1
|
Lowes HM, Weinrauch AM, Bouyoucos IA, Griffin RA, Kononovs D, Alessi DS, Blewett TA. Copper exposure does not alter the ability of intertidal sea cucumber Cucumaria miniata to tolerate emersion during low tide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 872:162085. [PMID: 36775175 DOI: 10.1016/j.scitotenv.2023.162085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/20/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Intertidal animals experience cycles of tidal emersion from water and are vulnerable to copper (Cu) exposure due to anthropogenic toxicant input into marine waters. Both emersion and Cu toxicity can cause damage to physiological processes like aerobic metabolism, ammonia excretion, and osmoregulation, but the interactions of the combination of these two stressors on marine invertebrates are understudied. Mixed effects of 96 h of low and high Cu exposure (20 and 200 μg/L) followed by 6 h of tidal emersion were evaluated on the intertidal sea cucumber Cucumaria miniata. The respiratory tree accumulated the highest concentrations of Cu, followed by the introvert retractor muscle, body wall, and coelomic fluid. Emersion affected accumulation of Cu, perhaps by inhibiting excretion. 200 μg/L of Cu increased lactate production in the respiratory tree, indicative of damaged aerobic metabolism. Cu diminished ammonia excretion, but emersion increased oxygen uptake and ammonia excretion upon re-immersion. The combination of the two stressors did not have any interactive effects on metabolism or ammonia excretion. Neither Cu exposure nor emersion altered ion (sodium, potassium, calcium, magnesium) content of the coelomic fluid. Overall, results of this study suggest that Cu exposure does not alter C. miniata's high tolerance to emersion, and some potential strategies that this species uses to overcome environmental stress are illuminated.
Collapse
Affiliation(s)
- Hannah M Lowes
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada
| | - Alyssa M Weinrauch
- Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ian A Bouyoucos
- Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada; Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Robert A Griffin
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada
| | - Daniels Kononovs
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2R3, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada.
| |
Collapse
|
2
|
Lowes HM, Eliason EJ, Snihur KN, Alessi DS, Blewett TA. Copper toxicity does not affect low tide emersion tolerance of Mytilus galloprovincialis. MARINE POLLUTION BULLETIN 2023; 189:114750. [PMID: 36857994 DOI: 10.1016/j.marpolbul.2023.114750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Intertidal mussels are well adapted to withstand emersion from water during low tide, but they may be intermittently exposed to waterborne toxicants such as copper, which targets physiological processes including metabolism, ammonia excretion, and osmoregulation. To determine if copper exposure damages intertidal organisms' ability to tolerate tidal emersion, Mediterranean mussels (Mytilus galloprovincialis) were exposed to copper for 96 h followed by 6 h of emersion. Oxygen uptake increased after copper exposure which suggests that copper accumulation caused moderate stress in the mussels, but ammonia excretion and anaerobic metabolism were unaffected by mixed copper and emersion exposures. Shell composition analyses indicate that cycles of copper exposure and tidal emersion may affect bivalve shell growth, but copper deposition into shells may decrease the metal's overall toxicity. Results suggest that copper does not damage M. galloprovincialis's tolerance to tidal emersion, and insight is provided into the mussel's ability to overcome mixed stressor exposures.
Collapse
Affiliation(s)
- Hannah M Lowes
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2R3, AB, Canada
| | - Erika J Eliason
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, Santa Barbara 93106, CA, USA
| | - Katherine N Snihur
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton T6G 2R3, AB, Canada
| | - Daniel S Alessi
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton T6G 2R3, AB, Canada
| | - Tamzin A Blewett
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2R3, AB, Canada.
| |
Collapse
|
3
|
Applying Generic Water Quality Criteria to Cu and Zn in a Dynamic Aquatic Environment—The Case of the Brackish Water Formation Strömmen-Saltsjön. WATER 2022. [DOI: 10.3390/w14060847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
The EU Water Framework Directive stipulates that all EU waterways shall have good chemical and ecological status by 2027. Methodologies are described for how to assess and classify waterbodies and make 7-year management plans. Aquatic risk assessment methodologies and environmental quality standards are defined and a biotic ligand model methodology is available to assess the influence of water chemistry on the ability of aquatic organisms to take up metals. Aquatic status classification practices of naturally occurring river basin-specific metals are discussed, specifically how Cu and Zn water quality criteria guideline values have been adopted and defined for Swedish coastal and estuarine waters and how well they represent possible ecological risks. Calculations of bioavailability and ecotoxicity are conducted using recognised models for the Strömmen-Saltsjön water body in Stockholm, in which naturally occurring metals, especially Cu, have among the highest background concentrations of Sweden. Proposals are made to improve risk assessment methodologies to better reflect the vitality of living organisms, and to what extent current levels of these metals in Swedish waterways may influence their welfare. The study concludes that a more local assessment including, e.g., studies of the benthic fauna would be relevant for ecological status classification.
