1
|
Zarzosa V, Neri-Castro E, Lomonte B, Fernández J, Rodríguez-Barrera G, Rodríguez-López B, Rodríguez-Solís AM, Olvera-Rodríguez A, Bénard-Valle M, Saviola A, García-Vázquez UO, Fernández-Badillo L, Morales-Capellán N, Borja M, Zamudio F, Alagón A. Integrative transcriptomic, proteomic, biochemical and neutralization studies on the venom of Micrurus ephippifer. J Proteomics 2025; 316:105416. [PMID: 40023277 DOI: 10.1016/j.jprot.2025.105416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/04/2025]
Abstract
Species of the genus Micrurus belong to the family Elapidae and possess venoms of significant clinical importance. This study presents an analysis of the venom composition of Micrurus ephippifer, employing transcriptomic and proteomic methodologies. A total of 2885 venom gland transcripts were assembled, of which 42 were identified as toxins. Transcripts for three-finger toxins (3FTx) were the most abundant (80.7 %), followed by PLA2 transcripts (16.3 %). Tryptic peptide sequences obtained through bottom-up shotgun MS/MS venom analysis were assigned to 46 distinct proteins in the SwissProt/UniProt database, of which 23 belong to the 3FTx family. Peptide spectral matching against the venom gland transcriptome database identified 24 proteins, 12 of which correspond to 3FTx, and three belong to PLA2. Venom decomplexation by RP-HPLC followed by N-terminal amino acid sequencing of fractions allowed an estimation of the relative abundance of protein families, indicating that 3FTx comprise over 50 % of the venom. The identified toxic fractions displayed distinct lethality profiles in mice, with certain combinations exhibiting enhanced toxicity, very similar to what has been reported with Brownitoxin-I, with only the PLA2 sequence showing similarity. Our results emphasize the importance of integrating transcriptomic and proteomic approaches to understand venom diversity and its implications for antivenom development. SIGNIFICANCE: Mexico ranks first in the Americas in snake venom diversity. Paradoxically, very little is known about the composition of coral snake venoms, and Micrurus ephippifer is a clear example of this gap, as nothing was known about its venom composition. This type of study provides valuable information that helps fill these knowledge gaps. This study presents the second report of coral snake venoms containing a complex of phospholipase A2 and a three-finger toxin, offering important data that, with further research, will contribute to understanding venom evolution and evaluating the efficacy of antivenoms.
Collapse
Affiliation(s)
- Vanessa Zarzosa
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Edgar Neri-Castro
- Investigador por México, Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo, Mexico.
| | - Bruno Lomonte
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Facultad de Microbiología, Universidad de Costa Rica, San José 11501, Costa Rica
| | - Gibrán Rodríguez-Barrera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Bruno Rodríguez-López
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo, Mexico
| | - Audrey Michelle Rodríguez-Solís
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alejandro Olvera-Rodríguez
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Melisa Bénard-Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads DK-2800, Kongens Lyngby. Denmark
| | - Anthony Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, CO, USA
| | - Uri O García-Vázquez
- Laboratorio de Sistemática Molecular, Carrera de Biología, UMIEZ, Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Batalla 5 de Mayo s/n, Ejército de Oriente, Ciudad de México 09230, Mexico
| | - Leonardo Fernández-Badillo
- Laboratorio de interacciones biológicas, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Km 4.5 carretera Pachuca-Tulancingo, s/n, Mineral de la Reforma, Hidalgo, Mexico
| | - Nallely Morales-Capellán
- Instalación de Vida Silvestre, X-Plora Reptilia, Km 65 carretera Pachuca-Huejutla, Localidad Pilas y Granadas, Metztitlán, Hidalgo, México
| | - Miguel Borja
- Facultad de Ciencias Biológicas, Universidad Juárez del Estado de Durango, Av. Universidad s/n. Fracc. Filadelfia, C.P. 35010, Gómez Palacio, Dgo, Mexico
| | - Fernando Zamudio
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| |
Collapse
|
2
|
Choudhury B, Singh YR, Khaire KC, Ahmed N, Sharma K, Fontes CMGA, Goyal A. Cellulosomal endo-1,4-β-D-xylanase (AcXyn30B_12) from Acetivibrio clariflavus acts synergistically with xylobiohydrolase (AcGH30A) upon the hydrolysis of complex carbohydrates. Int J Biol Macromol 2025; 306:141620. [PMID: 40049474 DOI: 10.1016/j.ijbiomac.2025.141620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/17/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
AcGH30A and AcXyn30B_12 are two of the most abundant enzymes in the cellulosome of the thermophilic anaerobe Acetivibrio clariflavus. Their surprising abundance within the glycolytic repertoire of this highly efficient microorganism, active in sewage sludge ecosystems, suggests a cooperative role in the hydrolysis of complex carbohydrates. Here, we cloned, expressed and characterized the endo-β-1,4-xylanase AcXyn30B_12, which has a molecular weight of ~74 kDa and displays optimal activity at pH 5.5 and 70 °C. AcXyn30B_12 exhibited broad substrate specificity, with the highest catalytic efficiency against partially acetylated birchwood xylan (PABX), yielding a Vmax of 133.3 U/mg and a Km of 0.9 mg/mL. AcXyn30B_12 activity was enhanced by Ca2+ (10 %) and Mg2+ (7.3 %) ions. The enzyme also showed notable thermostability and pH tolerance, maintaining activity up to 60 °C and within a pH range of 4.5-8.0. Time-course hydrolysis experiments revealed the ability of AcXyn30B_12 to release a variety of xylo-oligosaccharides (from xylopentaose to xylobiose) and xylose from PABX, confirming both its endo and exo-acting mechanisms. Additionally, AcXyn30B_12 effectively degraded lignocellulosic biomass, releasing significant amounts of xylo-oligosaccharides and xylose from complex substrates. In contrast, AcGH30A, previously characterized as an exo-xylobiohydrolase, removes xylobiose from non-reducing ends of xylan and xylo-oligosaccharides. Our experiments demonstrate the synergistic action of AcGH30A and AcXyn30B_12 in complex carbohydrate hydrolysis, with AcXyn30B_12 generating the non-reducing ends that serve as substrates for AcGH30A. This enzyme synergy underscores the potential industrial applications of these enzymes in high-temperature processes, including prebiotic production, bioethanol generation and the paper and pulp industries.
Collapse
Affiliation(s)
- Bipasha Choudhury
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India
| | - Yumnam Robinson Singh
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India
| | - Kaustubh Chandrakant Khaire
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Nazneen Ahmed
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India
| | - Kedar Sharma
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India
| | - Carlos M G A Fontes
- NZYTech-Genes & Enzymes, Estrada do Paço do Lumiar, Campus do Lumiar, Edifício E - R/C, 1649-038 Lisbon, Portugal; CIISA-Faculdade de MedicinaVeterinária, Universidade de Lisboa, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
| | - Arun Goyal
- Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, India; School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| |
Collapse
|
3
|
Yu Z, Cao Y, Wang L, Tian Y, Zou R, Chen K, Liu W, Zhang Q, Wang Q, Zhang B, Cao C. A Facile Method for Gel Electrophoresis with Intrinsic Fluorescence Imaging for Self-Aggregation and Stability Assay of Monoclonal Antibody. Anal Chem 2025; 97:7388-7399. [PMID: 40116864 DOI: 10.1021/acs.analchem.5c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Monoclonal antibodies (mAbs) are widely used in tumor and autoimmune disease therapy and clinical diagnosis, but they suffer from self-aggregation, particularly dimer formation, impacting their stability, efficacy, and potentially causing severe allergies. Traditional methods for detecting mAb dimers, such as TEM, AUC, DLS, SEC, and CE, are limited by low throughput, high costs, and qualitative data, making them unsuitable for large-scale sample assays in biopharmaceuticals industry as well as antibody research. To address these issues, we developed a facile method of protein cross-linking gel electrophoresis with online intrinsic fluorescence imaging (PC-GE-IFI) for self-aggregation and stability assays of mAbs. This method enables the real-time quantification of monoclonal antibody (mAb) monomers and dimers with exceptional sensitivity, characterized by low detection limits (monomer: 0.9 nM; dimer: 0.45 nM) and a broad dynamic range (monomer: 2.50-2500 nM; dimer: 1.25-1250 nM). Furthermore, the sample wells can be used as windows for the assay of precipitates formed by mAb aggregation. The method supports accurate assessment of mAb dimerization and monomer purity under various stress conditions, including thermal stress, mechanical agitation, and freeze-thaw cycles. Moreover, the method allows concurrent analysis of dimers and precipitates across multiple samples at different concentrations, while nonlinear fitting provides the dissociation constant (Kd) for monomer-dimer interactions, a critical parameter that aids in assessing aggregation propensity, and informs the design and development of mAb products The PC-GE-IFI method has great potential for development, quality control, and safety assessment of mAbs, bispecific antibodies, ADCs, and protein drugs.
Collapse
Affiliation(s)
- Zixian Yu
- School of Sensing Science and Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lei Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Youli Tian
- School of Sensing Science and Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Rui Zou
- School of Sensing Science and Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Keer Chen
- School of Sensing Science and Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qingjiang Wang
- School of Chemistry and Chemical Engineering, East China Normal University, Shanghai 200240, China
| | - Baohong Zhang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electric Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
De Pascale S, Garro G, Pellicano SI, Scaloni A, Carpino S, Caira S, Addeo F. Integrated Gel Electrophoresis and Mass Spectrometry Approach for Detecting and Quantifying Extraneous Milk in Protected Designation of Origin Buffalo Mozzarella Cheese. Foods 2025; 14:1193. [PMID: 40238338 PMCID: PMC11988604 DOI: 10.3390/foods14071193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 03/24/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Ensuring the authenticity of Mozzarella di Bufala Campana (MdBC), a Protected Designation of Origin (PDO) cheese, is essential for regulatory enforcement and consumer protection. This study evaluates a multi-technology analytical platform developed to detect adulteration due to the addition of non-buffalo milk or non-PDO buffalo milk in PDO dairy buffalo products. Peripheral laboratories use gel electrophoresis combined with polyclonal antipeptide antibodies for initial screening, enabling the detection of foreign caseins, including those originating outside the PDO-designated regions. For more precise identification, Matrix-Assisted Laser Desorption Ionization Time of Flight Mass Spectrometry (MALDI-TOF-MS) differentiates species by detecting proteotypic peptides. In cases requiring confirmation, nano-liquid chromatography coupled to electrospray tandem mass spectrometry (nano-LC-ESI-MS/MS) is used in central state laboratories for the highly sensitive detection of extraneous milk proteins in PDO buffalo MdBC cheese. On the other hand, analysis of the pH 4.6 soluble fraction from buffalo blue cheese identified 2828 buffalo-derived peptides and several bovine specific peptides, confirming milk adulteration. Despite a lower detection extent in the pH 4.6 insoluble fraction following tryptic hydrolysis, the presence of bovine peptides was still sufficient to verify fraud. This integrated proteomic approach, which combines electrophoresis and mass spectrometry technologies, significantly improves milk adulteration detection, providing a robust tool to face increasingly sophisticated fraudulent practices.
Collapse
Affiliation(s)
- Sabrina De Pascale
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy; (S.D.P.); (A.S.)
| | - Giuseppina Garro
- Department of Agriculture, University of Naples “Federico II”, 80055 Portici, Italy; (G.G.); (F.A.)
| | - Silvia Ines Pellicano
- Central Inspectorate for Fraud Repression and Quality Protection of the Agrifood Products and Food, Ministry of Agricultural, Food and Forestry Policies, 06128 Perugia, Italy;
| | - Andrea Scaloni
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy; (S.D.P.); (A.S.)
| | - Stefania Carpino
- Central Inspectorate for Fraud Repression and Quality Protection of the Agrifood Products and Food, Ministry of Agricultural, Food and Forestry Policies, 00187 Roma, Italy;
| | - Simonetta Caira
- Proteomics, Metabolomics & Mass Spectrometry Laboratory, Institute for the Animal Production System in the Mediterranean Environment, National Research Council, 80055 Portici, Italy; (S.D.P.); (A.S.)
| | - Francesco Addeo
- Department of Agriculture, University of Naples “Federico II”, 80055 Portici, Italy; (G.G.); (F.A.)
| |
Collapse
|
5
|
Allemann MN, Kato R, Carper DL, Hochanadel LH, Alexander WG, Giannone RJ, Kamimura N, Masai E, Michener JK. Laboratory evolution in Novosphingobium aromaticivorans enables rapid catabolism of a model lignin-derived aromatic dimer. Appl Environ Microbiol 2025; 91:e0208124. [PMID: 39846750 PMCID: PMC11837543 DOI: 10.1128/aem.02081-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/08/2024] [Indexed: 01/24/2025] Open
Abstract
Lignin contains a variety of interunit linkages, leading to a range of potential decomposition products that can be used as carbon and energy sources by microbes. β-O-4 linkages are the most common in native lignin, and associated catabolic pathways have been well characterized. However, the fate of the mono-aromatic intermediates that result from β-O-4 dimer cleavage has not been fully elucidated. Here, we used experimental evolution to identify mutant strains of Novosphingobium aromaticivorans with improved catabolism of a model aromatic dimer containing a β-O-4 linkage, guaiacylglycerol-β-guaiacyl ether (GGE). We identified several parallel causal mutations, including a single nucleotide polymorphism in the promoter of an uncharacterized gene that roughly doubled the growth yield with GGE. We characterized the associated enzyme and demonstrated that it oxidizes an intermediate in GGE catabolism, β-hydroxypropiovanillone, to vanilloyl acetaldehyde. Identification of this enzyme and its key role in GGE catabolism furthers our understanding of catabolic pathways for lignin-derived aromatic compounds.IMPORTANCELignin degradation is a key step for both carbon cycling in nature and biomass conversion to fuels and chemicals. Bacteria can catabolize lignin-derived aromatic compounds, but the complexity of lignin means that full mineralization requires numerous catabolic pathways and often results in slow growth. Using experimental evolution, we identified an uncharacterized enzyme for the catabolism of a lignin-derived aromatic monomer, β-hydroxypropiovanillone. A single nucleotide polymorphism in the promoter of the associated gene significantly increased bacterial growth with either β-hydroxypropiovanillone or a related lignin-derived aromatic dimer. This work expands the repertoire of known aromatic catabolic genes and demonstrates that slow catabolism of lignin-derived aromatic compounds may be due to misregulation under laboratory conditions rather than inherent catabolic challenges.
