1
|
Mei Y, Gosztyla ML, Tan X, Dozier LE, Wilkinson B, McKetney J, Lee J, Chen M, Tsai D, Kopalle H, Gritsenko MA, Hartel N, Graham NA, Flores I, Gilmore-Hall SK, Xu S, Marquez CA, Liu SN, Fong D, Chen J, Licon K, Hong D, Wright SN, Kreisberg JF, Nott A, Smith RD, Qian WJ, Swaney DL, Iakoucheva LM, Krogan NJ, Patrick GN, Zhou Y, Feng G, Coba MP, Yeo GW, Ideker T. Integrated multi-omic characterizations of the synapse reveal RNA processing factors and ubiquitin ligases associated with neurodevelopmental disorders. Cell Syst 2025; 16:101204. [PMID: 40054464 DOI: 10.1016/j.cels.2025.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 04/19/2025]
Abstract
The molecular composition of the excitatory synapse is incompletely defined due to its dynamic nature across developmental stages and neuronal populations. To address this gap, we apply proteomic mass spectrometry to characterize the synapse in multiple biological models, including the fetal human brain and human induced pluripotent stem cell (hiPSC)-derived neurons. To prioritize the identified proteins, we develop an orthogonal multi-omic screen of genomic, transcriptomic, interactomic, and structural data. This data-driven framework identifies proteins with key molecular features intrinsic to the synapse, including characteristic patterns of biophysical interactions and cross-tissue expression. The multi-omic analysis captures synaptic proteins across developmental stages and experimental systems, including 493 synaptic candidates supported by proteomics. We further investigate three such proteins that are associated with neurodevelopmental disorders-Cullin 3 (CUL3), DEAD-box helicase 3 X-linked (DDX3X), and Y-box binding protein-1 (YBX1)-by mapping their networks of physically interacting synapse proteins or transcripts. Our study demonstrates the potential of an integrated multi-omic approach to more comprehensively resolve the synaptic architecture.
Collapse
Affiliation(s)
- Yuan Mei
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA
| | - Maya L Gosztyla
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Xinzhu Tan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada
| | - Lara E Dozier
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Brent Wilkinson
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Justin McKetney
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - John Lee
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michael Chen
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dorothy Tsai
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Hema Kopalle
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA
| | - Marina A Gritsenko
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Nicolas Hartel
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Nicholas A Graham
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Ilse Flores
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA 90089, USA
| | - Stephen K Gilmore-Hall
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Shuhao Xu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA
| | - Charlotte A Marquez
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophie N Liu
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Dylan Fong
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jing Chen
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kate Licon
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Derek Hong
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sarah N Wright
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jason F Kreisberg
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA
| | - Alexi Nott
- Department of Brain Sciences, Imperial College London, White City Campus, London W12 7RH, UK; UK Dementia Research Institute, Imperial College London, White City Campus, London W12 0BZ, UK
| | - Richard D Smith
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Wei-Jun Qian
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Danielle L Swaney
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - Lilia M Iakoucheva
- Department of Psychiatry, University of California, San Diego, La Jolla, CA 92093, USA
| | - Nevan J Krogan
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; University of California, San Francisco, Quantitative Biosciences Institute, San Francisco, CA 94158, USA; University of California, San Francisco, Department of Cellular and Molecular Pharmacology, San Francisco, CA 94143, USA
| | - Gentry N Patrick
- Department of Neurobiology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yang Zhou
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3A 1A1, Canada
| | - Guoping Feng
- McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marcelo P Coba
- Zilkha Neurogenetic Institute, University of Southern California, Los Angeles, CA 90033, USA.
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Institute for Genomic Medicine, University of California, San Diego, La Jolla, CA 92023, USA; Sanford Stem Cell Institute Innovation Center, University of California, San Diego, La Jolla, CA 92037, USA; Center for RNA Technologies and Therapeutics, University of California, San Diego, La Jolla, CA, USA.
| | - Trey Ideker
- Division of Genomics and Precision Medicine, Department of Medicine, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
2
|
Yuan C, Patel K, Shi H, Wang HLV, Wang F, Li R, Li Y, Corces VG, Shi H, Das S, Yu J, Jin P, Yao B, Hu J. mcDETECT: Decoding 3D Spatial Synaptic Transcriptomes with Subcellular-Resolution Spatial Transcriptomics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.27.645744. [PMID: 40236251 PMCID: PMC11996425 DOI: 10.1101/2025.03.27.645744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Spatial transcriptomics (ST) has shown great potential for unraveling the molecular mechanisms of neurodegenerative diseases. However, most existing analyses of ST data focus on bulk or single-cell resolution, overlooking subcellular compartments such as synapses, which are fundamental structures of the brain's neural network. Here we present mcDETECT, a novel framework that integrates machine learning algorithms and in situ ST (iST) with targeted gene panels to study synapses. mcDETECT identifies individual synapses based on the aggregation of synaptic mRNAs in three-dimensional (3D) space, allowing for the construction of single-synapse spatial transcriptome profiles. By benchmarking the synapse density measured by volume electron microscopy and genetic labeling, we demonstrate that mcDETECT can faithfully and accurately recover the spatial location of single synapses using iST data from multiple platforms, including Xenium, Xenium 5K, MERSCOPE, and CosMx. Based on the subsequent transcriptome profiling, we further stratify total synapses into various subtypes and explore their pathogenic dysregulation associated with Alzheimer's disease (AD) progression, which provides potential targets for synapse-specific therapies in AD progression.
Collapse
|
3
|
Fesenko M, Moore DJ, Ewbank P, Courthold E, Royle SJ. ATG9A vesicles are a subtype of intracellular nanovesicle. J Cell Sci 2025; 138:jcs263852. [PMID: 40067248 PMCID: PMC12045599 DOI: 10.1242/jcs.263852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 02/27/2025] [Indexed: 04/10/2025] Open
Abstract
Cells are filled with thousands of vesicles, which mediate protein transport and ensure homeostasis of the endomembrane system. Distinguishing these vesicles functionally and molecularly represents a major challenge. Intracellular nanovesicles (INVs) are a large class of transport vesicles that likely comprise multiple subtypes. Here, we define the INV proteome and find that it is molecularly heterogeneous and enriched for transmembrane cargo molecules, including integrins, transporters and ATG9A, a lipid scramblase associated with autophagy. ATG9A is known to reside in 'ATG9A vesicles' - small vesicles that contribute to autophagosome formation. Here, using in-cell vesicle capture assays, we found that ATG9A, as well as other ATG9A vesicle cargoes, are in INVs. Quantitative analysis showed that virtually all ATG9A vesicles are INVs, but that only ∼20% of INVs are ATG9A vesicles, suggesting that ATG9A vesicles are in fact a subtype of INV, which we term ATG9A-flavor INVs. Finally, we show that perturbing ATG9A-flavor INVs impairs the autophagy response induced by starvation.
Collapse
Affiliation(s)
- Mary Fesenko
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Daniel J. Moore
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Peyton Ewbank
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Elizabeth Courthold
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - Stephen J. Royle
- Centre for Mechanochemical Cell Biology and Warwick Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| |
Collapse
|
4
|
van Oostrum M, Schuman EM. Understanding the molecular diversity of synapses. Nat Rev Neurosci 2025; 26:65-81. [PMID: 39638892 DOI: 10.1038/s41583-024-00888-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/07/2024]
Abstract
Synapses are composed of thousands of proteins, providing the potential for extensive molecular diversity to shape synapse type-specific functional specializations. In this Review, we explore the landscape of synaptic diversity and describe the mechanisms that expand the molecular complexity of synapses, from the genotype to the regulation of gene expression to the production of specific proteoforms and the formation of localized protein complexes. We emphasize the importance of examining every molecular layer and adopting a systems perspective to understand how these interconnected mechanisms shape the diverse functional and structural properties of synapses. We explore current frameworks for classifying synapses and methodologies for investigating different synapse types at varying scales, from synapse-type-specific proteomics to advanced imaging techniques with single-synapse resolution. We highlight the potential of synapse-type-specific approaches for integrating molecular data with cellular functions, circuit organization and organismal phenotypes to enable a more holistic exploration of neuronal phenomena across different scales.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
- Biozentrum, University of Basel, Basel, Switzerland
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Yang Y, Cui Y, Zeng X, Zhang Y, Loza M, Park SJ, Nakai K. STAIG: Spatial transcriptomics analysis via image-aided graph contrastive learning for domain exploration and alignment-free integration. Nat Commun 2025; 16:1067. [PMID: 39870633 PMCID: PMC11772580 DOI: 10.1038/s41467-025-56276-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 01/06/2025] [Indexed: 01/29/2025] Open
Abstract
Spatial transcriptomics is an essential application for investigating cellular structures and interactions and requires multimodal information to precisely study spatial domains. Here, we propose STAIG, a deep-learning model that integrates gene expression, spatial coordinates, and histological images using graph-contrastive learning coupled with high-performance feature extraction. STAIG can integrate tissue slices without prealignment and remove batch effects. Moreover, it is designed to accept data acquired from various platforms, with or without histological images. By performing extensive benchmarks, we demonstrate the capability of STAIG to recognize spatial regions with high precision and uncover new insights into tumor microenvironments, highlighting its promising potential in deciphering spatial biological intricates.
Collapse
Affiliation(s)
- Yitao Yang
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan
| | - Yang Cui
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan
| | - Xin Zeng
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan
| | - Yubo Zhang
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan
| | - Martin Loza
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Sung-Joon Park
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan
| | - Kenta Nakai
- Department of Computational Biology and Medical Science, Graduate School of Frontier Sciences, the University of Tokyo, Tokyo, Japan.
- Human Genome Center, the Institute of Medical Science, the University of Tokyo, Tokyo, Japan.
| |
Collapse
|
6
|
Paget-Blanc V, Pronot M, Pfeffer ME, Angelo MF, Herzog E. Purification of Afference-Specific Synaptosome Populations Using Fluorescence-Activated Synaptosome Sorting. Methods Mol Biol 2025; 2910:87-104. [PMID: 40220095 DOI: 10.1007/978-1-0716-4446-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2025]
Abstract
The central nervous system contains a complex intermingled network of neuronal, glial, and vascular cells, and for several decades, neurobiologists have used subcellular fractionation methods to analyze the molecular structure and functional features of the different cell populations. Biochemists have optimized fractionation protocols that enrich specific compartments such as synapses (called "synaptosomes") and synaptic vesicles to reduce this complexity. However, these approaches suffered from a lack of specificity and purity, which is why we previously extended the conventional synaptosome preparation to purify fluorescent synaptosomes from VGLUT1venus knock-in mice on a cell sorter. We adapted our previous protocol to sort from single neuronal projections and small target regions of the brain as we did in the present example by labeling dopaminergic projections to the striatum. We proved that our newest method allows a steep enrichment in fluorescent dopaminergic synaptosomes containing presynaptic varicosities and associated postsynaptic elements and a substantial depletion in glial contaminants. Here we propose a detailed procedure for implementing projection-specific fluorescence-activated synaptosome sorting.
Collapse
Affiliation(s)
- Vincent Paget-Blanc
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Marie Pronot
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Marlene E Pfeffer
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Maria Florencia Angelo
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France
| | - Etienne Herzog
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
7
|
Ambrozkiewicz MC, Lorenz S. Understanding ubiquitination in neurodevelopment by integrating insights across space and time. Nat Struct Mol Biol 2025; 32:14-22. [PMID: 39633012 DOI: 10.1038/s41594-024-01422-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/08/2024] [Indexed: 12/07/2024]
Abstract
Ubiquitination regulates a myriad of eukaryotic signaling cascades by modifying substrate proteins, thereby determining their functions and fates. In this perspective, we discuss current challenges in investigating the ubiquitin system in the developing brain. We foster the concept that ubiquitination pathways are spatiotemporally regulated and tightly intertwined with molecular and cellular transitions during neurogenesis and neural circuit assembly. Focusing on the neurologically highly relevant class of homologous to E6AP C-terminus (HECT) ubiquitin ligases, we propose cross-disciplinary translational approaches bridging state-of-the-art cell biology, proteomics, biochemistry, structural biology and neuroscience to dissect ubiquitination in neurodevelopment and its specific perturbations in brain diseases. We highlight that a comprehensive understanding of ubiquitin signaling in the brain may reveal new horizons in basic neuroscience and clinical applications.
