase inhibitor. These prodrugs showed good stability in biologically relevant buffer and rapid photorelease of the photoremovable protecting group upon UV-light irradiation (<10 min.). These light-activatable prodrugs led to a 16-fold decrease to a complete loss of kinase inhibition, depending on the protein and the position at which the coumarin-type phototrigger was introduced. The most promising candidate was the N,O-dicaged compound, showing the superiority of having two photolabile protecting groups on UNC2025 for being entirely inactive on TAM kinases. Under UV-light irradiation, the N,O-dicaged compound recovered its inhibitory potency in enzymatic assays and displayed excellent antiproliferative activity in RT112 cell lines.
Collapse
Affiliation(s)
- Chloé Breton-Patient
- Institut Curie, Université PSL CNRS UMR9187, Inserm U119, 91400, Orsay, France
- Université Paris-Saclay CNRS UMR9187, Inserm U119, 91400, Orsay, France
| | - Sébastien Billotte
- Université Paris-Saclay, Faculté de Pharmacie CNRS UMR 8076, 91400, Orsay, France
| | - Patricia Duchambon
- Institut Curie, Université PSL CNRS UMR9187, Inserm U119, 91400, Orsay, France
- Université Paris-Saclay CNRS UMR9187, Inserm U119, 91400, Orsay, France
| | - Gaëlle Fontaine
- Institut Curie, Université PSL CNRS UMR9187, Inserm U119, 91400, Orsay, France
- Université Paris-Saclay CNRS UMR9187, Inserm U119, 91400, Orsay, France
| | - Sophie Bombard
- Institut Curie, Université PSL CNRS UMR9187, Inserm U119, 91400, Orsay, France
- Université Paris-Saclay CNRS UMR9187, Inserm U119, 91400, Orsay, France
| | - Sandrine Piguel
- Université Paris-Saclay, Faculté de Pharmacie CNRS UMR 8076, 91400, Orsay, France
| |
Collapse
|
5
|
Lāce I, Bazzi S, Uranga J, Schirmacher A, Diederichsen U, Mata RA, Simeth NA. Modulating Secondary Structure Motifs Through Photo-Labile Peptide Staples. Chembiochem 2023; 24:e202300270. [PMID: 37216330 DOI: 10.1002/cbic.202300270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/17/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023]
Abstract
Peptide-protein interactions (PPIs) are facilitated by the well-defined three-dimensional structure of bioactive peptides, interesting compounds for the development of new therapeutic agents. Their secondary structure and thus their propensity to engage in PPIs can be influenced by the introduction of peptide staples on the side chains. In particular, light-controlled staples based on azobenzene photoswitches and their structural influence on helical peptides have been studied extensively. In contrast, photolabile staples bearing photocages as a structural key motif, have mainly been used to block supramolecular interactions. Their influence on the secondary structure of the target peptide is under-investigated. Thus, in this study we use a combination of spectroscopic techniques and in silico simulations to systematically study a series of helical peptides with varying length of the photo-labile staple to obtain a detailed insight into the structure-property relationship in such photoresponsive biomolecules.
Collapse
Affiliation(s)
- Ilze Lāce
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Sophia Bazzi
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Jon Uranga
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Anastasiya Schirmacher
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Ulf Diederichsen
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
| | - Ricardo A Mata
- Institute for Physical Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 6, 37077, Göttingen, Germany
| | - Nadja A Simeth
- Institute for Organic and Biomolecular Chemistry, Department of Chemistry, University of Göttingen, Tammannstr. 2, 37077, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
6
|
Huang K, Fang X. A review on recent advances in methods for site-directed spin labeling of long RNAs. Int J Biol Macromol 2023; 239:124244. [PMID: 37001783 DOI: 10.1016/j.ijbiomac.2023.124244] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/31/2023]
Abstract
RNAs are important biomolecules that play essential roles in various cellular processes and are crucially linked with many human diseases. The key to elucidate the mechanisms underlying their biological functions and develop RNA-based therapeutics is to investigate RNA structure and dynamics and their connections to function in detail using a variety of approaches. Magnetic resonance techniques including paramagnetic nuclear magnetic resonance (NMR) and electron magnetic resonance (EPR) spectroscopies have proved to be powerful tools to gain insights into such properties. The prerequisites for paramagnetic NMR and EPR studies on RNAs are to achieve site-specific spin labeling of the intrinsically diamagnetic RNAs, which however is not trivial, especially for long ones. In this review, we present some covalent labeling strategies that allow site-specific introduction of electron spins to long RNAs. Generally, these strategies include assembly of long RNAs via enzymatic ligation of short oligonucleotides, co- and post-transcriptional site-specific labeling empowered with the unnatural base pair system, and direct enzymatic functionalization of natural RNAs. We introduce a few case studies to discuss the advantages and limitations of each strategy, and to provide a vision for the future development.
Collapse
|
7
|
Jia Y, Sun J, Yu D, Wang L, Campbell A, Fan H, Sun H. Light and Hydrogen Peroxide Dual-responsive DNA Interstrand Crosslink Precursors with Potent Cytotoxicity. Bioorg Chem 2022; 130:106270. [DOI: 10.1016/j.bioorg.2022.106270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/14/2022]
|
8
|
Kaiser F, Endeward B, Collauto A, Scheffer U, Prisner TF, Göbel MW. Spin-Labeled Riboswitch Synthesized from a Protected TPA Phosphoramidite Building Block. Chemistry 2022; 28:e202201822. [PMID: 35903916 PMCID: PMC9804336 DOI: 10.1002/chem.202201822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Indexed: 01/05/2023]
Abstract
The nitroxide TPA (2,2,5,5-tetramethyl-pyrrolin-1-oxyl-3-acetylene) is an excellent spin label for EPR studies of RNA. Previous synthetic methods, however, are complicated and require special equipment. Herein, we describe a uridine derived phosphoramidite with a photocaged TPA unit attached. The light sensitive 2-nitrobenzyloxymethyl group can be removed in high yield by short irradiation at 365 nm. Based on this approach, a doubly spin-labeled 27mer neomycin sensing riboswitch was synthesized and studied by PELDOR. The overall thermal stability of the fold is not much reduced by TPA. In-line probing nevertheless detected changes in local mobility.
