1
|
Sutter C, Haas C, Bode PK, Neubauer J, Dyrberg Andersen J. Exploratory DNA methylation analysis in post-mortem heart tissue of sudden unexplained death. Clin Epigenetics 2024; 16:167. [PMID: 39578896 PMCID: PMC11585171 DOI: 10.1186/s13148-024-01777-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 11/10/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Sudden unexplained death (SUD) is a devastating event in the young. Despite efforts to identify causal genetic variants, many cases remain unexplained after genetic screening. This study aimed to investigate an alternative potential contributor to SUD by studying the human methylome using the MethylationEPIC v2.0 BeadChip kit in heart tissue from SUD cases. The genome-wide methylation results of the SUD cases were compared to the results of a control cohort. The SUD cases were divided into three main groups based on their autopsy reports, heart morphology and histopathology (primaryN: macroscopically and histologically normal heart; primaryCM: macroscopically or histologically abnormal heart, suspected cardiomyopathies; and secondary: myocardial damage due to other underlying conditions). The main focus of this study was to identify differentially methylated regions (DMRs) between the case groups and the control cohort. RESULTS We identified DMRs for both the primaryN and primaryCM groups, whereas the secondary group yielded no such results. In the primaryN cases, the corresponding genes for each DMR led to the identification of genes with common biological pathways. Some were associated with heart morphology (e.g. heart outflow tract morphogenesis or trabecular morphogenesis), but the majority belonged to more general cellular regulatory pathways (e.g. transcription coactivator activity, long non-coding RNAs, etc.). Although no common pathways were found for the primaryCM group, some common regulatory molecular functions were identified, such as p53 binding and transcription coactivator activity. CONCLUSIONS Our study is the first to investigate the whole human methylome in heart tissue of SUD cases. We propose that there are observable differences in the methylation patterns of the case groups that may have contributed to SUD. Still, further studies are required to improve our understanding of the impact of methylation levels on SUD risk and to pinpoint methylation-based screening opportunities for SUD relatives.
Collapse
Affiliation(s)
- Charlotte Sutter
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Cordula Haas
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland.
| | - Peter K Bode
- Institute of Pathology, Cantonal Hospital Winterthur, Brauerstrasse 15, 8401, Winterthur, Switzerland
| | - Jacqueline Neubauer
- Zurich Institute of Forensic Medicine, University of Zurich, Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Jeppe Dyrberg Andersen
- Section of Forensic Genetics, Department of Forensic Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Frederik V's Vej 11, 2100, Copenhagen Ø, Denmark
| |
Collapse
|
2
|
Wang J, Liu Y, Yan Y, Wang A, Jiang Y, Wen Z, Qiao K, Li H, Hu T, Ma Y, Zhou S, Gui W, Li S. miR-29b-triggered epigenetic regulation of cardiotoxicity following exposure to deltamethrin in zebrafish. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135213. [PMID: 39018602 DOI: 10.1016/j.jhazmat.2024.135213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/04/2024] [Accepted: 07/13/2024] [Indexed: 07/19/2024]
Abstract
Deltamethrin is a classical pyrethroid insecticide that is frequently detected in aquatic environments and organisms. Furthermore, deltamethrin has been detected in samples related to human health and is a potential risk to public health. This study aimed to investigate the mechanism of cardiotoxicity induced by deltamethrin. Zebrafish were exposed to 0.005, 0.05, or 0.5 μg/L deltamethrin for 28 days. The results showed a significant reduction in male reproduction compared to female reproduction. Additionally, the heart rate decreased by 15.75 % in F1 after parental exposure to 0.5 μg/L deltamethrin. To evaluate cardiotoxicity, deltamethrin was administered to the zebrafish embryos. By using miRNA-Seq and bioinformatics analysis, it was discovered that miR-29b functions as a toxic regulator by targeting dnmts. The overexpression of miR-29b and inhibition of dnmts resulted in cardiac abnormalities, such as pericardial edema, bradycardia, and abnormal expression of genes related to the heart. Similar changes in the levels of miR-29b and dnmts were also detected in the gonads of F0 males and F1 embryos, confirming their effects. Overall, the results suggest that deltamethrin may have adverse effects on heart development in early-stage zebrafish and on reproduction in adult zebrafish. Furthermore, epigenetic modifications may threaten the cardiac function of offspring.
Collapse
Affiliation(s)
- Jie Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yuanyuan Liu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yujia Yan
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Aoxue Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yuyao Jiang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Zexin Wen
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Kun Qiao
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, PR China; Department Evolutionary Ecology and Environmental Toxicology, Faculty Biological Sciences, Goethe University 10 Frankfurt, Frankfurt am Main 60438, Germany
| | - Hanqing Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Tiantian Hu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Yongfang Ma
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Shengli Zhou
- Ecological and Environmental Monitoring Center of Zhejiang Province, Hangzhou 310012, PR China.
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, PR China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China; Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
3
|
Desiderio A, Pastorino M, Campitelli M, Longo M, Miele C, Napoli R, Beguinot F, Raciti GA. DNA methylation in cardiovascular disease and heart failure: novel prediction models? Clin Epigenetics 2024; 16:115. [PMID: 39175069 PMCID: PMC11342679 DOI: 10.1186/s13148-024-01722-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/07/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND Cardiovascular diseases (CVD) affect over half a billion people worldwide and are the leading cause of global deaths. In particular, due to population aging and worldwide spreading of risk factors, the prevalence of heart failure (HF) is also increasing. HF accounts for approximately 36% of all CVD-related deaths and stands as the foremost cause of hospitalization. Patients affected by CVD or HF experience a substantial decrease in health-related quality of life compared to healthy subjects or affected by other diffused chronic diseases. MAIN BODY For both CVD and HF, prediction models have been developed, which utilize patient data, routine laboratory and further diagnostic tests. While some of these scores are currently used in clinical practice, there still is a need for innovative approaches to optimize CVD and HF prediction and to reduce the impact of these conditions on the global population. Epigenetic biomarkers, particularly DNA methylation (DNAm) changes, offer valuable insight for predicting risk, disease diagnosis and prognosis, and for monitoring treatment. The present work reviews current information relating DNAm, CVD and HF and discusses the use of DNAm in improving clinical risk prediction of CVD and HF as well as that of DNAm age as a proxy for cardiac aging. CONCLUSION DNAm biomarkers offer a valuable contribution to improving the accuracy of CV risk models. Many CpG sites have been adopted to develop specific prediction scores for CVD and HF with similar or enhanced performance on the top of existing risk measures. In the near future, integrating data from DNA methylome and other sources and advancements in new machine learning algorithms will help develop more precise and personalized risk prediction methods for CVD and HF.
Collapse
Affiliation(s)
- Antonella Desiderio
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Monica Pastorino
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
- Department of Molecular Medicine and Biotechnology, Federico II University of Naples, Naples, Italy
| | - Michele Campitelli
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Michele Longo
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Claudia Miele
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy
| | - Raffaele Napoli
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy
| | - Francesco Beguinot
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.
| | - Gregory Alexander Raciti
- Department of Translational Medicine, Federico II University of Naples, Naples, Italy.
- URT Genomics of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, Naples, Italy.
| |
Collapse
|
4
|
Mensah IK, Gowher H. Epigenetic Regulation of Mammalian Cardiomyocyte Development. EPIGENOMES 2024; 8:25. [PMID: 39051183 PMCID: PMC11270418 DOI: 10.3390/epigenomes8030025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/07/2024] [Accepted: 06/25/2024] [Indexed: 07/27/2024] Open
Abstract
The heart is the first organ formed during mammalian development and functions to distribute nutrients and oxygen to other parts of the developing embryo. Cardiomyocytes are the major cell types of the heart and provide both structural support and contractile function to the heart. The successful differentiation of cardiomyocytes during early development is under tight regulation by physical and molecular factors. We have reviewed current studies on epigenetic factors critical for cardiomyocyte differentiation, including DNA methylation, histone modifications, chromatin remodelers, and noncoding RNAs. This review also provides comprehensive details on structural and morphological changes associated with the differentiation of fetal and postnatal cardiomyocytes and highlights their differences. A holistic understanding of all aspects of cardiomyocyte development is critical for the successful in vitro differentiation of cardiomyocytes for therapeutic purposes.
Collapse
Affiliation(s)
| | - Humaira Gowher
- Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
5
|
Lteif C, Huang Y, Guerra LA, Gawronski BE, Duarte JD. Using Omics to Identify Novel Therapeutic Targets in Heart Failure. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2024; 17:e004398. [PMID: 38766848 PMCID: PMC11187651 DOI: 10.1161/circgen.123.004398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Omics refers to the measurement and analysis of the totality of molecules or biological processes involved within an organism. Examples of omics data include genomics, transcriptomics, epigenomics, proteomics, metabolomics, and more. In this review, we present the available literature reporting omics data on heart failure that can inform the development of novel treatments or innovative treatment strategies for this disease. This includes polygenic risk scores to improve prediction of genomic data and the potential of multiomics to more efficiently identify potential treatment targets for further study. We also discuss the limitations of omic analyses and the barriers that must be overcome to maximize the utility of these types of studies. Finally, we address the current state of the field and future opportunities for using multiomics to better personalize heart failure treatment strategies.
Collapse
Affiliation(s)
- Christelle Lteif
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Yimei Huang
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Leonardo A Guerra
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Brian E Gawronski
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| | - Julio D Duarte
- Center for Pharmacogenomics and Precision Medicine, Department of Pharmacotherapy and Translational Research, University of Florida College of Pharmacy, Gainesville, FL
| |
Collapse
|
6
|
Madonna R, Biondi F, Alberti M, Ghelardoni S, Mattii L, D'Alleva A. Cardiovascular outcomes and molecular targets for the cardiac effects of Sodium-Glucose Cotransporter 2 Inhibitors: A systematic review. Biomed Pharmacother 2024; 175:116650. [PMID: 38678962 DOI: 10.1016/j.biopha.2024.116650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Sodium-glucose cotransporter 2 inhibitors (SGLT2i), a new class of glucose-lowering drugs traditionally used to control blood glucose levels in patients with type 2 diabetes mellitus, have been proven to reduce major adverse cardiovascular events, including cardiovascular death, in patients with heart failure irrespective of ejection fraction and independently of the hypoglycemic effect. Because of their favorable effects on the kidney and cardiovascular outcomes, their use has been expanded in all patients with any combination of diabetes mellitus type 2, chronic kidney disease and heart failure. Although mechanisms explaining the effects of these drugs on the cardiovascular system are not well understood, their effectiveness in all these conditions suggests that they act at the intersection of the metabolic, renal and cardiac axes, thus disrupting maladaptive vicious cycles while contrasting direct organ damage. In this systematic review we provide a state of the art of the randomized controlled trials investigating the effect of SGLT2i on cardiovascular outcomes in patients with chronic kidney disease and/or heart failure irrespective of ejection fraction and diabetes. We also discuss the molecular targets and signaling pathways potentially explaining the cardiac effects of these pharmacological agents, from a clinical and experimental perspective.
Collapse
Affiliation(s)
- Rosalinda Madonna
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy.
| | - Filippo Biondi
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Mattia Alberti
- Department of Pathology, Cardiology Division, University of Pisa, Via Paradisa, Pisa 56124, Italy
| | - Sandra Ghelardoni
- Department of Pathology, Laboratory of Biochemistry, University of Pisa, Italy
| | - Letizia Mattii
- Department of Clinical and Experimental Medicine, Histology Division, University of Pisa, Pisa, Italy
| | - Alberto D'Alleva
- Cardiac Intensive Care and Interventional Cardiology Unit, Santo Spirito Hospital, Pescara, Italy
| |
Collapse
|
7
|
Malikides O, Simantirakis E, Zacharis E, Fragkiadakis K, Kochiadakis G, Marketou M. Cardiac Remodeling and Ventricular Pacing: From Genes to Mechanics. Genes (Basel) 2024; 15:671. [PMID: 38927607 PMCID: PMC11203142 DOI: 10.3390/genes15060671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Cardiac remodeling and ventricular pacing represent intertwined phenomena with profound implications for cardiovascular health and therapeutic interventions. This review explores the intricate relationship between cardiac remodeling and ventricular pacing, spanning from the molecular underpinnings to biomechanical alterations. Beginning with an examination of genetic predispositions and cellular signaling pathways, we delve into the mechanisms driving myocardial structural changes and electrical remodeling in response to pacing stimuli. Insights into the dynamic interplay between pacing strategies and adaptive or maladaptive remodeling processes are synthesized, shedding light on the clinical implications for patients with various cardiovascular pathologies. By bridging the gap between basic science discoveries and clinical translation, this review aims to provide a comprehensive understanding of cardiac remodeling in the context of ventricular pacing, paving the way for future advancements in cardiovascular care.
Collapse
Affiliation(s)
- Onoufrios Malikides
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
| | - Emmanouel Simantirakis
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| | - Evangelos Zacharis
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| | - Konstantinos Fragkiadakis
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| | - George Kochiadakis
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| | - Maria Marketou
- Department of Cardiology, University General Hospital of Heraklion, 71003 Heraklion, Greece; (E.S.); (E.Z.); (K.F.); (G.K.); (M.M.)
- Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
8
|
Krumpolec P, Kodada D, Hadžega D, Petrovič O, Babišová K, Dosedla E, Turcsányiová Z, Minárik G. Changes in DNA methylation associated with a specific mode of delivery: a pilot study. Front Med (Lausanne) 2024; 11:1291429. [PMID: 38314203 PMCID: PMC10835804 DOI: 10.3389/fmed.2024.1291429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024] Open
Abstract
Background The mode of delivery represents an epigenetic factor with potential to affect further development of the individual by multiple mechanisms. DNA methylation may be one of them, representing a major epigenetic mechanism involving direct chemical modification of the individual's DNA. This pilot study aims to examine whether a specific mode of delivery induces changes of DNA methylation by comparing the umbilical cord blood and peripheral blood of the newborns. Methods Blood samples from infants born by vaginal delivery and caesarean section were analysed to prepare the Methylseq library according to NEBNext enzymatic Methyl-seq Methylation Library Preparation Kit with further generation of target-enriched DNA libraries using the Twist Human Methylome Panel. DNA methylation status was determined using Illumina next-generation sequencing (NGS). Results We identified 168 differentially methylated regions in umbilical cord blood samples and 157 regions in peripheral blood samples. These were associated with 59 common biological, metabolic and signalling pathways for umbilical cord and peripheral blood samples. Conclusion Caesarean section is likely to represent an important epigenetic factor with the potential to induce changes in the genome that could play an important role in development of a broad spectrum of disorders. Our results could contribute to the elucidation of how epigenetic factors, such as a specific mode of delivery, could have adverse impact on health of an individual later in their life.
Collapse
Affiliation(s)
| | - Dominik Kodada
- Medirex Group Academy n.o., Nitra, Slovakia
- Department of Clinical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Bratislava, Slovakia
| | | | | | | | - Erik Dosedla
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | - Zuzana Turcsányiová
- Department of Gynaecology and Obstetrics, Faculty of Medicine, Pavol Jozef Šafárik University in Košice, Košice, Slovakia
| | | |
Collapse
|
9
|
Carvalho RA. The glycolytic pathway to heart failure. GLYCOLYSIS 2024:235-266. [DOI: 10.1016/b978-0-323-91704-9.00010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
10
|
Li X, Fan H, Song X, Song B, Liu W, Dong R, Zhang H, Guo S, Liang H, Schrodi SJ, Fu X, Kaushal S, Ren Y, Zhang D. DNA methylome and transcriptome profiling reveal key electrophysiology and immune dysregulation in hypertrophic cardiomyopathy. Epigenetics 2023; 18:2195307. [PMID: 37005704 PMCID: PMC10072074 DOI: 10.1080/15592294.2023.2195307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/15/2023] [Indexed: 04/04/2023] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common inherited heart disease. However, a detailed DNA methylation (DNAme) landscape has not yet been elucidated. Our study combined DNAme and transcriptome profiles for HCM myocardium and identify aberrant DNAme associated with altered myocardial function in HCM. The transcription of methylation-related genes did not significantly differ between HCM and normal myocardium. Nevertheless, the former had an altered DNAme profile compared with the latter. The hypermethylated and hypomethylated sites in HCM tissues had chromosomal distributions and functional enrichment of correlated genes differing from those of their normal tissue counterparts. The GO analysis of network underlying the genes correlated with DNAme alteration and differentially expressed genes (DEGs) shows functional clusters centred on immune cell function and muscle system processes. In KEGG analysis, only the calcium signalling pathway was enriched either by the genes correlated with changes in DNAme or DEGs. The protein-protein interactions (PPI) underlying the genes altered at both the DNAme and transcriptional highlighted two important functional clusters. One of these was related to the immune response and had the estrogen receptor-encoding ESR1 gene as its node. The other cluster comprised cardiac electrophysiology-related genes. Intelliectin-1 (ITLN1), a component of the innate immune system, was transcriptionally downregulated in HCM and had a hypermethylated site within 1500 bp upstream of the ITLN1 transcription start site. Estimates of immune infiltration demonstrated a relative decline in immune cell population diversity in HCM. A combination of DNAme and transcriptome profiles may help identify and develop new therapeutic targets for HCM.
Collapse
Affiliation(s)
- Xiaoyan Li
- Beijing Anzhen Hospital, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Hailang Fan
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Xiantao Song
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Bangrong Song
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wenxian Liu
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ran Dong
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Haikun Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| | - Shicheng Guo
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Hao Liang
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
| | - Steven J. Schrodi
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, WI, USA
- Computation and Informatics in Biology and Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Xuebin Fu
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital, Chicago, IL, USA
- Department of Cardiovascular-Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sunjay Kaushal
- Department of Pediatrics, Ann and Robert H. Lurie Children’s Hospital, Chicago, IL, USA
- Department of Cardiovascular-Thoracic Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yanlong Ren
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Lab for Cardiovascular Precision Medicine, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Dake Zhang
- Key Laboratory of Biomechanics and Mechanobiology, Ministry of Education, Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine, Beihang University, Beijing, China
| |
Collapse
|
11
|
Abdellatif M, Rainer PP, Sedej S, Kroemer G. Hallmarks of cardiovascular ageing. Nat Rev Cardiol 2023; 20:754-777. [PMID: 37193857 DOI: 10.1038/s41569-023-00881-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 05/18/2023]
Abstract
Normal circulatory function is a key determinant of disease-free life expectancy (healthspan). Indeed, pathologies affecting the cardiovascular system, which are growing in prevalence, are the leading cause of global morbidity, disability and mortality, whereas the maintenance of cardiovascular health is necessary to promote both organismal healthspan and lifespan. Therefore, cardiovascular ageing might precede or even underlie body-wide, age-related health deterioration. In this Review, we posit that eight molecular hallmarks are common denominators in cardiovascular ageing, namely disabled macroautophagy, loss of proteostasis, genomic instability (in particular, clonal haematopoiesis of indeterminate potential), epigenetic alterations, mitochondrial dysfunction, cell senescence, dysregulated neurohormonal signalling and inflammation. We also propose a hierarchical order that distinguishes primary (upstream) from antagonistic and integrative (downstream) hallmarks of cardiovascular ageing. Finally, we discuss how targeting each of the eight hallmarks might be therapeutically exploited to attenuate residual cardiovascular risk in older individuals.
Collapse
Affiliation(s)
- Mahmoud Abdellatif
- Department of Cardiology, Medical University of Graz, Graz, Austria.
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- BioTechMed Graz, Graz, Austria.
| | - Peter P Rainer
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Simon Sedej
- Department of Cardiology, Medical University of Graz, Graz, Austria
- BioTechMed Graz, Graz, Austria
- Institute of Physiology, Faculty of Medicine, University of Maribor, Maribor, Slovenia
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
12
|
Tan K, Foo R, Loh M. Cardiomyopathy in Asian Cohorts: Genetic and Epigenetic Insights. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2023; 16:496-506. [PMID: 37589150 DOI: 10.1161/circgen.123.004079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Previous studies on cardiomyopathies have been particularly valuable for clarifying pathological mechanisms in heart failure, an etiologically heterogeneous disease. In this review, we specifically focus on cardiomyopathies in Asia, where heart failure is particularly pertinent. There has been an increase in prevalence of cardiomyopathies in Asia, in sharp contrast with the decline observed in Western countries. Indeed, important disparities in cardiomyopathy incidence, clinical characteristics, and prognosis have been reported in Asian versus White cohorts. These have been accompanied by emerging descriptions of a distinct rare and common genetic basis for disease among Asian cardiomyopathy patients marked by an increased burden of variants with uncertain significance, reclassification of variants deemed pathogenic based on evidence from predominantly White cohorts, and the discovery of Asian-specific cardiomyopathy-associated loci with underappreciated pathogenicity under conventional classification criteria. Findings from epigenetic studies of heart failure, particularly DNA methylation studies, have complemented genetic findings in accounting for the phenotypic variability in cardiomyopathy. Though extremely limited, findings from Asian ancestry-focused DNA methylation studies of cardiomyopathy have shown potential to contribute to general understanding of cardiomyopathy pathophysiology by proposing disease and cause-relevant pathophysiological mechanisms. We discuss the value of multiomics study designs incorporating genetic, methylation, and transcriptomic information for future DNA methylation studies in Asian cardiomyopathy cohorts to yield Asian ancestry-specific insights that will improve risk stratification in the Asian population.
Collapse
Affiliation(s)
- Konstanze Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore (K.T., M.L.)
| | - Roger Foo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore (R.F.)
- Department of Cardiology, National University Heart Centre, National University Health System, Singapore (R.F.)
| | - Marie Loh
- Lee Kong Chian School of Medicine, Nanyang Technological University, Clinical Sciences Building, Singapore (K.T., M.L.)
- Genome Institute of Singapore, Singapore (GIS), Agency for Science, Technology and Research (A*STAR) (M.L.)
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, United Kingdom (M.L.)
- National Skin Centre, Singapore (M.L.)
| |
Collapse
|
13
|
Shi H, Chen S, Meng FW, Ossip DJ, Yan C, Li D. Epigenome-wide DNA methylation profiling in comparison between pathological and physiological hypertrophy of human cardiomyocytes. Front Genet 2023; 14:1264382. [PMID: 37829282 PMCID: PMC10565041 DOI: 10.3389/fgene.2023.1264382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/11/2023] [Indexed: 10/14/2023] Open
Abstract
Background: Physiological and pathological stimuli result in distinct forms of cardiac hypertrophy, but the molecular regulation comparing the two, especially at the DNA methylation level, is not well understood. Methods: We conducted an in vitro study using human cardiomyocytes exposed to angiotensin II (AngII) and insulin-like growth factor 1 (IGF-1) to mimic pathologically and physiologically hypertrophic heart models, respectively. Whole genome DNA methylation patterns were profiled by the Infinium human MethylationEPIC platform with >850 K DNA methylation loci. Two external datasets were used for comparisons and qRT-PCR was performed for examining expression of associated genes of those identified DNA methylation loci. Results: We detected 194 loci that are significantly differentially methylated after AngII treatment, and 206 significant loci after IGF-1 treatment. Mapping the significant loci to genes, we identified 158 genes corresponding to AngII treatment and 175 genes to IGF-1 treatment. Using the gene-set enrichment analysis, the PI3K-Akt signaling pathway was identified to be significantly enriched for both AngII and IGF-1 treatment. The Hippo signaling pathway was enriched after IGF-1 treatment, but not for AngII treatment. CDK6 and RPTOR are components of the PI3K-Akt pathway but have different DNA methylation patterns in response to AngII and IGF-1. qRT-PCR confirmed the different gene expressions of CDK6 and PRTOR. Conclusion: Our study is pioneering in profiling epigenome DNA methylation changes in adult human cardiomyocytes under distinct stress conditions: pathological (AngII) and physiological (IGF-1). The identified DNA methylation loci, genes, and pathways might have the potential to distinguish between pathological and physiological cardiac hypertrophy.
Collapse
Affiliation(s)
- Hangchuan Shi
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Si Chen
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, Rochester, NY, United States
| | - Fanju W. Meng
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, United States
| | - Deborah J. Ossip
- Department of Public Health Sciences, University of Rochester Medical Center, Rochester, NY, United States
| | - Chen Yan
- Aab Cardiovascular Research Institute, University of Rochester, School of Medicine and Dentistry, Rochester, NY, United States
| | - Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
14
|
Flam E, Arany Z. Metabolite signaling in the heart. NATURE CARDIOVASCULAR RESEARCH 2023; 2:504-516. [PMID: 39195876 DOI: 10.1038/s44161-023-00270-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/29/2023] [Indexed: 08/29/2024]
Abstract
The heart is the most metabolically active organ in the body, sustaining a continuous and high flux of nutrient catabolism via oxidative phosphorylation. The nature and relative contribution of these fuels have been studied extensively for decades. By contrast, less attention has been placed on how intermediate metabolites generated from this catabolism affect intracellular signaling. Numerous metabolites, including intermediates of glycolysis and the tricarboxylic acid (TCA) cycle, nucleotides, amino acids, fatty acids and ketones, are increasingly appreciated to affect signaling in the heart, via various mechanisms ranging from protein-metabolite interactions to modifying epigenetic marks. We review here the current state of knowledge of intermediate metabolite signaling in the heart.
Collapse
Affiliation(s)
- Emily Flam
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zolt Arany
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
15
|
Sopic M, Robinson EL, Emanueli C, Srivastava P, Angione C, Gaetano C, Condorelli G, Martelli F, Pedrazzini T, Devaux Y. Integration of epigenetic regulatory mechanisms in heart failure. Basic Res Cardiol 2023; 118:16. [PMID: 37140699 PMCID: PMC10158703 DOI: 10.1007/s00395-023-00986-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
The number of "omics" approaches is continuously growing. Among others, epigenetics has appeared as an attractive area of investigation by the cardiovascular research community, notably considering its association with disease development. Complex diseases such as cardiovascular diseases have to be tackled using methods integrating different omics levels, so called "multi-omics" approaches. These approaches combine and co-analyze different levels of disease regulation. In this review, we present and discuss the role of epigenetic mechanisms in regulating gene expression and provide an integrated view of how these mechanisms are interlinked and regulate the development of cardiac disease, with a particular attention to heart failure. We focus on DNA, histone, and RNA modifications, and discuss the current methods and tools used for data integration and analysis. Enhancing the knowledge of these regulatory mechanisms may lead to novel therapeutic approaches and biomarkers for precision healthcare and improved clinical outcomes.