Collapse
Affiliation(s)
- Mateusz C Ambrozkiewicz
- Institute of Cell Biology and Neurobiology, Research Group 'Proteostasis', Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, Germany.
| | - Sonja Lorenz
- Max Planck Institute for Multidisciplinary Sciences, Research Group 'Ubiquitin Signaling Specificity', Am Fassberg 11, Göttingen, Germany.
| |
Collapse
|
8
|
Krueger-Burg D. Understanding GABAergic synapse diversity and its implications for GABAergic pharmacotherapy. Trends Neurosci 2025; 48:47-61. [PMID: 39779392 DOI: 10.1016/j.tins.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/17/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
Despite the substantial contribution of disruptions in GABAergic inhibitory neurotransmission to the etiology of psychiatric, neurodevelopmental, and neurodegenerative disorders, surprisingly few drugs targeting the GABAergic system are currently available, partly due to insufficient understanding of circuit-specific GABAergic synapse biology. In addition to GABA receptors, GABAergic synapses contain an elaborate organizational protein machinery that regulates the properties of synaptic transmission. Until recently, this machinery remained largely unexplored, but key methodological advances have now led to the identification of a wealth of new GABAergic organizer proteins. Notably, many of these proteins appear to function only at specific subsets of GABAergic synapses, creating a diversity of organizer complexes that may serve as circuit-specific targets for pharmacotherapies. The present review aims to summarize the methodological developments that underlie this newfound knowledge and provide a current overview of synapse-specific GABAergic organizer complexes, as well as outlining future avenues and challenges in translating this knowledge into clinical applications.
Collapse
Affiliation(s)
- Dilja Krueger-Burg
- Laboratory of Cell Biology and Neuroscience, Institute of Anatomy, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, 55128 Mainz, Germany.
| |
Collapse
|
9
|
Basso V, Döbrössy MD, Thompson LH, Kirik D, Fuller HR, Gates MA. State of the Art in Sub-Phenotyping Midbrain Dopamine Neurons. BIOLOGY 2024; 13:690. [PMID: 39336117 PMCID: PMC11428604 DOI: 10.3390/biology13090690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Dopaminergic neurons in the ventral tegmental area (VTA) and the substantia nigra pars compacta (SNpc) comprise around 75% of all dopaminergic neurons in the human brain. While both groups of dopaminergic neurons are in close proximity in the midbrain and partially overlap, development, function, and impairments in these two classes of neurons are highly diverse. The molecular and cellular mechanisms underlying these differences are not yet fully understood, but research over the past decade has highlighted the need to differentiate between these two classes of dopaminergic neurons during their development and in the mature brain. This differentiation is crucial not only for understanding fundamental circuitry formation in the brain but also for developing therapies targeted to specific dopaminergic neuron classes without affecting others. In this review, we summarize the state of the art in our understanding of the differences between the dopaminergic neurons of the VTA and the SNpc, such as anatomy, structure, morphology, output and input, electrophysiology, development, and disorders, and discuss the current technologies and methods available for studying these two classes of dopaminergic neurons, highlighting their advantages, limitations, and the necessary improvements required to achieve more-precise therapeutic interventions.
Collapse
Affiliation(s)
- Valentina Basso
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| | - Máté D Döbrössy
- Laboratory of Stereotaxy and Interventional Neurosciences, Department of Stereotactic and Functional, Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center, University of Freiburg, 79106 Freiburg im Breisgau, Germany
- Faculty of Biology, University of Freiburg, 79104 Freiburg im Breisgau, Germany
| | - Lachlan H Thompson
- Charles Perkins Centre, Faculty of Medicine and Health, School of Medical Sciences, The University of Sydney, Sydney, NSW 2006, Australia
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD 20815, USA
| | - Deniz Kirik
- Brain Repair and Imaging in Neural Systems (B.R.A.I.N.S) Unit, Department of Experimental Medical Science, Lund University, BMC D11, 22184 Lund, Sweden
| | - Heidi R Fuller
- School of Pharmacy and Bioengineering, Keele University, Staffordshire ST5 5BG, UK
- Wolfson Centre for Inherited Neuromuscular Disease, TORCH Building, RJAH Orthopaedic Hospital, Oswestry SY10 7AG, UK
| | - Monte A Gates
- School of Medicine, Keele University, Staffordshire ST5 5BG, UK
| |
Collapse
|
10
|
Melnik M, Miyoshi E, Ma R, Corrada M, Kawas C, Bohannan R, Caraway C, Miller CA, Hinman JD, John V, Bilousova T, Gylys KH. Simultaneous isolation of intact brain cells and cell-specific extracellular vesicles from cryopreserved Alzheimer's disease cortex. J Neurosci Methods 2024; 406:110137. [PMID: 38626853 DOI: 10.1016/j.jneumeth.2024.110137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/25/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND The neuronal and gliaI populations within the brain are tightly interwoven, making isolation and study of large populations of a single cell type from brain tissue a major technical challenge. Concurrently, cell-type specific extracellular vesicles (EVs) hold enormous diagnostic and therapeutic potential in neurodegenerative disorders including Alzheimer's disease (AD). NEW METHOD Postmortem AD cortical samples were thawed and gently dissociated. Following filtration, myelin and red blood cell removal, cell pellets were immunolabeled with fluorescent antibodies and analyzed by flow cytometry. The cell pellet supernatant was applied to a triple sucrose cushion for brain EV isolation. RESULTS Neuronal, astrocyte and microglial cell populations were identified. Cell integrity was demonstrated using calcein AM, which is retained by cells with esterase activity and an intact membrane. For some experiments cell pellets were fixed, permeabilized, and immunolabeled for cell-specific markers. Characterization of brain small EV fractions showed the expected size, depletion of EV negative markers, and enrichment in positive and cell-type specific markers. COMPARISON WITH EXISTING METHODS AND CONCLUSIONS We optimized and integrated established protocols, aiming to maximize information obtained from each human autopsy brain sample. The uniqueness of our method lies in its capability to isolate cells and EVs from a single cryopreserved brain sample. Our results not only demonstrate the feasibility of isolating specific brain cell subpopulations for RNA-seq but also validate these subpopulations at the protein level. The accelerated study of EVs from human samples is crucial for a better understanding of their contribution to neuron/glial crosstalk and disease progression.
Collapse
Affiliation(s)
- Mikhail Melnik
- UCLA School of Nursing, Los Angeles, CA 90095, USA; Neuroscience Interdepartmental Program, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | - Ricky Ma
- UCLA School of Nursing, Los Angeles, CA 90095, USA
| | - Maria Corrada
- Departments of Neurology, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Claudia Kawas
- Departments of Neurology, Irvine, CA 92697, USA; Neurobiology & Behavior, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Ryan Bohannan
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Chad Caraway
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | | | - Jason D Hinman
- Mary S. Easton Center for Alzheimer's Research at UCLA, Los Angeles, CA 90073, USA; Departments of Neurology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Varghese John
- Mary S. Easton Center for Alzheimer's Research at UCLA, Los Angeles, CA 90073, USA; Departments of Neurology, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | - Tina Bilousova
- UCLA School of Nursing, Los Angeles, CA 90095, USA; Mary S. Easton Center for Alzheimer's Research at UCLA, Los Angeles, CA 90073, USA; Departments of Neurology, UCLA School of Medicine, Los Angeles, CA 90095, USA.
| | - Karen H Gylys
- UCLA School of Nursing, Los Angeles, CA 90095, USA; Mary S. Easton Center for Alzheimer's Research at UCLA, Los Angeles, CA 90073, USA; Neuroscience Interdepartmental Program, UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Ito Y, Nagamoto S, Takano T. Synaptic proteomics decode novel molecular landscape in the brain. Front Mol Neurosci 2024; 17:1361956. [PMID: 38726307 PMCID: PMC11079194 DOI: 10.3389/fnmol.2024.1361956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/12/2024] [Indexed: 05/12/2024] Open
Abstract
Synapses play a pivotal role in forming neural circuits, with critical implications for brain functions such as learning, memory, and emotions. Several advances in synaptic research have demonstrated the diversity of synaptic structure and function, which can form thousands of connections depending on the neuronal cell types. Moreover, synapses not only interconnect neurons but also establish connections with glial cells such as astrocytes, which play a key role in the architecture and function of neuronal circuits in the brain. Emerging evidence suggests that dysfunction of synaptic proteins contributes to a variety of neurological and psychiatric disorders. Therefore, it is crucial to determine the molecular networks within synapses in various neuronal cell types to gain a deeper understanding of how the nervous system regulates brain function. Recent advances in synaptic proteome approaches, such as fluorescence-activated synaptosome sorting (FASS) and proximity labeling, have allowed for a detailed and spatial analysis of many cell-type-specific synaptic molecules in vivo. In this brief review, we highlight these novel spatial proteomic approaches and discuss the regulation of synaptic formation and function in the brain. This knowledge of molecular networks provides new insight into the understanding of many neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Yuki Ito
- Division of Molecular Systems for Brain Function, Institute for Advanced Study, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Division of Integrated Omics, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Sayaka Nagamoto
- Division of Molecular Systems for Brain Function, Institute for Advanced Study, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tetsuya Takano
- Division of Molecular Systems for Brain Function, Institute for Advanced Study, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Neurophysiology, Keio University School of Medicine, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
12
|
Puhl AC, Raman R, Havener TM, Minerali E, Hickey AJ, Ekins S. Identification of New Modulators and Inhibitors of Palmitoyl-Protein Thioesterase 1 for CLN1 Batten Disease and Cancer. ACS OMEGA 2024; 9:11870-11882. [PMID: 38496939 PMCID: PMC10938339 DOI: 10.1021/acsomega.3c09607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 03/19/2024]
Abstract
Palmitoyl-protein thioesterase 1 (PPT1) is an understudied enzyme that is gaining attention due to its role in the depalmitoylation of several proteins involved in neurodegenerative diseases and cancer. PPT1 is overexpressed in several cancers, specifically cholangiocarcinoma and esophageal cancers. Inhibitors of PPT1 lead to cell death and have been shown to enhance the killing of tumor cells alongside known chemotherapeutics. PPT1 is hence a viable target for anticancer drug development. Furthermore, mutations in PPT1 cause a lysosomal storage disorder called infantile neuronal ceroid lipofuscinosis (CLN1 disease). Molecules that can inhibit, stabilize, or modulate the activity of this target are needed to address these diseases. We used PPT1 enzymatic assays to identify molecules that were subsequently tested by using differential scanning fluorimetry and microscale thermophoresis. Selected compounds were also tested in neuroblastoma cell lines. The resulting PPT1 screening data was used for building machine learning models to help select additional compounds for testing. We discovered two of the most potent PPT1 inhibitors reported to date, orlistat (IC50 178.8 nM) and palmostatin B (IC50 11.8 nM). When tested in HepG2 cells, it was found that these molecules had decreased activity, indicating that they were likely not penetrating the cells. The combination of in vitro enzymatic and biophysical assays enabled the identification of several molecules that can bind or inhibit PPT1 and may aid in the discovery of modulators or chaperones. The molecules identified could be used as a starting point for further optimization as treatments for other potential therapeutic applications outside CLN1 disease, such as cancer and neurological diseases.