Collapse
|
4
|
Effects of Exposure to Trade Antifouling Paints and Biocides on Larval Settlement and Metamorphosis of the Compound Ascidian Botryllus schlosseri. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2022. [DOI: 10.3390/jmse10020123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To evaluate the effects of antifouling paints and biocides on larval settlement and metamorphosis, newly hatched swimming larvae of the compound ascidian Botryllus schlosseri, a dominant species of soft-fouling in coastal communities, were exposed to (i) substrata coated with seven antifouling paints on the market containing different biocidal mixtures and types of matrices and (ii) sea water containing various concentrations of eight biocidal constituents. All antifouling paints showed high performance, causing 100% mortality and metamorphic inhibition, with ≥75% not-settled dead larvae. All antifouling biocides prevented the settlement of larvae. The most severe larval malformations, i.e., (i) the formation of a bubble encasing the cephalenteron and (ii) the inhibition of tail resorption, were observed after exposure to metal and organometal compounds, including tributyltin (TBT) at 1 μM (325.5 µg L−1), zinc pyrithione (ZnP) at 1 μM (317.7 µg L−1), and CuCl at 0.1 μM (98.99 µg L−1), and to antimicrobials and fungicides, including Sea-Nine 211 at 1 μM (282.2 µg L−1) and Chlorothalonil at 1 μM (265.9 µg L−1). The herbicides seemed to be less active. Irgarol 1051 was not lethal at any of the concentrations tested. Diuron at 250 μM (58.2 mg L−1) and 2,3,5,6-tetrachloro-4-(methylsulphonyl)pyridine (TCMS pyridine) at 50 μM (14.8 mg L−1) completely inhibited larval metamorphosis. These results may have important implications for the practical use of different antifouling components, highlighting the importance of their testing for negative impacts on native benthic species.
Collapse
|
5
|
Lee YK, Hong S, Hur J. Copper-binding properties of microplastic-derived dissolved organic matter revealed by fluorescence spectroscopy and two-dimensional correlation spectroscopy. WATER RESEARCH 2021; 190:116775. [PMID: 33385874 DOI: 10.1016/j.watres.2020.116775] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 12/17/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Despite numerous studies on microplastics (MPs), little attention has been paid to the dissolved organic substances leached from MPs and their environmental fate. In this study, we explored the copper-binding characteristics of MP-derived dissolved organic matter (MP-DOM) leached from several MP types, including commercial polypropylene, polyvinylchloride, and expanded polystyrene, under dark and UV irradiation conditions. The copper-binding affinity of MP-DOM was examined using fluorescence quenching method based on different fluorophores identified via the excitation emission matrix-parallel factor analysis (EEM-PARAFAC). The heterogeneous distribution of binding sites across the functional groups of MP-DOM was further elucidated by utilizing two-dimensional correlation spectroscopy (2D-COS) based on Fourier transform infrared spectroscopy (FTIR). Phenol/protein-like fluorescence prevailed in all MP-DOM samples, whereas humic-like fluorescence was more pronounced in the irradiated MP-DOM. For all tested plastic types, two plastic-derived fluorescent components (C2 and C3) exhibited substantial fluorescence quenching with increasing copper concentrations. The calculated stability constants showed larger differences between the two leaching conditions than between the three MP types with higher log KM values for the UV-irradiated (4.08-5.36) than dark-treated MP-DOM (1.05-3.60). The binding constants were comparable to those of natural organic matter with aquatic/terrestrial origins. The 2D-COS results further revealed that the oxygen-containing structures in MP-DOM generated by UV irradiation might be responsible for the higher binding affinity of the irradiated MP-DOM. This is the first study demonstrating the environmental reactivity of MP-DOM towards metal binding, highlighting the importance of leaching conditions for the metal-binding behavior of MP-DOM.
Collapse
Affiliation(s)
- Yun Kyung Lee
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | - Seongjin Hong
- Department of Ocean Environmental Sciences, Chungnam National University, Daejeon, 34134, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea.