Collapse
Affiliation(s)
- Miron Sopic
- Department of Medical Biochemistry, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Emma L Robinson
- Division of Cardiology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Costanza Emanueli
- National Heart & Lung Institute, Imperial College London, London, UK
| | | | - Claudio Angione
- School of Computing, Engineering & Digital Technologies, Teesside University, Tees Valley, Middlesbrough, TS1 3BA, UK
- Centre for Digital Innovation, Teesside University, Campus Heart, Tees Valley, Middlesbrough, TS1 3BX, UK
- National Horizons Centre, Darlington, DL1 1HG, UK
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 10, 27100, Pavia, Italy
| | - Gianluigi Condorelli
- IRCCS-Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, MI, Italy
- Institute of Genetic and Biomedical Research, National Research Council of Italy, Arnold-Heller-Str.3, 24105, Milan, Italy
| | - Fabio Martelli
- Molecular Cardiology Laboratory, IRCCS-Policlinico San Donato, Via Morandi 30, San Donato Milanese, 20097, Milan, Italy
| | - Thierry Pedrazzini
- Experimental Cardiology Unit, Division of Cardiology, Department of Cardiovascular Medicine, University of Lausanne Medical School, 1011, Lausanne, Switzerland
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, L-1445, Strassen, Luxembourg.
| |
Collapse
|
16
|
Krolevets M, Cate VT, Prochaska JH, Schulz A, Rapp S, Tenzer S, Andrade-Navarro MA, Horvath S, Niehrs C, Wild PS. DNA methylation and cardiovascular disease in humans: a systematic review and database of known CpG methylation sites. Clin Epigenetics 2023; 15:56. [PMID: 36991458 PMCID: PMC10061871 DOI: 10.1186/s13148-023-01468-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 03/19/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Cardiovascular disease (CVD) is the leading cause of death worldwide and considered one of the most environmentally driven diseases. The role of DNA methylation in response to the individual exposure for the development and progression of CVD is still poorly understood and a synthesis of the evidence is lacking. RESULTS A systematic review of articles examining measurements of DNA cytosine methylation in CVD was conducted in accordance with PRISMA (preferred reporting items for systematic reviews and meta-analyses) guidelines. The search yielded 5,563 articles from PubMed and CENTRAL databases. From 99 studies with a total of 87,827 individuals eligible for analysis, a database was created combining all CpG-, gene- and study-related information. It contains 74,580 unique CpG sites, of which 1452 CpG sites were mentioned in ≥ 2, and 441 CpG sites in ≥ 3 publications. Two sites were referenced in ≥ 6 publications: cg01656216 (near ZNF438) related to vascular disease and epigenetic age, and cg03636183 (near F2RL3) related to coronary heart disease, myocardial infarction, smoking and air pollution. Of 19,127 mapped genes, 5,807 were reported in ≥ 2 studies. Most frequently reported were TEAD1 (TEA Domain Transcription Factor 1) and PTPRN2 (Protein Tyrosine Phosphatase Receptor Type N2) in association with outcomes ranging from vascular to cardiac disease. Gene set enrichment analysis of 4,532 overlapping genes revealed enrichment for Gene Ontology molecular function "DNA-binding transcription activator activity" (q = 1.65 × 10-11) and biological processes "skeletal system development" (q = 1.89 × 10-23). Gene enrichment demonstrated that general CVD-related terms are shared, while "heart" and "vasculature" specific genes have more disease-specific terms as PR interval for "heart" or platelet distribution width for "vasculature." STRING analysis revealed significant protein-protein interactions between the products of the differentially methylated genes (p = 0.003) suggesting that dysregulation of the protein interaction network could contribute to CVD. Overlaps with curated gene sets from the Molecular Signatures Database showed enrichment of genes in hemostasis (p = 2.9 × 10-6) and atherosclerosis (p = 4.9 × 10-4). CONCLUSION This review highlights the current state of knowledge on significant relationship between DNA methylation and CVD in humans. An open-access database has been compiled of reported CpG methylation sites, genes and pathways that may play an important role in this relationship.
Collapse
Affiliation(s)
- Mykhailo Krolevets
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany
| | - Vincent Ten Cate
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Jürgen H Prochaska
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Andreas Schulz
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
| | - Steffen Rapp
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany
| | - Stefan Tenzer
- Institute of Organismic and Molecular Evolution, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Miguel A Andrade-Navarro
- Institute for Immunology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | | | - Christof Niehrs
- Institute of Molecular Biology (IMB), 55128, Mainz, Germany
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Philipp S Wild
- Preventive Cardiology and Preventive Medicine, Department of Cardiology, University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
- Systems Medicine, Institute of Molecular Biology (IMB), Ackermannweg 4, 55128, Mainz, Germany.
- Clinical Epidemiology and Systems Medicine, Center for Thrombosis and Hemostasis (CTH), Mainz, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
17
|
Oeing CU, Pepin ME, Saul KB, Agircan AS, Assenov Y, Merkel TS, Sedaghat-Hamedani F, Weis T, Meder B, Guan K, Plass C, Weichenhan D, Siede D, Backs J. Indirect epigenetic testing identifies a diagnostic signature of cardiomyocyte DNA methylation in heart failure. Basic Res Cardiol 2023; 118:9. [PMID: 36939901 PMCID: PMC10027651 DOI: 10.1007/s00395-022-00954-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 09/06/2022] [Accepted: 09/15/2022] [Indexed: 03/21/2023]
Abstract
Precision-based molecular phenotyping of heart failure must overcome limited access to cardiac tissue. Although epigenetic alterations have been found to underlie pathological cardiac gene dysregulation, the clinical utility of myocardial epigenomics remains narrow owing to limited clinical access to tissue. Therefore, the current study determined whether patient plasma confers indirect phenotypic, transcriptional, and/or epigenetic alterations to ex vivo cardiomyocytes to mirror the failing human myocardium. Neonatal rat ventricular myocytes (NRVMs) and single-origin human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) and were treated with blood plasma samples from patients with dilated cardiomyopathy (DCM) and donor subjects lacking history of cardiovascular disease. Following plasma treatments, NRVMs and hiPSC-CMs underwent significant hypertrophy relative to non-failing controls, as determined via automated high-content screening. Array-based DNA methylation analysis of plasma-treated hiPSC-CMs and cardiac biopsies uncovered robust, and conserved, alterations in cardiac DNA methylation, from which 100 sites were validated using an independent cohort. Among the CpG sites identified, hypo-methylation of the ATG promoter was identified as a diagnostic marker of HF, wherein cg03800765 methylation (AUC = 0.986, P < 0.0001) was found to out-perform circulating NT-proBNP levels in differentiating heart failure. Taken together, these findings support a novel approach of indirect epigenetic testing in human HF.
Collapse
Affiliation(s)
- Christian U Oeing
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
- Department of Internal Medicine and Cardiology, Charité University Medicine, DZHK (German Center for Cardiovascular Research), Partner site Berlin, Campus Virchow-Klinikum, Berlin, Germany
| | - Mark E Pepin
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Kerstin B Saul
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Ayça Seyhan Agircan
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Yassen Assenov
- Cancer Epigenomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Tobias S Merkel
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Farbod Sedaghat-Hamedani
- Department of Cardiology, University of Heidelberg, DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Tanja Weis
- Department of Cardiology, University of Heidelberg, DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Benjamin Meder
- Department of Cardiology, University of Heidelberg, DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Heidelberg, Germany
| | - Kaomei Guan
- Institute of Pharmacology and Toxicology, Technische Universität Medical Centre Dresden, Dresden, Germany
| | - Christoph Plass
- Cancer Epigenomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Dieter Weichenhan
- Cancer Epigenomics, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Dominik Siede
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany
| | - Johannes Backs
- Institute of Experimental Cardiology, University Hospital Heidelberg, University of Heidelberg and DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Im Neuenheimer Feld 669, 69120, Heidelberg, Germany.
| |
Collapse
|
18
|
Xu X, Elkenani M, Tan X, Hain JK, Cui B, Schnelle M, Hasenfuss G, Toischer K, Mohamed BA. DNA Methylation Analysis Identifies Novel Epigenetic Loci in Dilated Murine Heart upon Exposure to Volume Overload. Int J Mol Sci 2023; 24:ijms24065885. [PMID: 36982963 PMCID: PMC10059258 DOI: 10.3390/ijms24065885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023] Open
Abstract
Left ventricular (LV) dilatation, a prominent risk factor for heart failure (HF), precedes functional deterioration and is used to stratify patients at risk for arrhythmias and cardiac mortality. Aberrant DNA methylation contributes to maladaptive cardiac remodeling and HF progression following pressure overload and ischemic cardiac insults. However, no study has examined cardiac DNA methylation upon exposure to volume overload (VO) despite being relatively common among HF patients. We carried out global methylome analysis of LV harvested at a decompensated HF stage following exposure to VO induced by aortocaval shunt. VO resulted in pathological cardiac remodeling, characterized by massive LV dilatation and contractile dysfunction at 16 weeks after shunt. Although methylated DNA was not markedly altered globally, 25 differentially methylated promoter regions (DMRs) were identified in shunt vs. sham hearts (20 hypermethylated and 5 hypomethylated regions). The validated hypermethylated loci in Junctophilin-2 (Jph2), Signal peptidase complex subunit 3 (Spcs3), Vesicle-associated membrane protein-associated protein B (Vapb), and Inositol polyphosphate multikinase (Ipmk) were associated with the respective downregulated expression and were consistently observed in dilated LV early after shunt at 1 week after shunt, before functional deterioration starts to manifest. These hypermethylated loci were also detected peripherally in the blood of the shunt mice. Altogether, we have identified conserved DMRs that could be novel epigenetic biomarkers in dilated LV upon VO exposure.
Collapse
Affiliation(s)
- Xingbo Xu
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Manar Elkenani
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Xiaoying Tan
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Nephrology and Rheumatology, University Medical Center of Göttingen, 37075 Göttingen, Germany
| | - Jara Katharina Hain
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Baolong Cui
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Moritz Schnelle
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, University Medical Center Göttingen, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), 37075 Göttingen, Germany
| |
Collapse
|
19
|
Liao X, Kennel PJ, Liu B, Nash TR, Zhuang RZ, Godier-Furnemont AF, Xue C, Lu R, Colombo PC, Uriel N, Reilly MP, Marx SO, Vunjak-Novakovic G, Topkara VK. Effect of mechanical unloading on genome-wide DNA methylation profile of the failing human heart. JCI Insight 2023; 8:161788. [PMID: 36656640 PMCID: PMC9977498 DOI: 10.1172/jci.insight.161788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 01/11/2023] [Indexed: 01/20/2023] Open
Abstract
Heart failure (HF) is characterized by global alterations in myocardial DNA methylation, yet little is known about the epigenetic regulation of the noncoding genome and potential reversibility of DNA methylation with left ventricular assist device (LVAD) therapy. Genome-wide mapping of myocardial DNA methylation in 36 patients with HF at LVAD implantation, 8 patients at LVAD explantation, and 7 nonfailing (NF) donors using a high-density bead array platform identified 2,079 differentially methylated positions (DMPs) in ischemic cardiomyopathy (ICM) and 261 DMPs in nonischemic cardiomyopathy (NICM). LVAD support resulted in normalization of 3.2% of HF-associated DMPs. Methylation-expression correlation analysis yielded several protein-coding genes that are hypomethylated and upregulated (HTRA1, FBXO16, EFCAB13, and AKAP13) or hypermethylated and downregulated (TBX3) in HF. A potentially novel cardiac-specific super-enhancer long noncoding RNA (lncRNA) (LINC00881) is hypermethylated and downregulated in human HF. LINC00881 is an upstream regulator of sarcomere and calcium channel gene expression including MYH6, CACNA1C, and RYR2. LINC00881 knockdown reduces peak calcium amplitude in the beating human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). These data suggest that HF-associated changes in myocardial DNA methylation within coding and noncoding genomes are minimally reversible with mechanical unloading. Epigenetic reprogramming strategies may be necessary to achieve sustained clinical recovery from heart failure.
Collapse
Affiliation(s)
- Xianghai Liao
- Division of Cardiology, Columbia University Irving Medical Center - New York Presbyterian, New York, New York, USA
| | - Peter J Kennel
- Division of Cardiology, Columbia University Irving Medical Center - New York Presbyterian, New York, New York, USA
| | - Bohao Liu
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Trevor R Nash
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Richard Z Zhuang
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | | | - Chenyi Xue
- Division of Cardiology, Columbia University Irving Medical Center - New York Presbyterian, New York, New York, USA
| | - Rong Lu
- Division of Cardiology, Columbia University Irving Medical Center - New York Presbyterian, New York, New York, USA
| | - Paolo C Colombo
- Division of Cardiology, Columbia University Irving Medical Center - New York Presbyterian, New York, New York, USA
| | - Nir Uriel
- Division of Cardiology, Columbia University Irving Medical Center - New York Presbyterian, New York, New York, USA
| | - Muredach P Reilly
- Division of Cardiology, Columbia University Irving Medical Center - New York Presbyterian, New York, New York, USA
| | - Steven O Marx
- Division of Cardiology, Columbia University Irving Medical Center - New York Presbyterian, New York, New York, USA
| | | | - Veli K Topkara
- Division of Cardiology, Columbia University Irving Medical Center - New York Presbyterian, New York, New York, USA
| |
Collapse
|
20
|
Zhou Y, Suo W, Zhang X, Yang Y, Zhao W, Li H, Ni Q. Targeting epigenetics in diabetic cardiomyopathy: Therapeutic potential of flavonoids. Biomed Pharmacother 2023; 157:114025. [PMID: 36399824 DOI: 10.1016/j.biopha.2022.114025] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
The pathophysiological mechanisms of diabetic cardiomyopathy have been extensively studied, but there is still a lack of effective prevention and treatment methods. The ability of flavonoids to protect the heart from diabetic cardiomyopathy has been extensively described. In recent years, epigenetics has received increasing attention from scholars in exploring the etiology and treatment of diabetes and its complications. DNA methylation, histone modifications and non-coding RNAs play key functions in the development, maintenance and progression of diabetic cardiomyopathy. Hence, prevention or reversal of the epigenetic alterations that have occurred during the development of diabetic cardiomyopathy may alleviate the personal and social burden of the disease. Flavonoids can be used as natural epigenetic modulators in alternative therapies for diabetic cardiomyopathy. In this review, we discuss the epigenetic effects of different flavonoid subtypes in diabetic cardiomyopathy and summarize the evidence from preclinical and clinical studies that already exist. However, limited research is available on the potential beneficial effects of flavonoids on the epigenetics of diabetic cardiomyopathy. In the future, clinical trials in which different flavonoids exert their antidiabetic and cardioprotective effects through various epigenetic mechanisms should be further explored.