Collapse
Affiliation(s)
- Marco N. Allemann
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Ryo Kato
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Dana L. Carper
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Leah H. Hochanadel
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | | | - Richard J. Giannone
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Naofumi Kamimura
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Eiji Masai
- Department of Materials Science and Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Joshua K. Michener
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| |
Collapse
|
6
|
Yu Milman P, Gilvanova EA, Aktuganov GE. The improved purification technique for isolation of the novel CGTase from the alkaliphilc strain Caldalkalibacillus mannanilyticus IB-OR17-B1. Prep Biochem Biotechnol 2025; 55:223-229. [PMID: 39106060 DOI: 10.1080/10826068.2024.2386558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Cyclodextrin-glucanotransferase (CGTase, EC 2.4.1.19) is a multifunctional enzyme that catalyzes many enzymatic reactions including cyclization, binding, disproportionation and hydrolysis reactions, playing an important role in the enzymatic synthesis of compounds that are widely used in agriculture, pharmaceuticals, food, chemical and biotechnology industries. The present research is aimed to optimize the purification protocol for the extracellular CGTase of alkaliphilc bacterial strain Caldalkalibacillus mannanilyticus IB-OR17-B1 guaranteeing the enzyme homogeneity and its high yield. The improved combination of ultrafiltration and corn-starch (5% w/v) affinity sorption techniques resulted to mild and rapid isolation of electrophoritically homogenic enzyme at 18 × increase of its specific activity and yield 56%. The developed two-step procedure instead the practiced tree-step one using commonly ion-exchange chromatography as final purification technique highly contributes in advance of cost-effectiveness for industrial production and isolation of valuable CGTases.
Collapse
Affiliation(s)
- P Yu Milman
- Ufa Institute of Biology of Ufa Federal Research Center of Russian Academy of Sciences, Russia, Ufa
| | - E A Gilvanova
- Ufa Institute of Biology of Ufa Federal Research Center of Russian Academy of Sciences, Russia, Ufa
| | - G E Aktuganov
- Ufa Institute of Biology of Ufa Federal Research Center of Russian Academy of Sciences, Russia, Ufa
| |
Collapse
|
7
|
Bartkowiak K, Mohammadi PM, Nissen P, Werner S, Agorku D, Andreas A, Geffken M, Peine S, Verpoort K, Deutsch TM, Michel LL, Schneeweiss A, Thewes V, Trumpp A, Hardt O, Müller V, Riethdorf S, Schlüter H, Pantel K. Discovery of a sushi domain-containing protein 2-positive phenotype in circulating tumor cells of metastatic breast cancer patients. Sci Rep 2025; 15:3913. [PMID: 39890941 PMCID: PMC11785953 DOI: 10.1038/s41598-025-87122-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 01/16/2025] [Indexed: 02/03/2025] Open
Abstract
Cell lines derived from circulating tumor cells (CTCs) in the blood provide important biological information on cancer metastasis. CTC-ITB-01 is a CTC cell line derived from a patient with metastatic estrogen receptor-alpha (ER-alpha) positive breast cancer two months before the death of the patient. After a LC-MC/MS based proteomics analysis of CTC-ITB-01, we found extraordinary high levels of the poorly characterized protein SUSD2 (sushi domain-containing protein 2) in CTC-ITB-01. Expression of SUSD2 on subsets of CTCs was validated on clinical blood samples of patients with metastatic breast cancer. SUSD2-positive CTCs could be captured specifically by a MACS-based approach. We overexpressed SUSD2 in the poorly-metastatic cell line MCF-7. This resulted in upregulation of ER-alpha, the tumor progression protein GRP78 (78-kDa glucose-regulated protein) and downregulation of the tumor suppressor protein PDCD4 (programmed cell death protein 4). We observed downregulation of SUSD2 and PDCD4 after hypoxia and simulation of re-oxygenation in the blood in MCF-7 and MDA-MB-468, while in CTC-ITB-01 SUSD2 levels remained unchanged, and only PDCD4 was downregulated under hypoxia. In conclusion, we show, for the first time, that SUSD2 is expressed in CTCs and appears to affect key proteins in tumor progression and survival.
Collapse
Affiliation(s)
- Kai Bartkowiak
- Department for Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Parinaz Mossahebi Mohammadi
- Department for Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Paula Nissen
- Section Mass Spectrometry and Proteomics, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Stefan Werner
- Department for Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg- Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - David Agorku
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Antje Andreas
- Department for Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Maria Geffken
- Department of Transfusion Medicine, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sven Peine
- Department of Transfusion Medicine, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Karl Verpoort
- Superregional group practice for hematology and oncology, Hohe Weide 17 b, 20295, Hamburg, Germany
| | - Thomas M Deutsch
- Department of Obstetrics and Gynecology, University of Heidelberg, Im Neuenheimer Feld 440, 69120, Heidelberg, Germany
| | - Laura L Michel
- National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Andreas Schneeweiss
- National Center for Tumor Diseases, Heidelberg University Hospital and German Cancer Research Center, Im Neuenheimer Feld 460, 69120, Heidelberg, Germany
| | - Verena Thewes
- Division of Molecular Genetics, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, German Cancer Research Center (DKFZ) and DKFZ- ZMBH Alliance, Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Olaf Hardt
- Miltenyi Biotec B.V. & Co. KG, Friedrich-Ebert-Straße 68, 51429, Bergisch Gladbach, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Sabine Riethdorf
- Department for Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Hartmut Schlüter
- Section Mass Spectrometry and Proteomics, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany
| | - Klaus Pantel
- Department for Tumour Biology, University Medical Centre Hamburg-Eppendorf, Martinistraße 52, 20246, Hamburg, Germany.
| |
Collapse
|
8
|
Franchi MV, Candia J, Sarto F, Sirago G, Valli G, Paganini M, Hartnell L, Giacomello E, Toniolo L, Monti E, Nogara L, Moro T, Paoli A, Murgia M, Brocca L, Pellegrino MA, Grassi B, Bottinelli R, De Vito G, Ferrucci L, Narici MV. Previous short-term disuse dictates muscle gene expression and physiological adaptations to subsequent resistance exercise. J Physiol 2025. [PMID: 39792484 DOI: 10.1113/jp287003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
Short-term unloading experienced following injury or hospitalisation induces muscle atrophy and weakness. The effects of exercise following unloading have been scarcely investigated. We investigated the functional and molecular adaptations to a resistance training (RT) programme following short-term unloading. Eleven males (22.09 ± 2.91 years) underwent 10 days of unilateral lower limb suspension (ULLS) followed by 21 days of knee extensor RT (three times/week). Data collection occurred at Baseline (LS0), after ULLS (LS10) and at active recovery (AR21). Knee extensor maximum voluntary contraction (MVC) was evaluated. Quadriceps volume was estimated by ultrasonography. Muscle fibre cross-sectional area, fibre type distribution, glycogen content and succinate dehydrogenase (SDH) activity were measured from vastus lateralis biopsies. Mitochondrial-related proteins were quantified by western blot and transcriptional responses were assessed by RNA sequencing. Following ULLS, quadriceps volume and MVC decreased significantly (3.7%, P < 0.05; 29.3%, P < 0.001). At AR21 (vs. LS10), MVC was fully restored (42%) and quadriceps volume increased markedly (18.6%, P < 0.001). Glycogen content and whole-body water increased at AR21 (14%, P < 0.001; 3.1%, P < 0.05). We observed a marked increase in fibre type I at AR21 (38%, P < 0.05). SDH immunoreactivity increased significantly after exercise (20%, P < 0.001). Mitochondrial fusion (MFN1, MFN2 and OPA1) and fission (DRP1) proteins were markedly increased by RT, and the most differentially expressed genes belonged to oxidative phosphorylation pathways. In contrast with what is usually observed after RT, oxidative metabolism, slow fibre type and mitochondrial dynamics were enhanced beyond expected. We propose that prior exposure to short-term muscle unloading may drive the nature of molecular adaptations to subsequent RT. KEY POINTS: Short-term unloading is often experienced during recovery from injuries and hospitalisation, leading to loss of muscle mass and strength. Although exercise can be beneficial in mitigating/reversing such alterations during disuse, only a few studies have focused on the effects of exercise following muscle unloading. With an integrative physiological approach, we aimed to elucidate the basic mechanisms of muscle function recovery in response to 21 days of resistance exercise that followed 10 days of unilateral lower limb suspension (ULLS), assessing whether the mechanisms underlying recovery are defined by a specific reversal of those that occurred during disuse. Resistance training was successful in recovering functional and structural muscle properties after 10 days of ULLS, but in contrast with what is usually observed in response to this training modality, oxidative metabolism and slow fibre type were mostly enhanced. We propose that prior exposure to short-term muscle unloading may drive the adaptations to subsequent exercise.
Collapse
Affiliation(s)
- Martino V Franchi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Center, University of Padova, Padova, Italy
| | - Julián Candia
- National Institute on Aging, Baltimore, Maryland, USA
| | - Fabio Sarto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Giacomo Valli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Matteo Paganini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lisa Hartnell
- National Institute on Aging, Baltimore, Maryland, USA
| | - Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Elena Monti
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, California, USA
| | - Leonardo Nogara
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Tatiana Moro
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Antonio Paoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marta Murgia
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, Institute of Physiology, University of Pavia, Pavia, Italy
| | | | - Bruno Grassi
- Department of Medicine, University of Udine, Udine, Italy
| | - Roberto Bottinelli
- Department of Molecular Medicine, Institute of Physiology, University of Pavia, Pavia, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Marco V Narici
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CIR-MYO Myology Center, University of Padova, Padova, Italy
| |
Collapse
|
9
|
Samper-Herrero A, Sellés-Marchart S, Bru-Martínez R. A Protocol to Disclose the Protein Fingerprint of Commercial White Wines Based on Proteomic Tools. Methods Mol Biol 2025; 2884:193-205. [PMID: 39716005 DOI: 10.1007/978-1-0716-4298-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Proteins remaining in commercial wines are responsible for the protein haze in white wine unless they are effectively removed before bottling. To avoid this undesirable phenomenon, techniques of precipitation and filtration are applied in the white wine making process to eliminate a large part of them (fining processes) (Ribéreau-Gayon et al., Handbook of enology, vol 2, 3rd edn. Wiley, Hoboken, pp 369-406, 2021). After finding treatments, a minute amount of these genetically informative biomolecules remains in the commercialized product, which makes its extraction and identification extremely difficult. The protocol described here allows for the extraction and identification of proteins present in commercial white wines using a proteomic workflow of dialysis-lyophilization-precipitation-nanoLC-MS/MS analysis. Its application to three monovarietal commercial white wines allows us a varietal differentiation of the analyzed samples and the ability to detect and identify potentially allergenic proteins. To have this information before the consumption of wine is of great importance because (1) a varietal differentiation could be used for the authentication of the wine and (2) the identification of potentially allergenic proteins responsible for adverse reactions (from the grapes or the fining agents used) will allow for the protection of allergic consumers.
Collapse
Affiliation(s)
- Antonio Samper-Herrero
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Alicante, Spain
- Allergy Group, Alicante Institute for Health, and Biomedical Research (ISABIAL), Alicante, Spain
| | - Susana Sellés-Marchart
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Alicante, Spain
- Research Technical Facility, Proteomics and Genomics Division, University of Alicante, Alicante, Spain
| | - Roque Bru-Martínez
- Plant Proteomics and Functional Genomics Group, Department of Biochemistry and Molecular Biology and Soil and Agricultural Chemistry, Faculty of Science, University of Alicante, Alicante, Spain.
- Allergy Group, Alicante Institute for Health, and Biomedical Research (ISABIAL), Alicante, Spain.
| |
Collapse
|
10
|
Valli G, Wu R, Minnock D, Sirago G, Annibalini G, Casolo A, Del Vecchio A, Toniolo L, Barbieri E, De Vito G. Can non-invasive motor unit analysis reveal distinct neural strategies of force production in young with uncomplicated type 1 diabetes? Eur J Appl Physiol 2025; 125:247-259. [PMID: 39212731 DOI: 10.1007/s00421-024-05595-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
PURPOSE to investigate the early consequences of type 1 diabetes (T1D) on the neural strategies of muscle force production. METHODS motor unit (MU) activity was recorded from the vastus lateralis muscle with High-Density surface Electromyography during isometric knee extension at 20 and 40% of maximum voluntary contraction (MVC) in 8 T1D (4 males, 4 females, 30.5 ± 3.6 years) and 8 matched control (4 males, 4 females, 27.3 ± 5.9 years) participants. Muscle biopsies were also collected from vastus lateralis for fiber type analysis, including myosin heavy chain (MyHC) isoform content via protein and mRNA expression. RESULTS MVC was comparable between groups as well as MU conduction velocity, action potentials' amplitude and proportions of MyHC protein isoforms. Nonetheless, MU discharge rate, relative derecruitment thresholds and mRNA expression of MyHC isoform I were lower in T1D. CONCLUSIONS young people with uncomplicated T1D present a different neural control of muscle force production. Furthermore, differences are detectable non-invasively in absence of any functional manifestation (i.e., force production and fiber type distribution). These novel findings suggest that T1D has early consequences on the neuromuscular system and highlights the necessity of a better characterization of neural control in this population.
Collapse
Affiliation(s)
- Giacomo Valli
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Rui Wu
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Dean Minnock
- School of Electrical and Electronic Engineering, University College Dublin, Belfield, Dublin 4, Ireland.
| | - Giuseppe Sirago
- Department of Biomedical Sciences, University of Padova, Padua, Italy
- Institute of Sport Sciences and Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Giosuè Annibalini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Andrea Casolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Alessandro Del Vecchio
- Department Artificial Intelligence in Biomedical Engineering, Friedrich-Alexander University, Erlangen, Germany
| | - Luana Toniolo
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Elena Barbieri
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Giuseppe De Vito
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| |
Collapse
|
11
|
Dolata KM, Karger A. Insights into the Role of VPS39 and Its Interaction with CP204L and A137R in ASFV Infection. Viruses 2024; 16:1478. [PMID: 39339953 PMCID: PMC11437485 DOI: 10.3390/v16091478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/03/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
The African swine fever virus (ASFV) is a large and complex DNA virus that causes a highly lethal disease in swine, for which no antiviral drugs or vaccines are currently available. Studying viral-host protein-protein interactions advances our understanding of the molecular mechanisms underlying viral replication and pathogenesis and can facilitate the discovery of antiviral therapeutics. In this study, we employed affinity tagging and purification mass spectrometry to characterize the interactome of VPS39, an important cellular factor during the early phase of ASFV replication. The interaction network of VPS39 revealed associations with mitochondrial proteins involved in membrane contact sites formation and cellular respiration. We show that the ASFV proteins CP204L and A137R target VPS39 by interacting with its clathrin heavy-chain functional domain. Furthermore, we elaborate on the potential mechanisms by which VPS39 may contribute to ASFV replication and prioritize interactions for further investigation into mitochondrial protein function in the context of ASFV infection.