Collapse
Affiliation(s)
- Frank Kaiser
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Burkhard Endeward
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Alberto Collauto
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Ute Scheffer
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Thomas F. Prisner
- Institute for Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| | - Michael W. Göbel
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Strasse 760438Frankfurt am MainGermany
| |
Collapse
|
9
|
Caged-carvedilol as a new tool for visible-light photopharmacology of β-adrenoceptors in native tissues. iScience 2022; 25:105128. [PMID: 36185381 PMCID: PMC9515591 DOI: 10.1016/j.isci.2022.105128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 07/08/2022] [Accepted: 09/09/2022] [Indexed: 11/09/2022] Open
Abstract
Adrenoceptors are G protein-coupled receptors involved in a large variety of physiological processes, also under pathological conditions. This is due in large part to their ubiquitous expression in the body exerting numerous essential functions. Therefore, the possibility to control their activity with high spatial and temporal precision would constitute a valuable research tool. In this study, we present a caged version of the approved non-selective β-adrenoceptor antagonist carvedilol, synthesized by alkylation of its secondary amine with a coumarin derivative. Introducing this photo-removable group abolished carvedilol physiological effects in cell cultures, mouse isolated perfused hearts and living zebrafish larvae. Only after visible light application, carvedilol was released and the different physiological systems were pharmacologically modulated in a similar manner as the control drug. This research provides a new photopharmacological tool for a wide range of research applications that may help in the development of future precise therapies. We report a diffusible caged antagonist based on the beta blocker carvedilol (C-C) Carvedilol release from C-C is produced by light on the visible range (405 nm) Light-dependent effects are assessed in cells, mice hearts, and zebrafish larvae Physiological processes can be regulated by C-C and light (heart rate and behavior)
Collapse
|
10
|
Aggarwal SC, Khodade VS, Porche S, Pharoah BM, Toscano JP. Photochemical Release of Hydropersulfides. J Org Chem 2022; 87:12644-12652. [PMID: 36084133 DOI: 10.1021/acs.joc.2c01049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hydropersulfides (RSSH) have received significant interest in the field of redox biology because of their intriguing biochemical properties. However, because RSSH are inherently unstable, their study is challenging, and as a result, the details of their physiological roles remain ill-defined. Herein, we report strategies to release RSSH utilizing photoremovable protecting groups. RSSH protection with the well-established p-hydroxyphenacyl (pHP) photoprotecting group resulted in inefficient RSSH photorelease along with complex chemistry. Therefore, an alternative precursor was examined in which a self-immolative linker was inserted between the pHP group and RSSH, providing nearly quantitative RSSH release following photolysis at 365 nm. Inspired by these results, we also synthesized an analogous precursor derivatized with 7-diethylaminocoumarin (DEACM), a visible light-cleavable photoprotecting group. Photolysis of this precursor at 420 nm led to efficient RSSH release, and in vitro experiments demonstrated intracellular RSSH delivery in breast cancer MCF-7 cells.
Collapse
Affiliation(s)
- Sahil C Aggarwal
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Vinayak S Khodade
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Sarah Porche
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Blaze M Pharoah
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - John P Toscano
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
11
|
Schulte AM, Alachouzos G, Szymański W, Feringa BL. Strategy for Engineering High Photolysis Efficiency of Photocleavable Protecting Groups through Cation Stabilization. J Am Chem Soc 2022; 144:12421-12430. [PMID: 35775744 PMCID: PMC9284546 DOI: 10.1021/jacs.2c04262] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Photolabile protecting
groups (PPGs) enable the precise activation
of molecular function with light in many research areas, such as photopharmacology,
where remote spatiotemporal control over the release of a molecule
is needed. The design and application of PPGs in recent years have
particularly focused on the development of molecules with high molar
absorptivity at long irradiation wavelengths. However, a crucial parameter,
which is pivotal to the efficiency of uncaging and which has until
now proven highly challenging to improve, is the photolysis quantum
yield (QY). Here, we describe a novel and general approach to greatly
increase the photolysis QY of heterolytic PPGs through stabilization
of an intermediate chromophore cation. When applied to coumarin PPGs,
our strategy resulted in systems possessing an up to a 35-fold increase
in QY and a convenient fluorescent readout during their uncaging,
all while requiring the same number of synthetic steps for their preparation
as the usual coumarin systems. We demonstrate that the same QY engineering
strategy applies to different photolysis payloads and even different
classes of PPGs. Furthermore, analysis of the DFT-calculated energy
barriers in the first singlet excited state reveals valuable insights
into the important factors that determine photolysis efficiency. The
strategy reported herein will enable the development of efficient
PPGs tailored for many applications.