Collapse
Affiliation(s)
- Yutong Zhou
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Wendong Suo
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xinai Zhang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Yanan Yang
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China
| | - Weizhe Zhao
- College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, Beijing 100105, China
| | - Hong Li
- LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Qing Ni
- Guang'an Men Hospital, China Academy of Chinese Medicine, Beijing 100053, China.
| |
Collapse
|
21
|
Yu Q, Yang J, Wang J, Yu R, Li J, Cheng J, Hu Y, Li Z, Zheng N, Zhang Z, Li X, Wang Y, Du W, Zhu K, Chen X, Su J. DNA methylation profile in the whole blood of acute coronary syndrome patients with aspirin resistance. J Clin Lab Anal 2022; 37:e24821. [PMID: 36550638 PMCID: PMC9833987 DOI: 10.1002/jcla.24821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/07/2022] [Accepted: 12/10/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Aspirin resistance (AR) results in major adverse cardiovascular events, and DNA methylation might participate in the regulation of this pathological process. METHODS In present study, a sum of 35 patients with AR and 35 non-AR (NAR) controls were enrolled. Samples from 5 AR and 5 NAR were evaluated in an 850 BeadChip DNA methylation assay, and another 30 AR versus 30 NAR were evaluated to validate the differentially methylated CpG loci (DML). Then, qRT-PCR was used to investigate the target mRNA expression of genes at CpG loci. Finally, Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to reveal the enriched pathways. RESULTS The AR and NAR groups displayed significant differences in DNA methylation at 7707 positions, with 270 hypermethylated sites (e.g., cg09555818 located in APOC2) and 7437 sites hypomethylated sites (e.g., cg26828689 located in SLC12A5). Six DML were validated by pyrosequencing, and it was confirmed that DNA methylation (cg16391727, cg21008208, cg21293749, and cg13945576) was related to the increasing risk of AR. The relative mRNA expression of the ROR1 gene was also associated with AR (p = 0.007), suggesting that the change of cg21293749 in DNA methylation might lead to differential ROR1 mRNA expression, ultimately resulting in AR. Furthermore, the identified differentially methylated sites were associated with the molecular pathways such as circadian rhythms and insulin secretion. CONCLUSION Hence, the distinct DNA methylation might play a vital role in the biological regulation of AR through the pathways such as circadian rhythms.
Collapse
Affiliation(s)
- Qinglin Yu
- Department of Traditional Chinese Internal MedicineNingbo No. 1 HospitalNingboChina
| | - Jin Yang
- Department of GeriatricsNingbo No. 1 HospitalNingboChina
| | - Jiang Wang
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Ruoyan Yu
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Jiyi Li
- Department of CardiologyYuyao People's Hospital of Zhejiang ProvinceYuyaoChina
| | - Ji Cheng
- Department of Emergency, HwaMei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Yingchu Hu
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Zhenwei Li
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Nan Zheng
- Department of Cardiology, HwaMei HospitalUniversity of Chinese Academy of SciencesNingboChina
| | - Zhaoxia Zhang
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Xiaojing Li
- Department of GeriatricsNingbo No. 1 HospitalNingboChina
| | - Yong Wang
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Weiping Du
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Keqi Zhu
- Department of Traditional Chinese Internal MedicineNingbo No. 1 HospitalNingboChina
| | - Xiaomin Chen
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| | - Jia Su
- Department of CardiologyNingbo No.1 HospitalNingboChina,Key Laboratory of Precision Medicine for Atherosclerotic Diseases of Zhejiang ProvinceNingboChina
| |
Collapse
|
22
|
Epigenetics and Gut Microbiota Crosstalk: A potential Factor in Pathogenesis of Cardiovascular Disorders. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120798. [PMID: 36551003 PMCID: PMC9774431 DOI: 10.3390/bioengineering9120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality, morbidity, and "sudden death" globally. Environmental and lifestyle factors play important roles in CVD susceptibility, but the link between environmental factors and genetics is not fully established. Epigenetic influence during CVDs is becoming more evident as its direct involvement has been reported. The discovery of epigenetic mechanisms, such as DNA methylation and histone modification, suggested that external factors could alter gene expression to modulate human health. These external factors also influence our gut microbiota (GM), which participates in multiple metabolic processes in our body. Evidence suggests a high association of GM with CVDs. Although the exact mechanism remains unclear, the influence of GM over the epigenetic mechanisms could be one potential pathway in CVD etiology. Both epigenetics and GM are dynamic processes and vary with age and environment. Changes in the composition of GM have been found to underlie the pathogenesis of metabolic diseases via modulating epigenetic changes in the form of DNA methylation, histone modifications, and regulation of non-coding RNAs. Several metabolites produced by the GM, including short-chain fatty acids, folates, biotin, and trimethylamine-N-oxide, have the potential to regulate epigenetics, apart from playing a vital role in normal physiological processes. The role of GM and epigenetics in CVDs are promising areas of research, and important insights in the field of early diagnosis and therapeutic approaches might appear soon.
Collapse
|
23
|
Brochet P, Ianni B, Nunes JPS, Frade AF, Teixeira PC, Mady C, Ferreira LRP, Kuramoto A, Pissetti CW, Saba B, Cândido DDS, Dias F, Sampaio M, Marin-Neto JA, Fragata A, Zaniratto RC.F, Siqueira S, Peixoto GDL, Rigaud VOC, Buck P, Almeida RR, Lin-Wang HT, Schmidt A, Martinelli M, Hirata MH, Donadi E, Rodrigues Junior V, Pereira AC, Kalil J, Spinelli L, Cunha-Neto E, Chevillard C. Blood DNA methylation marks discriminate Chagas cardiomyopathy disease clinical forms. Front Immunol 2022; 13:1020572. [PMID: 36248819 PMCID: PMC9558220 DOI: 10.3389/fimmu.2022.1020572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 09/15/2022] [Indexed: 12/03/2022] Open
Abstract
Chagas disease is a parasitic disease from South America, affecting around 7 million people worldwide. Decades after the infection, 30% of people develop chronic forms, including Chronic Chagas Cardiomyopathy (CCC), for which no treatment exists. Two stages characterized this form: the moderate form, characterized by a heart ejection fraction (EF) ≥ 0.4, and the severe form, associated to an EF < 0.4. We propose two sets of DNA methylation biomarkers which can predict in blood CCC occurrence, and CCC stage. This analysis, based on machine learning algorithms, makes predictions with more than 95% accuracy in a test cohort. Beyond their predictive capacity, these CpGs are located near genes involved in the immune response, the nervous system, ion transport or ATP synthesis, pathways known to be deregulated in CCCs. Among these genes, some are also differentially expressed in heart tissues. Interestingly, the CpGs of interest are tagged to genes mainly involved in nervous and ionic processes. Given the close link between methylation and gene expression, these lists of CpGs promise to be not only good biomarkers, but also good indicators of key elements in the development of this pathology.
Collapse
Affiliation(s)
- Pauline Brochet
- Aix Marseille Univ, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Barbara Ianni
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - João P. S. Nunes
- Aix Marseille Univ, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Amanda F. Frade
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Priscila C. Teixeira
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Charles Mady
- Myocardiopathies and Aortic Diseases Unit, Heart Institute, Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ludmila R. P. Ferreira
- RNA Systems Biology Laboratory (RSBL), Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Andreia Kuramoto
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Cristina W. Pissetti
- Laboratory of Immunology, Universidade Federal Do Triângulo Mineiro (UFTM), Uberaba, Brazil
| | - Bruno Saba
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Darlan D. S. Cândido
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Fabrício Dias
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Sampaio
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - José A. Marin-Neto
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Abílio Fragata
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Ricardo C .F. Zaniratto
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Sergio Siqueira
- Pacemaker Clinic, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Giselle D. L. Peixoto
- Pacemaker Clinic, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vagner O. C. Rigaud
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paula Buck
- Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Rafael R. Almeida
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Hui Tzu Lin-Wang
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - André Schmidt
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Martino Martinelli
- Pacemaker Clinic, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mario H. Hirata
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Eduardo Donadi
- School of Medicine of Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | | | - Alexandre C. Pereira
- Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Lionel Spinelli
- Aix Marseille Univ, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
- *Correspondence: Christophe Chevillard, ; Edecio Cunha-Neto, ; Lionel Spinelli,
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute Instituto do Coração(InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, School of Medicine, University of São Paulo, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, iii- Institute for Investigation in Immunology, São Paulo, Brazil
- *Correspondence: Christophe Chevillard, ; Edecio Cunha-Neto, ; Lionel Spinelli,
| | - Christophe Chevillard
- Aix Marseille Univ, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
- *Correspondence: Christophe Chevillard, ; Edecio Cunha-Neto, ; Lionel Spinelli,
| |
Collapse
|
24
|
Zhao K, Mao Y, Li Y, Yang C, Wang K, Zhang J. The roles and mechanisms of epigenetic regulation in pathological myocardial remodeling. Front Cardiovasc Med 2022; 9:952949. [PMID: 36093141 PMCID: PMC9458904 DOI: 10.3389/fcvm.2022.952949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/10/2022] [Indexed: 11/22/2022] Open
Abstract
Pathological myocardial remodeling was still one of the leading causes of death worldwide with an unmet therapeutic need. A growing number of researchers have addressed the role of epigenome changes in cardiovascular diseases, paving the way for the clinical application of novel cardiovascular-related epigenetic targets in the future. In this review, we summarized the emerged advances of epigenetic regulation, including DNA methylation, Histone posttranslational modification, Adenosine disodium triphosphate (ATP)-dependent chromatin remodeling, Non-coding RNA, and RNA modification, in pathological myocardial remodeling. Also, we provided an overview of the mechanisms that potentially involve the participation of these epigenetic regulation.
Collapse
Affiliation(s)
- Kun Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yukang Mao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yansong Li
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chuanxi Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Cardiology, Yangpu Hospital, Tongji University School of Medicine, Shanghai, China
| | - Kai Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Kai Wang
| | - Jing Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- *Correspondence: Jing Zhang
| |
Collapse
|
25
|
Brochet P, Ianni BM, Laugier L, Frade AF, Silva Nunes JP, Teixeira PC, Mady C, Ferreira LRP, Ferré Q, Santos RHB, Kuramoto A, Cabantous S, Steffen S, Stolf AN, Pomerantzeff P, Fiorelli AI, Bocchi EA, Pissetti CW, Saba B, Cândido DDS, Dias FC, Sampaio MF, Gaiotto FA, Marin-Neto JA, Fragata A, Zaniratto RCF, Siqueira S, Peixoto GDL, Rigaud VOC, Bacal F, Buck P, Almeida RR, Lin-Wang HT, Schmidt A, Martinelli M, Hirata MH, Donadi EA, Costa Pereira A, Rodrigues Junior V, Puthier D, Kalil J, Spinelli L, Cunha-Neto E, Chevillard C. Epigenetic regulation of transcription factor binding motifs promotes Th1 response in Chagas disease cardiomyopathy. Front Immunol 2022; 13:958200. [PMID: 36072583 PMCID: PMC9441916 DOI: 10.3389/fimmu.2022.958200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 07/26/2022] [Indexed: 01/03/2023] Open
Abstract
Chagas disease, caused by the protozoan Trypanosoma cruzi, is an endemic parasitic disease of Latin America, affecting 7 million people. Although most patients are asymptomatic, 30% develop complications, including the often-fatal Chronic Chagasic Cardiomyopathy (CCC). Although previous studies have demonstrated some genetic deregulations associated with CCCs, the causes of their deregulations remain poorly described. Based on bulk RNA-seq and whole genome DNA methylation data, we investigated the genetic and epigenetic deregulations present in the moderate and severe stages of CCC. Analysis of heart tissue gene expression profile allowed us to identify 1407 differentially expressed transcripts (DEGs) specific from CCC patients. A tissue DNA methylation analysis done on the same tissue has permitted the identification of 92 regulatory Differentially Methylated Regions (DMR) localized in the promoter of DEGs. An in-depth study of the transcription factors binding sites (TFBS) in the DMRs corroborated the importance of TFBS’s DNA methylation for gene expression in CCC myocardium. TBX21, RUNX3 and EBF1 are the transcription factors whose binding motif appears to be affected by DNA methylation in the largest number of genes. By combining both transcriptomic and methylomic analysis on heart tissue, and methylomic analysis on blood, 4 biological processes affected by severe CCC have been identified, including immune response, ion transport, cardiac muscle processes and nervous system. An additional study on blood methylation of moderate CCC samples put forward the importance of ion transport and nervous system in the development of the disease.