Collapse
Affiliation(s)
- Ana C. Puhl
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Renuka Raman
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Tammy M. Havener
- UNC
Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eni Minerali
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Anthony J. Hickey
- UNC
Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
- RTI
International, Research Triangle
Park, North Carolina 27709, United States
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| |
Collapse
|
13
|
Borreca A, Mantovani C, Desiato G, Corradini I, Filipello F, Elia CA, D'Autilia F, Santamaria G, Garlanda C, Morini R, Pozzi D, Matteoli M. Loss of interleukin 1 signaling causes impairment of microglia- mediated synapse elimination and autistic-like behaviour in mice. Brain Behav Immun 2024; 117:493-509. [PMID: 38307446 DOI: 10.1016/j.bbi.2024.01.221] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/11/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
In the last years, the hypothesis that elevated levels of proinflammatory cytokines contribute to the pathogenesis of neurodevelopmental diseases has gained popularity. IL-1 is one of the main cytokines found to be elevated in Autism spectrum disorder (ASD), a complex neurodevelopmental condition characterized by defects in social communication and cognitive impairments. In this study, we demonstrate that mice lacking IL-1 signaling display autistic-like defects associated with an excessive number of synapses. We also show that microglia lacking IL-1 signaling at early neurodevelopmental stages are unable to properly perform the process of synapse engulfment and display excessive activation of mammalian target of rapamycin (mTOR) signaling. Notably, even the acute inhibition of IL-1R1 by IL-1Ra is sufficient to enhance mTOR signaling and reduce synaptosome phagocytosis in WT microglia. Finally, we demonstrate that rapamycin treatment rescues the defects in IL-1R deficient mice. These data unveil an exclusive role of microglial IL-1 in synapse refinement via mTOR signaling and indicate a novel mechanism possibly involved in neurodevelopmental disorders associated with defects in the IL-1 pathway.
Collapse
Affiliation(s)
- Antonella Borreca
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Cristina Mantovani
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Genni Desiato
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Irene Corradini
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Fabia Filipello
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Chiara Adriana Elia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Francesca D'Autilia
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Giulia Santamaria
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Cecilia Garlanda
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy
| | - Raffaella Morini
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy
| | - Davide Pozzi
- IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, 20072 Pieve Emanuele, Milan, Italy.
| | - Michela Matteoli
- Institute of Neuroscience (IN-CNR), Consiglio Nazionale delle Ricerche, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089 Rozzano, Milan, Italy.
| |
Collapse
|
14
|
Martinez D, Jiang E, Zhou Z. Overcoming genetic and cellular complexity to study the pathophysiology of X-linked intellectual disabilities. J Neurodev Disord 2024; 16:5. [PMID: 38424476 PMCID: PMC10902969 DOI: 10.1186/s11689-024-09517-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
X-linked genetic causes of intellectual disability (ID) account for a substantial proportion of cases and remain poorly understood, in part due to the heterogeneous expression of X-linked genes in females. This is because most genes on the X chromosome are subject to random X chromosome inactivation (XCI) during early embryonic development, which results in a mosaic pattern of gene expression for a given X-linked mutant allele. This mosaic expression produces substantial complexity, especially when attempting to study the already complicated neural circuits that underly behavior, thus impeding the understanding of disease-related pathophysiology and the development of therapeutics. Here, we review a few selected X-linked forms of ID that predominantly affect heterozygous females and the current obstacles for developing effective therapies for such disorders. We also propose a genetic strategy to overcome the complexity presented by mosaicism in heterozygous females and highlight specific tools for studying synaptic and circuit mechanisms, many of which could be shared across multiple forms of intellectual disability.
Collapse
Affiliation(s)
- Dayne Martinez
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Evan Jiang
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA
| | - Zhaolan Zhou
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Medical Scientist Training Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Department of Neuroscience, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19102, USA.
- Intellectual and Developmental Disabilities Research Center, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA.
| |
Collapse
|
15
|
Pade LR, Stepler KE, Portero EP, DeLaney K, Nemes P. Biological mass spectrometry enables spatiotemporal 'omics: From tissues to cells to organelles. MASS SPECTROMETRY REVIEWS 2024; 43:106-138. [PMID: 36647247 PMCID: PMC10668589 DOI: 10.1002/mas.21824] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/14/2022] [Accepted: 09/17/2022] [Indexed: 06/17/2023]
Abstract
Biological processes unfold across broad spatial and temporal dimensions, and measurement of the underlying molecular world is essential to their understanding. Interdisciplinary efforts advanced mass spectrometry (MS) into a tour de force for assessing virtually all levels of the molecular architecture, some in exquisite detection sensitivity and scalability in space-time. In this review, we offer vignettes of milestones in technology innovations that ushered sample collection and processing, chemical separation, ionization, and 'omics analyses to progressively finer resolutions in the realms of tissue biopsies and limited cell populations, single cells, and subcellular organelles. Also highlighted are methodologies that empowered the acquisition and analysis of multidimensional MS data sets to reveal proteomes, peptidomes, and metabolomes in ever-deepening coverage in these limited and dynamic specimens. In pursuit of richer knowledge of biological processes, we discuss efforts pioneering the integration of orthogonal approaches from molecular and functional studies, both within and beyond MS. With established and emerging community-wide efforts ensuring scientific rigor and reproducibility, spatiotemporal MS emerged as an exciting and powerful resource to study biological systems in space-time.
Collapse
Affiliation(s)
- Leena R. Pade
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kaitlyn E. Stepler
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Erika P. Portero
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Kellen DeLaney
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| | - Peter Nemes
- Department of Chemistry & Biochemistry, University of Maryland, 8051 Regents Drive, College Park, MD 20742
| |
Collapse
|
16
|
van Oostrum M, Blok TM, Giandomenico SL, Tom Dieck S, Tushev G, Fürst N, Langer JD, Schuman EM. The proteomic landscape of synaptic diversity across brain regions and cell types. Cell 2023; 186:5411-5427.e23. [PMID: 37918396 PMCID: PMC10686415 DOI: 10.1016/j.cell.2023.09.028] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 08/18/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023]
Abstract
Neurons build synaptic contacts using different protein combinations that define the specificity, function, and plasticity potential of synapses; however, the diversity of synaptic proteomes remains largely unexplored. We prepared synaptosomes from 7 different transgenic mouse lines with fluorescently labeled presynaptic terminals. Combining microdissection of 5 different brain regions with fluorescent-activated synaptosome sorting (FASS), we isolated and analyzed the proteomes of 18 different synapse types. We discovered ∼1,800 unique synapse-type-enriched proteins and allocated thousands of proteins to different types of synapses (https://syndive.org/). We identify shared synaptic protein modules and highlight the proteomic hotspots for synapse specialization. We reveal unique and common features of the striatal dopaminergic proteome and discover the proteome signatures that relate to the functional properties of different interneuron classes. This study provides a molecular systems-biology analysis of synapses and a framework to integrate proteomic information for synapse subtypes of interest with cellular or circuit-level experiments.
Collapse
Affiliation(s)
- Marc van Oostrum
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Thomas M Blok
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | | | | | - Georgi Tushev
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Nicole Fürst
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany
| | - Julian D Langer
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany; Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Erin M Schuman
- Max Planck Institute for Brain Research, Frankfurt am Main, Germany.
| |
Collapse
|
17
|
Cagnetta R, Flanagan JG, Sonenberg N. Control of Selective mRNA Translation in Neuronal Subcellular Compartments in Health and Disease. J Neurosci 2023; 43:7247-7263. [PMID: 37914402 PMCID: PMC10621772 DOI: 10.1523/jneurosci.2240-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/28/2023] [Accepted: 05/02/2023] [Indexed: 11/03/2023] Open
Abstract
In multiple cell types, mRNAs are transported to subcellular compartments, where local translation enables rapid, spatially localized, and specific responses to external stimuli. Mounting evidence has uncovered important roles played by local translation in vivo in axon survival, axon regeneration, and neural wiring, as well as strong links between dysregulation of local translation and neurologic disorders. Omic studies have revealed that >1000 mRNAs are present and can be selectively locally translated in the presynaptic and postsynaptic compartments from development to adulthood in vivo A large proportion of the locally translated mRNAs is specifically upregulated or downregulated in response to distinct extracellular signals. Given that the local translatome is large, selectively translated, and cue-specifically remodeled, a fundamental question concerns how selective translation is achieved locally. Here, we review the emerging regulatory mechanisms of local selective translation in neuronal subcellular compartments, their mRNA targets, and their orchestration. We discuss mechanisms of local selective translation that remain unexplored. Finally, we describe clinical implications and potential therapeutic strategies in light of the latest advances in gene therapy.
Collapse
Affiliation(s)
- Roberta Cagnetta
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| | - John G Flanagan
- Department of Cell Biology and Program in Neuroscience, Harvard Medical School, Boston, Massachusetts 02115
| | - Nahum Sonenberg
- Department of Biochemistry and Goodman Cancer Institute, McGill University, Montreal, Quebec H3A 1A3, Canada
| |
Collapse
|
18
|
Dissing-Olesen L, Walker AJ, Feng Q, Barr HJ, Walker AC, Xie L, Wilton DK, Das I, Benowitz LI, Stevens B. FEAST: A flow cytometry-based toolkit for interrogating microglial engulfment of synaptic and myelin proteins. Nat Commun 2023; 14:6015. [PMID: 37758703 PMCID: PMC10533836 DOI: 10.1038/s41467-023-41448-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Although engulfment is a hallmark of microglia function, fully validated platforms that facilitate high-throughput quantification of this process are lacking. Here, we present FEAST (Flow cytometric Engulfment Assay for Specific Target proteins), which enables interrogation of in vivo engulfment of synaptic material by brain resident macrophages at single-cell resolution. We optimize FEAST for two different analyses: quantification of fluorescent material inside live cells and of engulfed endogenous proteins within fixed cells. To overcome false-positive engulfment signals, we introduce an approach suitable for interrogating engulfment in microglia from perfusion-fixed tissue. As a proof-of-concept for the specificity and versatility of FEAST, we examine the engulfment of synaptic proteins after optic nerve crush and of myelin in two mouse models of demyelination (treatment with cuprizone and injections of lysolecithin). We find that microglia, but not brain-border associated macrophages, engulf in these contexts. Our work underscores how FEAST can be utilized to gain critical insight into functional neuro-immune interactions that shape development, homeostasis, and disease.
Collapse
Affiliation(s)
- Lasse Dissing-Olesen
- Department of Neurology, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Alec J Walker
- Department of Neurology, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Qian Feng
- Department of Neurosurgery, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, 02115, USA
| | - Helena J Barr
- Department of Neurology, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Alicia C Walker
- Department of Neurology, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Lili Xie
- Department of Neurosurgery, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, 02115, USA
| | - Daniel K Wilton
- Department of Neurology, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA
| | - Indrani Das
- Department of Neurology, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, 02115, USA
- Harvard Medical School, Boston, MA, 02115, USA
| | - Larry I Benowitz
- Department of Neurosurgery, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, 02115, USA
- Ophthalmology, Harvard Medical School, Boston, MA, 02115, USA
| | - Beth Stevens
- Department of Neurology, Boston Children's Hospital, F.M. Kirby Neurobiology Center, Boston, MA, 02115, USA.
- Harvard Medical School, Boston, MA, 02115, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02139, USA.