| |
Collapse
|
6
|
Zitoun R, Clearwater SJ, Hassler C, Thompson KJ, Albert A, Sander SG. Copper toxicity to blue mussel embryos (Mytilus galloprovincialis): The effect of natural dissolved organic matter on copper toxicity in estuarine waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 653:300-314. [PMID: 30412875 DOI: 10.1016/j.scitotenv.2018.10.263] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
Copper (Cu) is a naturally occurring micronutrient of eco-toxicological concern in aquatic ecosystems. Current knowledge of Cu-speciation and bioavailability in natural saline environments is insufficient to adequately inform environmental protection policy for estuarine systems. We assessed the combined effect of two of the main drivers of metal bioavailability, salinity and natural dissolved organic carbon (DOC), on Cu-speciation and associated Cu-toxicity to blue mussel (Mytilus galloprovincialis) embryos in a standard 48-h bioassay. We placed special emphasis on measurement of Cu-speciation rather than modelling. Cu-toxicity was found to be a function of DOC and salinity. The varying protective effect of different DOC-types suggests that estuarine DOC is more protective against Cu-toxicity than oceanic DOC. Salinity was negatively correlated with [Cu48-h-EC50], indicating a salinity-induced alteration in the physiology of the exposed mussel embryos and/or Cu-DOC-reactivity. These two assumptions were supported by (1) the relative uniformity of bioavailable copper ([Cu']) across similar salinity treatments despite considerable variation in [Cu48-h-EC50] and DOC-concentrations, and (2) the fact that Cu-toxicity and [Cu'] were slightly higher in the 35 salinity treatment compared to the 25 salinity treatment. Stripping voltammetry studies determined the presence of only one strong Cu-binding ligand class (i.e., L1), either actively or passively released by the exposed embryos. [L1] was found to be proportional to the total dissolved Cu-concentration ([CuT]), suggesting a protective effect of Cu-binding-ligands, in addition to the protective effect of DOC. There was also a strong positive correlation between [L1] and [Cu48-h-EC50], implying that electrochemically defined ligand concentrations along with measurements of [Cu'], DOC-quality, and salinity can be used as proxies for 48-h-EC50 Cu-values in estuarine waters, which may result in a significant improvement to risk assessments of Cu in estuarine systems.
Collapse
Affiliation(s)
- Rebecca Zitoun
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand; National Institute for Water and Atmospheric (NIWA)/University of Otago Research Centre for Oceanography, Dunedin, New Zealand.
| | - Susan J Clearwater
- National Institute of Water and Atmospheric Research (NIWA), Hamilton, New Zealand
| | - Christel Hassler
- Department F. A. Forel for Environmental and Aquatic Sciences, University of Geneva, Geneva, Switzerland
| | - Karen J Thompson
- National Institute of Water and Atmospheric Research (NIWA), Hamilton, New Zealand
| | - Anathea Albert
- National Institute of Water and Atmospheric Research (NIWA), Hamilton, New Zealand
| | - Sylvia G Sander
- Department of Chemistry, University of Otago, P.O. Box 56, Dunedin, New Zealand; National Institute for Water and Atmospheric (NIWA)/University of Otago Research Centre for Oceanography, Dunedin, New Zealand; Marine Environmental Studies Laboratory, IAEA Environment Laboratories, Department of Nuclear Science and Applications, International Atomic Energy Agency, 98000 Monaco, Monaco
| |
Collapse
|
7
|
Calado SLDM, Santos GS, Leite TPB, Wojciechowski J, Nadaline M, Bozza DC, Magalhães VFD, Cestari MM, Prodocimo V, Silva de Assis HC. Depuration time and sublethal effects of microcystins in a freshwater fish from water supply reservoir. CHEMOSPHERE 2018; 210:805-815. [PMID: 30041158 DOI: 10.1016/j.chemosphere.2018.07.075] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/13/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Microcystins (MCs) are hepatotoxins that have been considered to be a worldwide problem due the effects that they can cause to environmental and human health systems. The Iraí Reservoir, located in the South of Brazil, is used as a water supply and MCs concentrations have been reported in this ecosystem. This study aimed to determine the MCs concentrations in the Iraí Reservoir and to evaluate the MCs depuration time and the health of Geophagus brasiliensis using biomarkers. Water and fish samples were collected in the Iraí Reservoir from August 2015 to May 2016. Phytoplankton and chemical analyses were conducted using water samples and the fish were divided into two groups; the Immediate Group (IMM) and the Depuration Group (DEP). In the IMM group, the blood, liver, muscle, brain and gills were collected, in order to evaluate the genotoxic, biochemical and chemical biomarkers. The DEP group was used in the depuration experiment for 90 days, and after this period the fish were submitted to the same procedure as the IMM group. Our results suggested that fish accumulated MCs and it may have caused oxidative stress, neurotoxicity and molecular damage. Furthermore, MCs concentrations increased during the depuration time and it resulted in molecular damage over the first 30 days. After 90 days, the recovery of the antioxidant system occurred. The depuration started on the 15th day, however, the toxins were still present in the samples. Therefore, the effects and the persistence of MCs are a risk to environmental systems and human health.