Collapse
Affiliation(s)
- Pauline Brochet
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Barbara Maria Ianni
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Laurie Laugier
- Aix Marseille Université, Génétique et Immunologie des Maladies Parasitaires, Inserm, UMR_906, Marseille, France
| | - Amanda Farage Frade
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil
| | - João Paulo Silva Nunes
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Priscila Camillo Teixeira
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Charles Mady
- Myocardiopathies and Aortic Diseases Unit, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Ludmila Rodrigues Pinto Ferreira
- RNA Systems Biology Laboratory (RSBL), Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Quentin Ferré
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Ronaldo Honorato Barros Santos
- Division of Transplantation, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Andreia Kuramoto
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Sandrine Cabantous
- Aix Marseille Université, Génétique et Immunologie des Maladies Parasitaires, Inserm, UMR_906, Marseille, France
| | - Samuel Steffen
- Division of Transplantation, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Surgery, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Antonio Noedir Stolf
- Division of Surgery, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Pablo Pomerantzeff
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Alfredo Inacio Fiorelli
- Division of Surgery, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Edimar Alcides Bocchi
- Division of Surgery, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Cristina Wide Pissetti
- Laboratory of Immunology, Universidade Federal Do Triângulo Mineiro (UFTM), Uberaba, Brazil
| | - Bruno Saba
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Darlan da Silva Cândido
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Fabrício C. Dias
- School of Medicine of Ribeirão Preto Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Marcelo Ferraz Sampaio
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Fabio Antônio Gaiotto
- Division of Transplantation, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Surgery, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - José Antonio Marin-Neto
- School of Medicine of Ribeirão Preto Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Abílio Fragata
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - Ricardo Costa Fernandes Zaniratto
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Sergio Siqueira
- Pacemaker Clinic, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Giselle De Lima Peixoto
- Pacemaker Clinic, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vagner Oliveira-Carvalho Rigaud
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Heart Failure Unit, Heart Institute Instituto do Coração (InCor) School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Fernando Bacal
- Division of Transplantation, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
| | - Paula Buck
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Rafael Ribeiro Almeida
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Hui Tzu Lin-Wang
- Laboratório de Investigação Molecular em Cardiologia, Instituto de Cardiologia Dante Pazzanese (IDPC), São Paulo, Brazil
| | - André Schmidt
- School of Medicine of Ribeirão Preto Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Martino Martinelli
- Pacemaker Clinic, Heart Institute Instituto do Coração (InCor), School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Eduardo Antonio Donadi
- School of Medicine of Ribeirão Preto Faculdade de Medicina de Ribeirão Preto (FMRP), University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Costa Pereira
- Heart Institute (InCor), School of Medicine, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Denis Puthier
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil
| | - Lionel Spinelli
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- *Correspondence: Christophe Chevillard, ; Edecio Cunha-Neto, ; Lionel Spinelli,
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute Instituto do Coração (InCor), University of São Paulo, School of Medicine, São Paulo, Brazil
- Division of Clinical Immunology and Allergy, University of São Paulo, School of Medicine, São Paulo, Brazil
- Instituto Nacional de Ciência e Tecnologia, INCT, III- Institute for Investigation in Immunology, São Paulo, Brazil
- *Correspondence: Christophe Chevillard, ; Edecio Cunha-Neto, ; Lionel Spinelli,
| | - Christophe Chevillard
- Institut National de la Santé Et de la Recherche Médicale (INSERM), Unité Mixte de Recherche (UMR)_1090, Aix Marseille Université, TAGC Theories and Approaches of Genomic Complexity, Institut MarMaRa, Marseille, France
- *Correspondence: Christophe Chevillard, ; Edecio Cunha-Neto, ; Lionel Spinelli,
| |
Collapse
|
26
|
Tappu R, Haas J, Lehmann DH, Sedaghat-Hamedani F, Kayvanpour E, Keller A, Katus HA, Frey N, Meder B. Multi-omics assessment of dilated cardiomyopathy using non-negative matrix factorization. PLoS One 2022; 17:e0272093. [PMID: 35980883 PMCID: PMC9387871 DOI: 10.1371/journal.pone.0272093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 07/11/2022] [Indexed: 11/19/2022] Open
Abstract
Dilated cardiomyopathy (DCM), a myocardial disease, is heterogeneous and often results in heart failure and sudden cardiac death. Unavailability of cardiac tissue has hindered the comprehensive exploration of gene regulatory networks and nodal players in DCM. In this study, we carried out integrated analysis of transcriptome and methylome data using non-negative matrix factorization from a cohort of DCM patients to uncover underlying latent factors and covarying features between whole-transcriptome and epigenome omics datasets from tissue biopsies of living patients. DNA methylation data from Infinium HM450 and mRNA Illumina sequencing of n = 33 DCM and n = 24 control probands were filtered, analyzed and used as input for matrix factorization using R NMF package. Mann-Whitney U test showed 4 out of 5 latent factors are significantly different between DCM and control probands (P<0.05). Characterization of top 10% features driving each latent factor showed a significant enrichment of biological processes known to be involved in DCM pathogenesis, including immune response (P = 3.97E-21), nucleic acid binding (P = 1.42E-18), extracellular matrix (P = 9.23E-14) and myofibrillar structure (P = 8.46E-12). Correlation network analysis revealed interaction of important sarcomeric genes like Nebulin, Tropomyosin alpha-3 and ERC-protein 2 with CpG methylation of ATPase Phospholipid Transporting 11A0, Solute Carrier Family 12 Member 7 and Leucine Rich Repeat Containing 14B, all with significant P values associated with correlation coefficients >0.7. Using matrix factorization, multi-omics data derived from human tissue samples can be integrated and novel interactions can be identified. Hypothesis generating nature of such analysis could help to better understand the pathophysiology of complex traits such as DCM.
Collapse
Affiliation(s)
- Rewati Tappu
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Jan Haas
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - David H. Lehmann
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Farbod Sedaghat-Hamedani
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Elham Kayvanpour
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Andreas Keller
- Department of Clinical Bioinformatics, Medical Faculty, Saarland University, Saarbrücken, Germany
| | - Hugo A. Katus
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Norbert Frey
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
| | - Benjamin Meder
- Institute for Cardiomyopathies Heidelberg (ICH), Heart Center Heidelberg, University of Heidelberg, Heidelberg, Germany
- DZHK (German Center for Cardiovascular Research), Partner Site Heidelberg/Mannheim, Mannheim, Germany
- Department of Genetics, Stanford University School of Medicine, Palo Alto, California, United States of America
| |
Collapse
|
27
|
Studying Epigenetics of Cardiovascular Diseases on Chip Guide. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epigenetics is defined as the study of inheritable changes in the gene expressions and phenotypes that occurs without altering the normal DNA sequence. These changes are mainly due to an alteration in chromatin or its packaging, which changes the DNA accessibility. DNA methylation, histone modification, and noncoding or microRNAs can best explain the mechanism of epigenetics. There are various DNA methylated enzymes, histone-modifying enzymes, and microRNAs involved in the cause of various CVDs (cardiovascular diseases) such as cardiac hypertrophy, heart failure, and hypertension. Moreover, various CVD risk factors such as diabetes mellitus, hypoxia, aging, dyslipidemia, and their epigenetics are also discussed together with CVDs such as CHD (coronary heart disease) and PAH (pulmonary arterial hypertension). Furthermore, different techniques involved in epigenetic chromatin mapping are explained. Among these techniques, the ChIP-on-chip guide is explained with regard to its role in cardiac hypertrophy, a final form of heart failure. This review focuses on different epigenetic factors that are involved in causing cardiovascular diseases.
Collapse
|
28
|
Pharmacological mechanisms of sodium-glucose co-transporter 2 inhibitors in heart failure with preserved ejection fraction. BMC Cardiovasc Disord 2022; 22:261. [PMID: 35689186 PMCID: PMC9188076 DOI: 10.1186/s12872-022-02693-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 05/25/2022] [Indexed: 02/06/2023] Open
Abstract
Background More and more evidence indicates sodium-glucose co-transporter 2 inhibitors (SGLT2is) may display clinical benefits for heart failure with preserved ejection fraction (HFpEF). However, the mechanisms of the action remain unclear. Methods A systematic pharmacology-based strategy was applied for predicting the potential molecular mechanisms of SGLT2is in HFpEF. The potential targets of SGLT2is and HFpEF were contained from diverse databases. After networks were constructed, Metascape was applied to functional enrichment. Moreover, the key findings were validated through molecular docking. Results We obtained 487 SGLT2is related targets and 1505 HFpEF related targets. The networks showed the complex relationship of HFpEF-target-HFpEF. The results of functional enrichment analysis suggested that several biological processes, including muscle system process, inflammatory response, vasculature development, heart development, regulation of MAPK cascade, positive regulation of ion transport, negative regulation of cell population proliferation, cellular response to nitrogen compound, apoptotic signaling pathway, multicellular organismal homeostasis, response to oxidative stress, regulation of cell adhesion, positive regulation of cell death, response to growth factor, and cellular response to lipid, and signaling pathways, such as cardiomyopathy, cAMP signaling pathway, cytokine-cytokine receptor interaction, apoptosis, MAPK signaling pathway, HIF-1 signaling pathway, calcium signaling pathway, and NF-kappa B signaling pathway. Finally, we validated the interactions and combinations of SGLT2is and core targets. Conclusion SGLT2is play the potential role of anti-HFpEF through the direct or indirect synergy of multiple targets and pathways. Our study promotes the explanation of the molecular mechanisms of SGLT2is in HFpEF. Supplementary Information The online version contains supplementary material available at 10.1186/s12872-022-02693-8.
Collapse
|
29
|
Kucher AN, Sleptcov AA, Nazarenko MS. Genetic Landscape of Dilated Cardiomyopathy. RUSS J GENET+ 2022. [DOI: 10.1134/s1022795422030085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
30
|
Deng J, Liao Y, Liu J, Liu W, Yan D. Research Progress on Epigenetics of Diabetic Cardiomyopathy in Type 2 Diabetes. Front Cell Dev Biol 2022; 9:777258. [PMID: 35004678 PMCID: PMC8740193 DOI: 10.3389/fcell.2021.777258] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is characterized by diastolic relaxation abnormalities in its initial stages and by clinical heart failure (HF) without dyslipidemia, hypertension, and coronary artery disease in its last stages. DCM contributes to the high mortality and morbidity rates observed in diabetic populations. Diabetes is a polygenic, heritable, and complex condition that is exacerbated by environmental factors. Recent studies have demonstrated that epigenetics directly or indirectly contribute to pathogenesis. While epigenetic mechanisms such as DNA methylation, histone modifications, and non-coding RNAs, have been recognized as key players in the pathogenesis of DCM, some of their impacts remain not well understood. Furthering our understanding of the roles played by epigenetics in DCM will provide novel avenues for DCM therapeutics and prevention strategies.
Collapse
Affiliation(s)
- Jianxin Deng
- Department of Endocrinology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University; Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen, China
| | - Yunxiu Liao
- Health Science Center of Shenzhen University, Shenzhen, China
| | - Jianpin Liu
- Health Science Center of Shenzhen University, Shenzhen, China
| | - Wenjuan Liu
- Health Science Center of Shenzhen University, Shenzhen, China
| | - Dewen Yan
- Department of Endocrinology, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University; Shenzhen Clinical Research Center for Metabolic Diseases, Shenzhen, China
| |
Collapse
|
31
|
Lin Z, Chang J, Li X, Wang J, Wu X, Liu X, Zhu Y, Yu XY. Association of DNA methylation and transcriptome reveals epigenetic etiology of heart failure. Funct Integr Genomics 2021; 22:89-112. [PMID: 34870779 DOI: 10.1007/s10142-021-00813-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/08/2023]
Abstract
Epigenetic modifications viz. DNA methylation, histone modifications, and RNA-based alterations play a crucial role in the development of cardiovascular diseases. In this study, we investigated DNA methylation with an aim to reveal the epigenetic etiology of heart failure. Sprague-Dawley rats surviving myocardial infarction developed acute heart failure in 1 week. Genomic DNA methylation changes were profiled by bisulfite sequencing, and gene expression levels were analyzed by RNA-seq in failing and sham-operation hearts. A total of 3480 differentially methylated genes in the promoter regions including transcriptional start site and 1934 transcriptome-altered genes were identified in the defected hearts. Common differential genes were enriched by the gene ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and protein-protein interaction for HF phenotypes. Among these, Mettl11b, HDAC3, HDAC11, ubiquitination-related genes, and snoRNAs are new epigenetic classifiers that had not been reported yet, which may be important regulators in HF.
Collapse
Affiliation(s)
- Zhongxiao Lin
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
- China State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- South China Center for Drug Clinical Evaluation and Guangzhou Medical University New Drug Research and Development Co., Ltd, Guangzhou, 511436, China
| | - Jishuo Chang
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
- South China Center for Drug Clinical Evaluation and Guangzhou Medical University New Drug Research and Development Co., Ltd, Guangzhou, 511436, China
| | - Xinzhi Li
- China State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
| | - Jianglin Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaodan Wu
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xiaoyan Liu
- China State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China
- Huangpu Branch, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 58, Pu Yu Dong Road, Shanghai, 200011, China
| | - YiZhun Zhu
- China State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, China.