Collapse
Affiliation(s)
- Katarzyna Magdalena Dolata
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| | - Axel Karger
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Südufer 10, 17493 Greifswald-Insel Riems, Germany
| |
Collapse
|
12
|
Murcia G, Alonso R, Berli F, Arias L, Bianchimano L, Pontin M, Fontana A, Casal JJ, Piccoli P. Quantitative Proteomics Analysis of ABA- and GA 3-Treated Malbec Berries Reveals Insights into H 2O 2 Scavenging and Anthocyanin Dynamics. PLANTS (BASEL, SWITZERLAND) 2024; 13:2366. [PMID: 39273850 PMCID: PMC11396855 DOI: 10.3390/plants13172366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/15/2024]
Abstract
Abscisic acid (ABA) and gibberellic acid (GA3) are regulators of fruit color and sugar levels, and the application of these hormones is a common practice in commercial vineyards dedicated to the production of table grapes. However, the effects of exogenous ABA and GA3 on wine cultivars remain unclear. We investigated the impact of ABA and GA3 application on Malbec grapevine berries across three developmental stages. We found similar patterns of berry total anthocyanin accumulation induced by both treatments, closely associated with berry H2O2 levels. Quantitative proteomics from berry skins revealed that ABA and GA3 positively modulated antioxidant defense proteins, mitigating H2O2. Consequently, proteins involved in phenylpropanoid biosynthesis were downregulated, leading to decreased anthocyanin content at the almost ripe stage, particularly petunidin-3-G and peonidin-3-G. Additionally, we noted increased levels of the non-anthocyanins E-viniferin and quercetin in the treated berries, which may enhance H2O2 scavenging at the almost ripe stage. Using a linear mixed-effects model, we found statistical significance for fixed effects including the berry H2O2 and sugar contents, demonstrating their roles in anthocyanin accumulation. In conclusion, our findings suggest a common molecular mechanism by which ABA and GA3 influence berry H2O2 content, ultimately impacting anthocyanin dynamics during ripening.
Collapse
Affiliation(s)
- Germán Murcia
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires C1405, Argentina
| | - Rodrigo Alonso
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Federico Berli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Leonardo Arias
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Luciana Bianchimano
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires C1405, Argentina
| | | | - Ariel Fontana
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| | - Jorge José Casal
- Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas de Buenos Aires, CONICET, Buenos Aires C1405, Argentina
- Facultad de Agronomía, CONICET, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Universidad de Buenos Aires, Buenos Aires C1053, Argentina
| | - Patricia Piccoli
- Instituto de Biología Agrícola de Mendoza, CONICET-Universidad Nacional de Cuyo, Mendoza M5507, Argentina
| |
Collapse
|
13
|
Rubinstein AJ, Garcia Liñares G, Boeris V, Pérez OE. An Innovative Bio-Vehicle for Resveratrol and Tocopherol Based on Quinoa 11S Globulin-Nanocomplex Design and Characterization. Pharmaceutics 2024; 16:1118. [PMID: 39339156 PMCID: PMC11434796 DOI: 10.3390/pharmaceutics16091118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
Nanocomplexes, which possess immense potential to function as nanovehicles, can link diverse ligand compounds. The objective of the present study was to design and characterize resveratrol (RSV)- and tocopherol (TOC)-loaded 11S quinoa seed protein nanocomplexes. Firstly, molecular docking was performed to describe the probable binding sites between protein and ligands, and binding energies of -5.6 and -6.2 kcal/mol were found for RSV and TOC, respectively. Isothermal titration calorimetry allowed us to obtain the thermodynamic parameters that described the molecular interactions between RSV or TOC with the protein, finding the complexation process to be exothermic and spontaneous. 11S globulin intrinsic fluorescence spectra showed quenching effects exerted by RSV and TOC, demonstrating protein-bioactive compound interactions. The application of Stern-Volmer, Scatchard, and Förster resonance energy transfer models confirmed static quenching and allowed us to obtain parameters that described the 11S-RSV and 11S-TOC complexation processes. RSV has a higher tendency to bind 11S globulin according to ITC and fluorescence analysis. Secondly, the protein aggregation induced by bioactive compound interactions was confirmed by dynamic light scattering and atomic force microscopy, with diameters <150 nm detected by both techniques. Finally, it was found that the antioxidant capacity of a single 11S globulin did not decrease; meanwhile, it was additive for 11S-RSV. These nanocomplexes could constitute a real platform for the design of nutraceutical products.
Collapse
Affiliation(s)
- Alejandra J. Rubinstein
- Consejo Nacional de Investigación Científica y Técnicas de la República Argentina, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina;
| | - Guadalupe Garcia Liñares
- Laboratorio de Biocatálisis, Departamento de Química Orgánica y UMYMFOR, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires-CONICET, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina;
| | - Valeria Boeris
- Área Fisicoquímica, Departamento de Química Física, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (UNR)—CONICET, Suipacha 531, Rosario S2002LRK, Argentina;
| | - Oscar E. Pérez
- Consejo Nacional de Investigación Científica y Técnicas de la República Argentina, IQUIBICEN-CONICET, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes, s/n, Ciudad Universitaria, Buenos Aires C1428EGA, Argentina;
| |
Collapse
|
14
|
Ditz N, Braun HP, Eubel H. Protein assemblies in the Arabidopsis thaliana chloroplast compartment. FRONTIERS IN PLANT SCIENCE 2024; 15:1380969. [PMID: 39220006 PMCID: PMC11362043 DOI: 10.3389/fpls.2024.1380969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 05/30/2024] [Indexed: 09/04/2024]
Abstract
Introduction Equipped with a photosynthetic apparatus that uses the energy of solar radiation to fuel biosynthesis of organic compounds, chloroplasts are the metabolic factories of mature leaf cells. The first steps of energy conversion are catalyzed by a collection of protein complexes, which can dynamically interact with each other for optimizing metabolic efficiency under changing environmental conditions. Materials and methods For a deeper insight into the organization of protein assemblies and their roles in chloroplast adaption to changing environmental conditions, an improved complexome profiling protocol employing a MS-cleavable cross-linker is used to stabilize labile protein assemblies during the organelle isolation procedure. Results and discussion Changes in protein:protein interaction patterns of chloroplast proteins in response to four different light intensities are reported. High molecular mass assemblies of central chloroplast electron transfer chain components as well as the PSII repair machinery react to different light intensities. In addition, the chloroplast encoded RNA-polymerase complex was found to migrate at a molecular mass of ~8 MDa, well above its previously reported molecular mass. Complexome profiling data produced during the course of this study can be interrogated by interested readers via a web-based online resource (https://complexomemap.de/projectsinteraction-chloroplasts).
Collapse
Affiliation(s)
| | | | - Holger Eubel
- Department of Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Hannover, Germany
| |
Collapse
|
15
|
Wang J, Wang Z, Zhao W, Wang Y. Microwave-assisted and methanol/acetic acid-free method for rapid staining of proteins in SDS-PAGE gels. Anal Biochem 2024; 691:115553. [PMID: 38697592 DOI: 10.1016/j.ab.2024.115553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
We describe a microwave-assisted, methanol and acetic acid-free, inexpensive method for rapid staining of SDS-PAGE proteins. Only citric acid, benzoic acid, and Coomassie brilliant blue G-250 (CBG) were used. Microwave irradiation reduced the detection duration, and proteins in a clear background were visualized within 30 min of destaining, after 2 min of fixing and 12 min of staining. By using this protocol, comparable band intensities were obtained to the conventional methanol/acetic acid method.
Collapse
Affiliation(s)
- Jinzhong Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| | - Zhaoyang Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Wei Zhao
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China
| | - Ying Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, 23 Hongda Street, TEDA, Tianjin, 300457, China; Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, 23 Hongda Street, TEDA, Tianjin, 300457, China; Tianjin Key Laboratory of Microbial Functional Genomics, 23 Hongda Street, TEDA, Tianjin, 300457, China.
| |
Collapse
|
16
|
Burgardt NI, Melian NA, González Flecha FL. Copper resistance in the cold: Genome analysis and characterisation of a P IB-1 ATPase in Bizionia argentinensis. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13278. [PMID: 38943264 PMCID: PMC11213822 DOI: 10.1111/1758-2229.13278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/19/2024] [Indexed: 07/01/2024]
Abstract
Copper homeostasis is a fundamental process in organisms, characterised by unique pathways that have evolved to meet specific needs while preserving core resistance mechanisms. While these systems are well-documented in model bacteria, information on copper resistance in species adapted to cold environments is scarce. This study investigates the potential genes related to copper homeostasis in the genome of Bizionia argentinensis (JUB59-T), a psychrotolerant bacterium isolated from Antarctic seawater. We identified several genes encoding proteins analogous to those crucial for copper homeostasis, including three sequences of copper-transport P1B-type ATPases. One of these, referred to as BaCopA1, was chosen for cloning and expression in Saccharomyces cerevisiae. BaCopA1 was successfully integrated into yeast membranes and subsequently extracted with detergent. The purified BaCopA1 demonstrated the ability to catalyse ATP hydrolysis at low temperatures. Structural models of various BaCopA1 conformations were generated and compared with mesophilic and thermophilic homologous structures. The significant conservation of critical residues and structural similarity among these proteins suggest a shared reaction mechanism for copper transport. This study is the first to report a psychrotolerant P1B-ATPase that has been expressed and purified in a functional form.
Collapse
Affiliation(s)
- Noelia I. Burgardt
- Laboratorio de Biofísica Molecular, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica BiológicasUniversidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
- Present address:
Departamento de Ciencia y TecnologíaUniversidad Nacional de QuilmesBernalArgentina
| | - Noelia A. Melian
- Laboratorio de Biofísica Molecular, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica BiológicasUniversidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| | - F. Luis González Flecha
- Laboratorio de Biofísica Molecular, Facultad de Farmacia y Bioquímica, Instituto de Química y Fisicoquímica BiológicasUniversidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y TécnicasBuenos AiresArgentina
| |
Collapse
|
17
|
Gutbier U, Korp J, Scheufler L, Ostermann K. Genetic modules for α-factor pheromone controlled growth regulation of Saccharomyces cerevisiae. Eng Life Sci 2024; 24:e2300235. [PMID: 39113811 PMCID: PMC11300815 DOI: 10.1002/elsc.202300235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/29/2024] [Accepted: 05/05/2024] [Indexed: 08/10/2024] Open
Abstract
Saccharomyces cerevisiae is a commonly used microorganism in the biotechnological industry. For the industrial heterologous production of compounds, it is of great advantage to work with growth-controllable yeast strains. In our work, we utilized the natural pheromone system of S. cerevisiae and generated a set of different strains possessing an α-pheromone controllable growth behavior. Naturally, the α-factor pheromone is involved in communication between haploid S. cerevisiae cells. Perception of the pheromone initiates several cellular changes, enabling the cells to prepare for an upcoming mating event. We exploited this natural pheromone response system and developed two different plasmid-based modules, in which the target genes, MET15 and FAR1, are under control of the α-factor sensitive FIG1 promoter for a controlled expression in S. cerevisiae. Whereas expression of MET15 led to a growth induction, FAR1 expression inhibited growth. The utilization of low copy number or high copy number plasmids for target gene expression and different concentrations of α-factor allow a finely adjustable control of yeast growth rate.
Collapse
Affiliation(s)
- Uta Gutbier
- Faculty of BiologyResearch Group Biological Sensor‐Actuator‐SystemsTUD Dresden University of TechnologyDresdenGermany
- Else Kröner Fresenius Center for Digital HealthFaculty of Medicine Carl Gustav CarusTUD Dresden University of TechnologyDresdenGermany
| | - Juliane Korp
- Faculty of BiologyResearch Group Biological Sensor‐Actuator‐SystemsTUD Dresden University of TechnologyDresdenGermany
| | - Lennart Scheufler
- Faculty of BiologyResearch Group Biological Sensor‐Actuator‐SystemsTUD Dresden University of TechnologyDresdenGermany
| | - Kai Ostermann
- Faculty of BiologyResearch Group Biological Sensor‐Actuator‐SystemsTUD Dresden University of TechnologyDresdenGermany
| |
Collapse
|
18
|
Sousa GC, Carvalho MG, Fonseca-Alves CE, Souza FF. Serum Extracellular Vesicles Cargo Approach in Bitches with Mammary Tumors. Curr Issues Mol Biol 2024; 46:7745-7768. [PMID: 39057100 PMCID: PMC11275879 DOI: 10.3390/cimb46070459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
This study investigated serum extracellular vesicles (EVs) in bitches with mammary neoplasms, in order to understand their size, shape, and concentration, as well as their association with tumor malignancy. Thirty bitches were categorized into control (n = 10), mammary tumor grades I and II (GI, n = 13), and grade III (GII, n = 7). Serum was separated from blood collected during mastectomy, and EVs were isolated using size exclusion chromatography. The analysis revealed no significant differences in EV concentrations among groups, with similar concentrations for control, GI, and GII. Ninety-one proteins were identified in EV-enriched samples, with six showing varied abundance across groups. Notably, keratin 18 was highly abundant in GI, while sushi domain-containing protein, EvC ciliary subunit 2, and the joining chain of multimeric IgM and IgA were increased in GII. Additionally, protocadherin 17 and albumin were upregulated in both GI and GII. ROC curves identified potential biomarkers for differentiating tumor grades. Enrichment pathway analysis revealed AFP gene upregulation in the GI. Mass spectrometry proteomics data were deposited in Mendeley Data. The study provides valuable insights into serum EV characterization in bitches, suggesting keratin 18 and protocadherin 17 as potential biomarkers for canine mammary neoplasia, with implications for future diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Gabriela C. Sousa
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Unesp, Botucatu 18618-687, São Paulo, Brazil; (G.C.S.); (M.G.C.); (C.E.F.-A.)