Collapse
Affiliation(s)
- Sabrina Loise de Morais Calado
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Gustavo Souza Santos
- Department of Genetics, Federal University of Paraná, Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Talitha Pires Borges Leite
- Department of Pharmacology, Federal University of Paraná (UFPR), Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Juliana Wojciechowski
- Ecology and Conservation Program Post-Graduation, Federal University of Paraná, Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Mário Nadaline
- Department of Genetics, Federal University of Paraná, Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Deivyson Cattine Bozza
- Department of Physiology, Federal University of Paraná, Box 19031, 81530-990, Curitiba-PR, Brazil.
| | | | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, Box 19031, 81530-990, Curitiba-PR, Brazil.
| | - Viviane Prodocimo
- Department of Physiology, Federal University of Paraná, Box 19031, 81530-990, Curitiba-PR, Brazil.
| | | |
Collapse
|
8
|
Reynolds EJ, Smith DS, Chowdhury MJ, Hoang TC. Chronic effects of lead exposure on topsmelt fish (Atherinops affinis): Influence of salinity, organism age, and relative sensitivity to other marine species. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2705-2713. [PMID: 30044002 DOI: 10.1002/etc.4241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/28/2018] [Accepted: 07/24/2018] [Indexed: 06/08/2023]
Abstract
The aim of the present study was to determine the influence of salinity and organism age on the chronic toxicity of waterborne lead (Pb) to Atherinops affinis and to compare the relative Pb sensitivity of A. affinis with other marine species. Chronic Pb exposure experiments were conducted in a water flow-through testing system. Survival, standard length, dry weight, and tissue Pb concentration were measured and lethal concentrations (LCs), effect concentrations (ECs), and bioconcentration factors (BCFs) were calculated. In general, increasing salinity and organism age decreased Pb toxicity. The LC50s for larval fish at 14 and 28 ppt salinity were 15.1 and 79.8 μg/L dissolved Pb, respectively; whereas, the LC50 for juvenile fish was 167.6 μg/L dissolved Pb at 28 ppt salinity. Using standard length data, the EC10 values for larval fish were 16.4 and 82.4 μg/L dissolved Pb at 14 and 28 ppt salinity, respectively. The dry weight EC25s for low and high salinity were 15.6 and 61.84 μg/L dissolved Pb, respectively. The BCFs were higher with the lower salinity study (1703) in comparison to the higher salinity study (654). Results of Pb speciation calculation showed higher fraction of Pb2+ in water with lower salinity, explaining the higher observed toxicity of Pb in lower salinity water than higher salinity water. Atherinops affinis is more sensitive to Pb than several other marine species. Evidence of abnormal swimming and skeletal deformities were observed in Pb exposure treatments. Results of the present study are useful for marine biotic ligand modeling and support ecological risk assessment and deriving Pb environmental quality criteria for marine environments. Environ Toxicol Chem 2018;37:2705-2713. © 2018 SETAC.
Collapse
Affiliation(s)
- Erik J Reynolds
- Institute of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois, USA
| | - D Scott Smith
- Department of Chemistry and Biochemistry, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | | | - Tham C Hoang
- Institute of Environmental Sustainability, Loyola University Chicago, Chicago, Illinois, USA
| |
Collapse
|
9
|
Mathias FT, Fockink DH, Disner GR, Prodocimo V, Ribas JLC, Ramos LP, Cestari MM, Silva de Assis HC. Effects of low concentrations of ibuprofen on freshwater fish Rhamdia quelen. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 59:105-113. [PMID: 29558665 DOI: 10.1016/j.etap.2018.03.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/06/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Ibuprofen is a pharmaceutical drug widely used by the global population and it has been found in aquatic ecosystems in several countries. This study evaluated the effects of ibuprofen in environmental concentrations (0, 0.1, 1 and 10 μg/L) on the freshwaterspecies Rhamdia quelen exposed for 14 days. In the posterior kidney, ibuprofen increased glutathione-S-transferase activity in all groups exposed. Furthermore, increased glutathione peroxidase activity and the levels of reduced glutathione in the group exposed to 10 μg/L. Ibuprofen decreased the carbonic anhydrase activity in the posterior kidney in all exposed groups, and increased the activity in the gills in group exposed to 0.1 μg/L. The levels of plasma magnesium increased in groups exposed to 0.1 and 1 μg/L. In the blood, ibuprofen decreased the white blood cell count in groups exposed to 0.1 e 1.0 μg/L. Therefore, these results indicated that ibuprofen caused nephrotoxicity and demonstrated immunosuppressive effect in Rhamdia quelen.