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target and Clinical Pharmacology and National Key Laboratory of Respiratory Diseases, School of Pharmaceutic Sciences and Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, China.
- South China Center for Drug Clinical Evaluation and Guangzhou Medical University New Drug Research and Development Co., Ltd, Guangzhou, 511436, China.
| |
Collapse
|
32
|
Wu G, Zhang X, Gao F. The epigenetic landscape of exercise in cardiac health and disease. JOURNAL OF SPORT AND HEALTH SCIENCE 2021; 10:648-659. [PMID: 33333247 PMCID: PMC8724625 DOI: 10.1016/j.jshs.2020.12.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/16/2020] [Accepted: 11/16/2020] [Indexed: 05/02/2023]
Abstract
With the rising incidence of cardiovascular diseases, the concomitant mortality and morbidity impose huge burdens on quality of life and societal costs. It is generally accepted that physical inactivity is one of the major risk factors for cardiac disease and that exercise benefits the heart in both physiological and pathologic conditions. However, the molecular mechanisms governing the cardioprotective effects exerted by exercise remain incompletely understood. Most recently, an increasing number of studies indicate the involvement of epigenetic modifications in the promotion of cardiac health and prevention of cardiac disease. Exercise and other lifestyle factors extensively induce epigenetic modifications, including DNA/RNA methylation, histone post-translational modifications, and non-coding RNAs in multiple tissues, which may contribute to their positive effects in human health and diseases. In addition, several studies have shown that maternal or paternal exercise prevents age-associated or high-fat diet-induced metabolic dysfunction in the offspring, reinforcing the importance of epigenetics in mediating the beneficial effects of exercise. It has been shown that exercise can directly modify cardiac epigenetics to promote cardiac health and protect the heart against various pathological processes, or it can modify epigenetics in other tissues, which reduces the risk of cardiac disease and affords cardioprotection through exerkines. An in-depth understanding of the epigenetic landscape of cardioprotective response to exercise will provide new therapeutic targets for cardiac diseases. This review, therefore, aimed to acquaint the cardiac community with the rapidly advancing and evolving field of exercise and epigenetics.
Collapse
Affiliation(s)
- Guiling Wu
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China
| | - Xing Zhang
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Feng Gao
- School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| |
Collapse
|
33
|
Wu L, Zhang Y, Ren J. Epigenetic modification in alcohol use disorder and alcoholic cardiomyopathy: From pathophysiology to therapeutic opportunities. Metabolism 2021; 125:154909. [PMID: 34627873 DOI: 10.1016/j.metabol.2021.154909] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/03/2021] [Accepted: 10/04/2021] [Indexed: 02/07/2023]
Abstract
Alcohol consumption prompts detrimental psychological, pathophysiological and health issues, representing one of the major causes of death worldwide. Alcohol use disorder (AUD), which is characterized by compulsive alcohol intake and loss of control over alcohol usage, arises from a complex interplay between genetic and environmental factors. More importantly, long-term abuse of alcohol is often tied with unfavorable cardiac remodeling and contractile alterations, a cadre of cardiac responses collectively known as alcoholic cardiomyopathy (ACM). Recent evidence has denoted a pivotal role for ethanol-triggered epigenetic modifications, the interface between genome and environmental cues, in the organismal and cellular responses to ethanol exposure. To-date, three major epigenetic mechanisms (DNA methylation, histone modifications, and RNA-based mechanisms) have been identified for the onset and development of AUD and ACM. Importantly, these epigenetic changes induced by alcohol may be detectable in the blood, thus offering diagnostic, therapeutic, and prognostic promises of epigenetic markers for AUD and alcoholic complications. In addition, several epigenetic drugs have shown efficacies in the management of alcohol abuse, loss of control for alcohol usage, relapse, drinking-related anxiety and behavior in withdrawal. In this context, medications targeting epigenetic modifications may hold promises for pharmaceutical management of AUD and ACM.
Collapse
Affiliation(s)
- Lin Wu
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China
| | - Yingmei Zhang
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Fudan University Zhongshan Hospital, Shanghai 200032, China; Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
34
|
Mages C, Gampp H, Syren P, Rahm AK, André F, Frey N, Lugenbiel P, Thomas D. Electrical Ventricular Remodeling in Dilated Cardiomyopathy. Cells 2021; 10:2767. [PMID: 34685747 PMCID: PMC8534398 DOI: 10.3390/cells10102767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/01/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Ventricular arrhythmias contribute significantly to morbidity and mortality in patients with heart failure (HF). Pathomechanisms underlying arrhythmogenicity in patients with structural heart disease and impaired cardiac function include myocardial fibrosis and the remodeling of ion channels, affecting electrophysiologic properties of ventricular cardiomyocytes. The dysregulation of ion channel expression has been associated with cardiomyopathy and with the development of arrhythmias. However, the underlying molecular signaling pathways are increasingly recognized. This review summarizes clinical and cellular electrophysiologic characteristics observed in dilated cardiomyopathy (DCM) with ionic and structural alterations at the ventricular level. Furthermore, potential translational strategies and therapeutic options are highlighted.
Collapse
Affiliation(s)
- Christine Mages
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Heike Gampp
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Pascal Syren
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Florian André
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Norbert Frey
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany; (C.M.); (H.G.); (P.S.); (A.-K.R.); (F.A.); (N.F.); (P.L.)
- Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| |
Collapse
|
35
|
Shraim BA, Moursi MO, Benter IF, Habib AM, Akhtar S. The Role of Epidermal Growth Factor Receptor Family of Receptor Tyrosine Kinases in Mediating Diabetes-Induced Cardiovascular Complications. Front Pharmacol 2021; 12:701390. [PMID: 34408653 PMCID: PMC8365470 DOI: 10.3389/fphar.2021.701390] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/14/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetes mellitus is a major debilitating disease whose global incidence is progressively increasing with currently over 463 million adult sufferers and this figure will likely reach over 700 million by the year 2045. It is the complications of diabetes such as cardiovascular, renal, neuronal and ocular dysfunction that lead to increased patient morbidity and mortality. Of these, cardiovascular complications that can result in stroke and cardiomyopathies are 2- to 5-fold more likely in diabetes but the underlying mechanisms involved in their development are not fully understood. Emerging research suggests that members of the Epidermal Growth Factor Receptor (EGFR/ErbB/HER) family of tyrosine kinases can have a dual role in that they are beneficially required for normal development and physiological functioning of the cardiovascular system (CVS) as well as in salvage pathways following acute cardiac ischemia/reperfusion injury but their chronic dysregulation may also be intricately involved in mediating diabetes-induced cardiovascular pathologies. Here we review the evidence for EGFR/ErbB/HER receptors in mediating these dual roles in the CVS and also discuss their potential interplay with the Renin-Angiotensin-Aldosterone System heptapeptide, Angiotensin-(1-7), as well the arachidonic acid metabolite, 20-HETE (20-hydroxy-5, 8, 11, 14-eicosatetraenoic acid). A greater understanding of the multi-faceted roles of EGFR/ErbB/HER family of tyrosine kinases and their interplay with other key modulators of cardiovascular function could facilitate the development of novel therapeutic strategies for treating diabetes-induced cardiovascular complications.
Collapse
Affiliation(s)
- Bara A Shraim
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Moaz O Moursi
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ibrahim F Benter
- Faculty of Medicine, Eastern Mediterranean University, Famagusta, North Cyprus
| | - Abdella M Habib
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Saghir Akhtar
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
36
|
Giri P, Mukhopadhyay A, Gupta M, Mohapatra B. Dilated cardiomyopathy: a new insight into the rare but common cause of heart failure. Heart Fail Rev 2021; 27:431-454. [PMID: 34245424 DOI: 10.1007/s10741-021-10125-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 05/25/2021] [Indexed: 12/26/2022]
Abstract
Heart failure is a global health burden responsible for high morbidity and mortality with a prevalence of greater than 60 million individuals worldwide. One of the major causes of heart failure is dilated cardiomyopathy (DCM), characterized by associated systolic dysfunction. During the last few decades, there have been remarkable advances in our understanding about the genetics of dilated cardiomyopathy. The genetic causes were initially thought to be associated with mutations in genes encoding proteins that are localized to cytoskeleton and sarcomere only; however, with the advancement in mechanistic understanding, the roles of ion channels, Z-disc, mitochondria, nuclear proteins, cardiac transcription factors (e.g., NKX-2.5, TBX20, GATA4), and the factors involved in calcium homeostasis have also been identified and found to be implicated in both familial and sporadic DCM cases. During past few years, next-generation sequencing (NGS) has been established as a diagnostic tool for genetic analysis and it has added significantly to the existing candidate gene list for DCM. The animal models have also provided novel insights to develop a better treatment strategy based on phenotype-genotype correlation, epigenetic and phenomic profiling. Most of the DCM biomarkers that are used in routine genetic and clinical testing are structural proteins, but during the last few years, the role of mi-RNA has also emerged as a biomarker due to their accessibility through noninvasive methods. Our increasing genetic knowledge can improve the clinical management of DCM by bringing clinicians and geneticists on one platform, thereby influencing the individualized clinical decision making and leading to precision medicine.
Collapse
Affiliation(s)
- Prerna Giri
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Amrita Mukhopadhyay
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Mohini Gupta
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India
| | - Bhagyalaxmi Mohapatra
- Cytogenetics Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Uttar Pradesh, Varanasi-5, India.
| |
Collapse
|
37
|
Morival JLP, Widyastuti HP, Nguyen CHH, Zaragoza MV, Downing TL. DNA methylation analysis reveals epimutation hotspots in patients with dilated cardiomyopathy-associated laminopathies. Clin Epigenetics 2021; 13:139. [PMID: 34246298 PMCID: PMC8272901 DOI: 10.1186/s13148-021-01127-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/03/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Mutations in LMNA, encoding lamin A/C, lead to a variety of diseases known as laminopathies including dilated cardiomyopathy (DCM) and skeletal abnormalities. Though previous studies have investigated the dysregulation of gene expression in cells from patients with DCM, the role of epigenetic (gene regulatory) mechanisms, such as DNA methylation, has not been thoroughly investigated. Furthermore, the impact of family-specific LMNA mutations on DNA methylation is unknown. Here, we performed reduced representation bisulfite sequencing on ten pairs of fibroblasts and their induced pluripotent stem cell (iPSC) derivatives from two families with DCM due to distinct LMNA mutations, one of which also induces brachydactyly. RESULTS Family-specific differentially methylated regions (DMRs) were identified by comparing the DNA methylation landscape of patient and control samples. Fibroblast DMRs were found to enrich for distal regulatory features and transcriptionally repressed chromatin and to associate with genes related to phenotypes found in tissues affected by laminopathies. These DMRs, in combination with transcriptome-wide expression data and lamina-associated domain (LAD) organization, revealed the presence of inter-family epimutation hotspots near differentially expressed genes, most of which were located outside LADs redistributed in LMNA-related DCM. Comparison of DMRs found in fibroblasts and iPSCs identified regions where epimutations were persistent across both cell types. Finally, a network of aberrantly methylated disease-associated genes revealed a potential molecular link between pathways involved in bone and heart development. CONCLUSIONS Our results identified both shared and mutation-specific laminopathy epimutation landscapes that were consistent with lamin A/C mutation-mediated epigenetic aberrancies that arose in somatic and early developmental cell stages.
Collapse
Affiliation(s)
- Julien L. P. Morival
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2408 Engineering III, Irvine, CA 92697 USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA USA
| | - Halida P. Widyastuti
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics and Genomics and Department of Biological Chemistry, University of California Irvine, 2042 Hewitt Hall, Irvine, CA 92697 USA
| | - Cecilia H. H. Nguyen
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics and Genomics and Department of Biological Chemistry, University of California Irvine, 2042 Hewitt Hall, Irvine, CA 92697 USA
| | - Michael V. Zaragoza
- UCI Cardiogenomics Program, Department of Pediatrics, Division of Genetics and Genomics and Department of Biological Chemistry, University of California Irvine, 2042 Hewitt Hall, Irvine, CA 92697 USA
| | - Timothy L. Downing
- Department of Biomedical Engineering and The Edwards Lifesciences Center for Advanced Cardiovascular Technology, University of California Irvine, 2408 Engineering III, Irvine, CA 92697 USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California Irvine, Irvine, CA USA
- Center for Complex Biological Systems, University of California Irvine, Irvine, CA USA
- Department of Microbiology and Molecular Genetics, University of California Irvine, Irvine, CA USA
| |
Collapse
|
38
|
Fang X, Poulsen R, Zhao L, Wang J, Rivkees SA, Wendler CC. Knockdown of DNA methyltransferase 1 reduces DNA methylation and alters expression patterns of cardiac genes in embryonic cardiomyocytes. FEBS Open Bio 2021. [PMID: 34235895 PMCID: PMC8329956 DOI: 10.1002/2211-5463.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/14/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
We previously found that DNA methyltransferase 3a (DNMT3a) plays an important role in regulating embryonic cardiomyocyte gene expression, morphology, and function. In this study, we investigated the role of the most abundant DNMT in mammalian cells, DNMT1, in these processes. It is known that DNMT1 is essential for embryonic development, during which it is involved in regulating cardiomyocyte DNA methylation and gene expression. We used siRNA to knock down DNMT1 expression in primary cultures of mouse embryonic cardiomyocytes. Immunofluorescence staining and multielectrode array were, respectively, utilized to evaluate cardiomyocyte growth and electrophysiology. RNA sequencing (RNA‐Seq) and multiplex bisulfite sequencing were, respectively, performed to examine gene expression and promoter methylation. At 72 h post‐transfection, reduction of DNMT1 expression decreased the number and increased the size of embryonic cardiomyocytes. Beat frequency and the amplitude of field action potentials were decreased by DNMT1 siRNA. RNA‐Seq analysis identified 801 up‐regulated genes and 494 down‐regulated genes in the DNMT1 knockdown cells when compared to controls. Pathway analysis of the differentially expressed genes revealed pathways that were associated with cell death and survival, cell morphology, cardiac function, and cardiac disease. Alternative splicing analysis identified 929 differentially expressed exons, including 583 up‐regulated exons and 308 down‐regulated exons. Moreover, decreased methylation levels were found in the promoters of cardiac genes Myh6, Myh7, Myh7b, Tnnc1, Tnni3, Tnnt2, Nppa, Nppb, mef2c, mef2d, Camta2, Cdkn1A, and Cdkn1C. Of these 13 genes, 6 (Myh6, Tnnc1, Tnni3, Tnnt2, Nppa, Nppb) and 1 (Cdkn1C) had increased or decreased gene expression, respectively. Altogether, these data show that DNMT1 is important in embryonic cardiomyocytes by regulating DNA methylation, gene expression, gene splicing, and cell function.