- Howard Hughes Medical Institute, Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
19
|
Hobson BD, Herzog E. Methodological concerns and lack of evidence for single-synapse RNA-seq. Nat Biotechnol 2023; 41:1221-1224. [PMID: 37500915 DOI: 10.1038/s41587-023-01877-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/23/2023] [Indexed: 07/29/2023]
Affiliation(s)
- Benjamin D Hobson
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Psychiatry, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO, USA.
| | - Etienne Herzog
- University of Bordeaux, CNRS, IINS, UMR 5297, Bordeaux, France.
| |
Collapse
|
20
|
Ament SA, Poulopoulos A. The brain's dark transcriptome: Sequencing RNA in distal compartments of neurons and glia. Curr Opin Neurobiol 2023; 81:102725. [PMID: 37196598 PMCID: PMC10524153 DOI: 10.1016/j.conb.2023.102725] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 05/19/2023]
Abstract
Transcriptomic approaches are powerful strategies to map the molecular diversity of cells in the brain. Single-cell genomic atlases have now been compiled for entire mammalian brains. However, complementary techniques are only just beginning to map the subcellular transcriptomes from distal cellular compartments. We review single-cell datasets alongside subtranscriptome data from the mammalian brain to explore the development of cellular and subcellular diversity. We discuss how single-cell RNA-seq misses transcripts localized away from cell bodies, which form the 'dark transcriptome' of the brain: a collection of subtranscriptomes in dendrites, axons, growth cones, synapses, and endfeet with important roles in brain development and function. Recent advances in subcellular transcriptome sequencing are beginning to reveal these elusive pools of RNA. We outline the success stories to date in uncovering the constituent subtranscriptomes of neurons and glia, as well as present the emerging toolkit that is accelerating the pace of subtranscriptome discovery.
Collapse
Affiliation(s)
- Seth A Ament
- Department of Psychiatry, UM-MIND, and Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Alexandros Poulopoulos
- Department of Pharmacology and UM-MIND, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
21
|
Yim YY, Nestler EJ. Cell-Type-Specific Neuroproteomics of Synapses. Biomolecules 2023; 13:998. [PMID: 37371578 PMCID: PMC10296650 DOI: 10.3390/biom13060998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
In the last two decades, our knowledge of synaptic proteomes and their relationship to normal brain function and neuropsychiatric disorders has been expanding rapidly through the use of more powerful neuroproteomic approaches. However, mass spectrometry (MS)-based neuroproteomic studies of synapses still require cell-type, spatial, and temporal proteome information. With the advancement of sample preparation and MS techniques, we have just begun to identify and understand proteomes within a given cell type, subcellular compartment, and cell-type-specific synapse. Here, we review the progress and limitations of MS-based neuroproteomics of synapses in the mammalian CNS and highlight the recent applications of these approaches in studying neuropsychiatric disorders such as major depressive disorder and substance use disorders. Combining neuroproteomic findings with other omics studies can generate an in-depth, comprehensive map of synaptic proteomes and possibly identify new therapeutic targets and biomarkers for several central nervous system disorders.
Collapse
Affiliation(s)
- Yun Young Yim
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | | |
Collapse
|
22
|
Rubio FJ, Olivares DE, Dunn C, Zhang S, Hilaire EM, Henry A, Mejias-Aponte C, Nogueras-Ortiz CJ, Selvam PV, Cruz FC, Madangopal R, Morales M, Hope BT. Flow Cytometry of Synaptoneurosomes (FCS) Reveals Increased Ribosomal S6 and Calcineurin Proteins in Activated Medial Prefrontal Cortex to Nucleus Accumbens Synapses. J Neurosci 2023; 43:4217-4233. [PMID: 37160369 PMCID: PMC10255002 DOI: 10.1523/jneurosci.0927-22.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 04/11/2023] [Accepted: 04/14/2023] [Indexed: 05/11/2023] Open
Abstract
Learning and behavior activate cue-specific patterns of sparsely distributed cells and synapses called ensembles that undergo memory-encoding engram alterations. While Fos is often used to label selectively activated cell bodies and identify neuronal ensembles, there is no comparable endogenous marker to label activated synapses and identify synaptic ensembles. For the purpose of identifying candidate synaptic activity markers, we optimized a flow cytometry of synaptoneurosome (FCS) procedure for assessing protein alterations in activated synapses from male and female rats. After injecting yellow fluorescent protein (YFP)-expressing adeno-associated virus into medial prefrontal cortex (mPFC) to label terminals in nucleus accumbens (NAc) of rats, we injected 20 mg/kg cocaine in a novel context (cocaine+novelty) to activate synapses, and prepared NAc synaptoneurosomes 0-60 min following injections. For FCS, we used commercially available antibodies to label presynaptic and postsynaptic markers synaptophysin and PSD-95 as well as candidate markers of synaptic activity [activity-regulated cytoskeleton protein (Arc), CaMKII and phospho-CaMKII, ribosomal protein S6 (S6) and phospho-S6, and calcineurin and phospho-calcineurin] in YFP-labeled synaptoneurosomes. Cocaine+novelty increased the percentage of S6-positive synaptoneurosomes at 5-60 min and calcineurin-positive synaptoneurosomes at 5-10 min. Electron microscopy verified that S6 and calcineurin levels in synaptoneurosomes were increased 10 min after cocaine+novelty. Pretreatment with the anesthetic chloral hydrate blocked cocaine+novelty-induced S6 and calcineurin increases in synaptoneurosomes, and novel context exposure alone (without cocaine) increased S6, both of which indicate that these increases were due to neural activity per se. Overall, FCS can be used to study protein alterations in activated synapses coming from specifically labeled mPFC projections to NAc.SIGNIFICANCE STATEMENT Memories are formed during learning and are stored in the brain by long-lasting molecular and cellular alterations called engrams formed within specific patterns of cue-activated neurons called neuronal ensembles. While Fos has been used to identify activated ensemble neurons and the engrams within them, we have not had a similar marker for activated synapses that can be used to identify synaptic engrams. Here we developed a procedure for high-throughput in-line analysis of flow cytometry of synaptoneurosome (FCS) and found that ribosomal S6 protein and calcineurin were increased in activated mPFC-NAc synapses. FCS can be used to study protein alterations in activated synapses within specifically labeled circuits.
Collapse
Affiliation(s)
- F Javier Rubio
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Daniel E Olivares
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Christopher Dunn
- Flow Cytometry Unit, Intramural Research Program/National Institute on Aging/National Institutes of Health, Baltimore, Maryland 21224
| | - Shiliang Zhang
- Confocal and Electron Microscopy Core, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Elias M Hilaire
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Akeem Henry
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Carlos Mejias-Aponte
- Confocal and Electron Microscopy Core, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Carlos J Nogueras-Ortiz
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging, NIH, Baltimore, Maryland 21224
| | - Pooja V Selvam
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Fabio C Cruz
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
- Department of Pharmacology, Escola Paulista de Medicina, Universidade Federal de São Paulo, CEP 04023-062, São Paulo, Brazil
| | - Rajtarun Madangopal
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Marisela Morales
- Neuronal Networks Section, Integrative Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| | - Bruce T Hope
- Neuronal Ensembles in Addiction Section, Behavioral Neuroscience Research Branch, Intramural Research Program/National Institute on Drug Abuse/National Institutes of Health, Baltimore, Maryland 21224
| |
Collapse
|
23
|
Parisi MJ, Aimino MA, Mosca TJ. A conditional strategy for cell-type-specific labeling of endogenous excitatory synapses in Drosophila. CELL REPORTS METHODS 2023; 3:100477. [PMID: 37323572 PMCID: PMC10261928 DOI: 10.1016/j.crmeth.2023.100477] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/28/2023] [Accepted: 04/19/2023] [Indexed: 06/17/2023]
Abstract
Chemical neurotransmission occurs at specialized contacts where neurotransmitter release machinery apposes neurotransmitter receptors to underlie circuit function. A series of complex events underlies pre- and postsynaptic protein recruitment to neuronal connections. To better study synaptic development in individual neurons, we need cell-type-specific strategies to visualize endogenous synaptic proteins. Although presynaptic strategies exist, postsynaptic proteins remain less studied because of a paucity of cell-type-specific reagents. To study excitatory postsynapses with cell-type specificity, we engineered dlg1[4K], a conditionally labeled marker of Drosophila excitatory postsynaptic densities. With binary expression systems, dlg1[4K] labels central and peripheral postsynapses in larvae and adults. Using dlg1[4K], we find that distinct rules govern postsynaptic organization in adult neurons, multiple binary expression systems can concurrently label pre- and postsynapse in a cell-type-specific manner, and neuronal DLG1 can sometimes localize presynaptically. These results validate our strategy for conditional postsynaptic labeling and demonstrate principles of synaptic organization.
Collapse
Affiliation(s)
- Michael J. Parisi
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Michael A. Aimino
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| | - Timothy J. Mosca
- Department of Neuroscience, Vickie and Jack Farber Institute of Neuroscience, Thomas Jefferson University, Bluemle Life Sciences Building, Philadelphia, PA 19107, USA
| |
Collapse
|
24
|
Wang X, Xie Y, Niu Y, Wan B, Lu Y, Luo Q, Zhu L. CX3CL1/CX3CR1 signal mediates M1-type microglia and accelerates high-altitude-induced forgetting. Front Cell Neurosci 2023; 17:1189348. [PMID: 37234914 PMCID: PMC10206058 DOI: 10.3389/fncel.2023.1189348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
Introduction Hypoxia-induced neuronal damage is the primary cause of cognitive impairment induced by high-altitude exposure. Microglia play a crucial regulatory role in the central nervous system (CNS) homeostasis and synaptic plasticity. M1-type polarized microglia are suspected to be responsible for CNS injury under hypoxic conditions, but the exact molecular mechanism is still unelucidated. Methods CX3CR1 knock out and wide type mice were exposed to a simulated plateau at 7000 m for 48 h to construct the model of hypobaric hypoxia-induced memory impairment. The memory impairment of mice was assessed by Morris water maze. The dendritic spine density in the hippocampus was examined by Golgi staining. The synapses in the CA1 region and the number of neurons in the DG region were examined by immunofluorescence staining. The synapses in microglia activation and phagocytosis were examined by immunofluorescence. The levels of CX3CL1/CX3CR1 and their downstream proteins were detected. CX3CR1 knockout primary microglia were treated with CX3CL1 combined with 1% O2. The levels of proteins related to microglial polarization, the uptake of synaptosome and phagocytotic ability of microglia were detected. Results In this study, mice exposed to a simulated 7000 m altitude for 48 h developed significant amnesia for recent memories, but no significant change in their anxiety levels was observed. Hypobaric hypoxia exposure (7000 m altitude above sea level for 48 h) resulted in synapse loss in the CA1 region of the hippocampus, but no significant changes occurred in the total number of neurons. Meanwhile, microglia activation, increased phagocytosis of synapses by microglia, and CX3CL1/CX3CR1 signal activation were observed under hypobaric hypoxic exposure. Further, we found that after hypobaric hypoxia exposure, CX3CR1-deficient mice showed less amnesia, less synaptic loss in the CA1 region, and less increase in M1 microglia, compared to their wildtype siblings. CX3CR1-deficient microglia did not exhibit M1-type polarization in response to either hypoxia or CX3CL1 induction. Both hypoxia and CX3CL1 induced the phagocytosis of synapses by microglia through the upregulation of microglial phagocytosis. Discussion The current study demonstrates that CX3CL1/CX3CR1 signal mediates the M1-type polarization of microglia under high-altitude exposure and upregulates microglial phagocytosis, which increases the phagocytosis of synapses in the CA1 region of the hippocampus, causing synaptic loss and inducing forgetting.
Collapse
|
25
|
Marcassa G, Dascenco D, de Wit J. Proteomics-based synapse characterization: From proteins to circuits. Curr Opin Neurobiol 2023; 79:102690. [PMID: 36805717 DOI: 10.1016/j.conb.2023.102690] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/15/2022] [Accepted: 01/10/2023] [Indexed: 02/19/2023]
Abstract
The highly heterogeneous nature of neuronal cell types and their connections presents a major challenge to the characterization of neural circuits at the protein level. New approaches now enable an increasingly sophisticated dissection of cell type- and cellular compartment-specific proteomes, as well as the profiling of the protein composition of specific synaptic connections. Here, we provide an overview of these approaches and discuss how they hold considerable promise toward unravelling the molecular mechanisms of neural circuit formation and function. Finally, we provide an outlook of technological developments that may bring the characterization of synaptic proteomes at the single-synapse level within reach.