Collapse
Affiliation(s)
| | - Douglas Henrique Fockink
- Department of Chemistry, Federal University of Paraná, Box 19031, 81530-990, Curitiba, PR, Brazil.
| | - Geonildo Rodrigo Disner
- Department of Genetics, Federal University of Paraná, Box 19031, 81530-990, Curitiba, PR, Brazil.
| | - Viviane Prodocimo
- Department of Physiology, Federal University of Paraná, Box 19031, 81530-990, Curitiba, PR, Brazil.
| | - João Luiz Coelho Ribas
- Department of Pharmacology, Federal University of Paraná, Box 19031, 81530-990, Curitiba, PR, Brazil.
| | - Luiz Pereira Ramos
- Department of Chemistry, Federal University of Paraná, Box 19031, 81530-990, Curitiba, PR, Brazil.
| | - Marta Margarete Cestari
- Department of Genetics, Federal University of Paraná, Box 19031, 81530-990, Curitiba, PR, Brazil.
| | | |
Collapse
|
10
|
Park J, Ra JS, Rho H, Cho J, Kim SD. Validation of a biotic ligand model on site-specific copper toxicity to Daphnia magna in the Yeongsan River, Korea. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 149:108-115. [PMID: 29154134 DOI: 10.1016/j.ecoenv.2017.11.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 11/08/2017] [Accepted: 11/10/2017] [Indexed: 06/07/2023]
Abstract
The objective of this study was to determine whether the water effect ratio (WER) or biotic ligand model (BLM) could be applied to efficiently develop water quality criteria (WQC) in Korea. Samples were collected from 12 specific sites along the Yeongsan River (YSR), Korea, including two sewage treatment plants and one estuary lake. A copper toxicity test using Daphnia magna was performed to determine the WER and to compare to the BLM prediction. The results of the WER from YSR samples also indicated significantly different copper toxicities in all sites. The model-based predictions showed that effluent and estuary waters had significantly different properties in regard to their ability to be used to investigate water characteristics and copper toxicity. It was supposed that the slight water characteristics changes, such as pH, DOC, hardness, conductivity, among others, influence copper toxicity, and these variable effects on copper toxicity interacted with the water composition. The 38% prediction was outside of the validation range by a factor of two in all sites, showing a poor predictive ability, especially in STPs and streams adjacent to the estuary, while the measured toxicity was more stable. The samples that ranged from pH 7.3-7.7 generated stable predictions, while other samples, including those with lower and the higher pH values, led to more unstable predictions. The results also showed that the toxicity of Cu in sample waters to D. magna was closely proportional to the amounts of acidity, including the carboxylic and phenolic groups, as well as the DOC concentrations. Consequently, the acceptable prediction of metal toxicity in various water samples needs the site-specific results considering the water characteristics such as pH and DOC properties particularly in STPs and estuary regions.
Collapse
Affiliation(s)
- Jinhee Park
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Jin-Sung Ra
- Korea Institute of Industrial Technology, 143 Hanggaulro, Sangnok-gu, Ansan-si, Gyeonggi-do 15588, Republic of Korea
| | - Hojung Rho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Jaeweon Cho
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Sang Don Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
11
|
Chen WQ, Wang WX, Tan QG. Revealing the complex effects of salinity on copper toxicity in an estuarine clam Potamocorbula laevis with a toxicokinetic-toxicodynamic model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 222:323-330. [PMID: 28024811 DOI: 10.1016/j.envpol.2016.12.033] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 12/13/2016] [Accepted: 12/15/2016] [Indexed: 06/06/2023]
Abstract
The effects of salinity on metal toxicity are complex: not only affecting metal bioaccumulation, but also altering the physiology and sensitivity of organisms. In this study, we used a toxicokinetic-toxicodynamic (TK-TD) model to separate and quantify the dual effects of salinity on copper (Cu) toxicity in a euryhaline clam Potamocorbula laevis. The toxicokinetics of Cu was determined using the stable isotope 65Cu as a tracer at concentrations (10-500 μg L-1) realistic to contaminated environments and at salinities ranging from 5 to 30. At low Cu concentrations (ca. 10 μg L-1), Cu bioaccumulation decreased monotonically with salinity, and the uptake rate constant (ku, 0.546 L g-1 h-1 to 0.213 L g-1 h-1) fitted well with an empirical equation, ku = 1/(1.35 + 0.116·Salinity), by treating salinity as a pseudo-competitor. The median lethal concentrations (LC50s) of Cu were 269, 224, and 192 μg L-1 at salinity 5, 15, and 30, respectively. At high Cu concentrations (ca. 500 μg L-1), elevating salinity were much less effective in decreasing Cu bioaccumulation; whereas Cu toxicity increased with salinity. The increased toxicity could be explained by the increases in Cu killing rates (kks), which were estimated to be 0.44-2.08 mg μg-1 h-1 and were presumably due to the osmotic stress caused by the deviation from the optimal salinity of the clams. The other toxicodynamic parameter, internal threshold concentration (CIT), ranged from 79 to 133 μg-1 g-1 and showed no clear trend with salinity.