Collapse
Affiliation(s)
- Xiefan Fang
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, FL, USA.,Charles River Laboratories, Inc., Reno, NV, USA
| | - Ryan Poulsen
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Lu Zhao
- Charles River Laboratories, Inc., Reno, NV, USA
| | | | - Scott A Rivkees
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Christopher C Wendler
- Department of Pediatrics, Child Health Research Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
39
|
Xu H, Li S, Liu YS. Roles and Mechanisms of DNA Methylation in Vascular Aging and Related Diseases. Front Cell Dev Biol 2021; 9:699374. [PMID: 34262910 PMCID: PMC8273304 DOI: 10.3389/fcell.2021.699374] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/07/2021] [Indexed: 12/20/2022] Open
Abstract
Vascular aging is a pivotal risk factor promoting vascular dysfunction, the development and progression of vascular aging-related diseases. The structure and function of endothelial cells (ECs), vascular smooth muscle cells (VSMCs), fibroblasts, and macrophages are disrupted during the aging process, causing vascular cell senescence as well as vascular dysfunction. DNA methylation, an epigenetic mechanism, involves the alteration of gene transcription without changing the DNA sequence. It is a dynamically reversible process modulated by methyltransferases and demethyltransferases. Emerging evidence reveals that DNA methylation is implicated in the vascular aging process and plays a central role in regulating vascular aging-related diseases. In this review, we seek to clarify the mechanisms of DNA methylation in modulating ECs, VSMCs, fibroblasts, and macrophages functions and primarily focus on the connection between DNA methylation and vascular aging-related diseases. Therefore, we represent many vascular aging-related genes which are modulated by DNA methylation. Besides, we concentrate on the potential clinical application of DNA methylation to serve as a reliable diagnostic tool and DNA methylation-based therapeutic drugs for vascular aging-related diseases.
Collapse
Affiliation(s)
- Hui Xu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - Shuang Li
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| | - You-Shuo Liu
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China.,Institute of Aging and Age-Related Disease Research, Central South University, Changsha, China
| |
Collapse
|
40
|
Hamdani N, Costantino S, Mügge A, Lebeche D, Tschöpe C, Thum T, Paneni F. Leveraging clinical epigenetics in heart failure with preserved ejection fraction: a call for individualized therapies. Eur Heart J 2021; 42:1940-1958. [PMID: 36282124 DOI: 10.1093/eurheartj/ehab197] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/17/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Described as the 'single largest unmet need in cardiovascular medicine', heart failure with preserved ejection fraction (HFpEF) remains an untreatable disease currently representing 65% of new heart failure diagnoses. HFpEF is more frequent among women and associates with a poor prognosis and unsustainable healthcare costs. Moreover, the variability in HFpEF phenotypes amplifies complexity and difficulties in the approach. In this perspective, unveiling novel molecular targets is imperative. Epigenetic modifications-defined as changes of DNA, histones, and non-coding RNAs (ncRNAs)-represent a molecular framework through which the environment modulates gene expression. Epigenetic signals acquired over the lifetime lead to chromatin remodelling and affect transcriptional programmes underlying oxidative stress, inflammation, dysmetabolism, and maladaptive left ventricular remodelling, all conditions predisposing to HFpEF. The strong involvement of epigenetic signalling in this setting makes the epigenetic information relevant for diagnostic and therapeutic purposes in patients with HFpEF. The recent advances in high-throughput sequencing, computational epigenetics, and machine learning have enabled the identification of reliable epigenetic biomarkers in cardiovascular patients. Contrary to genetic tools, epigenetic biomarkers mirror the contribution of environmental cues and lifestyle changes and their reversible nature offers a promising opportunity to monitor disease states. The growing understanding of chromatin and ncRNAs biology has led to the development of several Food and Drug Administration approved 'epidrugs' (chromatin modifiers, mimics, anti-miRs) able to prevent transcriptional alterations underpinning left ventricular remodelling and HFpEF. In the present review, we discuss the importance of clinical epigenetics as a new tool to be employed for a personalized management of HFpEF.
Collapse
Affiliation(s)
- Nazha Hamdani
- Institute of Physiology, Ruhr University, Bochum, Germany.,Molecular and Experimental Cardiology, Ruhr University, Bochum, Germany.,Department of Cardiology, St-Josef Hospital, Ruhr University, Bochum, Germany.,Clinical Pharmacology, Ruhr University, Bochum, Germany
| | - Sarah Costantino
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren CH-8952, Switzerland
| | - Andreas Mügge
- Molecular and Experimental Cardiology, Ruhr University, Bochum, Germany.,Department of Cardiology, St-Josef Hospital, Ruhr University, Bochum, Germany
| | - Djamel Lebeche
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY 10029, USA.,Department of Medicine, Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.,Department of Medicine, Graduate School of Biological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carsten Tschöpe
- Berlin Institute of Health Center for Regenerative Therapies and Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Berlin, Germany.,German Center for Cardiovascular Research (DZHK), Partner site Berlin, Berlin, Germany.,Department of Cardiology, Charité-Universitätsmedizin Berlin, Campus Virchow Klinikum (CVK), Berlin, Germany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic Strategies, Hannover Medical School, Hannover, Germany.,REBIRTH Center for Translational Regenerative Medicine, Hannover Medical School, Hannover, Germany.,Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Hannover 30625, Germany
| | - Francesco Paneni
- Center for Molecular Cardiology, University of Zürich, Wagistrasse 12, Schlieren CH-8952, Switzerland.,University Heart Center, Cardiology, University Hospital Zurich, Zürich, Switzerland.,Department of Research and Education, University Hospital Zurich, Zürich, Switzerland
| |
Collapse
|
41
|
George RM, Firulli AB. Epigenetics and Heart Development. Front Cell Dev Biol 2021; 9:637996. [PMID: 34026751 PMCID: PMC8136428 DOI: 10.3389/fcell.2021.637996] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/26/2021] [Indexed: 11/24/2022] Open
Abstract
Epigenetic control of gene expression during cardiac development and disease has been a topic of intense research in recent years. Advances in experimental methods to study DNA accessibility, transcription factor occupancy, and chromatin conformation capture technologies have helped identify regions of chromatin structure that play a role in regulating access of transcription factors to the promoter elements of genes, thereby modulating expression. These chromatin structures facilitate enhancer contacts across large genomic distances and function to insulate genes from cis-regulatory elements that lie outside the boundaries for the gene of interest. Changes in transcription factor occupancy due to changes in chromatin accessibility have been implicated in congenital heart disease. However, the factors controlling this process and their role in changing gene expression during development or disease remain unclear. In this review, we focus on recent advances in the understanding of epigenetic factors controlling cardiac morphogenesis and their role in diseases.
Collapse
Affiliation(s)
- Rajani M George
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Anthony B Firulli
- Herman B Wells Center for Pediatric Research Department of Pediatrics, Anatomy, Biochemistry, and Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
42
|
Fischer MA, Vondriska TM. Clinical epigenomics for cardiovascular disease: Diagnostics and therapies. J Mol Cell Cardiol 2021; 154:97-105. [PMID: 33561434 PMCID: PMC8330446 DOI: 10.1016/j.yjmcc.2021.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/05/2021] [Accepted: 01/10/2021] [Indexed: 12/28/2022]
Abstract
The study of epigenomics has advanced in recent years to span the regulation of a single genetic locus to the structure and orientation of entire chromosomes within the nucleus. In this review, we focus on the challenges and opportunities of clinical epigenomics in cardiovascular disease. As an integrator of genetic and environmental inputs, and because of advances in measurement techniques that are highly reproducible and provide sequence information, the epigenome is a rich source of potential biosignatures of cardiovascular health and disease. Most of the studies to date have focused on the latter, and herein we discuss observations on epigenomic changes in human cardiovascular disease, examining the role of protein modifiers of chromatin, noncoding RNAs and DNA modification. We provide an overview of cardiovascular epigenomics, discussing the challenges of data sovereignty, data analysis, doctor-patient ethics and innovations necessary to implement precision health.
Collapse
Affiliation(s)
- Matthew A Fischer
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, USA.
| | - Thomas M Vondriska
- Department of Anesthesiology & Perioperative Medicine, David Geffen School of Medicine at UCLA, USA
| |
Collapse
|
43
|
Multiomics Analysis of Transcriptome, Epigenome, and Genome Uncovers Putative Mechanisms for Dilated Cardiomyopathy. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6653802. [PMID: 33860048 PMCID: PMC8024089 DOI: 10.1155/2021/6653802] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/08/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
Objective Multiple genes have been identified to cause dilated cardiomyopathy (DCM). Nevertheless, there is still a lack of comprehensive elucidation of the molecular characteristics for DCM. Herein, we aimed to uncover putative molecular features for DCM by multiomics analysis. Methods Differentially expressed genes (DEGs) were obtained from different RNA sequencing (RNA-seq) datasets of left ventricle samples from healthy donors and DCM patients. Furthermore, protein-protein interaction (PPI) analysis was then presented. Differentially methylated genes (DMGs) were identified between DCM and control samples. Following integration of DEGs and DMGs, differentially expressed and methylated genes were acquired and their biological functions were analyzed by the clusterProfiler package. Whole exome sequencing of blood samples from 69 DCM patients was constructed in our cohort, which was analyzed the maftools package. The expression of key mutated genes was verified by three independent datasets. Results 1407 common DEGs were identified for DCM after integration of the two RNA-seq datasets. A PPI network was constructed, composed of 171 up- and 136 downregulated genes. Four hub genes were identified for DCM, including C3 (degree = 24), GNB3 (degree = 23), QSOX1 (degree = 21), and APOB (degree = 17). Moreover, 285 hyper- and 321 hypomethylated genes were screened for DCM. After integration, 20 differentially expressed and methylated genes were identified, which were associated with cell differentiation and protein digestion and absorption. Among single-nucleotide variant (SNV), C>T was the most frequent mutation classification for DCM. MUC4 was the most frequent mutation gene which occupied 71% across 69 samples, followed by PHLDA1, AHNAK2, and MAML3. These mutated genes were confirmed to be differentially expressed between DCM and control samples. Conclusion Our findings comprehensively analyzed molecular characteristics from the transcriptome, epigenome, and genome perspectives for DCM, which could provide practical implications for DCM.
Collapse
|
44
|
Differential Methylation in the GSTT1 Regulatory Region in Sudden Unexplained Death and Sudden Unexpected Death in Epilepsy. Int J Mol Sci 2021; 22:ijms22062790. [PMID: 33801838 PMCID: PMC7999472 DOI: 10.3390/ijms22062790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/27/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Sudden cardiac death (SCD) is a diagnostic challenge in forensic medicine. In a relatively large proportion of the SCDs, the deaths remain unexplained after autopsy. This challenge is likely caused by unknown disease mechanisms. Changes in DNA methylation have been associated with several heart diseases, but the role of DNA methylation in SCD is unknown. In this study, we investigated DNA methylation in two SCD subtypes, sudden unexplained death (SUD) and sudden unexpected death in epilepsy (SUDEP). We assessed DNA methylation of more than 850,000 positions in cardiac tissue from nine SUD and 14 SUDEP cases using the Illumina Infinium MethylationEPIC BeadChip. In total, six differently methylated regions (DMRs) between the SUD and SUDEP cases were identified. The DMRs were located in proximity to or overlapping genes encoding proteins that are a part of the glutathione S-transferase (GST) superfamily. Whole genome sequencing (WGS) showed that the DNA methylation alterations were not caused by genetic changes, while whole transcriptome sequencing (WTS) showed that DNA methylation was associated with expression levels of the GSTT1 gene. In conclusion, our results indicate that cardiac DNA methylation is similar in SUD and SUDEP, but with regional differential methylation in proximity to GST genes.