Collapse
Affiliation(s)
- Gabriele Marcassa
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium
| | - Dan Dascenco
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium. https://twitter.com/ddascenco
| | - Joris de Wit
- VIB Center for Brain & Disease Research, Herestraat 49, 3000 Leuven, Belgium; KU Leuven, Department of Neurosciences, Leuven Brain Institute, Herestraat 49, 3000 Leuven, Belgium.
| |
Collapse
|
26
|
Hindley N, Sanchez Avila A, Henstridge C. Bringing synapses into focus: Recent advances in synaptic imaging and mass-spectrometry for studying synaptopathy. Front Synaptic Neurosci 2023; 15:1130198. [PMID: 37008679 PMCID: PMC10050382 DOI: 10.3389/fnsyn.2023.1130198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/28/2023] [Indexed: 03/17/2023] Open
Abstract
Synapses are integral for healthy brain function and are becoming increasingly recognized as key structures in the early stages of brain disease. Understanding the pathological processes driving synaptic dysfunction will unlock new therapeutic opportunities for some of the most devastating diseases of our time. To achieve this we need a solid repertoire of imaging and molecular tools to interrogate synaptic biology at greater resolution. Synapses have historically been examined in small numbers, using highly technical imaging modalities, or in bulk, using crude molecular approaches. However, recent advances in imaging techniques are allowing us to analyze large numbers of synapses, at single-synapse resolution. Furthermore, multiplexing is now achievable with some of these approaches, meaning we can examine multiple proteins at individual synapses in intact tissue. New molecular techniques now allow accurate quantification of proteins from isolated synapses. The development of increasingly sensitive mass-spectrometry equipment means we can now scan the synaptic molecular landscape almost in totality and see how this changes in disease. As we embrace these new technical developments, synapses will be viewed with clearer focus, and the field of synaptopathy will become richer with insightful and high-quality data. Here, we will discuss some of the ways in which synaptic interrogation is being facilitated by methodological advances, focusing on imaging, and mass spectrometry.
Collapse
Affiliation(s)
- Nicole Hindley
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
| | - Anna Sanchez Avila
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| | - Christopher Henstridge
- Division of Cellular and Systems Medicine, University of Dundee, Dundee, United Kingdom
- Euan Macdonald Centre for Motor Neuron Disease, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
27
|
Hu JH, Liu Y, Hoffman DA. Identification of Kv4.2 protein complex and modifications by tandem affinity purification-mass spectrometry in primary neurons. Front Cell Neurosci 2022; 16:1070305. [PMID: 36568885 PMCID: PMC9788671 DOI: 10.3389/fncel.2022.1070305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/24/2022] [Indexed: 12/13/2022] Open
Abstract
Proteins usually form complexes to fulfill variable physiological functions. In neurons, communication relies on synapses where receptors, channels, and anchoring proteins form complexes to precisely control signal transduction, synaptic integration, and action potential firing. Although there are many published protocols to isolate protein complexes in cell lines, isolation in neurons has not been well established. Here we introduce a method that combines lentiviral protein expression with tandem affinity purification followed by mass-spectrometry (TAP-MS) to identify protein complexes in neurons. This protocol can also be used to identify post-translational modifications (PTMs) of synaptic proteins. We used the A-type voltage-gated K+ channel subunit Kv4.2 as the target protein. Kv4.2 is highly expressed in the hippocampus where it contributes to learning and memory through its regulation of neuronal excitability and synaptic plasticity. We tagged Kv4.2 with the calmodulin-binding-peptide (CBP) and streptavidin-binding-peptide (SBP) at its C-terminus and expressed it in neurons via lentivirus. Kv4.2 was purified by two-step TAP and samples were analyzed by MS. MS identified two prominently known Kv4.2 interacting proteins [dipeptidyl peptidase like (DPPs) and Kv channel-interacting proteins (KChIPs)] in addition to novel synaptic proteins including glutamate receptors, a calcium channel, and anchoring proteins. Co-immunoprecipitation and colocalization experiments validated the association of Kv4.2 with glutamate receptors. In addition to protein complex identification, we used TAP-MS to identify Kv4.2 phosphorylation sites. Several known and unknown phosphorylation sites were identified. These findings provide a novel path to identify protein-protein interactions and PTMs in neurons and shed light on mechanisms of neuronal signaling potentially involved in the pathology of neurological diseases.
Collapse
|
28
|
Kumar S, Orlov E, Gowda P, Bose C, Swerdlow RH, Lahiri DK, Reddy PH. Synaptosome microRNAs regulate synapse functions in Alzheimer's disease. NPJ Genom Med 2022; 7:47. [PMID: 35941185 PMCID: PMC9359989 DOI: 10.1038/s41525-022-00319-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/15/2022] [Indexed: 01/05/2023] Open
Abstract
MicroRNAs (miRNAs) are found in nerve terminals, synaptic vesicles, and synaptosomes, but it is unclear whether synaptic and cytosolic miRNA populations differ in Alzheimer's disease (AD) or if synaptosomal miRNAs affect AD synapse activity. To address these questions, we generated synaptosomes and cytosolic fractions from postmortem brains of AD and unaffected control (UC) samples and analyzed them using a global Affymetrix miRNAs microarray platform. A group of miRNAs significantly differed (P < 0.0001) with high fold changes variance (+/- >200-fold) in their expressions in different comparisons: (1) UC synaptosome vs UC cytosol, (2) AD synaptosomes vs AD cytosol, (3) AD cytosol vs UC cytosol, and (4) AD synaptosomes vs UC synaptosomes. MiRNAs data analysis revealed that some potential miRNAs were consistently different across sample groups. These differentially expressed miRNAs were further validated using AD postmortem brains, brains of APP transgenic (Tg2576), Tau transgenic (P301L), and wild-type mice. The miR-501-3p, miR-502-3p, and miR-877-5p were identified as potential synaptosomal miRNAs upregulated with disease progression based on AD Braak stages. Gene Ontology Enrichment and Ingenuity Pathway Analysis of synaptosomal miRNAs showed the involvement of miRNAs in nervous system development, cell junction organization, synapse assembly formation, and function of GABAergic synapse. This is the first description of synaptic versus cytosolic miRNAs in AD and their significance in synapse function.
Collapse
Affiliation(s)
- Subodh Kumar
- grid.416992.10000 0001 2179 3554Center of Emphasis in Neuroscience, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905 USA ,grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, 5001 El Paso Drive, El Paso, TX 79905, USA
| | - Erika Orlov
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Prashanth Gowda
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Chhanda Bose
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| | - Russell H. Swerdlow
- grid.266515.30000 0001 2106 0692Department of Neurology, the University of Kansas Medical Center, University of Kansas Alzheimer’s Disease Research Center, Fairway, KS 66205 USA
| | - Debomoy K. Lahiri
- grid.257413.60000 0001 2287 3919Laboratory of Molecular Neurogenetics’ Departments of Psychiatry and Medical & Molecular Genetics, Indiana University School of Medicine’ Indiana Alzheimer’s Disease Research Center, Stark Neuroscience Research Institute, Indianapolis, IN 46202 USA
| | - P. Hemachandra Reddy
- grid.416992.10000 0001 2179 3554Internal Medicine Department, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Pharmacology & Neuroscience, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Neurology, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA ,grid.416992.10000 0001 2179 3554Department of Public Health, Texas Tech University Health Sciences Center, 3601 4th Street STOP 9410, Lubbock, TX 79430 USA
| |
Collapse
|
29
|
Deficiency in FTSJ1 Affects Neuronal Plasticity in the Hippocampal Formation of Mice. BIOLOGY 2022; 11:biology11071011. [PMID: 36101392 PMCID: PMC9312013 DOI: 10.3390/biology11071011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Neuronal plasticity refers to the brain’s ability to adapt in response to activity-dependent changes. This process, among others, allows the brain to acquire memory or to compensate for a neurocognitive deficit. We analyzed adult FTSJ1-deficient mice in order to gain insight into the role of FTSJ1 in neuronal plasticity. These mice displayed alterations in the hippocampus (a brain structure that is involved in memory and learning, among other functions) e.g., in the form of changes in dendritic spines. Changes in dendritic spines are considered to represent a morphological hallmark of altered neuronal plasticity, and thus FTSJ1 deficiency might have a direct effect upon the capacity of the brain to adapt to plastic changes. Long-term potentiation (LTP) is an electrophysiological correlate of neuronal plasticity, and is related to learning and to processes attributed to memory. Here we show that LTP in FTSJ1-deficient mice is reduced, hinting at disturbed neuronal plasticity. These findings suggest that FTSJ1 deficiency has an impact on neuronal plasticity not only morphologically but also on the physiological level. Abstract The role of the tRNA methyltransferase FTSJ1 in the brain is largely unknown. We analyzed whether FTSJ1-deficient mice (KO) displayed altered neuronal plasticity. We explored open field behavior (10 KO mice (aged 22–25 weeks)) and 11 age-matched control littermates (WT) and examined mean layer thickness (7 KO; 6 WT) and dendritic spines (5 KO; 5 WT) in the hippocampal area CA1 and the dentate gyrus. Furthermore, long-term potentiation (LTP) within area CA1 was investigated (5 KO; 5 WT), and mass spectrometry (MS) using CA1 tissue (2 each) was performed. Compared to controls, KO mice showed a significant reduction in the mean thickness of apical CA1 layers. Dendritic spine densities were also altered in KO mice. Stable LTP could be induced in the CA1 area of KO mice and remained stable at for at least 1 h, although at a lower level as compared to WTs, while MS data indicated differential abundance of several proteins, which play a role in neuronal plasticity. FTSJ1 has an impact on neuronal plasticity in the murine hippocampal area CA1 at the morphological and physiological levels, which, in conjunction with comparable changes in other cortical areas, might accumulate in disturbed learning and memory functions.
Collapse
|
30
|
Paget-Blanc V, Pfeffer ME, Pronot M, Lapios P, Angelo MF, Walle R, Cordelières FP, Levet F, Claverol S, Lacomme S, Petrel M, Martin C, Pitard V, De Smedt Peyrusse V, Biederer T, Perrais D, Trifilieff P, Herzog E. A synaptomic analysis reveals dopamine hub synapses in the mouse striatum. Nat Commun 2022; 13:3102. [PMID: 35660742 PMCID: PMC9166739 DOI: 10.1038/s41467-022-30776-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Dopamine transmission is involved in reward processing and motor control, and its impairment plays a central role in numerous neurological disorders. Despite its strong pathophysiological relevance, the molecular and structural organization of the dopaminergic synapse remains to be established. Here, we used targeted labelling and fluorescence activated sorting to purify striatal dopaminergic synaptosomes. We provide the proteome of dopaminergic synapses with 57 proteins specifically enriched. Beyond canonical markers of dopamine neurotransmission such as dopamine biosynthetic enzymes and cognate receptors, we validated 6 proteins not previously described as enriched. Moreover, our data reveal the adhesion of dopaminergic synapses to glutamatergic, GABAergic or cholinergic synapses in structures we named “dopamine hub synapses”. At glutamatergic synapses, pre- and postsynaptic markers are significantly increased upon association with dopamine synapses. Dopamine hub synapses may thus support local dopaminergic signalling, complementing volume transmission thought to be the major mechanism by which monoamines modulate network activity. The neurotransmitter dopamine is an important regulator of brain function. Here the authors describe “dopamine hub synapses”, where dopamine transmission may act in synergy with other neurotransmitters.