Collapse
Affiliation(s)
- Wen-Qian Chen
- Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China
| | - Wen-Xiong Wang
- Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Center for Marine Environmental Chemistry and Toxicology, Xiamen University, Xiamen, Fujian 361102, China; Division of Life Science, The Hong Kong University of Science and Technology, Clearwater Bay, Kowloon, Hong Kong
| | - Qiao-Guo Tan
- Key Laboratory of the Coastal and Wetland Ecosystems of Ministry of Education, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian 361102, China; Center for Marine Environmental Chemistry and Toxicology, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
12
|
Blewett TA, Wood CM, Glover CN. Salinity-dependent nickel accumulation and effects on respiration, ion regulation and oxidative stress in the galaxiid fish, Galaxias maculatus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 214:132-141. [PMID: 27077552 DOI: 10.1016/j.envpol.2016.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/01/2016] [Accepted: 04/03/2016] [Indexed: 05/22/2023]
Abstract
Inanga (Galaxias maculatus) are a euryhaline and amphidromous Southern hemisphere fish species inhabiting waters highly contaminated in trace elements such as nickel (Ni). Ni is known to exert its toxic effects on aquatic biota via three key mechanisms: inhibition of respiration, impaired ion regulation, and stimulation of oxidative stress. Inanga acclimated to freshwater (FW), 50% seawater (SW) or 100% SW were exposed to 0, 150 or 2000 μg Ni L(-1), and tissue Ni accumulation, metabolic rate, ion regulation (tissue ions, calcium (Ca) ion influx), and oxidative stress (catalase activity, protein carbonylation) were measured after 96 h. Ni accumulation increased with Ni exposure concentration in gill, gut and remaining body, but not in liver. Only in the gill was Ni accumulation affected by exposure salinity, with lower branchial Ni burdens in 100% and 50% SW inanga, relative to FW fish. There were no Ni-dependent effects on respiration, or Ca influx, and the only Ni-dependent effect on tissue ion content was on gill potassium. Catalase activity and protein carbonylation were affected by Ni, primarily in FW, but only at 150 μg Ni L(-1). Salinity therefore offsets the effects of Ni, despite minimal changes in Ni bioavailability. These data suggest only minor effects of Ni in inanga, even at highly elevated environmental Ni concentrations.
Collapse
Affiliation(s)
- Tamzin A Blewett
- Department of Biology, McMaster University, Ontario, Canada; Department of Biological Sciences, University of Alberta, Canada.
| | - Chris M Wood
- Department of Biology, McMaster University, Ontario, Canada; Department of Zoology, University of British Columbia, Canada
| | - Chris N Glover
- School of Biological Sciences, University of Canterbury, New Zealand; Faculty of Science and Technology, Athabasca University, Alberta, Canada
| |
Collapse
|
13
|
Rüdel H, Díaz Muñiz C, Garelick H, Kandile NG, Miller BW, Pantoja Munoz L, Peijnenburg WJGM, Purchase D, Shevah Y, van Sprang P, Vijver M, Vink JPM. Consideration of the bioavailability of metal/metalloid species in freshwaters: experiences regarding the implementation of biotic ligand model-based approaches in risk assessment frameworks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:7405-7421. [PMID: 25750051 DOI: 10.1007/s11356-015-4257-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 02/18/2015] [Indexed: 06/04/2023]
Abstract
After the scientific development of biotic ligand models (BLMs) in recent decades, these models are now considered suitable for implementation in regulatory risk assessment of metals in freshwater bodies. The BLM approach has been described in many peer-reviewed publications, and the original complex BLMs have been applied in prospective risk assessment reports for metals and metal compounds. BLMs are now also recommended as suitable concepts for the site-specific evaluation of monitoring data in the context of the European Water Framework Directive. However, the use is hampered by the data requirements for the original BLMs (about 10 water parameters). Recently, several user-friendly BLM-based bioavailability software tools for assessing the aquatic toxicity of relevant metals (mainly copper, nickel, and zinc) became available. These tools only need a basic set of commonly determined water parameters as input (i.e., pH, hardness, dissolved organic matter, and dissolved metal concentration). Such tools seem appropriate to foster the implementation of routine site-specific water quality assessments. This work aims to review the existing bioavailability-based regulatory approaches and the application of available BLM-based bioavailability tools for this purpose. Advantages and possible drawbacks of these tools (e.g., feasibility, boundaries of validity) are discussed, and recommendations for further implementation are given.