- Department of Small Animal Clinical Sciences, Virginia Maryland College of Veterinary Medicine, Blacksburg, VA 24061, USA
| | - Marcos G. Carvalho
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Unesp, Botucatu 18618-687, São Paulo, Brazil; (G.C.S.); (M.G.C.); (C.E.F.-A.)
| | - Carlos E. Fonseca-Alves
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Unesp, Botucatu 18618-687, São Paulo, Brazil; (G.C.S.); (M.G.C.); (C.E.F.-A.)
| | - Fabiana F. Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, Unesp, Botucatu 18618-687, São Paulo, Brazil; (G.C.S.); (M.G.C.); (C.E.F.-A.)
| |
Collapse
|
19
|
Zhang T, Li K, Cheung YH, Grinstaff MW, Liu P. Photo-reduction facilitated stachydrine oxidative N-demethylation reaction: A case study of Rieske non-heme iron oxygenase Stc2 from Sinorhizobium meliloti. Methods Enzymol 2024; 703:263-297. [PMID: 39260999 DOI: 10.1016/bs.mie.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Rieske-type non-heme iron oxygenases (ROs) are an important family of non-heme iron enzymes. They catalyze a diverse range of transformations in secondary metabolite biosynthesis and xenobiotic bioremediation. ROs typically shuttle electrons from NAD(P)H to the oxygenase component via reductase component(s). This chapter describes our recent biochemical characterization of stachydrine demethylase Stc2 from Sinorhizobium meliloti. In this work, the eosin Y/sodium sulfite pair serves as the photoreduction system to replace the NAD(P)H-reductase system. We describe Stc2 protein purification and quality control details as well as a flow-chemistry to separate the photo-reduction half-reaction and the oxidation half-reaction. Our study demonstrates that the eosin Y/sodium sulfite photo-reduction pair is a NAD(P)H-reductase surrogate for Stc2-catalysis in a flow-chemistry setting. Experimental protocols used in this light-driven Stc2 catalysis are likely to be applicable as a photo-reduction system for other redox enzymes.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Kelin Li
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Yuk Hei Cheung
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Mark W Grinstaff
- Department of Chemistry, Boston University, Boston, MA, United States
| | - Pinghua Liu
- Department of Chemistry, Boston University, Boston, MA, United States.
| |
Collapse
|
20
|
Taracena-Agarwal ML, Walter-Nuno AB, Bottino-Rojas V, Mejia APG, Xu K, Segal S, Dotson EM, Oliveira PL, Paiva-Silva GO. Juvenile Hormone as a contributing factor in establishing midgut microbiota for fecundity and fitness enhancement in adult female Aedes aegypti. Commun Biol 2024; 7:687. [PMID: 38839829 PMCID: PMC11153597 DOI: 10.1038/s42003-024-06334-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 05/15/2024] [Indexed: 06/07/2024] Open
Abstract
Understanding the factors influencing mosquitoes' fecundity and longevity is important for designing better and more sustainable vector control strategies, as these parameters can impact their vectorial capacity. Here, we address how mating affects midgut growth in Aedes aegypti, what role Juvenile Hormone (JH) plays in this process, and how it impacts the mosquito's immune response and microbiota. Our findings reveal that mating and JH induce midgut growth. Additionally, the establishment of a native bacterial population in the midgut due to JH-dependent suppression of the immune response has important reproductive outcomes. Specific downregulation of AMPs with an increase in bacteria abundance in the gut results in increased egg counts and longer lifespans. Overall, these findings provide evidence of a cross-talk between JH response, gut epithelial tissue, cell cycle regulation, and the mechanisms governing the trade-offs between nutrition, immunity, and reproduction at the cellular level in the mosquito gut.
Collapse
Affiliation(s)
- Mabel L Taracena-Agarwal
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA.
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA.
| | - Ana Beatriz Walter-Nuno
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Vanessa Bottino-Rojas
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | | | - Kelsey Xu
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Steven Segal
- Entomology Department, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, USA
| | - Ellen M Dotson
- Centers for Disease Control and Prevention (CDC), Atlanta, GA, USA
| | - Pedro L Oliveira
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil
| | - Gabriela O Paiva-Silva
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Rio de Janeiro, Brasil.
| |
Collapse
|
21
|
Hartl N, Gabold B, Uhl P, Kromer A, Xiao X, Fricker G, Mier W, Liu R, Merkel OM. ApoE-functionalization of nanoparticles for targeted brain delivery-a feasible method for polyplexes? Drug Deliv Transl Res 2024; 14:1660-1677. [PMID: 38087181 PMCID: PMC11052808 DOI: 10.1007/s13346-023-01482-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2023] [Indexed: 04/28/2024]
Abstract
The blood-brain barrier (BBB) poses a major obstacle in the treatment of all types of central nervous system (CNS) diseases. Small interfering RNA (siRNA) offers in principle a promising therapeutic approach by downregulating disease-related genes via RNA interference. However, the BBB is a formidable barrier for macromolecules such as nucleic acids. In an effort to develop a brain-targeted strategy for siRNA delivery systems formed by electrostatic interactions with cationic polymers (polyplexes (PXs)), we investigated the suitability of the well-known surfactant-based approach for Apolipoprotein E (ApoE)-functionalization of nanoparticles (NPs). The aim of this present work was to investigate if ApoE coating of siRNA PXs formed with cationic branched 25-kDa poly(ethyleneimine) (b-PEI) and nylon-3 polymers without or after precoating with polysorbate 80 (PS 80) would promote successful delivery across the BBB. We utilized highly hydrophobic NM0.2/CP0.8 nylon-3 polymers to evaluate the effects of hydrophobic cyclopentyl (CP) subunits on ApoE binding efficacy and observed successful ApoE binding with and without PS 80 precoating to the nylon-3 but not the PEI polyplexes. Accordingly, ApoE-coated nylon-3 polyplexes showed significantly increased uptake and gene silencing in U87 glioma cells but no benefit in vivo. In conclusion, further optimization of ApoE-functionalized polyplexes and more sophisticated in vitro models are required to achieve more successful in vitro-in vivo translation in future approaches.
Collapse
Affiliation(s)
- Natascha Hartl
- Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Bettina Gabold
- Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Philipp Uhl
- Pharmaceutical Technology and Biopharmaceutics, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
| | - Adrian Kromer
- Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, Munich, Germany
| | - Ximian Xiao
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Gert Fricker
- Pharmaceutical Technology and Biopharmaceutics, Ruprecht-Karls-University, Im Neuenheimer Feld 329, 69120, Heidelberg, Germany
| | - Walter Mier
- Department of Nuclear Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany
| | - Runhui Liu
- State Key Laboratory of Bioreactor Engineering, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Olivia M Merkel
- Pharmaceutical Technology and Biopharmaceutics, Ludwig-Maximilians-Universität, Butenandtstr. 5-13, 81377, Munich, Germany.
| |
Collapse
|
22
|
De Oliveira IB, Alves SDS, Ferreira MM, Santos AS, Farias KS, Assis ETCDM, Mora-Ocampo IY, Muñoz JJM, Costa EA, Gramacho KP, Pirovani CP. Apoplastomes of contrasting cacao genotypes to witches' broom disease reveals differential accumulation of PR proteins. FRONTIERS IN PLANT SCIENCE 2024; 15:1387153. [PMID: 38817930 PMCID: PMC11137319 DOI: 10.3389/fpls.2024.1387153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/23/2024] [Indexed: 06/01/2024]
Abstract
Witches' broom disease (WBD) affects cocoa trees (Theobroma cacao L.) and is caused by the fungus Moniliophthora perniciosa that grows in the apoplast in its biotrophic phase and later progresses into the tissues, causing serious losses in the production of cocoa beans. Therefore, the apoplast of T. cacao can provide important defense responses during the interaction with M. perniciosa. In this work, the protein profile of the apoplast of the T. cacao genotypes Catongo, susceptible to WBD, and CCN-51, resistant one, was evaluated. The leaves of T. cacao were collected from asymptomatic plants grown in a greenhouse (GH) and from green witches' brooms grown under field (FD) conditions for extraction of apoplastic washing fluid (AWF). AWF was used in proteomic and enzymatic analysis. A total of 14 proteins were identified in Catongo GH and six in Catongo FD, with two proteins being common, one up-accumulated, and one down-accumulated. In CCN-51, 19 proteins were identified in the GH condition and 13 in FD, with seven proteins being common, one up-accumulated, and six down-accumulated. Most proteins are related to defense and stress in both genotypes, with emphasis on pathogenesis-related proteins (PR): PR-2 (β-1,3-glucanases), PR-3 and PR-4 (chitinases), PR-5 (thaumatine), PR-9 (peroxidases), and PR-14 (lipid transfer proteins). Furthermore, proteins from microorganisms were detected in the AWF. The enzymatic activities of PR-3 showed a significant increase (p < 0.05) in Catongo GH and PR-2 activity (p < 0.01) in CCN-51 FD. The protein profile of the T. cacao apoplastome offers insight into the defense dynamics that occur in the interaction with the fungus M. perniciosa and offers new insights in exploring future WBD control strategies.
Collapse
Affiliation(s)
- Ivina Barbosa De Oliveira
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Saline dos Santos Alves
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Monaliza Macêdo Ferreira
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Ariana Silva Santos
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Keilane Silva Farias
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | | | - Irma Yuliana Mora-Ocampo
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Jonathan Javier Mucherino Muñoz
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Eduardo Almeida Costa
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Karina Peres Gramacho
- Molecular Plant Pathology Laboratory, Centro de Pesquisa do Cacau (CEPEC/CEPLAC), Ilhéus, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| |
Collapse
|
23
|
Schlaak L, Weise C, Kuropka B, Weng A. Mutational Analysis of RIP Type I Dianthin-30 Suggests a Role for Arg24 in Endocytosis. Toxins (Basel) 2024; 16:219. [PMID: 38787071 PMCID: PMC11125672 DOI: 10.3390/toxins16050219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024] Open
Abstract
Saponin-mediated endosomal escape is a mechanism that increases the cytotoxicity of type I ribosome-inactivating proteins (type I RIPs). In order to actualize their cytotoxicity, type I RIPs must be released into the cytosol after endocytosis. Without release from the endosomes, type I RIPs are largely degraded and cannot exert their cytotoxic effects. Certain triterpene saponins are able to induce the endosomal escape of these type I RIPs, thus increasing their cytotoxicity. However, the molecular mechanism underlying the endosomal escape enhancement of type I RIPs by triterpene saponins has not been fully elucidated. In this report, we investigate the involvement of the basic amino acid residues of dianthin-30, a type I RIP isolated from the plant Dianthus caryophyllus L., in endosomal escape enhancement using alanine scanning. Therefore, we designed 19 alanine mutants of dianthin-30. Each mutant was combined with SO1861, a triterpene saponin isolated from the roots of Saponaria officinalis L., and subjected to a cytotoxicity screening in Neuro-2A cells. Cytotoxic screening revealed that dianthin-30 mutants with lysine substitutions did not impair the endosomal escape enhancement. There was one particular mutant dianthin, Arg24Ala, that exhibited significantly reduced synergistic cytotoxicity in three mammalian cell lines. However, this reduction was not based on an altered interaction with SO1861. It was, rather, due to the impaired endocytosis of dianthin Arg24Ala into the cells.
Collapse
Affiliation(s)
- Louisa Schlaak
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany;
| | - Christoph Weise
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; (C.W.); (B.K.)
| | - Benno Kuropka
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Thielallee 63, 14195 Berlin, Germany; (C.W.); (B.K.)
| | - Alexander Weng
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany;
| |
Collapse
|
24
|
Rauscher R, Eggers C, Dimitrova-Paternoga L, Shankar V, Rosina A, Cristodero M, Paternoga H, Wilson DN, Leidel SA, Polacek N. Evolving precision: rRNA expansion segment 7S modulates translation velocity and accuracy in eukaryal ribosomes. Nucleic Acids Res 2024; 52:4021-4036. [PMID: 38324474 DOI: 10.1093/nar/gkae067] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/09/2024] Open
Abstract
Ribosome-enhanced translational miscoding of the genetic code causes protein dysfunction and loss of cellular fitness. During evolution, open reading frame length increased, necessitating mechanisms for enhanced translation fidelity. Indeed, eukaryal ribosomes are more accurate than bacterial counterparts, despite their virtually identical, conserved active centers. During the evolution of eukaryotic organisms ribosome expansions at the rRNA and protein level occurred, which potentially increases the options for translation regulation and cotranslational events. Here we tested the hypothesis that ribosomal RNA expansions can modulate the core function of the ribosome, faithful protein synthesis. We demonstrate that a short expansion segment present in all eukaryotes' small subunit, ES7S, is crucial for accurate protein synthesis as its presence adjusts codon-specific velocities and guarantees high levels of cognate tRNA selection. Deletion of ES7S in yeast enhances mistranslation and causes protein destabilization and aggregation, dramatically reducing cellular fitness. Removal of ES7S did not alter ribosome architecture but altered the structural dynamics of inter-subunit bridges thus affecting A-tRNA selection. Exchanging the yeast ES7S sequence with the human ES7S increases accuracy whereas shortening causes the opposite effect. Our study demonstrates that ES7S provided eukaryal ribosomes with higher accuracy without perturbing the structurally conserved decoding center.
Collapse
Affiliation(s)
- Robert Rauscher
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Cristian Eggers
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Lyudmila Dimitrova-Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Vaishnavi Shankar
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Alessia Rosina
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Marina Cristodero
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Helge Paternoga
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Daniel N Wilson
- Institute for Biochemistry and Molecular Biology, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Sebastian A Leidel
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| | - Norbert Polacek
- Department for Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, 3012 Bern, Switzerland
| |
Collapse
|
25
|
Laverde D, Armiento S, Molinaro A, Huebner J, De Castro C, Romero-Saavedra F. Identification of a capsular polysaccharide from Enterococcus faecium U0317 using a targeted approach to discover immunogenic carbohydrates for vaccine development. Carbohydr Polym 2024; 330:121731. [PMID: 38368077 DOI: 10.1016/j.carbpol.2023.121731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 02/19/2024]
Abstract
Enterococcus faecium, a gram-positive opportunistic pathogen, has become a major concern for nosocomial infections due to its resistance to several antibiotics, including vancomycin. Finding novel alternatives for treatment prevention, such as vaccines, is therefore crucial. In this study, we used various techniques to discover a novel capsular polysaccharide. Firstly, we identified an encapsulated E. faecium strain by evaluating the opsonophagocytic activity of fifteen strains with antibodies targeting the well-known lipoteichoic acid antigen. This activity was attributed to an unknown polysaccharide. We then prepared a crude cell wall glycopolymer and fractionated it, guided by immunodot-blot analysis. The most immunoreactive fractions were used for opsonophagocytic inhibition assays. The fraction containing the inhibitory polysaccharide underwent structural characterization using NMR and chemical analyses. The elucidated structure presents a branched repeating unit, with the linear part being: →)-β-d-Gal-(1 → 4)-β-d-Glc-(1 → 4)-β-d-Gal-(1 → 4)-β-d-GlcNAc-(1→, further decorated with a terminal α-d-Glc and a d-phosphoglycerol moiety, attached to O-2 and O-3 of the 4-linked Gal unit, respectively. This polysaccharide was conjugated to BSA and the synthetic glycoprotein used to immunize mice. The resulting sera exhibited good opsonic activity, suggesting its potential as a vaccine antigen. In conclusion, our effector-function-based approach successfully identified an immunogenic capsular polysaccharide with promising applications in immunotherapy.
Collapse
Affiliation(s)
- Diana Laverde
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Samantha Armiento
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Napoli, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Napoli, Italy
| | - Johannes Huebner
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
| | - Cristina De Castro
- Department of Chemical Sciences, University of Napoli Federico II, Complesso Universitario Monte Santangelo, Napoli, Italy
| | - Felipe Romero-Saavedra
- Division of Paediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany.
| |
Collapse
|
26
|
Sayyed A, Chen B, Wang Y, Cao SK, Tan BC. PPR596 Is Required for nad2 Intron Splicing and Complex I Biogenesis in Arabidopsis. Int J Mol Sci 2024; 25:3542. [PMID: 38542518 PMCID: PMC10971677 DOI: 10.3390/ijms25063542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/15/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024] Open
Abstract
Mitochondria are essential organelles that generate energy via oxidative phosphorylation. Plant mitochondrial genome encodes some of the respiratory complex subunits, and these transcripts require accurate processing, including C-to-U RNA editing and intron splicing. Pentatricopeptide repeats (PPR) proteins are involved in various organellar RNA processing events. PPR596, a P-type PPR protein, was previously identified to function in the C-to-U editing of mitochondrial rps3 transcripts in Arabidopsis. Here, we demonstrate that PPR596 functions in the cis-splicing of nad2 intron 3 in mitochondria. Loss of the PPR596 function affects the editing at rps3eU1344SS, impairs nad2 intron 3 splicing and reduces the mitochondrial complex I's assembly and activity, while inducing alternative oxidase (AOX) gene expression. This defect in nad2 intron splicing provides a plausible explanation for the slow growth of the ppr595 mutants. Although a few P-type PPR proteins are involved in RNA C-to-U editing, our results suggest that the primary function of PPR596 is intron splicing.