Collapse
Affiliation(s)
- Vincent Paget-Blanc
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Marlene E Pfeffer
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Marie Pronot
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Paul Lapios
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Maria-Florencia Angelo
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Roman Walle
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Fabrice P Cordelières
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, F-33000, Bordeaux, France
| | - Florian Levet
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France.,Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, F-33000, Bordeaux, France
| | | | - Sabrina Lacomme
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, F-33000, Bordeaux, France
| | - Mélina Petrel
- Univ. Bordeaux, CNRS, INSERM, Bordeaux Imaging Center, BIC, UAR 3420, US 4, F-33000, Bordeaux, France
| | - Christelle Martin
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Vincent Pitard
- UB'FACSility CNRS UMS 3427, INSERM US 005, Univ. Bordeaux, F-33000, Bordeaux, France
| | | | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT, 06511, USA
| | - David Perrais
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France
| | - Pierre Trifilieff
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Etienne Herzog
- Univ. Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR 5297, F-33000, Bordeaux, France.
| |
Collapse
|
31
|
Larocque G, Royle SJ. Integrating intracellular nanovesicles into integrin trafficking pathways and beyond. Cell Mol Life Sci 2022; 79:335. [PMID: 35657500 PMCID: PMC9166830 DOI: 10.1007/s00018-022-04371-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Membrane traffic controls the movement of proteins and lipids from one cellular compartment to another using a system of transport vesicles. Intracellular nanovesicles (INVs) are a newly described class of transport vesicles. These vesicles are small, carry diverse cargo, and are involved in multiple trafficking steps including anterograde traffic and endosomal recycling. An example of a biological process that they control is cell migration and invasion, due to their role in integrin recycling. In this review, we describe what is known so far about these vesicles. We discuss how INVs may integrate into established membrane trafficking pathways using integrin recycling as an example. We speculate where in the cell INVs have the potential to operate and we identify key questions for future investigation.
Collapse
Affiliation(s)
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
32
|
Nguyen NM, Vellichirammal NN, Guda C, Pendyala G. Decoding the Synaptic Proteome with Long-Term Exposure to Midazolam during Early Development. Int J Mol Sci 2022; 23:ijms23084137. [PMID: 35456952 PMCID: PMC9027542 DOI: 10.3390/ijms23084137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 12/05/2022] Open
Abstract
The intensive use of anesthetic and sedative agents in the neonatal intensive care unit (NICU) has raised controversial concerns about the potential neurodevelopmental risks. This study focused on midazolam (MDZ), a common benzodiazepine regularly used as a sedative on neonates in the NICU. Mounting evidence suggests a single exposure to MDZ during the neonatal period leads to learning disturbances. However, a knowledge gap that remains is how long-term exposure to MDZ during very early stages of life impacts synaptic alterations. Using a preclinical rodent model system, we mimicked a dose-escalation regimen on postnatal day 3 (P3) pups until day 21. Next, purified synaptosomes from P21 control and MDZ animals were subjected to quantitative mass-spectrometry-based proteomics, to identify potential proteomic signatures. Further analysis by ClueGO identified enrichment of proteins associated with actin-binding and protein depolymerization process. One potential hit identified was alpha adducin (ADD1), belonging to the family of cytoskeleton proteins, which was upregulated in the MDZ group and whose expression was further validated by Western blot. In summary, this study sheds new information on the long-term exposure of MDZ during the early stages of development impacts synaptic function, which could subsequently perturb neurobehavioral outcomes at later stages of life.
Collapse
Affiliation(s)
- Nghi M. Nguyen
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Neetha N. Vellichirammal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
- Child Health Research Institute, Omaha, NE 68198, USA
- Correspondence: ; Tel.: +1-402-559-8690
| |
Collapse
|
33
|
Stress vulnerability shapes disruption of motor cortical neuroplasticity. Transl Psychiatry 2022; 12:91. [PMID: 35246507 PMCID: PMC8897461 DOI: 10.1038/s41398-022-01855-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/06/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023] Open
Abstract
Chronic stress is a major cause of neuropsychiatric conditions such as depression. Stress vulnerability varies individually in mice and humans, measured by behavioral changes. In contrast to affective symptoms, motor retardation as a consequence of stress is not well understood. We repeatedly imaged dendritic spines of the motor cortex in Thy1-GFP M mice before and after chronic social defeat stress. Susceptible and resilient phenotypes were discriminated by symptom load and their motor learning abilities were assessed by a gross and fine motor task. Stress phenotypes presented individual short- and long-term changes in the hypothalamic-pituitary-adrenal axis as well as distinct patterns of altered motor learning. Importantly, stress was generally accompanied by a marked reduction of spine density in the motor cortex and spine dynamics depended on the stress phenotype. We found astrogliosis and altered microglia morphology along with increased microglia-neuron interaction in the motor cortex of susceptible mice. In cerebrospinal fluid, proteomic fingerprints link the behavioral changes and structural alterations in the brain to neurodegenerative disorders and dysregulated synaptic homeostasis. Our work emphasizes the importance of synaptic integrity and the risk of neurodegeneration within depression as a threat to brain health.
Collapse
|
34
|
Hobson BD, Choi SJ, Mosharov EV, Soni RK, Sulzer D, Sims PA. Subcellular proteomics of dopamine neurons in the mouse brain. eLife 2022; 11:e70921. [PMID: 35098924 PMCID: PMC8860448 DOI: 10.7554/elife.70921] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/30/2022] [Indexed: 11/13/2022] Open
Abstract
Dopaminergic neurons modulate neural circuits and behaviors via dopamine (DA) release from expansive, long range axonal projections. The elaborate cytoarchitecture of these neurons is embedded within complex brain tissue, making it difficult to access the neuronal proteome using conventional methods. Here, we demonstrate APEX2 proximity labeling within genetically targeted neurons in the mouse brain, enabling subcellular proteomics with cell-type specificity. By combining APEX2 biotinylation with mass spectrometry, we mapped the somatodendritic and axonal proteomes of midbrain dopaminergic neurons. Our dataset reveals the proteomic architecture underlying proteostasis, axonal metabolism, and neurotransmission in these neurons. We find that most proteins encoded by DA neuron-enriched genes are localized within striatal dopaminergic axons, including ion channels with previously undescribed axonal localization. These proteomic datasets provide a resource for neuronal cell biology, and this approach can be readily adapted for study of other neural cell types.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Medical Scientist Training Program, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Psychiatry, Columbia University Irving Medical CenterNew YorkUnited States
| | - Se Joon Choi
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
| | - Eugene V Mosharov
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
| | - Rajesh K Soni
- Proteomics Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical CenterNew YorkUnited States
| | - David Sulzer
- Department of Psychiatry, Columbia University Irving Medical CenterNew YorkUnited States
- Division of Molecular Therapeutics, New York State Psychiatric InstituteNew YorkUnited States
- Department of Neurology, Columbia University Irving Medical CenterNew YorkUnited States
- Department of Pharmacology, Columbia University Irving Medical CenterNew YorkUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical CenterNew YorkUnited States
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research NetworkChevy ChaseUnited States
- Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical CenterNew YorkUnited States
- Sulzberger Columbia Genome Center, Columbia University Irving Medical CenterNew YorkUnited States
| |
Collapse
|
35
|
Hobson BD, Kong L, Angelo MF, Lieberman OJ, Mosharov EV, Herzog E, Sulzer D, Sims PA. Subcellular and regional localization of mRNA translation in midbrain dopamine neurons. Cell Rep 2022; 38:110208. [PMID: 35021090 PMCID: PMC8844886 DOI: 10.1016/j.celrep.2021.110208] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/25/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Midbrain dopaminergic (mDA) neurons exhibit extensive dendritic and axonal arborizations, but local protein synthesis is not characterized in these neurons. Here, we investigate messenger RNA (mRNA) localization and translation in mDA neuronal axons and dendrites, both of which release dopamine (DA). Using highly sensitive ribosome-bound RNA sequencing and imaging approaches, we find no evidence for mRNA translation in mDA axons. In contrast, mDA neuronal dendrites in the substantia nigra pars reticulata (SNr) contain ribosomes and mRNAs encoding the major components of DA synthesis, release, and reuptake machinery. Surprisingly, we also observe dendritic localization of mRNAs encoding synaptic vesicle-related proteins, including those involved in exocytic fusion. Our results are consistent with a role for local translation in the regulation of DA release from dendrites, but not from axons. Our translatome data define a molecular signature of sparse mDA neurons in the SNr, including the enrichment of Atp2a3/SERCA3, an atypical ER calcium pump.
Collapse
Affiliation(s)
- Benjamin D Hobson
- Department of Systems Biology, Columbia University Irving Medical Center, New York 10032, NY, USA; Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Linghao Kong
- Department of Systems Biology, Columbia University Irving Medical Center, New York 10032, NY, USA
| | - Maria Florencia Angelo
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France
| | - Ori J Lieberman
- Medical Scientist Training Program, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Eugene V Mosharov
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA
| | - Etienne Herzog
- Interdisciplinary Institute for Neuroscience, Université de Bordeaux, Bordeaux, France; Interdisciplinary Institute for Neuroscience, CNRS UMR 5297, Bordeaux, France.
| | - David Sulzer
- Department of Neurology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Psychiatry, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Pharmacology, Columbia University Irving Medical Center, New York, NY 10032, USA; Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY 10032, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| | - Peter A Sims
- Department of Systems Biology, Columbia University Irving Medical Center, New York 10032, NY, USA; Department of Biochemistry & Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Sulzberger Columbia Genome Center, Columbia University Irving Medical Center, New York, NY 10032, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
36
|
Lu X, Zhou M, Liu N, Zhang C, Zhao Z, Cai D. Synaptic Protein Phosphorylation Networks Are Associated With Electroacupuncture-Induced Circadian Control in the Suprachiasmatic Nucleus. Front Genet 2021; 12:762557. [PMID: 34976011 PMCID: PMC8717940 DOI: 10.3389/fgene.2021.762557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 11/29/2021] [Indexed: 11/23/2022] Open
Abstract
Phosphorylation is one of the most important posttranslational modifications and regulates the physiological process. While recent studies highlight a major role of phosphorylation in the regulation of sleep–wake cycles to a lesser extent, the phosphoproteome in the suprachiasmatic nucleus (SCN) is not well-understood. Herein, we reported that the EA treatment elicits partial reparation of circadian rhythmicity when mice were exposure to constant darkness for long time. We investigated the effects of EA on circadian rhythms in constant darkness between EA stimulation and free-running control. Next, mass spectrometry–based phosphoproteome was utilized to explore the molecular characteristics of EA-induced phosphorylation modification in the SCN. A total of 6,192 distinct phosphosites on 2,488 proteins were quantified. Functional annotation analysis and protein–protein interaction networks demonstrated the most significant enriched phosphor-proteins and phosphosites involved in postsynapse and glutamatergic synapse. The current data indicated that most of the altered molecules are structural proteins. The target proteins, NMDAR and CAMK2, were selected for verification, consistent with the results of LC–MS/MS. These findings revealed a complete profile of phosphorylation modification in response to EA.
Collapse
Affiliation(s)
| | | | | | | | | | - Dingjun Cai
- *Correspondence: Zhengyu Zhao, ; Dingjun Cai,
| |
Collapse
|
37
|
Lautz JD, Tsegay KB, Zhu Z, Gniffke EP, Welsh JP, Smith SEP. Synaptic protein interaction networks encode experience by assuming stimulus-specific and brain-region-specific states. Cell Rep 2021; 37:110076. [PMID: 34852231 PMCID: PMC8722361 DOI: 10.1016/j.celrep.2021.110076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/01/2021] [Accepted: 11/09/2021] [Indexed: 11/02/2022] Open
Abstract
A core network of widely expressed proteins within the glutamatergic post-synapse mediates activity-dependent synaptic plasticity throughout the brain, but the specific proteomic composition of synapses differs between brain regions. Here, we address the question, how does proteomic composition affect activity-dependent protein-protein interaction networks (PINs) downstream of synaptic activity? Using quantitative multiplex co-immunoprecipitation, we compare the PIN response of in vivo or ex vivo neurons derived from different brain regions to activation by different agonists or different forms of eyeblink conditioning. We report that PINs discriminate between incoming stimuli using differential kinetics of overlapping and non-overlapping PIN parameters. Further, these "molecular logic rules" differ by brain region. We conclude that although the PIN of the glutamatergic post-synapse is expressed widely throughout the brain, its activity-dependent dynamics show remarkable stimulus-specific and brain-region-specific diversity. This diversity may help explain the challenges in developing molecule-specific drug therapies for neurological disorders.