Collapse
Affiliation(s)
- Albert M Schulte
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Georgios Alachouzos
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Wiktor Szymański
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands.,Department of Radiology, Medical Imaging Center, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Ben L Feringa
- Centre for Systems Chemistry, Stratingh Institute for Chemistry, Faculty for Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
12
|
Kaufmann J, Müller P, Andreadou E, Heckel A. Green-Light Activatable BODIPY and Coumarin 5'-Caps for Oligonucleotide Photocaging. Chemistry 2022; 28:e202200477. [PMID: 35420231 PMCID: PMC9322594 DOI: 10.1002/chem.202200477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Indexed: 12/02/2022]
Abstract
We synthesized two green-light activatable 5'-caps for oligonucleotides based on the BODIPY and coumarin scaffold. Both bear an alkyne functionality allowing their use in numerous biological applications. They were successfully incorporated in oligonucleotides via solid-phase synthesis. Copper-catalyzed alkyne-azide cycloaddition (CuAAC) using a bisazide photo-tether gave cyclic oligonucleotides that could be relinearized by activation with green light and were shown to exhibit high stability against exonucleases. Chemical ligation as another example for bioconjugation yielded oligonucleotides with an internal strand break site. Irradiation at 530 nm or 565 nm resulted in complete photolysis of both caging groups.
Collapse
Affiliation(s)
- Janik Kaufmann
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Patricia Müller
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Eleni Andreadou
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical BiologyGoethe University FrankfurtMax-von-Laue-Str. 760438FrankfurtGermany
| |
Collapse
|
13
|
Klimek R, Asido M, Hermanns V, Junek S, Wachtveitl J, Heckel A. Inactivation of Competitive Decay Channels Leads to Enhanced Coumarin Photochemistry. Chemistry 2022; 28:e202200647. [PMID: 35420716 PMCID: PMC9320935 DOI: 10.1002/chem.202200647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Indexed: 11/30/2022]
Abstract
In the development of photolabile protecting groups, it is of high interest to selectively modify photochemical properties with structural changes as simple as possible. In this work, knowledge of fluorophore optimization was adopted and used to design new coumarin‐ based photocages. Photolysis efficiency was selectively modulated by inactivating competitive decay channels, such as twisted intramolecular charge transfer (TICT) or hydrogen‐bonding, and the photolytic release of the neurotransmitter serotonin was demonstrated. Structural modifications inspired by the fluorophore ATTO 390 led to a significant increase in the uncaging cross section that can be further improved by the simple addition of a double bond. Ultrafast transient absorption spectroscopy gave insights into the underlying solvent‐dependent photophysical dynamics. The chromophores presented here are excellently suited as new photocages in the visible wavelength range due to their simple synthesis and their superior photochemical properties.
Collapse
Affiliation(s)
- Robin Klimek
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Marvin Asido
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Volker Hermanns
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Stephan Junek
- Max Planck Institute for Brain Research Max-von-Laue Str. 4 60438 Frankfurt Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| | - Alexander Heckel
- Institute for Organic Chemistry and Chemical Biology Goethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt Germany
| |
Collapse
|
14
|
Kugele A, Ketter S, Silkenath B, Wittmann V, Joseph B, Drescher M. In situ EPR spectroscopy of a bacterial membrane transporter using an expanded genetic code. Chem Commun (Camb) 2021; 57:12980-12983. [PMID: 34792069 PMCID: PMC8640571 DOI: 10.1039/d1cc04612h] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/03/2021] [Indexed: 12/12/2022]
Abstract
The membrane transporter BtuB is site-directedly spin labelled on the surface of living Escherichia coli via Diels-Alder click chemistry of the genetically encoded amino acid SCO-L-lysine. The previously introduced photoactivatable nitroxide PaNDA prevents off-target labelling, is used for distance measurements, and the temporally shifted activation of the nitroxide allows for advanced experimental setups. This study describes significant evolution of Diels-Alder-mediated spin labelling on cellular surfaces and opens up new vistas for the the study of membrane proteins.
Collapse
Affiliation(s)
- Anandi Kugele
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Sophie Ketter
- Institute of Biophysics, Department of Physics & The Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main, Germany.
| | - Bjarne Silkenath
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Valentin Wittmann
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| | - Benesh Joseph
- Institute of Biophysics, Department of Physics & The Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Str. 1, 60438 Frankfurt/Main, Germany.
| | - Malte Drescher
- Department of Chemistry and Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany.
| |
Collapse
|
15
|
Depmeier H, Hoffmann E, Bornewasser L, Kath‐Schorr S. Strategies for Covalent Labeling of Long RNAs. Chembiochem 2021; 22:2826-2847. [PMID: 34043861 PMCID: PMC8518768 DOI: 10.1002/cbic.202100161] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 05/26/2021] [Indexed: 12/17/2022]
Abstract
The introduction of chemical modifications into long RNA molecules at specific positions for visualization, biophysical investigations, diagnostic and therapeutic applications still remains challenging. In this review, we present recent approaches for covalent internal labeling of long RNAs. Topics included are the assembly of large modified RNAs via enzymatic ligation of short synthetic oligonucleotides and synthetic biology approaches preparing site-specifically modified RNAs via in vitro transcription using an expanded genetic alphabet. Moreover, recent approaches to employ deoxyribozymes (DNAzymes) and ribozymes for RNA labeling and RNA methyltransferase based labeling strategies are presented. We discuss the potentials and limits of the individual methods, their applicability for RNAs with several hundred to thousands of nucleotides in length and indicate future directions in the field.