Collapse
Affiliation(s)
| | | | | | | | - Bao-Cai Tan
- Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China; (A.S.); (B.C.); (Y.W.); (S.-K.C.)
| |
Collapse
|
27
|
Martínez LE, Gómez G, Ramírez N, Franco B, Robleto EA, Pedraza-Reyes M. 8-OxoG-Dependent Regulation of Global Protein Responses Leads to Mutagenesis and Stress Survival in Bacillus subtilis. Antioxidants (Basel) 2024; 13:332. [PMID: 38539865 PMCID: PMC10968225 DOI: 10.3390/antiox13030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/27/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
The guanine oxidized (GO) system of Bacillus subtilis, composed of the YtkD (MutT), MutM and MutY proteins, counteracts the cytotoxic and genotoxic effects of the oxidized nucleobase 8-OxoG. Here, we report that in growing B. subtilis cells, the genetic inactivation of GO system potentiated mutagenesis (HPM), and subsequent hyperresistance, contributes to the damaging effects of hydrogen peroxide (H2O2) (HPHR). The mechanism(s) that connect the accumulation of the mutagenic lesion 8-OxoG with the ability of B. subtilis to evolve and survive the noxious effects of oxidative stress were dissected. Genetic and biochemical evidence indicated that the synthesis of KatA was exacerbated, in a PerR-independent manner, and the transcriptional coupling repair factor, Mfd, contributed to HPHR and HPM of the ΔGO strain. Moreover, these phenotypes are associated with wider pleiotropic effects, as revealed by a global proteome analysis. The inactivation of the GO system results in the upregulated production of KatA, and it reprograms the synthesis of the proteins involved in distinct types of cellular stress; this has a direct impact on (i) cysteine catabolism, (ii) the synthesis of iron-sulfur clusters, (iii) the reorganization of cell wall architecture, (iv) the activation of AhpC/AhpF-independent organic peroxide resistance, and (v) increased resistance to transcription-acting antibiotics. Therefore, to contend with the cytotoxic and genotoxic effects derived from the accumulation of 8-OxoG, B. subtilis activates the synthesis of proteins belonging to transcriptional regulons that respond to a wide, diverse range of cell stressors.
Collapse
Affiliation(s)
- Lissett E. Martínez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| | - Gerardo Gómez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| | - Norma Ramírez
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| | - Bernardo Franco
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| | - Eduardo A. Robleto
- School of Life Sciences, University of Nevada, Las Vegas, NV 89557, USA;
| | - Mario Pedraza-Reyes
- Department of Biology, Division of Natural and Exact Sciences, University of Guanajuato, Guanajuato 36050, Mexico; (L.E.M.); (G.G.); (N.R.); (B.F.)
| |
Collapse
|
28
|
Yu Z, Cao Y, Tian Y, Ji W, Chen KE, Wang Z, Ren J, Xiao H, Zhang L, Liu W, Fan L, Zhang Q, Cao C. Real-time and quantitative protein detection via polyacrylamide gel electrophoresis and online intrinsic fluorescence imaging. Anal Chim Acta 2024; 1291:342219. [PMID: 38280790 DOI: 10.1016/j.aca.2024.342219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/05/2024] [Indexed: 01/29/2024]
Abstract
The detection of intrinsic protein fluorescence is a powerful tool for studying proteins in their native state. Thanks to its label-free and stain-free feature, intrinsic fluorescence detection has been introduced to polyacrylamide gel electrophoresis (PAGE), a fundamental and ubiquitous protein analysis technique, to avoid the tedious detection process. However, the reported methods of intrinsic fluorescence detection were incompatible with online PAGE detection or standard slab gel. Here, we fulfilled online intrinsic fluorescence imaging (IFI) of the standard slab gel to develop a PAGE-IFI method for real-time and quantitative protein detection. To do so, we comprehensively investigated the arrangement of the deep-UV light source to obtain a large imaging area compatible with the standard slab gel, and then designed a semi-open gel electrophoresis apparatus (GEA) to scaffold the gel for the online UV irradiation and IFI with low background noise. Thus, we achieved real-time monitoring of the protein migration, which enabled us to determine the optimal endpoint of PAGE run to improve the sensitivity of IFI. Moreover, online IFI circumvented the broadening of protein bands to enhance the separation resolution. Because of the low background noise and the optimized endpoint, we showcased the quantitative detection of bovine serum albumin (BSA) with a limit of detection (LOD) of 20 ng. The standard slab gel provided a high sample loading volume that allowed us to attain a wide linear range of 0.03-10 μg. These results indicate that the PAGE-IFI method can be a promising alternative to conventional PAGE and can be widely used in molecular biology labs.
Collapse
Affiliation(s)
- Zixian Yu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yiren Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Youli Tian
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weicheng Ji
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ke-Er Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai, China
| | - Zihao Wang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jicun Ren
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hua Xiao
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lu Zhang
- School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weiwen Liu
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liuyin Fan
- Student Innovation Center, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Qiang Zhang
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chengxi Cao
- School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Life Science and Biotechnology, State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
29
|
do Carmo Santos ML, Santos TA, Dos Santos Lopes N, Macedo Ferreira M, Martins Alves AM, Pirovani CP, Micheli F. The selenium-independent phospholipid hydroperoxide glutathione peroxidase from Theobroma cacao (TcPHGPX) protects plant cells against damages and cell death. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108332. [PMID: 38224638 DOI: 10.1016/j.plaphy.2023.108332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/02/2023] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Proteins from the glutathione peroxidase (GPX) family, such as GPX4 or PHGPX in animals, are extensively studied for their antioxidant functions and apoptosis inhibition. GPXs can be selenium-independent or selenium-dependent, with selenium acting as a potential cofactor for GPX activity. However, the relationship of plant GPXs to these functions remains unclear. Recent research indicated an upregulation of Theobroma cacao phospholipid hydroperoxide glutathione peroxidase gene (TcPHGPX) expression during early witches' broom disease stages, suggesting the use of antioxidant mechanisms as a plant defense strategy to reduce disease progression. Witches' broom disease, caused by the hemibiotrophic fungus Moniliophthora perniciosa, induces cell death through elicitors like MpNEP2 in advanced infection stages. In this context, in silico and in vitro analyses of TcPHGPX's physicochemical and functional characteristics may elucidate its antioxidant potential and effects against cell death, enhancing understanding of plant GPXs and informing strategies to control witches' broom disease. Results indicated TcPHGPX interaction with selenium compounds, mainly sodium selenite, but without improving the protein function. Protein-protein interaction network suggested cacao GPXs association with glutathione and thioredoxin metabolism, engaging in pathways like signaling, peroxide detection for ABA pathway components, and anthocyanin transport. Tests on tobacco cells revealed that TcPHGPX reduced cell death, associated with decreased membrane damage and H2O2 production induced by MpNEP2. This study is the first functional analysis of TcPHGPX, contributing to knowledge about plant GPXs and supporting studies for witches' broom disease control.
Collapse
Affiliation(s)
- Maria Luíza do Carmo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Taís Araújo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Natasha Dos Santos Lopes
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Monaliza Macedo Ferreira
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Akyla Maria Martins Alves
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Carlos Priminho Pirovani
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil; CIRAD, UMR AGAP, F-34398, Montpellier, France.
| |
Collapse
|
30
|
Liu G, Liu F, Pan L, Wang H, Lu Y, Liu C, Yu S, Hu X. Agronomic, physiological and transcriptional characteristics provide insights into fatty acid biosynthesis in yellowhorn ( Xanthoceras sorbifolium Bunge) during fruit ripening. Front Genet 2024; 15:1325484. [PMID: 38356698 PMCID: PMC10864670 DOI: 10.3389/fgene.2024.1325484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024] Open
Abstract
Yellowhorn (Xanthoceras sorbifolium Bunge) is an oil-bearing tree species in northern China. In this study, we used yellowhorn from Heilongjiang to analyze the morphological and physiological changes of fruit development and conducted transcriptome sequencing. The results showed that the fruit experienced relatively slow growth from fertilization to DAF20 (20 days after flowering). From DAF40 to DAF60, the fruit entered an accelerated development stage, with a rapid increase in both transverse and longitudinal diameters, and the kernel contour developed completely at DAF40. From DAF60 to DAF80, the transverse and vertical diameters of the fruit developed slowly, and the overall measures remained stable until maturity. The soluble sugar, starch, and anthocyanin content gradually accumulated until reaching a peak at DAF80 and then rapidly decreased. RNA-seq analysis revealed differentially expressed genes (DEGs) in the seed coat and kernel, implying that seed components have different metabolite accumulation mechanisms. During the stages of seed kernel development, k-means clustering separated the DEGs into eight sub-classes, indicating gene expression shifts during the fruit ripening process. In subclass 8, the fatty acid biosynthesis pathway was enriched, suggesting that this class was responsible for lipid accumulation in the kernel. WGCNA revealed ten tissue-specific modules for the 12 samples among 20 modules. We identified 54 fatty acid biosynthesis pathway genes across the genome, of which 14 was quantified and confirmed by RT-qPCR. Most genes in the plastid synthesis stage showed high expression during the DAF40-DAF60 period, while genes in the endoplasmic reticulum synthesis stage showed diverse expression patterns. EVM0012847 (KCS) and EVM0002968 (HCD) showed similar high expression in the early stages and low expression in the late stages. EVM0022385 (HCD) exhibited decreased expression from DAF40 to DAF60 and then increased from DAF60 to DAF100. EVM0000575 (KCS) was increasingly expressed from DAF40 to DAF60 and then decreased from DAF60 to DAF100. Finally, we identified transcription factors (TFs) (HB-other, bHLH and ARF) that were predicted to bind to fatty acid biosynthesis pathway genes with significant correlations. These results are conducive to promoting the transcriptional regulation of lipid metabolism and the genetic improvement in terms of high lipid content of yellowhorn.
Collapse
Affiliation(s)
- Guan Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Fengjiao Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Lin Pan
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Hanhui Wang
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Yanan Lu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
| | - Changhua Liu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| | - Song Yu
- State Key Laboratory of Tree Genetics and Breeding, College of Forestry, Northeast Forestry University, Harbin, China
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China
| | - Xiaohang Hu
- College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, China
| |
Collapse
|
31
|
Valentini P, Akula S, Alvarado-Vazquez A, Hallgren J, Fu Z, Racicot B, Braasch I, Thorpe M, Hellman L. Extended Cleavage Specificity of two Hematopoietic Serine Proteases from a Ray-Finned Fish, the Spotted Gar ( Lepisosteus oculatus). Int J Mol Sci 2024; 25:1669. [PMID: 38338947 PMCID: PMC10855939 DOI: 10.3390/ijms25031669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
The extended cleavage specificities of two hematopoietic serine proteases originating from the ray-finned fish, the spotted gar (Lepisosteus oculatus), have been characterized using substrate phage display. The preference for particular amino acids at and surrounding the cleavage site was further validated using a panel of recombinant substrates. For one of the enzymes, the gar granzyme G, a strict preference for the aromatic amino acid Tyr was observed at the cleavable P1 position. Using a set of recombinant substrates showed that the gar granzyme G had a high selectivity for Tyr but a lower activity for cleaving after Phe but not after Trp. Instead, the second enzyme, gar DDN1, showed a high preference for Leu in the P1 position of substrates. This latter enzyme also showed a high preference for Pro in the P2 position and Arg in both P4 and P5 positions. The selectivity for the two Arg residues in positions P4 and P5 suggests a highly specific substrate selectivity of this enzyme. The screening of the gar proteome with the consensus sequences obtained by substrate phage display for these two proteases resulted in a very diverse set of potential targets. Due to this diversity, a clear candidate for a specific immune function of these two enzymes cannot yet be identified. Antisera developed against the recombinant gar enzymes were used to study their tissue distribution. Tissue sections from juvenile fish showed the expression of both proteases in cells in Peyer's patch-like structures in the intestinal region, indicating they may be expressed in T or NK cells. However, due to the lack of antibodies to specific surface markers in the gar, it has not been possible to specify the exact cellular origin. A marked difference in abundance was observed for the two proteases where gar DDN1 was expressed at higher levels than gar granzyme G. However, both appear to be expressed in the same or similar cells, having a lymphocyte-like appearance.
Collapse
Affiliation(s)
- Paolo Valentini
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden; (P.V.); (S.A.); (Z.F.); (M.T.)
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden; (P.V.); (S.A.); (Z.F.); (M.T.)
| | - Abigail Alvarado-Vazquez
- Department of Medical Biochemistry and Microbiology, Uppsala University Biomedical Centre (BMC), P.O. Box 582, SE-751 23 Uppsala, Sweden; (A.A.-V.); (J.H.)
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, Uppsala University Biomedical Centre (BMC), P.O. Box 582, SE-751 23 Uppsala, Sweden; (A.A.-V.); (J.H.)
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden; (P.V.); (S.A.); (Z.F.); (M.T.)
| | - Brett Racicot
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48825, USA; (B.R.); (I.B.)
| | - Ingo Braasch
- Department of Integrative Biology, Michigan State University, East Lansing, MI 48825, USA; (B.R.); (I.B.)
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI 48825, USA
| | - Michael Thorpe
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden; (P.V.); (S.A.); (Z.F.); (M.T.)