Collapse
|
45
|
Madsen A, Krause J, Höppner G, Hirt MN, Tan WLW, Lim I, Hansen A, Nikolaev VO, Foo RSY, Eschenhagen T, Stenzig J. Hypertrophic signaling compensates for contractile and metabolic consequences of DNA methyltransferase 3A loss in human cardiomyocytes. J Mol Cell Cardiol 2021; 154:115-123. [PMID: 33582159 DOI: 10.1016/j.yjmcc.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 01/16/2021] [Accepted: 02/03/2021] [Indexed: 11/16/2022]
Abstract
The role of DNA methylation in cardiomyocyte physiology and cardiac disease remains a matter of controversy. We have recently provided evidence for an important role of DNMT3A in human cardiomyocyte cell homeostasis and metabolism, using engineered heart tissue (EHT) generated from human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes carrying a knockout of the de novo DNA methyltransferase DNMT3A. Unlike isogenic control EHT, knockout EHT displayed morphological abnormalities such as lipid accumulations inside cardiomyocytes associated with impaired mitochondrial metabolism, as well as functional defects and impaired glucose metabolism. Here, we analyzed the role of DNMT3A in the setting of cardiac hypertrophy. We induced hypertrophic signaling by treatment with 50 nM endothelin-1 and 20 μM phenylephrine for one week and assessed EHT contractility, morphology, DNA methylation, and gene expression. While both knockout EHTs and isogenic controls showed the expected activation of the hypertrophic gene program, knockout EHTs were protected from hypertrophy-related functional impairment. Conversely, hypertrophic treatment prevented the metabolic consequences of a loss of DNMT3A, i.e. abolished lipid accumulation in cardiomyocytes likely by partial normalization of mitochondrial metabolism and restored glucose metabolism and metabolism-related gene expression of knockout EHT. Together, these data suggest an important role of DNA methylation not only for cardiomyocyte physiology, but also in the setting of cardiac disease.
Collapse
Affiliation(s)
- Alexandra Madsen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Julia Krause
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Department of Cardiology, University Heart and Vascular Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Grit Höppner
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Marc N Hirt
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | | | - Ives Lim
- Genome Institute of Singapore, 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, 119077, Singapore
| | - Arne Hansen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Viacheslav O Nikolaev
- DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany; Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Roger S Y Foo
- Genome Institute of Singapore, 138672, Singapore; Cardiovascular Research Institute, National University of Singapore, 119077, Singapore
| | - Thomas Eschenhagen
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany
| | - Justus Stenzig
- Institute of Experimental Pharmacology and Toxicology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; DZHK (German Center for Cardiovascular Research), partner site Hamburg/Kiel/Lübeck, 20246 Hamburg, Germany.
| |
Collapse
|
46
|
Yang J, Yu Q, Xu Z, Zheng N, Zhong J, Li J, Liu Y, Xu H, Su J, Ji L, Chen X. Clopidogrel Resistance Is Associated With DNA Methylation of Genes From Whole Blood of Humans. Front Genet 2021; 11:583215. [PMID: 33519892 PMCID: PMC7844369 DOI: 10.3389/fgene.2020.583215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/26/2020] [Indexed: 12/31/2022] Open
Abstract
Antiplatelet therapy has become a cornerstone in the treatment of coronary heart disease (CHD). However, due to high-residual-platelet-reactivity, clopidogrel resistance (CR) is a common phenomenon, and it is rarely known about the relationship between CR and epigenetic changes. This study compared the whole genomic methylation patterns of blood samples from patients with CR (n = 6) and non-CR (n = 6) with the Human Methylation 850K BeadChip assay. We explored differentially methylated CpG sites, genes, and pathways using bioinformatics profiling. The CR and control groups showed significantly different DNA methylation at 7,098 sites, with 979 sites showing hypermethylation and 6,119 sites showing hypomethylation. The pyrosequencing method was used to validate four differentially methylated CpG loci (cg23371584, cg15971518, cg04481923, cg22507406), confirming that DNA methylation was associated with the risk of CR (30 CR vs. 30 non-CR). The relative mRNA expression of the four genes (BTG2, PRG2, VTRNA2-1, PER3) corresponding to the loci above was also associated with CR, suggesting that alterations in DNA methylation may affect the expression of these four genes, eventually resulting in CR. Additionally, differentially methylated sites are partially related to genes and pathways that play key roles in process of circadian entrainment, insulin secretion, and so on. Hence, the mechanism and biological regulation of CR might be reflected through these epigenetic alterations, but future research will need to address the causal relationships.
Collapse
Affiliation(s)
- Jin Yang
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, China
| | - Qinglin Yu
- Department of Traditional Chinese Internal Medicine, Ningbo No. 1 Hospital, Ningbo, China
| | - Zhifeng Xu
- Department of Cardiology, Zhenhai People's Hospital, Ningbo, China
| | - Nan Zheng
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, China.,Department of Cardiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinyan Zhong
- Department of Cardiology, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiyi Li
- Department of Cardiology, Yuyao People's Hospital of Zhejiang Province, Yuyao, China
| | - Yahui Liu
- Key Laboratory, Ningbo No. 1 Hospital, Ningbo, China
| | - Hongyu Xu
- Department of Gerontology, Ningbo No. 1 Hospital, Ningbo, China
| | - Jia Su
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, China
| | - Lindan Ji
- Department of Biochemistry, School of Medicine, Ningbo University, Ningbo, China
| | - Xiaomin Chen
- Department of Cardiology, Ningbo No. 1 Hospital, Ningbo, China
| |
Collapse
|
47
|
Russell-Hallinan A, Neary R, Watson CJ, Baugh JA. Repurposing From Oncology to Cardiology: Low-Dose 5-Azacytidine Attenuates Pathological Cardiac Remodeling in Response to Pressure Overload Injury. J Cardiovasc Pharmacol Ther 2020; 26:375-385. [PMID: 33264040 DOI: 10.1177/1074248420979235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Recent evidence suggests that transcriptional reprogramming is involved in the pathogenesis of cardiac remodeling (cardiomyocyte hypertrophy and fibrosis) and the development of heart failure. 5-Azacytidine (5aza), an inhibitor of DNA methylation approved for hematological malignancies, has previously demonstrated beneficial effects on cardiac remodeling in hypertension. The aim of our work was to investigate whether pressure overload is associated with alterations in DNA methylation and if intervention with low-dose 5aza can attenuate the associated pathological changes. METHODS AND RESULTS C57Bl6/J mice underwent surgical constriction of the aortic arch for 8 weeks. Mice began treatment 4 weeks post-surgery with either vehicle or 5aza (5 mg/kg). Cardiac structure and function was examined in vivo using echocardiography followed by post mortem histological assessment of hypertrophy and fibrosis. Global DNA methylation was examined by immunostaining for 5-methylcytosine (5MeC) and assessment of DNA methyltransferase expression. The results highlighted that pressure overload-induced pathological cardiac remodeling is associated with increased DNA methylation (elevated cardiac 5MeC positivity and Dnmt1 expression). Administration of 5aza attenuated pathological remodeling and diastolic dysfunction. These beneficial changes were mirrored by a treatment-related reduction in global 5MeC levels and expression of Dnmt1 and Dnmt3B in the heart. CONCLUSION DNA methylation plays an important role in the pathogenesis of pressure overload-induced cardiac remodeling. Therapeutic intervention with 5aza, at a dose 5 times lower than clinically given for oncology treatment, attenuated myocardial hypertrophy and fibrosis. Our work supports the rationale for its potential use in cardiac pathologies associated with aberrant cardiac wound healing.
Collapse
Affiliation(s)
- Adam Russell-Hallinan
- Wellcome-Wolfson Institute for Experimental Medicine, 1596Queen's University Belfast, Northern Ireland, United Kingdom.,UCD School of Medicine, Conway Institute, 231327University College Dublin, Belfield, Dublin, Ireland
| | - Roisin Neary
- UCD School of Medicine, Conway Institute, 231327University College Dublin, Belfield, Dublin, Ireland
| | - Chris J Watson
- Wellcome-Wolfson Institute for Experimental Medicine, 1596Queen's University Belfast, Northern Ireland, United Kingdom
| | - John A Baugh
- UCD School of Medicine, Conway Institute, 231327University College Dublin, Belfield, Dublin, Ireland
| |
Collapse
|
48
|
Prisco SZ, Thenappan T, Prins KW. Treatment Targets for Right Ventricular Dysfunction in Pulmonary Arterial Hypertension. JACC Basic Transl Sci 2020; 5:1244-1260. [PMID: 33426379 PMCID: PMC7775863 DOI: 10.1016/j.jacbts.2020.07.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 01/10/2023]
Abstract
Right ventricle (RV) dysfunction is the strongest predictor of mortality in pulmonary arterial hypertension (PAH), but, at present, there are no therapies directly targeting the failing RV. Although there are shared molecular mechanisms in both RV and left ventricle (LV) dysfunction, there are important differences between the 2 ventricles that may allow for the development of RV-enhancing or RV-directed therapies. In this review, we discuss the current understandings of the dysregulated pathways that promote RV dysfunction, highlight RV-enriched or RV-specific pathways that may be of particular therapeutic value, and summarize recent and ongoing clinical trials that are investigating RV function in PAH. It is hoped that development of RV-targeted therapies will improve quality of life and enhance survival for this deadly disease.
Collapse
Key Words
- FAO, fatty acid oxidation
- IPAH, idiopathic pulmonary arterial hypertension
- LV, left ventricle/ventricular
- PAH, pulmonary arterial hypertension
- PH, pulmonary hypertension
- RAAS, renin-angiotensin-aldosterone system
- RV, right ventricle/ventricular
- RVH, right ventricular hypertrophy
- SSc-PAH, systemic sclerosis-associated pulmonary arterial hypertension
- clinical trials
- miRNA/miR, micro-ribonucleic acid
- pulmonary arterial hypertension
- right ventricle
Collapse
Affiliation(s)
- Sasha Z. Prisco
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Thenappan Thenappan
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kurt W. Prins
- Cardiovascular Division, Lillehei Heart Institute, Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
49
|
Stone RC, Chen V, Burgess J, Pannu S, Tomic-Canic M. Genomics of Human Fibrotic Diseases: Disordered Wound Healing Response. Int J Mol Sci 2020; 21:ijms21228590. [PMID: 33202590 PMCID: PMC7698326 DOI: 10.3390/ijms21228590] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/08/2020] [Accepted: 11/11/2020] [Indexed: 02/06/2023] Open
Abstract
Fibrotic disease, which is implicated in almost half of all deaths worldwide, is the result of an uncontrolled wound healing response to injury in which tissue is replaced by deposition of excess extracellular matrix, leading to fibrosis and loss of organ function. A plethora of genome-wide association studies, microarrays, exome sequencing studies, DNA methylation arrays, next-generation sequencing, and profiling of noncoding RNAs have been performed in patient-derived fibrotic tissue, with the shared goal of utilizing genomics to identify the transcriptional networks and biological pathways underlying the development of fibrotic diseases. In this review, we discuss fibrosing disorders of the skin, liver, kidney, lung, and heart, systematically (1) characterizing the initial acute injury that drives unresolved inflammation, (2) identifying genomic studies that have defined the pathologic gene changes leading to excess matrix deposition and fibrogenesis, and (3) summarizing therapies targeting pro-fibrotic genes and networks identified in the genomic studies. Ultimately, successful bench-to-bedside translation of observations from genomic studies will result in the development of novel anti-fibrotic therapeutics that improve functional quality of life for patients and decrease mortality from fibrotic diseases.
Collapse
Affiliation(s)
- Rivka C. Stone
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- Correspondence: (R.C.S.); (M.T.-C.)
| | - Vivien Chen
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
| | - Jamie Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- Medical Scientist Training Program in Biomedical Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sukhmani Pannu
- Department of Dermatology, Tufts Medical Center, Boston, MA 02116, USA;
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami-Miller School of Medicine, Miami, FL 33136, USA; (V.C.); (J.B.)
- John P. Hussman Institute for Human Genomics, University of Miami-Miller School of Medicine, Miami, FL 33136, USA
- Correspondence: (R.C.S.); (M.T.-C.)
| |
Collapse
|
50
|
Abstract
Gene expression is needed for the maintenance of heart function under normal conditions and in response to stress. Each cell type of the heart has a specific program controlling transcription. Different types of stress induce modifications of these programs and, if prolonged, can lead to altered cardiac phenotype and, eventually, to heart failure. The transcriptional status of a gene is regulated by the epigenome, a complex network of DNA and histone modifications. Until a few years ago, our understanding of the role of the epigenome in heart disease was limited to that played by histone deacetylation. But over the last decade, the consequences for the maintenance of homeostasis in the heart and for the development of cardiac hypertrophy of a number of other modifications, including DNA methylation and hydroxymethylation, histone methylation and acetylation, and changes in chromatin architecture, have become better understood. Indeed, it is now clear that many levels of regulation contribute to defining the epigenetic landscape required for correct cardiomyocyte function, and that their perturbation is responsible for cardiac hypertrophy and fibrosis. Here, we review these aspects and draw a picture of what epigenetic modification may imply at the therapeutic level for heart failure.
Collapse
Affiliation(s)
- Roberto Papait
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| | - Simone Serio
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| | - Gianluigi Condorelli
- Department of Biotechnology and Life Sciences, University of Insubria, Varese, Italy; Humanitas Clinical Research Center-IRCCS, Rozzano, Italy; Humanitas University, Department of Biomedical Sciences, Pieve Emanuele, Italy; and National Research Council of Italy, Institute of Genetics and Biomedical Research, Milan Unit, Rozzano, Italy
| |
Collapse
|