Collapse
Affiliation(s)
- Hannah Depmeier
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Eva Hoffmann
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | - Lisa Bornewasser
- University of CologneDepartment of ChemistryGreinstr. 450939CologneGermany
| | | |
Collapse
|
16
|
Josa‐Culleré L, Llebaria A. In the Search for Photocages Cleavable with Visible Light: An Overview of Recent Advances and Chemical Strategies. CHEMPHOTOCHEM 2020. [DOI: 10.1002/cptc.202000253] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Laia Josa‐Culleré
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| | - Amadeu Llebaria
- Laboratory of Medicinal Chemistry Institute for Advanced Chemistry of Catalonia (IQAC-CSIC) Jordi Girona 18–26 08034 Barcelona Spain
| |
Collapse
|
17
|
Ma J, Ripp A, Wassy D, Dürr T, Qiu D, Häner M, Haas T, Popp C, Bezold D, Richert S, Esser B, Jessen HJ. Thiocoumarin Caged Nucleotides: Synthetic Access and Their Photophysical Properties. Molecules 2020; 25:E5325. [PMID: 33203096 PMCID: PMC7696096 DOI: 10.3390/molecules25225325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/07/2020] [Accepted: 11/13/2020] [Indexed: 11/21/2022] Open
Abstract
Photocages have been successfully applied in cellular signaling studies for the controlled release of metabolites with high spatio-temporal resolution. Commonly, coumarin photocages are activated by UV light and the quantum yields of uncaging are relatively low, which can limit their applications in vivo. Here, syntheses, the determination of the photophysical properties, and quantum chemical calculations of 7-diethylamino-4-hydroxymethyl-thiocoumarin (thio-DEACM) and caged adenine nucleotides are reported and compared to the widely used 7-diethylamino-4-hydroxymethyl-coumarin (DEACM) caging group. In this comparison, thio-DEACM stands out as a phosphate cage with improved photophysical properties, such as red-shifted absorption and significantly faster photolysis kinetics.
Collapse
Affiliation(s)
- Jiahui Ma
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Alexander Ripp
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Daniel Wassy
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Tobias Dürr
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Danye Qiu
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Markus Häner
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Thomas Haas
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Christoph Popp
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Dominik Bezold
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
| | - Sabine Richert
- Institute of Physical Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany;
| | - Birgit Esser
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| | - Henning J. Jessen
- Institute of Organic Chemistry, University of Freiburg, Albertstr. 21, 79104 Freiburg, Germany; (J.M.); (A.R.); (D.W.); (T.D.); (D.Q.); (M.H.); (T.H.); (C.P.); (D.B.); (B.E.)
- Cluster of Excellence livMatS @ FIT—Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
18
|
Photoactivatable trimethoprim-based probes for spatiotemporal control of biological processes. Methods Enzymol 2020; 638:273-294. [PMID: 32416918 DOI: 10.1016/bs.mie.2020.03.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Optogenetic tools allow regulation of cellular processes with light, which can be delivered with spatiotemporal resolution. By combining the chemical versatility of photoremovable protecting groups with the biological specificity of self-labeling tags, we developed a series of chemi-optogenetic tools that enable protein recruitment with precise spatiotemporal control. To this end, we created a modular platform for chemically inducible proximity (CIP), a technique in which two proteins of interest are brought together by the presence of a small molecule to induce a biological effect. The local proximity of a protein and its substrate has been shown to be sufficient to initiate a desired biological effect, making CIP a valuable technique towards probing cellular processes. The high affinity and specificity of these tags result in rapid initiation of dimerization, allowing biochemical processes to be studied on a biologically relevant timescale. In this chapter, we describe the synthesis and application of chemi-optogenetic probes for spatiotemporal control of protein proximity.
Collapse
|
19
|
Hardwick JS, Haugland MM, El-Sagheer AH, Ptchelkine D, Beierlein FR, Lane AN, Brown T, Lovett JE, Anderson EA. 2'-Alkynyl spin-labelling is a minimally perturbing tool for DNA structural analysis. Nucleic Acids Res 2020; 48:2830-2840. [PMID: 32052020 PMCID: PMC7102949 DOI: 10.1093/nar/gkaa086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 01/28/2020] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
The determination of distances between specific points in nucleic acids is essential to understanding their behaviour at the molecular level. The ability to measure distances of 2-10 nm is particularly important: deformations arising from protein binding commonly fall within this range, but the reliable measurement of such distances for a conformational ensemble remains a significant challenge. Using several techniques, we show that electron paramagnetic resonance (EPR) spectroscopy of oligonucleotides spin-labelled with triazole-appended nitroxides at the 2' position offers a robust and minimally perturbing tool for obtaining such measurements. For two nitroxides, we present results from EPR spectroscopy, X-ray crystal structures of B-form spin-labelled DNA duplexes, molecular dynamics simulations and nuclear magnetic resonance spectroscopy. These four methods are mutually supportive, and pinpoint the locations of the spin labels on the duplexes. In doing so, this work establishes 2'-alkynyl nitroxide spin-labelling as a minimally perturbing method for probing DNA conformation.