Collapse
Affiliation(s)
- Heinz Rüdel
- Fraunhofer Institute for Molecular Biology and Applied Ecology (Fraunhofer IME), Auf dem Aberg 1, 57392, Schmallenberg, Germany,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
A new role for carbonic anhydrase 2 in the response of fish to copper and osmotic stress: implications for multi-stressor studies. PLoS One 2014; 9:e107707. [PMID: 25272015 PMCID: PMC4182668 DOI: 10.1371/journal.pone.0107707] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/04/2014] [Indexed: 11/19/2022] Open
Abstract
The majority of ecotoxicological studies are performed under stable and optimal conditions, whereas in reality the complexity of the natural environment faces organisms with multiple stressors of different type and origin, which can activate pathways of response often difficult to interpret. In particular, aquatic organisms living in estuarine zones already impacted by metal contamination can be exposed to more severe salinity variations under a forecasted scenario of global change. In this context, the present study aimed to investigate the effect of copper exposure on the response of fish to osmotic stress by mimicking in laboratory conditions the salinity changes occurring in natural estuaries. We hypothesized that copper-exposed individuals are more sensitive to osmotic stresses, as copper affects their osmoregulatory system by acting on a number of osmotic effector proteins, among which the isoform two of the enzyme carbonic anhydrase (CA2) was identified as a novel factor linking the physiological responses to both copper and osmotic stress. To test this hypothesis, two in vivo studies were performed using the euryhaline fish sheepshead minnow (Cyprinodon variegatus) as test species and applying different rates of salinity transition as a controlled way of dosing osmotic stress. Measured endpoints included plasma ions concentrations and gene expression of CA2 and the α1a-subunit of the enzyme Na+/K+ ATPase. Results showed that plasma ions concentrations changed after the salinity transition, but notably the magnitude of change was greater in the copper-exposed groups, suggesting a sensitizing effect of copper on the responses to osmotic stress. Gene expression results demonstrated that CA2 is affected by copper at the transcriptional level and that this enzyme might play a role in the observed combined effects of copper and osmotic stress on ion homeostasis.
Collapse
|
15
|
Fiorito G, Affuso A, Anderson DB, Basil J, Bonnaud L, Botta G, Cole A, D'Angelo L, De Girolamo P, Dennison N, Dickel L, Di Cosmo A, Di Cristo C, Gestal C, Fonseca R, Grasso F, Kristiansen T, Kuba M, Maffucci F, Manciocco A, Mark FC, Melillo D, Osorio D, Palumbo A, Perkins K, Ponte G, Raspa M, Shashar N, Smith J, Smith D, Sykes A, Villanueva R, Tublitz N, Zullo L, Andrews P. Cephalopods in neuroscience: regulations, research and the 3Rs. INVERTEBRATE NEUROSCIENCE 2014; 14:13-36. [PMID: 24385049 PMCID: PMC3938841 DOI: 10.1007/s10158-013-0165-x] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 11/08/2013] [Indexed: 12/18/2022]
Abstract
Cephalopods have been utilised in neuroscience research for more than 100 years particularly because of their phenotypic plasticity, complex and centralised nervous system, tractability for studies of learning and cellular mechanisms of memory (e.g. long-term potentiation) and anatomical features facilitating physiological studies (e.g. squid giant axon and synapse). On 1 January 2013, research using any of the about 700 extant species of "live cephalopods" became regulated within the European Union by Directive 2010/63/EU on the "Protection of Animals used for Scientific Purposes", giving cephalopods the same EU legal protection as previously afforded only to vertebrates. The Directive has a number of implications, particularly for neuroscience research. These include: (1) projects will need justification, authorisation from local competent authorities, and be subject to review including a harm-benefit assessment and adherence to the 3Rs principles (Replacement, Refinement and Reduction). (2) To support project evaluation and compliance with the new EU law, guidelines specific to cephalopods will need to be developed, covering capture, transport, handling, housing, care, maintenance, health monitoring, humane anaesthesia, analgesia and euthanasia. (3) Objective criteria need to be developed to identify signs of pain, suffering, distress and lasting harm particularly in the context of their induction by an experimental procedure. Despite diversity of views existing on some of these topics, this paper reviews the above topics and describes the approaches being taken by the cephalopod research community (represented by the authorship) to produce "guidelines" and the potential contribution of neuroscience research to cephalopod welfare.