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, P.O. Box 596, SE-751 24 Uppsala, Sweden; (P.V.); (S.A.); (Z.F.); (M.T.)
| |
Collapse
|
32
|
Ferreira MM, Farias KS, Zugaib M, Alves AMM, Amaral GV, Santos MLDC, Freitas ADS, Santana BCG, dos Santos Júnior SL, Mora-Ocampo IY, Santos AS, da Silva MF, Andrade BS, Pirovani CP. TcSERPIN, an inhibitor that interacts with cocoa defense proteins and has biotechnological potential against human pathogens. FRONTIERS IN PLANT SCIENCE 2024; 15:1337750. [PMID: 38348273 PMCID: PMC10859438 DOI: 10.3389/fpls.2024.1337750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024]
Abstract
In plants, serpins are a superfamily of serine and cysteine protease inhibitors involved in stress and defense mechanisms, with potential for controlling agricultural pests, making them important biotechnological tools. The objective of this study was to characterize a serpin from Theobroma cacao, called TcSERPIN, to identify its endogenous targets and determine its function and biotechnological potential. TcSERPIN has 390 amino acid residues and shows conservation of the main active site, RCL. Cis-elements related to light, stress, hormones, anaerobic induction, cell cycle regulation and defense have been identified in the gene's regulatory region. TcSERPIN transcripts are accumulated in different tissues of Theobroma cacao. Furthermore, in plants infected with Moniliophtora perniciosa and Phytophthora palmivora, the expression of TcSERPIN was positively regulated. The protein spectrum, rTcSERPIN, reveals a typical β-sheet pattern and is thermostable at pH 8, but loses its structure with temperature increases above 66°C at pH 7. At the molar ratios of 0.65 and 0.49, rTcSERPIN inhibited 55 and 28% of the activity of papain from Carica papaya and trypsin from Sus scrofa, respectively. The protease trap containing immobilized rTcSERPIN captured endogenous defense proteins from cocoa extracts that are related to metabolic pathways, stress and defense. The evaluation of the biotechnological potential against geohelminth larvae showed that rTcSERPIN and rTcCYS4 (Theobroma cacao cystatin 4) reduced the movement of larvae after 24 hours. The results of this work show that TcSERPIN has ideal biochemical characteristics for biotechnological applications, as well as potential for studies of resistance to phytopathogens of agricultural crops.
Collapse
Affiliation(s)
- Monaliza Macêdo Ferreira
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Keilane Silva Farias
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Maria Zugaib
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Akyla Maria Martins Alves
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Geiseane Velozo Amaral
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Maria Luíza do Carmo Santos
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Andria dos Santos Freitas
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Brenda Conceição Guimarães Santana
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Sérgio Liberato dos Santos Júnior
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Irma Yuliana Mora-Ocampo
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Ariana Silva Santos
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Marcelo Fernandes da Silva
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| | - Bruno Silva Andrade
- Laboratório de Bioinformática e Química Computacional (LBQC), Departamento de Ciências Biológicas, Universidade Estadual do Sudoeste da Bahia (UESB), Jequié, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Centro de Biotecnologia e Genética (CBG), Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz (UESC), Ilhéus, Bahia, Brazil
| |
Collapse
|
33
|
Codognoto VM, de Souza FF, Cataldi TR, Labate CA, de Camargo LS, Scott C, da Rosa Filho RR, de Carvalho NAT, Oba E. Uterine secretome: What do the proteins say about maternal-fetal communication in buffaloes? J Proteomics 2024; 290:105023. [PMID: 37838095 DOI: 10.1016/j.jprot.2023.105023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 10/01/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023]
Abstract
The aim was to compare the UF proteomics of pregnant and non-pregnant buffalo during early pregnancy. Forty-four females were submitted to hormonal estrus synchronization and randomly divided into two groups: pregnant (n = 30) and non-pregnant (n = 14). The pregnant group was artificially inseminated and divided into a further two groups: P12 (n = 15) and P18 (n = 15). Conceptus and uterine fluid samples were collected during slaughter at, respectively, 12 and 18 days after insemination. Of all the inseminated females, only eight animals in each group were pregnant, which reduced the sample of the groups to P12 (n = 8) and P18 (n = 8). The non-pregnant group was also re-divided into two groups at the end of synchronization: NP12 (n = 7) and NP18 (n = 7). The UF samples were processed for proteomic analysis. The results were submitted to multivariate and univariate analysis. A total of 1068 proteins were found in the uterine fluid in both groups. Our results describe proteins involved in the conceptus elongation and maternal recognition of pregnancy, and their action was associated with cell growth, endometrial remodeling, and modulation of immune and antioxidant protection, mechanisms necessary for embryonic maintenance in the uterine environment. SIGNIFICANCE: Uterine fluid is a substance synthesized and secreted by the endometrium that plays essential roles during pregnancy in ruminants, contributing significantly to embryonic development. Understanding the functions that the proteins present in the UF perform during early pregnancy, a period marked by embryonic implantation, and maternal recognition of pregnancy is of fundamental importance to understanding the mechanisms necessary for the maintenance of pregnancy. The present study characterized and compared the UF proteome at the beginning of pregnancy in pregnant and non-pregnant buffaloes to correlate the functions of the proteins and the stage of development of the conceptus and unravel their processes in maternal recognition of pregnancy. The proteins found were involved in cell growth and endometrial remodeling, in addition to acting in the immunological protection of the conceptus and performing antioxidant actions necessary for establishing a pregnancy.
Collapse
Affiliation(s)
- Viviane Maria Codognoto
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Fabiana Ferreira de Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Thais Regiani Cataldi
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Carlos Alberto Labate
- Laboratório Max Feffer de Genética de Plantas, Departamento de Genética, Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo, Piracicaba, Brazil
| | - Laíza Sartori de Camargo
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Caroline Scott
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil
| | - Roberto Rodrigues da Rosa Filho
- Department of Animal Reproduction - School of Veterinary Medicine and Animal Science, University of São Paulo, campus São Paulo, São Paulo, Brazil
| | - Nélcio Antonio Tonizza de Carvalho
- Research and Development Unit of Registro / Diversified Animal Science Research Center / Institute of Animal Science, Registro, São Paulo, Brazil
| | - Eunice Oba
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, Universidade Estadual Paulista, UNESP, Botucatu, São Paulo, Brazil.
| |
Collapse
|
34
|
Codognoto VM, de Souza FF, Cataldi TR, Labate CA, de Camargo LS, Esteves Trindade PH, da Rosa Filho RR, de Oliveira DJB, Oba E. Proteomics approach reveals urinary markers for early pregnancy diagnosis in buffaloes. J Proteomics 2024; 290:105036. [PMID: 37879565 DOI: 10.1016/j.jprot.2023.105036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 09/21/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023]
Abstract
This study aimed to compare urine proteomics from non- and pregnant buffaloes in order to identify potential biomarkers of early pregnancy. Forty-four females underwent hormonal ovulation synchronization and were randomly divided into two experimental groups: inseminated (n = 30) and non-inseminated (n = 14). The pregnant females were further divided into two groups: pregnant at Day 12 (P12; n = 8) and at Day 18 (P18; n = 8) post-ovulation. The non-pregnant group was also subdivided into two groups: non-pregnant at Day 12 (NP12; n = 7) and at Day 18 (NP18; n = 7). Urine was collected from all females on Days 12 or 18. The samples were processed for proteomics. A total of 798 proteins were reported in the urine considering all groups. The differential proteins play essential roles during pregnancy, acting in cellular transport and metabolism, endometrial remodeling, embryonic protection, and degradation of defective proteins. We suggest that some proteins from our study can be considered biomarkers for early pregnancy diagnosis, since they were increased in pregnant buffaloes. SIGNIFICANCE: Macromolecules have been studied for early pregnancy diagnosis, aiming to increase reproductive efficiency in cattle and buffaloes. Direct methods such as rectal palpation and ultrasonography have been considered late. Thus, this study aimed to compare urine proteomics from non- and pregnant buffaloes to identify potential biomarkers of early pregnancy. The differential proteins found in our study play essential roles during pregnancy, acting in cellular transport and metabolism, endometrial remodeling, embryonic protection, and degradation of defective proteins. We suggest that these proteins can be considered possible biomarkers for early pregnancy diagnosis since they were increased in the pregnant buffaloes.
Collapse
Affiliation(s)
- Viviane M Codognoto
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Fabiana F de Souza
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Thais R Cataldi
- Department of Genetic, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Carlos A Labate
- Department of Genetic, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Laíza S de Camargo
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Pedro H Esteves Trindade
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Roberto R da Rosa Filho
- Department of Animal Reproduction, School of Veterinary Medicine and Animal Science, University of São Paulo, Campus São Paulo, São Paulo, Brazil
| | - Diego J B de Oliveira
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil
| | - Eunice Oba
- Department of Veterinary Surgery and Animal Reproduction, School of Veterinary Medicine and Animal Science, São Paulo State University, UNESP, Botucatu, São Paulo, Brazil.
| |
Collapse
|
35
|
Kopeć P, Krzewska M, Płażek A. Two-Dimensional Gel Electrophoresis in Studies of Flower and Leaf Proteome of Common Buckwheat. Methods Mol Biol 2024; 2791:113-119. [PMID: 38532098 DOI: 10.1007/978-1-0716-3794-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Two-dimensional gel electrophoresis (2-DE) is a proteomic tool used for the separation of protein mixtures according to protein isoelectric point and molecular mass. Although gel-free quantitative and qualitative proteomic study techniques are now available, 2-DE remains a useful analytical tool. The presented protocol was performed to analyze the flower and leaf proteome of common buckwheat using 24 cm immobilized pH gradient strips (pH 4-7) and visualization of proteins on gels via colloidal Coomassie G-250 staining.
Collapse
Affiliation(s)
- Przemysław Kopeć
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland.
| | - Monika Krzewska
- The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Kraków, Poland
| | - Agnieszka Płażek
- Department of Physiology, Breeding of Plant and Seed Science, University of Agriculture, Cracow, Poland
| |
Collapse
|
36
|
Zilkenat S, Kim E, Dietsche T, Monjarás Feria JV, Torres-Vargas CE, Mebrhatu MT, Wagner S. Blue Native PAGE Analysis of Bacterial Secretion Complexes. Methods Mol Biol 2024; 2715:331-362. [PMID: 37930539 DOI: 10.1007/978-1-0716-3445-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Bacterial protein secretion systems serve to translocate substrate proteins across up to three biological membranes, a task accomplished by hydrophobic, membrane-spanning macromolecular complexes. The overexpression, purification, and biochemical characterization of these complexes is often difficult, thus impeding progress in understading structure and function of these systems. Blue native (BN) polyacrylamide gel electrophoresis (PAGE) allows for the investigation of these transmembrane complexes right from their originating membranes, without the need of long preparative steps, and is amenable to the parallel characterization of a number of samples under near-native conditions. Here, we present protocols for sample preparation, one-dimensional BN PAGE and two-dimensional BN/SDS PAGE, as well as for downstream analysis by staining, immunoblotting, and mass spectrometry on the example of the type III secretion system encoded on Salmonella pathogenicity island 1.
Collapse
Affiliation(s)
- Susann Zilkenat
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Eunjin Kim
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Tobias Dietsche
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Julia V Monjarás Feria
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Claudia E Torres-Vargas
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Mehari Tesfazgi Mebrhatu
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany
| | - Samuel Wagner
- Section of Cellular and Molecular Microbiology, Interfaculty Institute of Microbiology and Infection Medicine (IMIT), University of Tübingen, Tübingen, Germany.
- German Center for Infection Research (DZIF), Partner-site Tübingen, Tübingen, Germany.
- Excellence Cluster "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany.
| |
Collapse
|
37
|
Thorpe M, Akula S, Fu Z, Hellman L. The Extended Cleavage Specificity of Channel Catfish Granzyme-like II, A Highly Specific Elastase, Expressed by Natural Killer-like Cells. Int J Mol Sci 2023; 25:356. [PMID: 38203526 PMCID: PMC10778636 DOI: 10.3390/ijms25010356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/20/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
The extended cleavage specificity of catfish granzyme-like II has been characterized using substrate phage display. The preference for particular amino acids at and surrounding the cleavage site was further validated by using a panel of recombinant substrates. This serine protease, which has previously been isolated as cDNA from a catfish natural killer-like cell line showed a preference for Ala in the P1 position of the substrate, and for multiple basic amino acids N-terminally of the cleavage site. A closely related zebrafish serine protease (zebrafish esterase-like) showed a very similar cleavage specificity, indicating an evolutionary conservation of this protease specificity among various fish species. Two catfish serine proteases, originating from NK-like cells, have now been isolated and characterized. One of them is highly specific met-ase with similar characteristics as the mammalian granzyme M. This enzyme may be involved in the induction of apoptosis in virus-infected cells, with a potential target in (catfish) caspase 6. In contrast to catfish granzyme-like I, the second enzyme analyzed here does not seem to have a direct counterpart in mammalian NK cells, and its role in the immune function of catfish NK cells is, therefore, still not known. However, this enzyme seems to be able to cleave a number of cytoskeletal proteins, indicating a separate strategy to induce apoptosis in target cells. Both of these enzymes are very interesting targets for further studies of their roles in catfish immunity, as enzymes with similar specificities have also been identified in zebrafish.
Collapse
Affiliation(s)
| | | | | | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden; (M.T.); (S.A.); (Z.F.)
| |
Collapse
|
38
|
Murphy TE, Harris JC, Rees BB. Hypoxia-inducible factor 1 alpha protein increases without changes in mRNA during acute hypoxic exposure of the Gulf killifish, Fundulus grandis. Biol Open 2023; 12:bio060167. [PMID: 38116983 PMCID: PMC10805151 DOI: 10.1242/bio.060167] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 10/23/2023] [Indexed: 12/21/2023] Open
Abstract
The hypoxia inducible factor 1 (HIF1) is a central regulator of the molecular responses of animals to low oxygen. While the hypoxia-responsiveness of HIF1 is generally attributed to the stabilization of the alpha protein subunit (HIF1α) at low oxygen, several studies on fish report increased tissue levels of HIF1A mRNA during hypoxia, suggesting transcriptional regulation. In the current study, HIF1α protein and HIF1A mRNA were determined in parallel in tissues of Gulf killifish, Fundulus grandis, exposed to short-term hypoxia (24 h at 1 mg O2 l-1). HIF1α protein was higher in brain, ovary, and skeletal muscle from fish exposed to hypoxia compared with normoxic controls by 6 h, and it remained elevated in brain and ovary at 24 h. In contrast, HIF1A mRNA levels were unaffected by hypoxia in any tissue. Moreover, HIF1α protein and HIF1A mRNA levels in the same tissues were not correlated with one another during either normoxia or hypoxia. Hence, an increase in HIF1α protein does not depend upon an increase in HIF1A mRNA during acute exposure to low oxygen in this species. The results support the widely accepted mechanism of post-translational protein stabilization, rather than new transcription, during the initial response of fish to hypoxia.