Collapse
Affiliation(s)
- Jack S Hardwick
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Marius M Haugland
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Afaf H El-Sagheer
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
- Chemistry Branch, Department of Science and Mathematics, Faculty of Petroleum and Mining Engineering, Suez University, Suez 43721, Egypt
| | - Denis Ptchelkine
- Weatherall Institute of Molecular Medicine, Department of Oncology, University of Oxford, John Radcliffe Hospital, Headley Way, Oxford OX3 9DS, UK
- Research Complex at Harwell, Rutherford Appleton Laboratory, Didcot, OX11 0FA, UK
| | - Frank R Beierlein
- Computer-Chemistry-Center and Interdisciplinary Center for Molecular Materials, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Nägelsbachstrasse 25, 91052 Erlangen, Germany
| | - Andrew N Lane
- Center for Environmental and Systems Biochemistry and Department of Toxicology & Cancer Biology, The University of Kentucky, 789 S. Limestone St., Lexington, KY 40536, USA
| | - Tom Brown
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Janet E Lovett
- SUPA School of Physics and Astronomy and BSRC, University of St Andrews, North Haugh, St Andrews KY16 9SS, UK
| | - Edward A Anderson
- Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| |
Collapse
|
20
|
Tang S, Cannon J, Yang K, Krummel MF, Baker JR, Choi SK. Spacer-Mediated Control of Coumarin Uncaging for Photocaged Thymidine. J Org Chem 2020; 85:2945-2955. [PMID: 32020803 PMCID: PMC7293860 DOI: 10.1021/acs.joc.9b02617] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Despite its importance in the design of photocaged molecules, less attention is focused on linker chemistry than the cage itself. Here, we describe unique uncaging properties displayed by two coumarin-caged thymidine compounds, each conjugated with (2) or without (1) an extended, self-immolative spacer. Photolysis of 1 using long-wavelength UVA (365 nm) or visible (420, 455 nm) light led to the release of free thymidine along with the competitive generation of a thymidine-bearing recombination product. The occurrence of this undesired side reaction, which is previously unreported, was not present with the photolysis of 2, which released thymidine exclusively with higher quantum efficiency. We propose that the spatial separation between the cage and the substrate molecule conferred by the extended linker can play a critical role in circumventing this unproductive reaction. This report reinforces the importance of linker selection in the design of coumarin-caged oligonucleosides and other conjugates.
Collapse
Affiliation(s)
- Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Kelly Yang
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Matthew F. Krummel
- Department of Pathology, University of California, San Francisco, 513 Parnassus Ave, HSW512, San Francisco, California 94143, United States of America
| | - James R. Baker
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, Ann Arbor, Michigan 48109, United States of America
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan 48109, United States of America
| |
Collapse
|
21
|
Juliusson HY, Sigurdsson ST. Reduction Resistant and Rigid Nitroxide Spin-Labels for DNA and RNA. J Org Chem 2020; 85:4036-4046. [PMID: 32103670 DOI: 10.1021/acs.joc.9b02988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Electron paramagnetic resonance (EPR) spectroscopy, coupled with site-directed spin labeling (SDSL), is a useful method for studying conformational changes of biomolecules in cells. To employ in-cell EPR using nitroxide-based spin labels, the structure of the nitroxides must confer reduction resistance to withstand the reductive environment within cells. Here, we report the synthesis of two new spin labels, EÇ and EÇm, both of which possess the rigidity and the reduction resistance needed for extracting detailed structural information by EPR spectroscopy. EÇ and EÇm were incorporated into DNA and RNA, respectively, by oligonucleotide synthesis. Both labels were shown to be nonperturbing of the duplex structure. The partial reduction of EÇm during RNA synthesis was circumvented by the protection of the nitroxide as a benzoylated hydroxylamine.
Collapse
Affiliation(s)
- Haraldur Y Juliusson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| | - Snorri Th Sigurdsson
- Department of Chemistry, Science Institute, University of Iceland, Dunhaga 3, 107 Reykjavik, Iceland
| |
Collapse
|
22
|
Wagner N, Schuhmacher M, Lohmann A, Nadler A. A Coumarin Triflate Reagent Enables One-Step Synthesis of Photo-Caged Lipid Metabolites for Studying Cell Signaling. Chemistry 2019; 25:15483-15487. [PMID: 31461184 PMCID: PMC6916161 DOI: 10.1002/chem.201903909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Indexed: 12/31/2022]
Abstract
Photorelease of caged compounds is among the most powerful experimental approaches for studying cellular functions on fast timescales. However, its full potential has yet to be exploited, as the number of caged small molecules available for cell biological studies has been limited by synthetic challenges. Addressing this problem, a straightforward, one-step procedure for efficiently synthesizing caged compounds was developed. An in situ generated benzylic coumarin triflate reagent was used to specifically functionalize carboxylate and phosphate moieties in the presence of free hydroxy groups, generating various caged lipid metabolites, including a number of GPCR ligands. By combining the photo-caged ligands with the respective receptors, an easily implementable experimental platform for the optical control and analysis of GPCR-mediated signal transduction in living cells was developed. Ultimately, the described synthetic strategy allows rapid generation of photo-caged small molecules and thus greatly facilitates the analysis of their biological roles in live cell microscopy assays.
Collapse
Affiliation(s)
- Nicolai Wagner
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
| | - Milena Schuhmacher
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
| | - Annett Lohmann
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
| | - André Nadler
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstraße 10801307DresdenGermany
| |
Collapse
|
23
|
Bojtár M, Kormos A, Kis-Petik K, Kellermayer M, Kele P. Green-Light Activatable, Water-Soluble Red-Shifted Coumarin Photocages. Org Lett 2019; 21:9410-9414. [PMID: 31714093 DOI: 10.1021/acs.orglett.9b03624] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Easily accessible green-light activatable (>500 nm) photocages based on red-shifted, π-extended coumarin scaffolds are developed with uncaging efficiencies similar to those of recently introduced BODIPY derivatives. The photocages possess increased aqueous solubility, high absorption coefficients within the 450-600 nm range, and exceptionally high two-photon cross sections.