Collapse
Affiliation(s)
- Jonathan D Lautz
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Kaleb B Tsegay
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Zhiyi Zhu
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - Edward P Gniffke
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA
| | - John P Welsh
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Stephen E P Smith
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA; Department of Pediatrics, University of Washington, Seattle, WA, USA; Graduate Program in Neuroscience, University of Washington, Seattle, WA, USA.
| |
Collapse
|
38
|
Influenza A Virus (H1N1) Infection Induces Microglial Activation and Temporal Dysbalance in Glutamatergic Synaptic Transmission. mBio 2021; 12:e0177621. [PMID: 34700379 PMCID: PMC8546584 DOI: 10.1128/mbio.01776-21] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Influenza A virus (IAV) causes respiratory tract disease and is responsible for seasonal and reoccurring epidemics affecting all age groups. Next to typical disease symptoms, such as fever and fatigue, IAV infection has been associated with behavioral alterations presumably contributing to the development of major depression. Previous experiments using IAV/H1N1 infection models have shown impaired hippocampal neuronal morphology and cognitive abilities, but the underlying pathways have not been fully described. In this study, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes ample peripheral immune response followed by a temporary blood-brain barrier disturbance. Although histological examination did not reveal obvious pathological processes in the brains of IAV-infected mice, detailed multidimensional flow cytometric characterization of immune cells uncovered subtle alterations in the activation status of microglial cells. More specifically, we detected an altered expression pattern of major histocompatibility complex classes I and II, CD80, and F4/80 accompanied by elevated mRNA levels of CD36, CD68, C1QA, and C3, suggesting evolved synaptic pruning. To closer evaluate how these profound changes affect synaptic balance, we established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry. The introduction of this novel technique enabled us to simultaneously quantify the abundance of pre- and postsynapses from distinct brain regions. Our data reveal a significant reduction of VGLUT1 in excitatory presynaptic terminals in the cortex and hippocampus, identifying a subtle dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations. IMPORTANCE Influenza A virus (IAV) causes mainly respiratory tract disease with fever and fatigue but is also associated with behavioral alterations in humans. Here, we demonstrate that infection with a low-dose non-neurotrophic H1N1 strain of IAV causes peripheral immune response followed by a temporary blood-brain barrier disturbance. Characterization of immune cells uncovered subtle alterations in the activation status of microglia cells that might reshape neuronal synapses. We established a highly sensitive multiplex flow cytometry-based approach called flow synaptometry to more closely study the synapses. Thus, we detected a specific dysbalance in glutamatergic synapse transmission upon H1N1 infection in mice. In conclusion, our results highlight the consequences of systemic IAV-triggered inflammation on the central nervous system and the induction and progression of neuronal alterations.
Collapse
|
39
|
Borgmeyer M, Coman C, Has C, Schött HF, Li T, Westhoff P, Cheung YFH, Hoffmann N, Yuanxiang P, Behnisch T, Gomes GM, Dumenieu M, Schweizer M, Chocholoušková M, Holčapek M, Mikhaylova M, Kreutz MR, Ahrends R. Multiomics of synaptic junctions reveals altered lipid metabolism and signaling following environmental enrichment. Cell Rep 2021; 37:109797. [PMID: 34610315 DOI: 10.1016/j.celrep.2021.109797] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 04/12/2021] [Accepted: 09/15/2021] [Indexed: 12/30/2022] Open
Abstract
Membrane lipids and their metabolism have key functions in neurotransmission. Here we provide a quantitative lipid inventory of mouse and rat synaptic junctions. To this end, we developed a multiomics extraction and analysis workflow to probe the interplay of proteins and lipids in synaptic signal transduction from the same sample. Based on this workflow, we generate hypotheses about novel mechanisms underlying complex changes in synaptic connectivity elicited by environmental stimuli. As a proof of principle, this approach reveals that in mice exposed to an enriched environment, reduced endocannabinoid synthesis and signaling is linked to increased surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in a subset of Cannabinoid-receptor 1 positive synapses. This mechanism regulates synaptic strength in an input-specific manner. Thus, we establish a compartment-specific multiomics workflow that is suitable to extract information from complex lipid and protein networks involved in synaptic function and plasticity.
Collapse
Affiliation(s)
- Maximilian Borgmeyer
- Leibniz Group 'Dendritic Organelles and Synaptic Function,' University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany; RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Cristina Coman
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany; Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Wien, Austria
| | - Canan Has
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Hans-Frieder Schött
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Tingting Li
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Philipp Westhoff
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Yam F H Cheung
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - Nils Hoffmann
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
| | - PingAn Yuanxiang
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Thomas Behnisch
- Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Guilherme M Gomes
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Mael Dumenieu
- RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
| | - Michaela Schweizer
- Morphology and Electron Microscopy, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany
| | - Michaela Chocholoušková
- University of Pardubice, Department of Analytical Chemistry, CZ-532 10 Pardubice, Czech Republic
| | - Michal Holčapek
- University of Pardubice, Department of Analytical Chemistry, CZ-532 10 Pardubice, Czech Republic
| | - Marina Mikhaylova
- Emmy Noether Group 'Neuronal Protein Transport,' University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany; AG Optobiology, Institute for Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
| | - Michael R Kreutz
- Leibniz Group 'Dendritic Organelles and Synaptic Function,' University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany; RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, 30120 Magdeburg, Germany.
| | - Robert Ahrends
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany; Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Wien, Austria.
| |
Collapse
|
40
|
Gutman-Wei AY, Brown SP. Mechanisms Underlying Target Selectivity for Cell Types and Subcellular Domains in Developing Neocortical Circuits. Front Neural Circuits 2021; 15:728832. [PMID: 34630048 PMCID: PMC8497978 DOI: 10.3389/fncir.2021.728832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/25/2021] [Indexed: 11/25/2022] Open
Abstract
The cerebral cortex contains numerous neuronal cell types, distinguished by their molecular identity as well as their electrophysiological and morphological properties. Cortical function is reliant on stereotyped patterns of synaptic connectivity and synaptic function among these neuron types, but how these patterns are established during development remains poorly understood. Selective targeting not only of different cell types but also of distinct postsynaptic neuronal domains occurs in many brain circuits and is directed by multiple mechanisms. These mechanisms include the regulation of axonal and dendritic guidance and fine-scale morphogenesis of pre- and postsynaptic processes, lineage relationships, activity dependent mechanisms and intercellular molecular determinants such as transmembrane and secreted molecules, many of which have also been implicated in neurodevelopmental disorders. However, many studies of synaptic targeting have focused on circuits in which neuronal processes target different lamina, such that cell-type-biased connectivity may be confounded with mechanisms of laminar specificity. In the cerebral cortex, each cortical layer contains cell bodies and processes from intermingled neuronal cell types, an arrangement that presents a challenge for the development of target-selective synapse formation. Here, we address progress and future directions in the study of cell-type-biased synaptic targeting in the cerebral cortex. We highlight challenges to identifying developmental mechanisms generating stereotyped patterns of intracortical connectivity, recent developments in uncovering the determinants of synaptic target selection during cortical synapse formation, and current gaps in the understanding of cortical synapse specificity.
Collapse
Affiliation(s)
- Alan Y. Gutman-Wei
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Solange P. Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
41
|
Bhattacharya U, Jhou JF, Zou YF, Abrigo G, Lin SW, Chen YH, Chien FC, Tai HC. Surface charge manipulation and electrostatic immobilization of synaptosomes for super-resolution imaging: a study on tau compartmentalization. Sci Rep 2021; 11:18583. [PMID: 34545174 PMCID: PMC8452691 DOI: 10.1038/s41598-021-98142-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/30/2021] [Indexed: 12/31/2022] Open
Abstract
Synaptosomes are subcellular fractions prepared from brain tissues that are enriched in synaptic terminals, widely used for the study of neural transmission and synaptic dysfunction. Immunofluorescence imaging is increasingly applied to synaptosomes to investigate protein localization. However, conventional methods for imaging synaptosomes over glass coverslips suffer from formaldehyde-induced aggregation. Here, we developed a facile strategy to capture and image synaptosomes without aggregation artefacts. First, ethylene glycol bis(succinimidyl succinate) (EGS) is chosen as the chemical fixative to replace formaldehyde. EGS/glycine treatment makes the zeta potential of synaptosomes more negative. Second, we modified glass coverslips with 3-aminopropyltriethoxysilane (APTES) to impart positive charges. EGS-fixed synaptosomes spontaneously attach to modified glasses via electrostatic attraction while maintaining good dispersion. Individual synaptic terminals are imaged by conventional fluorescence microscopy or by super-resolution techniques such as direct stochastic optical reconstruction microscopy (dSTORM). We examined tau protein by two-color and three-color dSTORM to understand its spatial distribution within mouse cortical synapses, observing tau colocalization with synaptic vesicles as well postsynaptic densities.
Collapse
Affiliation(s)
| | - Jia-Fong Jhou
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yi-Fong Zou
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Gerald Abrigo
- Department of Optics and Photonics, National Central University, Taoyuan, Taiwan
| | - Shu-Wei Lin
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Yun-Hsuan Chen
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan
| | - Fan-Ching Chien
- Department of Optics and Photonics, National Central University, Taoyuan, Taiwan
| | - Hwan-Ching Tai
- Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
42
|
Castillo-Ocampo Y, Colón M, Hernández A, Lopez P, Gerena Y, Porter JT. Plasticity of GluN1 at Ventral Hippocampal Synapses in the Infralimbic Cortex. Front Synaptic Neurosci 2021; 13:695964. [PMID: 34335223 PMCID: PMC8320376 DOI: 10.3389/fnsyn.2021.695964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/25/2021] [Indexed: 11/25/2022] Open
Abstract
Although the infralimbic cortex (IL) is not thought to play a role in fear acquisition, recent experiments found evidence that synaptic plasticity is occurring at ventral hippocampal (vHPC) synapses in IL during auditory fear acquisition as measured by changes in the N-methyl-D-aspartate (NMDA) receptor-mediated currents in male rats. These electrophysiological data suggest that fear conditioning changes the expression of NMDA receptors on vHPC-to-IL synapses. To further evaluate the plasticity of NMDA receptors at this specific synapse, we injected AAV particles expressing channelrhodopsin-EYFP into the vHPC of male and female rats to label vHPC projections with EYFP. To test for NMDA receptor changes in vHPC-to-IL synapses after fear learning, we used fluorescence-activated cell sorting (FACS) to quantify synaptosomes isolated from IL tissue punches that were positive for EYFP and the obligatory GluN1 subunit. More EYFP+/GluN1+ synaptosomes with greater average expression of GluN1 were isolated from male rats exposed to auditory fear conditioning (AFC) than those exposed to context and tones only or to contextual fear conditioning (CFC), suggesting that AFC increased NMDA receptor expression in males. In a second experiment, we found that pairing the tones and shocks was required to induce the molecular changes and that fear extinction did not reverse the changes. In contrast, females showed similar levels of EYFP+/GluN1+ synaptosomes in all behavioral groups. These findings suggest that AFC induces synaptic plasticity of NMDA receptors in the vHPC-to-IL projection in males, while female rats rely on different synaptic mechanisms.