Collapse
Affiliation(s)
- Taylor E. Murphy
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, USA
| | - Jasmine C. Harris
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, USA
| | - Bernard B. Rees
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, 70148, USA
| |
Collapse
|
39
|
Akula S, Welinder C, Fu Z, Olsson AK, Hellman L. Identification of the Major Protein Components of Human and Cow Saliva. Int J Mol Sci 2023; 24:16838. [PMID: 38069163 PMCID: PMC10705902 DOI: 10.3390/ijms242316838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023] Open
Abstract
Cows produce saliva in very large quantities to lubricate and facilitate food processing. Estimates indicate an amount of 50-150 L per day. Human saliva has previously been found to contain numerous antibacterial components, such as lysozyme, histatins, members of the S-100 family and lactoferrin, to limit pathogen colonization. Cows depend on a complex microbial community in their digestive system for food digestion. Our aim here was to analyze how this would influence the content of their saliva. We therefore sampled saliva from five humans and both nose secretions and saliva from six cows and separated the saliva on SDS-PAGE gradient gels and analyzed the major protein bands with LC-MS/MS. The cow saliva was found to be dominated by a few major proteins only, carbonic anhydrase 6, a pH-stabilizing enzyme and the short palate, lung and nasal epithelium carcinoma-associated protein 2A (SPLUNC2A), also named bovine salivary protein 30 kDa (BSP30) or BPIFA2B. This latter protein has been proposed to play a role in local antibacterial response by binding bacterial lipopolysaccharides (LPSs) and inhibiting bacterial growth but may instead, according to more recent data, primarily have surfactant activity. Numerous peptide fragments of mucin-5B were also detected in different regions of the gel in the MS analysis. Interestingly, no major band on gel was detected representing any of the antibacterial proteins, indicating that cows may produce them at very low levels that do not harm the microbial flora of their digestive system. The nose secretions of the cows primarily contained the odorant protein, a protein thought to be involved in enhancing the sense of smell of the olfactory receptors and the possibility of quickly sensing potential poisonous food components. High levels of secretory IgA were also found in one sample of cow mouth drippings, indicating a strong upregulation during an infection. The human saliva was more complex, containing secretory IgA, amylase, carbonic anhydrase 6, lysozyme, histatins and a number of other less abundant proteins, indicating a major difference to the saliva of cows that show very low levels of antibacterial components, most likely to not harm the microbial flora of the rumen.
Collapse
Affiliation(s)
- Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.)
| | - Charlotte Welinder
- Department of Clinical Sciences Lund, Division of Mass Spectrometry, Lund University, SE-221 00 Lund, Sweden;
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.)
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Box 582, SE-751 23 Uppsala, Sweden;
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, The Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden; (S.A.); (Z.F.)
| |
Collapse
|
40
|
Dougan KE, Deng ZL, Wöhlbrand L, Reuse C, Bunk B, Chen Y, Hartlich J, Hiller K, John U, Kalvelage J, Mansky J, Neumann-Schaal M, Overmann J, Petersen J, Sanchez-Garcia S, Schmidt-Hohagen K, Shah S, Spröer C, Sztajer H, Wang H, Bhattacharya D, Rabus R, Jahn D, Chan CX, Wagner-Döbler I. Multi-omics analysis reveals the molecular response to heat stress in a "red tide" dinoflagellate. Genome Biol 2023; 24:265. [PMID: 37996937 PMCID: PMC10666404 DOI: 10.1186/s13059-023-03107-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 11/10/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND "Red tides" are harmful algal blooms caused by dinoflagellate microalgae that accumulate toxins lethal to other organisms, including humans via consumption of contaminated seafood. These algal blooms are driven by a combination of environmental factors including nutrient enrichment, particularly in warm waters, and are increasingly frequent. The molecular, regulatory, and evolutionary mechanisms that underlie the heat stress response in these harmful bloom-forming algal species remain little understood, due in part to the limited genomic resources from dinoflagellates, complicated by the large sizes of genomes, exhibiting features atypical of eukaryotes. RESULTS We present the de novo assembled genome (~ 4.75 Gbp with 85,849 protein-coding genes), transcriptome, proteome, and metabolome from Prorocentrum cordatum, a globally abundant, bloom-forming dinoflagellate. Using axenic algal cultures, we study the molecular mechanisms that underpin the algal response to heat stress, which is relevant to current ocean warming trends. We present the first evidence of a complementary interplay between RNA editing and exon usage that regulates the expression and functional diversity of biomolecules, reflected by reduction in photosynthesis, central metabolism, and protein synthesis. These results reveal genomic signatures and post-transcriptional regulation for the first time in a pelagic dinoflagellate. CONCLUSIONS Our multi-omics analyses uncover the molecular response to heat stress in an important bloom-forming algal species, which is driven by complex gene structures in a large, high-G+C genome, combined with multi-level transcriptional regulation. The dynamics and interplay of molecular regulatory mechanisms may explain in part how dinoflagellates diversified to become some of the most ecologically successful organisms on Earth.
Collapse
Affiliation(s)
- Katherine E Dougan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhi-Luo Deng
- Helmholtz-Center for Infection Research (HZI), Inhoffenstraße 7, Braunschweig, 38124, Germany
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | - Carsten Reuse
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Boyke Bunk
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Yibi Chen
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Juliane Hartlich
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Karsten Hiller
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Uwe John
- Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Am Handelshafen 12, 27570, Bremerhaven, Germany
- Helmholtz Institute for Functional Marine Biodiversity at the University of Oldenburg (HIFMB), Ammerländer Heerstraße 231, 26129, Oldenburg, Germany
| | - Jana Kalvelage
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | - Johannes Mansky
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Meina Neumann-Schaal
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Jörg Overmann
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Jörn Petersen
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Selene Sanchez-Garcia
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Kerstin Schmidt-Hohagen
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Sarah Shah
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Cathrin Spröer
- German Culture Collection for Microorganisms and Cell Cultures (DSMZ), Inhoffenstraße 7B, 38124, Braunschweig, Germany
| | - Helena Sztajer
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Hui Wang
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
| | - Dieter Jahn
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany
| | - Cheong Xin Chan
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Irene Wagner-Döbler
- Braunschweig Center for Systems Biology (BRICS), Technische Universität Braunschweig, Rebenring 56, 38106, Brunswick, Germany.
| |
Collapse
|
41
|
de Almeida NM, de Almeida AAF, de Almeida Santos N, Mora-Ocampo IY, Pirovani CP. Leaf proteomic profiles in cacao scion-rootstock combinations tolerant and intolerant to cadmium toxicity. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:107987. [PMID: 37722279 DOI: 10.1016/j.plaphy.2023.107987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/20/2023]
Abstract
Cd contamination in cacao beans is one of the major problems faced by cocoa producing countries in Latin America. Cacao scion-rootstock combinations influence the Cd accumulation in the shoot of the plant. The objective of this work was to carry out a comparative analysis between cacao scion rootstock combinations (CCN 51/BN 34, CCN 51/PS 13.19, CCN 51/PH 16 and CCN 51/CCN 51), contrasting for tolerance to cadmium (Cd) toxicity, by means of leaf proteomic profiles, in order to elucidate molecular mechanisms involved in tolerance to Cd toxicity. Cacao scion-rootstock combinations were grown in soil with 150 mg Cd kg-1 soil, together with the control treatment. Leaf samples were collected 96 h after treatments were applied. There were alterations in the leaf proteome of the cacao scion-rootstock combinations, whose molecular responses to Cd toxicity varied depending on the combination. Leaf proteomic analyzes provided important information regarding the molecular mechanisms involved in the tolerance and intolerance of cacao scion-rootstock combinations to Cd toxicity. Enzymatic and non-enzymatic antioxidant systems, efficient for eliminating ROS, especially the expressions of APX and SOD, in addition to the increase in the abundance of metalloproteins, such as ferredoxins, rubredoxin, ALMT, Trx-1 and ABC-transporter were key mechanisms used in the Cd detoxification in cacao scion-rootstock combinations tolerant to Cd toxicity. Carboxylic acid metabolism, glucose activation and signal transduction were also important processes in the responses of cacao scion-rootstock combinations to Cd toxicity. The results confirmed CCN 51/BN 34 as a cacao scion-rootstock combination efficient in tolerance to Cd toxicity.
Collapse
Affiliation(s)
- Nicolle Moreira de Almeida
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Alex-Alan Furtado de Almeida
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Nayara de Almeida Santos
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Irma Yuliana Mora-Ocampo
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| | - Carlos Priminho Pirovani
- Department of Biological Sciences, State University of Santa Cruz, Highway Jorge Amado, Km 16, 45662-900, Ilhéus, BA, Brazil.
| |
Collapse
|
42
|
Meene A, Gierse L, Schwaiger T, Karte C, Schröder C, Höper D, Wang H, Groß V, Wünsche C, Mücke P, Kreikemeyer B, Beer M, Becher D, Mettenleiter TC, Riedel K, Urich T. Archaeome structure and function of the intestinal tract in healthy and H1N1 infected swine. Front Microbiol 2023; 14:1250140. [PMID: 37779690 PMCID: PMC10534045 DOI: 10.3389/fmicb.2023.1250140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Background Methanogenic archaea represent a less investigated and likely underestimated part of the intestinal tract microbiome in swine. Aims/Methods This study aims to elucidate the archaeome structure and function in the porcine intestinal tract of healthy and H1N1 infected swine. We performed multi-omics analysis consisting of 16S rRNA gene profiling, metatranscriptomics and metaproteomics. Results and discussion We observed a significant increase from 0.48 to 4.50% of archaea in the intestinal tract microbiome along the ileum and colon, dominated by genera Methanobrevibacter and Methanosphaera. Furthermore, in feces of naïve and H1N1 infected swine, we observed significant but minor differences in the occurrence of archaeal phylotypes over the course of an infection experiment. Metatranscriptomic analysis of archaeal mRNAs revealed the major methanogenesis pathways of Methanobrevibacter and Methanosphaera to be hydrogenotrophic and methyl-reducing, respectively. Metaproteomics of archaeal peptides indicated some effects of the H1N1 infection on central metabolism of the gut archaea. Conclusions/Take home message Finally, this study provides the first multi-omics analysis and high-resolution insights into the structure and function of the porcine intestinal tract archaeome during a non-lethal Influenza A virus infection of the respiratory tract, demonstrating significant alterations in archaeal community composition and central metabolic functions.
Collapse
Affiliation(s)
- Alexander Meene
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Laurin Gierse
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | | | | | - Dirk Höper
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Haitao Wang
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Verena Groß
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Christine Wünsche
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Pierre Mücke
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Bernd Kreikemeyer
- Institute for Medical Microbiology, Virology and Hygiene, Rostock University Medical Centre, Rostock, Germany
| | - Martin Beer
- Friedrich-Loeffler-Institut, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | | | - Katharina Riedel
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Tim Urich
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
43
|
Bhuvaragavan S, Reshma T, Hilda K, Meenakumari M, Sruthi K, Nivetha R, Janarthanan S. Predominant contribution of an endogenous cellulase (OlCel) to the cellulolysis in the digestive system of larvae of banana pseudostem weevil, Odoiporus longicollis (Coleoptera: Curculionidae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 114:e22031. [PMID: 37322608 DOI: 10.1002/arch.22031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 06/03/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Insects have evolved with effective strategies to utilize cellulose as an energy source by possessing cellulolytic enzymes which can be used as an optimal resource in the bioenergy sector. The study was aimed at evaluating the cellulolytic enzyme in the larval gut of the banana pseudostem weevil, Odoiporus longicollis Olivier (Coleoptera: Curculionidae). Primarily, cellulase activity was localized along the gut, in which the midgut showed the highest activity (2858 U/mg). The thermo-tolerance of cellulase activity was found to be up to 80°C (highest at 60°C), and the enzyme was stable at a pH between 5 and 6. Various concentrations of divalent cations (CaCl2 , MgCl2 , and CuCl2 ) have differential enhancing and inhibitory effects on cellulase activity. The cellulase (OlCel) was purified using anion exchange chromatography. The molecular weight of the cellulase was determined to be 47 kDa. The physicochemical parameters of the purified enzyme were similar to that of enzyme activity of whole gut extract. Mass spectrometry results identified sequence similarities of purified cellulase to the glycosyl hydrolase family 5 (GHF5) family. The gut microbial cellulase activity as exogenous source showed no competence compared with the endogenous activity.
Collapse
Affiliation(s)
| | | | | | | | - Kannan Sruthi
- Department of Zoology, University of Madras, Chennai, India
| | | | | |
Collapse
|
44
|
Hartl N, Jürgens DC, Carneiro S, König AC, Xiao X, Liu R, Hauck SM, Merkel OM. Protein corona investigations of polyplexes with varying hydrophobicity - From method development to in vitro studies. Int J Pharm 2023; 643:123257. [PMID: 37482228 DOI: 10.1016/j.ijpharm.2023.123257] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/11/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
In the field of non-viral drug delivery, polyplexes (PXs) represent an advanced investigated and highly promising tool for the delivery of nucleic acids. Upon encountering physiological fluids, they adsorb biological molecules to form a protein corona (PC), that influence PXs biodistribution, transfection efficiencies and targeting abilities. In an effort to understand protein - PX interactions and the effect of PX material on corona composition, we utilized cationic branched 10 kDa polyethyleneimine (b-PEI) and a hydrophobically modified nylon-3 polymer (NM0.2/CP0.8) within this study to develop appropriate methods for PC investigations. A centrifugation procedure for isolating hard corona - PX complexes (PCPXs) from soft corona proteins after incubating the PXs in fetal bovine serum (FBS) for PC formation was successfully optimized and the identification of proteins by a liquid chromatography-tandem mass spectrometry (LC-MS-MS) method clearly demonstrated that the PC composition is affected by the underlying PXs material. With regard to especially interesting functional proteins, which might be able to induce active targeting effects, several candidates could be detected on b-PEI and NM0.2/CP0.8 PXs. These results are of high interest to better understand how the design of PXs impacts the PC composition and subsequently PCPXs-cell interactions to enable precise adjustment of PXs for targeted drug delivery.
Collapse
Affiliation(s)
- Natascha Hartl
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - David C Jürgens
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Simone Carneiro
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Ann-Christine König
- Metbolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Heidemannsstr. 1, 80939 Munich, Germany
| | - Ximian Xiao
- East China University of Science and Technology, 30 Meilong Rd, Shanghai, China
| | - Runhui Liu
- East China University of Science and Technology, 30 Meilong Rd, Shanghai, China
| | - Stefanie M Hauck
- Metbolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health GmbH, Heidemannsstr. 1, 80939 Munich, Germany
| | - Olivia M Merkel
- Ludwig-Maximilians-University, Pharmaceutical Technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany.
| |
Collapse
|
45
|
Dirnberger B, Korona D, Popovic R, Deery MJ, Barber H, Russell S, Lilley KS. Enrichment of Membrane Proteins for Downstream Analysis Using Styrene Maleic Acid Lipid Particles (SMALPs) Extraction. Bio Protoc 2023; 13:e4728. [PMID: 37575399 PMCID: PMC10415199 DOI: 10.21769/bioprotoc.4728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/17/2023] [Accepted: 05/08/2023] [Indexed: 08/15/2023] Open
Abstract
Integral membrane proteins are an important class of cellular proteins. These take part in key cellular processes such as signaling transducing receptors to transporters, many operating within the plasma membrane. More than half of the FDA-approved protein-targeting drugs operate via interaction with proteins that contain at least one membrane-spanning region, yet the characterization and study of their native interactions with therapeutic agents remains a significant challenge. This challenge is due in part to such proteins often being present in small quantities within a cell. Effective solubilization of membrane proteins is also problematic, with the detergents typically employed in solubilizing membranes leading to a loss of functional activity and key interacting partners. In recent years, alternative methods to extract membrane proteins within their native lipid environment have been investigated, with the aim of producing functional nanodiscs, maintaining protein-protein and protein-lipid interactions. A promising approach involves extracting membrane proteins in the form of styrene maleic acid lipid particles (SMALPs) that allow the retention of their native conformation. This extraction method offers many advantages for further protein analysis and allows the study of the protein interactions with other molecules, such as drugs. Here, we describe a protocol for efficient SMALP extraction of functionally active membrane protein complexes within nanodiscs. We showcase the method on the isolation of a low copy number plasma membrane receptor complex, the nicotinic acetylcholine receptor (nAChR), from adult Drosophila melanogaster heads. We demonstrate that these nanodiscs can be used to study native receptor-ligand interactions. This protocol can be applied across many biological scenarios to extract the native conformations of low copy number integral membrane proteins.