Collapse
Affiliation(s)
- Márton Bojtár
- Chemical Biology Research Group, Institute of Organic Chemistry , Research Centre for Natural Sciences , H-1117 Magyar tudósok krt 2 , Budapest , Hungary
| | - Attila Kormos
- Chemical Biology Research Group, Institute of Organic Chemistry , Research Centre for Natural Sciences , H-1117 Magyar tudósok krt 2 , Budapest , Hungary
| | - Katalin Kis-Petik
- Faculty of Medicine, Department of Biophysics and Radiation Biology , Semmelweis University , H-1094 Tűzoltó u. 37-47 , Budapest , Hungary
| | - Miklós Kellermayer
- Faculty of Medicine, Department of Biophysics and Radiation Biology , Semmelweis University , H-1094 Tűzoltó u. 37-47 , Budapest , Hungary
| | - Péter Kele
- Chemical Biology Research Group, Institute of Organic Chemistry , Research Centre for Natural Sciences , H-1117 Magyar tudósok krt 2 , Budapest , Hungary
| |
Collapse
|
24
|
Kugele A, Silkenath B, Langer J, Wittmann V, Drescher M. Protein Spin Labeling with a Photocaged Nitroxide Using Diels-Alder Chemistry. Chembiochem 2019; 20:2479-2484. [PMID: 31090999 PMCID: PMC6790680 DOI: 10.1002/cbic.201900318] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Indexed: 12/31/2022]
Abstract
EPR spectroscopy of diamagnetic bio-macromolecules is based on site-directed spin labeling (SDSL). Herein, a novel labeling strategy for proteins is presented. A nitroxide-based spin label has been developed and synthesized that can be ligated to proteins by an inverse-electron-demand Diels-Alder (DAinv ) cycloaddition to genetically encoded noncanonical amino acids. The nitroxide moiety is shielded by a photoremovable protecting group with an attached tetra(ethylene glycol) unit to achieve water solubility. SDSL is demonstrated on two model proteins with the photoactivatable nitroxide for DAinv reaction (PaNDA) label. The strategy features high reaction rates, combined with high selectivity, and the possibility to deprotect the nitroxide in Escherichia coli lysate.
Collapse
Affiliation(s)
- Anandi Kugele
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Bjarne Silkenath
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Jakob Langer
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Valentin Wittmann
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| | - Malte Drescher
- Department of Chemistry andKonstanz Research School Chemical Biology (KoRS-CB)University of KonstanzUniversitätsstrasse 1078457KonstanzGermany
| |
Collapse
|
25
|
Erlenbach N, Grünewald C, Krstic B, Heckel A, Prisner TF. "End-to-end" stacking of small dsRNA. RNA (NEW YORK, N.Y.) 2019; 25:239-246. [PMID: 30404925 PMCID: PMC6348986 DOI: 10.1261/rna.068130.118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/06/2018] [Indexed: 05/08/2023]
Abstract
PELDOR (pulsed electron-electron double resonance) is an established method to study intramolecular distances and can give evidence for conformational changes and flexibilities. However, it can also be used to study intermolecular interactions as for example oligerimization. Here, we used PELDOR to study the "end-to-end" stacking of small double-stranded (ds) RNAs. For this study, the dsRNA molecules were only singly labeled with the spin label TPA to avoid multispin effects and to measure only the intermolecular stacking interactions. It can be shown that small dsRNAs tend to assemble to rod-like structures due to π-π interactions between the base pairs at the end of the strands. On the one hand, these interactions can influence or complicate measurements aimed at the determining of the structure and dynamics of the dsRNA molecule itself. On the other hand, it can be interesting to study such intermolecular stacking interactions in more detail, as for example their dependence on ion concentration. We quantitatively determined the stacking probability as a function of the monovalent NaCl salt and the dsRNA concentration. From these data, the dissociation constant Kd was deduced and found to depend on the ratio between the NaCl salt and dsRNA concentrations. Additionally, the distances and distance distributions obtained predict a model for the stacking geometry of dsRNAs. Introducing a nucleotide overhangs at one end of the dsRNA molecule restricts the stacking to the other end, leading only to dimer formations. Introducing such an overhang at both ends of the dsRNA molecule fully suppresses stacking, as we demonstrate by PELDOR experiments quantitatively.
Collapse
Affiliation(s)
- Nicole Erlenbach
- Institute of Physical and Theoretical Chemistry, Center of Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt am Main, Germany
| | - Christian Grünewald
- Institute of Organic Chemistry and Chemical Biology, Goethe University, D-60438 Frankfurt am Main, Germany
| | - Bisera Krstic
- Institute of Physical and Theoretical Chemistry, Center of Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt am Main, Germany
| | - Alexander Heckel
- Institute of Organic Chemistry and Chemical Biology, Goethe University, D-60438 Frankfurt am Main, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry, Center of Biomolecular Magnetic Resonance, Goethe University, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
26
|
Hatano A, Terado N, Kanno Y, Nakamura T, Kawai G. Synthesis of a protected ribonucleoside phosphoramidite-linked spin label via an alkynyl chain at the 5′ position of uridine. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2018.1545033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Akihiko Hatano