Collapse
Affiliation(s)
- Yesenia Castillo-Ocampo
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - María Colón
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Anixa Hernández
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Pablo Lopez
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| | - Yamil Gerena
- Department of Pharmacology and Toxicology, School of Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - James T. Porter
- Department of Basic Sciences, Ponce Research Institute, Ponce Health Sciences University, Ponce, Puerto Rico
| |
Collapse
|
43
|
Di Paolo A, Garat J, Eastman G, Farias J, Dajas-Bailador F, Smircich P, Sotelo-Silveira JR. Functional Genomics of Axons and Synapses to Understand Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:686722. [PMID: 34248504 PMCID: PMC8267896 DOI: 10.3389/fncel.2021.686722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 06/02/2021] [Indexed: 01/02/2023] Open
Abstract
Functional genomics studies through transcriptomics, translatomics and proteomics have become increasingly important tools to understand the molecular basis of biological systems in the last decade. In most cases, when these approaches are applied to the nervous system, they are centered in cell bodies or somatodendritic compartments, as these are easier to isolate and, at least in vitro, contain most of the mRNA and proteins present in all neuronal compartments. However, key functional processes and many neuronal disorders are initiated by changes occurring far away from cell bodies, particularly in axons (axopathologies) and synapses (synaptopathies). Both neuronal compartments contain specific RNAs and proteins, which are known to vary depending on their anatomical distribution, developmental stage and function, and thus form the complex network of molecular pathways required for neuron connectivity. Modifications in these components due to metabolic, environmental, and/or genetic issues could trigger or exacerbate a neuronal disease. For this reason, detailed profiling and functional understanding of the precise changes in these compartments may thus yield new insights into the still intractable molecular basis of most neuronal disorders. In the case of synaptic dysfunctions or synaptopathies, they contribute to dozens of diseases in the human brain including neurodevelopmental (i.e., autism, Down syndrome, and epilepsy) as well as neurodegenerative disorders (i.e., Alzheimer's and Parkinson's diseases). Histological, biochemical, cellular, and general molecular biology techniques have been key in understanding these pathologies. Now, the growing number of omics approaches can add significant extra information at a high and wide resolution level and, used effectively, can lead to novel and insightful interpretations of the biological processes at play. This review describes current approaches that use transcriptomics, translatomics and proteomic related methods to analyze the axon and presynaptic elements, focusing on the relationship that axon and synapses have with neurodegenerative diseases.
Collapse
Affiliation(s)
- Andres Di Paolo
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Departamento de Proteínas y Ácidos Nucleicos, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Joaquin Garat
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
| | - Joaquina Farias
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Polo de Desarrollo Universitario “Espacio de Biología Vegetal del Noreste”, Centro Universitario Regional Noreste, Universidad de la República (UdelaR), Tacuarembó, Uruguay
| | - Federico Dajas-Bailador
- School of Life Sciences, Medical School Building, University of Nottingham, Nottingham, United Kingdom
| | - Pablo Smircich
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - José Roberto Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Departamento de Biología Celular y Molecular, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
44
|
A unified resource and configurable model of the synapse proteome and its role in disease. Sci Rep 2021; 11:9967. [PMID: 33976238 PMCID: PMC8113277 DOI: 10.1038/s41598-021-88945-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/15/2021] [Indexed: 02/03/2023] Open
Abstract
Genes encoding synaptic proteins are highly associated with neuronal disorders many of which show clinical co-morbidity. We integrated 58 published synaptic proteomic datasets that describe over 8000 proteins and combined them with direct protein-protein interactions and functional metadata to build a network resource that reveals the shared and unique protein components that underpin multiple disorders. All the data are provided in a flexible and accessible format to encourage custom use.
Collapse
|
45
|
van Gelder CAGH, Altelaar M. Neuroproteomics of the Synapse: Subcellular Quantification of Protein Networks and Signaling Dynamics. Mol Cell Proteomics 2021; 20:100087. [PMID: 33933679 PMCID: PMC8167277 DOI: 10.1016/j.mcpro.2021.100087] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 01/21/2023] Open
Abstract
One of the most fascinating features of the brain is its ability to adapt to its surroundings. Synaptic plasticity, the dynamic mechanism of functional and structural alterations in synaptic strength, is essential for brain functioning and underlies a variety of processes such as learning and memory. Although the molecular mechanisms underlying such rapid plasticity are not fully understood, a consensus exists on the important role of proteins. The study of these neuronal proteins using neuroproteomics has increased rapidly in the last decades, and advancements in MS-based proteomics have broadened our understanding of neuroplasticity exponentially. In this review, we discuss the trends in MS-based neuroproteomics for the study of synaptic protein-protein interactions and protein signaling dynamics, with a focus on sample types, different labeling and enrichment approaches, and data analysis and interpretation. We highlight studies from the last 5 years, with a focus on synapse structure, composition, functioning, or signaling and finally discuss some recent developments that could further advance the field of neuroproteomics.
Collapse
Affiliation(s)
- Charlotte A G H van Gelder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands
| | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands; Netherlands Proteomics Center, Utrecht, The Netherlands.
| |
Collapse
|
46
|
Feng Z, Glebov OO. Synaptic NMDA receptor signalling controls R-type calcium channel recruitment. Eur J Neurosci 2021; 54:4133-4140. [PMID: 33901331 DOI: 10.1111/ejn.15250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
Regulation of extracellular Ca2+ influx by neuronal activity is a key mechanism underlying synaptic plasticity. At the neuronal synapse, activity-dependent Ca2+ entry involves N-methyl-D-aspartate receptors (NMDARs) and voltage-gated calcium channels (VGCCs); the relationship between NMDARs and VGCCs, however, is poorly understood. Here, we report that neuronal activity rapidly (1h) regulates recruitment of R-type VGCCs in hippocampal neurons through synaptic NMDAR signalling. This finding reveals a link between two key neuronal signalling pathways, suggesting a feedback mode for regulation of synaptic Ca2+ signalling.
Collapse
Affiliation(s)
- Zhendong Feng
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
| | - Oleg O Glebov
- Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, Qingdao, China
- Department of Old Age Psychiatry, The Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
47
|
Fingleton E, Li Y, Roche KW. Advances in Proteomics Allow Insights Into Neuronal Proteomes. Front Mol Neurosci 2021; 14:647451. [PMID: 33935646 PMCID: PMC8084103 DOI: 10.3389/fnmol.2021.647451] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 03/25/2021] [Indexed: 11/29/2022] Open
Abstract
Protein–protein interaction networks and signaling complexes are essential for normal brain function and are often dysregulated in neurological disorders. Nevertheless, unraveling neuron- and synapse-specific proteins interaction networks has remained a technical challenge. New techniques, however, have allowed for high-resolution and high-throughput analyses, enabling quantification and characterization of various neuronal protein populations. Over the last decade, mass spectrometry (MS) has surfaced as the primary method for analyzing multiple protein samples in tandem, allowing for the precise quantification of proteomic data. Moreover, the development of sophisticated protein-labeling techniques has given MS a high temporal and spatial resolution, facilitating the analysis of various neuronal substructures, cell types, and subcellular compartments. Recent studies have leveraged these novel techniques to reveal the proteomic underpinnings of well-characterized neuronal processes, such as axon guidance, long-term potentiation, and homeostatic plasticity. Translational MS studies have facilitated a better understanding of complex neurological disorders, such as Alzheimer’s disease (AD), Schizophrenia (SCZ), and Autism Spectrum Disorder (ASD). Proteomic investigation of these diseases has not only given researchers new insight into disease mechanisms but has also been used to validate disease models and identify new targets for research.
Collapse
Affiliation(s)
- Erin Fingleton
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Yan Li
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| | - Katherine W Roche
- National Institute of Neurological Disorders and Stroke (NINDS), Bethesda, MD, United States
| |
Collapse
|
48
|
Yap JQ, Seflova J, Sweazey R, Artigas P, Robia SL. FXYD proteins and sodium pump regulatory mechanisms. J Gen Physiol 2021; 153:211866. [PMID: 33688925 PMCID: PMC7953255 DOI: 10.1085/jgp.202012633] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 02/03/2021] [Indexed: 12/12/2022] Open
Abstract
The sodium/potassium-ATPase (NKA) is the enzyme that establishes gradients of sodium and potassium across the plasma membrane. NKA activity is tightly regulated for different physiological contexts through interactions with single-span transmembrane peptides, the FXYD proteins. This diverse family of regulators has in common a domain containing a Phe-X-Tyr-Asp (FXYD) motif, two conserved glycines, and one serine residue. In humans, there are seven tissue-specific FXYD proteins that differentially modulate NKA kinetics as appropriate for each system, providing dynamic responsiveness to changing physiological conditions. Our understanding of how FXYD proteins contribute to homeostasis has benefitted from recent advances described in this review: biochemical and biophysical studies have provided insight into regulatory mechanisms, genetic models have uncovered remarkable complexity of FXYD function in integrated physiological systems, new posttranslational modifications have been identified, high-resolution structural studies have revealed new details of the regulatory interaction with NKA, and new clinical correlations have been uncovered. In this review, we address the structural determinants of diverse FXYD functions and the special roles of FXYDs in various physiological systems. We also discuss the possible roles of FXYDs in protein trafficking and regulation of non-NKA targets.
Collapse
Affiliation(s)
- John Q Yap
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Jaroslava Seflova
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| | - Ryan Sweazey
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Pablo Artigas
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX
| | - Seth L Robia
- Department of Cell and Molecular Physiology, Loyola University Chicago, Maywood, IL
| |
Collapse
|
49
|
Xu Y, Song X, Wang D, Wang Y, Li P, Li J. Proteomic insights into synaptic signaling in the brain: the past, present and future. Mol Brain 2021; 14:37. [PMID: 33596935 PMCID: PMC7888154 DOI: 10.1186/s13041-021-00750-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/09/2021] [Indexed: 12/29/2022] Open
Abstract
Chemical synapses in the brain connect neurons to form neural circuits, providing the structural and functional bases for neural communication. Disrupted synaptic signaling is closely related to a variety of neurological and psychiatric disorders. In the past two decades, proteomics has blossomed as a versatile tool in biological and biomedical research, rendering a wealth of information toward decoding the molecular machinery of life. There is enormous interest in employing proteomic approaches for the study of synapses, and substantial progress has been made. Here, we review the findings of proteomic studies of chemical synapses in the brain, with special attention paid to the key players in synaptic signaling, i.e., the synaptic protein complexes and their post-translational modifications. Looking toward the future, we discuss the technological advances in proteomics such as data-independent acquisition mass spectrometry (DIA-MS), cross-linking in combination with mass spectrometry (CXMS), and proximity proteomics, along with their potential to untangle the mystery of how the brain functions at the molecular level. Last but not least, we introduce the newly developed synaptomic methods. These methods and their successful applications marked the beginnings of the synaptomics era.
Collapse
Affiliation(s)
- Yalan Xu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Xiuyue Song
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Dong Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China
| | - Jing Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
50
|
Minehart JA, Speer CM. A Picture Worth a Thousand Molecules-Integrative Technologies for Mapping Subcellular Molecular Organization and Plasticity in Developing Circuits. Front Synaptic Neurosci 2021; 12:615059. [PMID: 33469427 PMCID: PMC7813761 DOI: 10.3389/fnsyn.2020.615059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 12/23/2022] Open
Abstract
A key challenge in developmental neuroscience is identifying the local regulatory mechanisms that control neurite and synaptic refinement over large brain volumes. Innovative molecular techniques and high-resolution imaging tools are beginning to reshape our view of how local protein translation in subcellular compartments drives axonal, dendritic, and synaptic development and plasticity. Here we review recent progress in three areas of neurite and synaptic study in situ-compartment-specific transcriptomics/translatomics, targeted proteomics, and super-resolution imaging analysis of synaptic organization and development. We discuss synergies between sequencing and imaging techniques for the discovery and validation of local molecular signaling mechanisms regulating synaptic development, plasticity, and maintenance in circuits.
Collapse
Affiliation(s)
| | - Colenso M. Speer
- Department of Biology, University of Maryland, College Park, MD, United States
| |
Collapse
|