Collapse
Affiliation(s)
- Benedict Dirnberger
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Dagmara Korona
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Rebeka Popovic
- MRC Toxicology Unit, Gleeson Building, University of Cambridge, Cambridge, United Kingdom
| | - Michael J. Deery
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Helen Barber
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Steven Russell
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, United Kingdom
| | - Kathryn S. Lilley
- Cambridge Centre for Proteomics, Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
46
|
Guerra L, Ureta M, Romanini D, Woitovich N, Gómez-Zavaglia A, Clementz A. Enzymatic synthesis of fructooligosaccharides: From carrot discards to prebiotic juice. Food Res Int 2023; 170:112991. [PMID: 37316066 DOI: 10.1016/j.foodres.2023.112991] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/12/2023] [Accepted: 05/15/2023] [Indexed: 06/16/2023]
Abstract
A great volume of carrots is discarded daily worldwide because they do not meet the required shape and size standards. However, they have the same nutritional characteristics as those commercialized, and can be used in different food products. Carrot juice is an excellent matrix for the development of functional foods with prebiotic compounds, such as fructooligosaccharides (FOS). In this work, the production of FOS in situ in carrot juice was evaluated using a fructosyltransferase from Aspergillus niger, produced by solid-state fermentation on carrot bagasse. The enzyme was partially purified 12.5-fold with a total yield of 93 %, and specific activity of 59 U/mg of protein by Sephadex G-105 molecular exclusion chromatography. It was identified by nano LC-MS/MS as a β-fructofuranosidase with a 63.6 kDa MW and it allowed obtaining a FOS yield of 31.6 % in carrot juice. The result was a prebiotic juice with a final concentration of 32.4 mg/mL of FOS. Using the commercial enzyme Viscozyme L a higher yield of FOS (39.8 %) was obtained in carrot juice, corresponding to a total amount of FOS of 54.6 mg/mL. This circular economy scheme allowed the obtention of a functional juice, that may contribute to improve health of consumers.
Collapse
Affiliation(s)
- Laureana Guerra
- Institute of Biotechnological and Chemical Processes (IPROBYQ, CCT-CONICET Rosario, National University of Rosario (UNR)), Rosario S2002RLK, Argentina.
| | - Micaela Ureta
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata B1900AJJ, Argentina
| | - Diana Romanini
- Institute of Biotechnological and Chemical Processes (IPROBYQ, CCT-CONICET Rosario, National University of Rosario (UNR)), Rosario S2002RLK, Argentina
| | - Nadia Woitovich
- Institute of Biotechnological and Chemical Processes (IPROBYQ, CCT-CONICET Rosario, National University of Rosario (UNR)), Rosario S2002RLK, Argentina
| | - Andrea Gómez-Zavaglia
- Center for Research and Development in Food Cryotechnology (CIDCA, CCT-CONICET La Plata), La Plata B1900AJJ, Argentina
| | - Adriana Clementz
- Institute of Biotechnological and Chemical Processes (IPROBYQ, CCT-CONICET Rosario, National University of Rosario (UNR)), Rosario S2002RLK, Argentina
| |
Collapse
|
47
|
Aybay E, Ryu J, Fu Z, Akula S, Enriquez EM, Hallgren J, Wernersson S, Olsson AK, Hellman L. Extended cleavage specificities of human granzymes A and K, two closely related enzymes with conserved but still poorly defined functions in T and NK cell-mediated immunity. Front Immunol 2023; 14:1211295. [PMID: 37497217 PMCID: PMC10366535 DOI: 10.3389/fimmu.2023.1211295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/23/2023] [Indexed: 07/28/2023] Open
Abstract
Granzymes A and K are two highly homologous serine proteases expressed by mammalian cytotoxic T cells (CTL) and natural killer cells (NK). Granzyme A is the most abundant of the different granzymes (gzms) expressed by these two cell types. Gzms A and K are found in all jawed vertebrates and are the most well conserved of all hematopoietic serine proteases. Their potential functions have been studied extensively for many years, however, without clear conclusions. Gzm A was for many years thought to serve as a key component in the defense against viral infection by the induction of apoptosis in virus-infected cells, similar to gzm B. However, later studies have questioned this role and instead indicated that gzm A may act as a potent inducer of inflammatory cytokines and chemokines. Gzms A and K form clearly separate branches in a phylogenetic tree indicating separate functions. Transcriptional analyses presented here demonstrate the presence of gzm A and K transcripts in both CD4+ and CD8+ T cells. To enable screening for their primary biological targets we have made a detailed analysis of their extended cleavage specificities. Phage display analysis of the cleavage specificity of the recombinant enzymes showed that both gzms A and K are strict tryptases with high selectivity for Arg over Lys in the P1 position. The major differences in the specificities of these two enzymes are located N-terminally of the cleavage site, where gzm A prefers small amino acids such as Gly in the P3 position and shows a relatively relaxed selectivity in the P2 position. In contrast, gzm K prefers large amino acids such as Phe, Tyr, and Trp in both the P2 and P3 positions and does not tolerate negatively charged residues in the P2 position. This major distinction in extended specificities is likely reflected also in preferred in vivo targets of these two enzymes. This information can now be utilized for high-precision screening of primary targets for gzms A and K in search of their highly conserved but still poorly defined functions in vertebrate immunity.
Collapse
Affiliation(s)
- Erdem Aybay
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
| | - Jinhye Ryu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
| | - Zhirong Fu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
| | - Srinivas Akula
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erika Mendez Enriquez
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala, Sweden
| | - Jenny Hallgren
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala, Sweden
| | - Sara Wernersson
- Department of Anatomy, Physiology, and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna-Karin Olsson
- Department of Medical Biochemistry and Microbiology, The Biomedical Center, Uppsala, Sweden
| | - Lars Hellman
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, The Biomedical Center, Uppsala, Sweden
| |
Collapse
|
48
|
Meiser CK, Klenner L, Balczun C, Schaub GA. Bacteriolytic activity in saliva of the hematophagous Triatoma infestans (Reduviidae) and novel characterization and expression site of a third lysozyme. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22013. [PMID: 36973856 DOI: 10.1002/arch.22013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/19/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Saliva of hematophagous insects contains many different compounds, mainly acting as anticoagulants. Investigating the bacteriolytic compounds of the saliva of the bloodsucking Triatoma infestans photometrically between pH 3 and pH 10 using unfed fifth instars and nymphs up to 15 days after feeding, we found bacteriolytic activity against lyophilized Micrococcus luteus was stronger at pH 4 and pH 6. After feeding, the activity level at pH 4 was unchanged, but at pH 6 more than doubled between 3 and 7 days after feeding. In zymographs of the saliva and after incubation at pH 4, bacteriolytic activity against Micrococcus luteus was present at eight lysis zones between 14.1 and 38.5 kDa, showing the strongest activity at 24.5 kDa. After incubation at pH 6, lysis zones only appeared at 15.3, 17, and 31.4 kDa. Comparing zymographs of the saliva of unfed and fed nymphs, bacteriolytic activity at 17 kDa increased after feeding. In total nine lysis bands appeared, also at >30 kDa, so far unreported in the saliva of triatomines. Reverse transcription polymerase chain reaction using oligonucleotides based on the previously described lysozyme gene of T. infestans, TiLys1, verified expression of genes encoding TiLys1 and TiLys2 in the salivary glands, but also of an undescribed third lysozyme, TiLys3, of which the cloned cDNA shares characteristics with other c-type lysozymes of insects. While TiLys1 was expressed in the tissue of all three salivary glands, transcripts of TiLys2 and of TiLys3 seem to be present only in the gland G1 and G3, respectively.
Collapse
Affiliation(s)
| | - Lars Klenner
- Zoology/Parasitology, Ruhr-Universität Bochum, Bochum, Germany
| | - Carsten Balczun
- Zoology/Parasitology, Ruhr-Universität Bochum, Bochum, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
| | - Günter A Schaub
- Zoology/Parasitology, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
49
|
Jesus-Oliveira P, Silva-Couto L, Pinho N, Da Silva-Ferreira AT, Saboia-Vahia L, Cuervo P, Da-Cruz AM, Gomes-Silva A, Pinto EF. Identification of Immunodominant Proteins of the Leishmania (Viannia) naiffi SubProteome as Pan-Specific Vaccine Targets against Leishmaniasis. Vaccines (Basel) 2023; 11:1129. [PMID: 37514945 PMCID: PMC10386316 DOI: 10.3390/vaccines11071129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Accepted: 04/10/2023] [Indexed: 07/30/2023] Open
Abstract
Leishmaniasis is a wide-spectrum disease caused by parasites from Leishmania genus. A well-modulated immune response that is established after the long-lasting clinical cure of leishmaniasis can represent a standard requirement for a vaccine. Previous studies demonstrated that Leishmania (Viannia) naiffi causes benign disease and its antigens induce well-modulated immune responses in vitro. In this work we aimed to identify the immunodominant proteins present in the soluble extract of L. naiffi (sLnAg) as candidates for composing a pan-specific anti-leishmaniasis vaccine. After immunoblotting using cured patients of cutaneous leishmaniasis sera and proteomics approaches, we identified a group of antigenic proteins from the sLnAg. In silico analyses allowed us to select mildly similar proteins to the host; in addition, we evaluated the binding potential and degree of promiscuity of the protein epitopes to HLA molecules and to B-cell receptors. We selected 24 immunodominant proteins from a sub-proteome with 328 proteins. Homology analysis allowed the identification of 13 proteins with the most orthologues among seven Leishmania species. This work demonstrated the potential of these proteins as promising vaccine targets capable of inducing humoral and cellular pan-specific immune responses in humans, which may in the future contribute to the control of leishmaniasis.
Collapse
Affiliation(s)
- Prisciliana Jesus-Oliveira
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Luzinei Silva-Couto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Nathalia Pinho
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Rede de Pesquisas de Neuroinflamação do Rio de Janeiro, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | | | - Leonardo Saboia-Vahia
- Laboratório de Vírus Respiratórios e Sarampo, Laboratório de Referência para COVID-19 (World Health Organization), Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Rede de Pesquisas de Neuroinflamação do Rio de Janeiro, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Alda Maria Da-Cruz
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Rede de Pesquisas em Saúde, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Rio de Janeiro 20020-000, Brazil
- Disciplina de Parasitologia, Departamento de Microbiologia, Imunologia e Parasitologia, Faculdade de Ciências Médicas, Universidade Estadual do Rio de Janeiro, Rio de Janeiro 20550-170, Brazil
- Instituto Nacional de Ciência e Tecnologia em Neuroimunomodulação (INCT-NIM), Rio de Janeiro 21040-900, Brazil
| | - Adriano Gomes-Silva
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Laboratório de Pesquisa Clínica em Micobacterioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
| | - Eduardo Fonseca Pinto
- Laboratório Interdisciplinar de Pesquisas Médicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21040-360, Brazil
- Rede de Pesquisas em Saúde, Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, Rio de Janeiro 20020-000, Brazil
| |
Collapse
|
50
|
Chaudhari HA, Mahatma MK, Antala V, Radadiya N, Ukani P, Tomar RS, Thawait LK, Singh S, Gangadhara K, Sakure A, Parihar A. Ethrel-induced release of fresh seed dormancy causes remodelling of amylase activity, proteomics, phytohormone and fatty acid profile of groundnut (Arachis hypogaea L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:829-842. [PMID: 37520814 PMCID: PMC10382464 DOI: 10.1007/s12298-023-01332-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/20/2023] [Accepted: 07/05/2023] [Indexed: 08/01/2023]
Abstract
It is important to have a short period of fresh seed dormancy in some of the groundnut species to counter pre-harvest sprouting (PHS). One of the main causes of PHS is the activation of ethylene-mediated pathways. To determine the effect of ethylene, the study was conducted and alterations in amylase, proteins and fatty acids were observed at the 0, 6, 12, and 24 h stages after ethrel administration. The result showed an increase in amylase activity, and the fatty acids profile showed a unique alteration pattern at different germination stages. Two-dimensional gel electrophoresis (2DGE) revealed differential expression of proteins at each stage. The trypsin digestion following spectral development through UPLC-MS/MS enabled identification of number of differentially expressed proteins. A total of 49 proteins were identified from 2DGE excised spots. The majority were belonged to seed storage-related proteins like Arah1, Arah2, AAI- domain containing protein, conglutin, Arah3/4, arachin, glycinin. Expression of lipoxygenase1, lipoxygenase9 and Arah2 genes were further confirmed by qRT-PCR which showed its involvement at transcript level. Up-regulation of lipoxygenase9 is correlated with decreased content of fatty acids during germination. Phytohormone detection revealed decrease in ABA, SA and JA content which are generally inhibitor of seed germination while GA, IAA and kinetin concentration increased revealing positive regulation of seed germination. We present an integrated view of proteomics, phytohormone profile, carbohydrate and lipid metabolism to unravel mechanism of fresh seed dormancy. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01332-6.
Collapse
Affiliation(s)
- Hemangini A. Chaudhari
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat 362001 India
- ICAR-Directorate of Groundnut Research, Junagadh, Gujarat 362001 India
| | - Mahesh Kumar Mahatma
- ICAR-Directorate of Groundnut Research, Junagadh, Gujarat 362001 India
- ICAR-National Research Centre on Seed Spices, Tabiji, Ajmer, 305206 India
| | - Virali Antala
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat 362001 India
| | - Nidhi Radadiya
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat 362001 India
| | - Piyush Ukani
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat 362001 India
| | - Rukam Singh Tomar
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat 362001 India
| | | | - Sushmita Singh
- ICAR-Directorate of Groundnut Research, Junagadh, Gujarat 362001 India
| | - K. Gangadhara
- ICAR-Directorate of Groundnut Research, Junagadh, Gujarat 362001 India
- ICAR-Central Tobacco Research Institute, Regional Station, Kandukur, Andhra Pradesh 533105 India
| | - Amar Sakure
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, Gujarat 38811 India
| | - Akrash Parihar
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, Gujarat 38811 India
| |
Collapse
|