- Department of Chemistry, Faculty of Engineering , Shibaura Institute of Technology , Saitama , Japan
| | - Nanae Terado
- Department of Chemistry, Faculty of Engineering , Shibaura Institute of Technology , Saitama , Japan
| | - Yuichi Kanno
- Department of Chemistry, Faculty of Engineering , Shibaura Institute of Technology , Saitama , Japan
| | - Toshikazu Nakamura
- Department of Materials Molecular Science, Institute for Molecular Science , Okazaki , Japan
| | - Gota Kawai
- Department of Life and Environmental Sciences, Faculty of Engineering, Chiba Institute of Technology , Chiba , Japan
| |
Collapse
|
27
|
Baleeva NS, Zaitseva SO, Mineev KS, Khavroshechkina AV, Zagudaylova MB, Baranov MS. Enamine–azide [2+3]-cycloaddition as a method to introduce functional groups into fluorescent dyes. Tetrahedron Lett 2019. [DOI: 10.1016/j.tetlet.2019.01.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Elamri I, Heumüller M, Herzig L, Stirnal E, Wachtveitl J, Schuman EM, Schwalbe H. A New Photocaged Puromycin for an Efficient Labeling of Newly Translated Proteins in Living Neurons. Chembiochem 2018; 19:2458-2464. [DOI: 10.1002/cbic.201800408] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/11/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Isam Elamri
- Center for Biomolecular Magnetic ResonanceInstitute of Organic Chemistry and Chemical BiologyGoethe-University Frankfurt am Main Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Maximilian Heumüller
- Department of Synaptic Plasticity, MPI for Brain ResearchGoethe-University Frankfurt am Main Max-von-Laue-Strasse 4 60438 Frankfurt am Mail Germany
| | - Lisa‐M. Herzig
- Institute of Physical and Theoretical ChemistryGoethe-University Frankfurt am Main Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Elke Stirnal
- Center for Biomolecular Magnetic ResonanceInstitute of Organic Chemistry and Chemical BiologyGoethe-University Frankfurt am Main Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical ChemistryGoethe-University Frankfurt am Main Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| | - Erin M. Schuman
- Department of Synaptic Plasticity, MPI for Brain ResearchGoethe-University Frankfurt am Main Max-von-Laue-Strasse 4 60438 Frankfurt am Mail Germany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic ResonanceInstitute of Organic Chemistry and Chemical BiologyGoethe-University Frankfurt am Main Max-von-Laue-Strasse 7 60438 Frankfurt am Main Germany
| |
Collapse
|
29
|
Weinrich T, Jaumann EA, Scheffer UM, Prisner TF, Göbel MW. Phosphoramidite building blocks with protected nitroxides for the synthesis of spin-labeled DNA and RNA. Beilstein J Org Chem 2018; 14:1563-1569. [PMID: 30013683 PMCID: PMC6036967 DOI: 10.3762/bjoc.14.133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/14/2018] [Indexed: 12/23/2022] Open
Abstract
TEMPO spin labels protected with 2-nitrobenzyloxymethyl groups were attached to the amino residues of three different nucleosides: deoxycytidine, deoxyadenosine, and adenosine. The corresponding phosphoramidites could be incorporated by unmodified standard procedures into four different self-complementary DNA and two RNA oligonucleotides. After photochemical removal of the protective group, elimination of formic aldehyde and spontaneous air oxidation, the nitroxide radicals were regenerated in high yield. The resulting spin-labeled palindromic duplexes could be directly investigated by PELDOR spectroscopy without further purification steps. Spin–spin distances measured by PELDOR correspond well to the values obtained from molecular models.
Collapse
Affiliation(s)
- Timo Weinrich
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Eva A Jaumann
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Ute M Scheffer
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Thomas F Prisner
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| | - Michael W Göbel
- Institute of Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Str. 7, D-60438 Frankfurt am Main, Germany
| |
Collapse
|
30
|
Weinrich T, Jaumann EA, Scheffer U, Prisner TF, Göbel MW. A Cytidine Phosphoramidite with Protected Nitroxide Spin Label: Synthesis of a Full-Length TAR RNA and Investigation by In-Line Probing and EPR Spectroscopy. Chemistry 2018; 24:6202-6207. [PMID: 29485736 DOI: 10.1002/chem.201800167] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/23/2018] [Indexed: 01/20/2023]
Abstract
EPR studies on RNA are complicated by three major obstacles related to the chemical nature of nitroxide spin labels: Decomposition while oligonucleotides are chemically synthesized, further decay during enzymatic strand ligation, and undetected changes in conformational equilibria due to the steric demand of the label. Herein possible solutions for all three problems are presented: A 2-nitrobenzyloxymethyl protective group for nitroxides that is stable under all conditions of chemical RNA synthesis and can be removed photochemically. By careful selection of ligation sites and splint oligonucleotides, high yields were achieved in the assembly of a full-length HIV-1 TAR RNA labeled with two protected nitroxide groups. PELDOR measurements on spin-labeled TAR in the absence and presence of arginine amide indicated arrest of interhelical motions on ligand binding. Finally, even minor changes in conformation due to the presence of spin labels are detected with high sensitivity by in-line probing.
Collapse
Affiliation(s)
- Timo Weinrich
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Eva A Jaumann
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Ute Scheffer
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Thomas F Prisner
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| | - Michael W Göbel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Strasse 7, 60438, Frankfurt am Main, Germany
| |
Collapse
|
31
|
Petunin PV, Martynko EA, Trusova ME, Kazantsev MS, Rybalova TV, Valiev RR, Uvarov MN, Mostovich EA, Postnikov PS. Verdazyl Radical Building Blocks: Synthesis, Structure, and Sonogashira Cross-Coupling Reactions. European J Org Chem 2018. [DOI: 10.1002/ejoc.201701783] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Pavel V. Petunin
- Tomsk Polytechnic University; 634050 Tomsk Russia
- Novosibirsk State University; 630090 Novosibirsk Russia
| | | | | | - Maxim S. Kazantsev
- Novosibirsk State University; 630090 Novosibirsk Russia
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch; Russian Academy of Sciences; 630090 Novosibirsk Russia
| | - Tatyana V. Rybalova
- Novosibirsk State University; 630090 Novosibirsk Russia
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch; Russian Academy of Sciences; 630090 Novosibirsk Russia
| | - Rashid R. Valiev
- Tomsk Polytechnic University; 634050 Tomsk Russia
- Tomsk State University; 634050 Tomsk Russia
| | - Mikhail N. Uvarov
- V. V. Voevodsky Institute of Chemical Kinetics and Combustion, Siberian Branch; Russian Academy of Sciences; 630090 Novosibirsk Russian Federation
| | - Evgeny. A. Mostovich
- Novosibirsk State University; 630090 Novosibirsk Russia
- N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian Branch; Russian Academy of Sciences; 630090 Novosibirsk Russia
| | | |
Collapse
|
32
|
van Wilderen LJGW, Neumann C, Rodrigues-Correia A, Kern-Michler D, Mielke N, Reinfelds M, Heckel A, Bredenbeck J. Picosecond activation of the DEACM photocage unravelled by VIS-pump-IR-probe spectroscopy. Phys Chem Chem Phys 2018; 19:6487-6496. [PMID: 28197598 DOI: 10.1039/c6cp07022a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The light-induced ultrafast uncaging process of the [7-(diethylamino)coumarin-4-yl]methyl (DEACM) cage is measured by time-resolved visible-pump-infrared-probe spectroscopy, and supported by steady-state absorption spectroscopy in the visible and infrared spectral regions. Understanding the uncaging process is important because its favorable properties make DEACM an interesting case for chemical and biological applications. It has a convenient absorption in the visible spectral range, and is relatively easily modified to carry leaving groups (LGs) such as nucleotides, substrates or inhibitors, which are inactive when bound and active when released. Previous work suggested a lower limit for the uncaging rate, which places it among the fastest available cages. Here, we determine the photodissociation directly to occur on the picosecond time scale by monitoring the appearance of the released LG in the infrared spectral region. In the present study, azide (N3) is chosen as an LG to monitor photodissociation because its vibrational mode is spectrally isolated (hence easy to follow) and its absorption wavenumber is sensitive to local structural rearrangements. The uncaging process is recorded up to 3 nanoseconds and compared to the collected steady-state spectra. The free LG appears on a picosecond time scale, rendering this one of the fastest known cages. No evidence is found for a tight-ion pair (TIP) preceding the free LG. The uncaging mechanism is found to be slowed down upon the addition of water to acetonitrile.
Collapse
Affiliation(s)
- L J G W van Wilderen
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, Frankfurt am Main, 60438, Germany.
| | - C Neumann
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, Frankfurt am Main, 60438, Germany.
| | - A Rodrigues-Correia
- Johann Wolfgang Goethe-University, Institute of Organic Chemistry and Chemical Biology, Max-von-Laue-Str. 7, Frankfurt am Main, 60438, Germany
| | - D Kern-Michler
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, Frankfurt am Main, 60438, Germany.
| | - N Mielke
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, Frankfurt am Main, 60438, Germany.
| | - M Reinfelds
- Johann Wolfgang Goethe-University, Institute of Organic Chemistry and Chemical Biology, Max-von-Laue-Str. 7, Frankfurt am Main, 60438, Germany
| | - A Heckel
- Johann Wolfgang Goethe-University, Institute of Organic Chemistry and Chemical Biology, Max-von-Laue-Str. 7, Frankfurt am Main, 60438, Germany
| | - J Bredenbeck
- Johann Wolfgang Goethe-University, Institute of Biophysics, Max-von-Laue-Str. 1, Frankfurt am Main, 60438, Germany.
| |
Collapse
|
33
|
Weyel XMM, Fichte MAH, Heckel A. A Two-Photon-Photocleavable Linker for Triggering Light-Induced Strand Breaks in Oligonucleotides. ACS Chem Biol 2017; 12:2183-2190. [PMID: 28678467 DOI: 10.1021/acschembio.7b00367] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We synthesized a two-photon-sensitive photocleavable linker based on the 7-diethylaminocoumarin structure and introduced it successfully into DNA strands. First, we demonstrated the inducibility of strand scissions upon irradiation at 365 nm. To verify and visualize the two-photon activity, we used a fluorescence assay based on a DNA strand displacement immobilized in a hydrogel. Additionally, we investigated its use in a new class of DNA decoys that are able to catch and release nuclear factor κB (NF-κB) by using light as an external trigger signal. In cell culture we were able to show the regulation of NF-κB-controlled transcription of green fluorescent protein.
Collapse
Affiliation(s)
- Xenia M M Weyel
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Manuela A H Fichte
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| | - Alexander Heckel
- Institute of Organic Chemistry and Chemical Biology, Goethe-University Frankfurt , Max-von-Laue-Straße 9, 60438 Frankfurt am Main, Germany
| |
Collapse
|
34
|
Herzig LM, Elamri I, Schwalbe H, Wachtveitl J. Light-induced antibiotic release from a coumarin-caged compound on the ultrafast timescale. Phys Chem Chem Phys 2017; 19:14835-14844. [DOI: 10.1039/c7cp02030a] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A photocaged puromycin derivative, DEACM-puromycin, was synthesized and characterized. The successful restoration of the antibiotic activity was demonstrated in insect cells.
Collapse
Affiliation(s)
- L.-M. Herzig
- Institute of Physical and Theoretical Chemistry
- Goethe University Frankfurt
- 60438 Frankfurt/Main
- Germany
| | - I. Elamri
- Institute of Organic Chemistry and Chemical Biology
- Center for Biomolecular Magnetic Resonance (BMRZ)
- Goethe University Frankfurt
- 60438 Frankfurt/Main
- Germany
| | - H. Schwalbe
- Institute of Organic Chemistry and Chemical Biology
- Center for Biomolecular Magnetic Resonance (BMRZ)
- Goethe University Frankfurt
- 60438 Frankfurt/Main
- Germany
| | - J. Wachtveitl
- Institute of Physical and Theoretical Chemistry
- Goethe University Frankfurt
- 60438 Frankfurt/Main
- Germany
| |
Collapse
|