Collapse
|
16
|
Deruytter D, Garrevoet J, Vandegehuchte MB, Vergucht E, De Samber B, Vekemans B, Appel K, Falkenberg G, Delbeke K, Blust R, De Schamphelaere KAC, Vincze L, Janssen CR. The combined effect of dissolved organic carbon and salinity on the bioaccumulation of copper in marine mussel larvae. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 48:698-705. [PMID: 24308862 DOI: 10.1021/es4024699] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Larvae of Mytilus spp. are among the most Cu sensitive marine species. In this study we assessed the combined effect of salinity and dissolved organic carbon (DOC) on Cu accumulation on mussel larvae. Larvae were exposed for 48 h to three Cu concentrations in each of nine salinity/DOC treatments. Synchrotron radiation X-ray fluorescence was used to determine the Cu concentration in 36 individual larvae with a spatial resolution of 10 × 10 μm. Cu body burden concentrations varied between 1.1 and 27.6 μg/g DW larvae across all treatments and Cu was homogeneously distributed at this spatial resolution level. Our results indicate decreasing Cu accumulation with increasing DOC concentrations which can be explained by an increase in Cu complexation. In contrast, salinity had a nonlinear effect on Cu. This cannot be explained by copper speciation or competition processes and suggests a salinity-induced alteration in physiology.
Collapse
Affiliation(s)
- David Deruytter
- Laboratory of Environmental Toxicology and Aquatic Ecology, Department of Applied Ecology and Environmental Biology, Ghent University , Jozef Plateaustraat 22, B-9000 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Höher N, Regoli F, Dissanayake A, Nagel M, Kriews M, Köhler A, Broeg K. Immunomodulating effects of environmentally realistic copper concentrations in Mytilus edulis adapted to naturally low salinities. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 140-141:185-195. [PMID: 23811023 DOI: 10.1016/j.aquatox.2013.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2013] [Revised: 06/03/2013] [Accepted: 06/04/2013] [Indexed: 06/02/2023]
Abstract
The monitoring of organisms' health conditions by the assessment of their immunocompetence may serve as an important criterion for the achievement of the Good Environmental Status (GES) as defined in the Marine Strategy Framework Directive (EU). In this context, the complex role of natural environmental stressors, e.g. salinity, and interfering or superimposing effects of anthropogenic chemicals, should be carefully considered, especially in scenarios of low to moderate contamination. Organisms from the Baltic Sea have adapted to the ambient salinity regime, however energetically costly osmoregulating processes may have an impact on the capability to respond to additional stress such as contamination. The assessment of multiple stressors, encompassing natural and anthropogenic factors, influencing an organisms' health was the main aim of the present study. Immune responses of Mytilus edulis, collected and kept at natural salinities of 12‰ (LS) and 20‰ (MS), respectively, were compared after short-term exposure (1, 7 and 13 days) to low copper concentrations (5, 9 and 16 μg/L Cu). A significant interaction of salinity and copper exposure was observed in copper accumulation. LS mussels accumulated markedly more copper than MS mussels. No combined effects were detected in cellular responses. Bacterial clearance was mostly achieved by phagocytosis, as revealed by a strong positive correlation between bacterial counts and phagocytic activity, which was particularly pronounced in LS mussels. MS mussels, on the other hand, seemingly accomplished bacterial clearance by employing additional humoral factors (16 μg/L Cu). The greatest separating factor in the PCA biplot between LS and MS mussels was the proportion of granulocytes and hyalinocytes while functional parameters (phagocytic activity and bacterial clearance) were hardly affected by salinity, but rather by copper exposure. In conclusion, immune responses of the blue mussel may be suitable and sensitive biomarkers for the assessment of ecosystem health in brackish waters (10-20‰S).
Collapse
Affiliation(s)
- Nicole Höher
- Alfred Wegener Institute for Polar and Marine Research, Am Handelshafen 12, 27570 Bremerhaven, Germany.
| | | | | | | | | | | | | |
Collapse
|
18
|
Erickson RJ. The biotic ligand model approach for addressing effects of exposure water chemistry on aquatic toxicity of metals: genesis and challenges. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1212-1214. [PMID: 23620100 DOI: 10.1002/etc.2222] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 06/02/2023]
Affiliation(s)
- Russell J Erickson
- US Environmental Protection Agency, Mid-Continent Ecology Division, Duluth, Minnesota, USA.
| |
Collapse
|
19
|
Mela M, Guiloski IC, Doria HB, Rabitto IS, da Silva CA, Maraschi AC, Prodocimo V, Freire CA, Randi MAF, Ribeiro CAO, de Assis HCS. Risks of waterborne copper exposure to a cultivated freshwater Neotropical catfish (Rhamdia quelen). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2013; 88:108-116. [PMID: 23211555 DOI: 10.1016/j.ecoenv.2012.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 10/22/2012] [Accepted: 11/01/2012] [Indexed: 06/01/2023]
Abstract
As it is the case in all animal food production systems, it is often necessary to treat farmed fish for diseases and parasites. Quite frequently, fish farmers still rely on the aggressive use of copper to control bacterial infections and infestations by ecto-parasites, and to manage the spread of diseases. The susceptibility of the neotropical fish Rhamdia quelen to copper was here evaluated at different waterborne copper concentrations (2, 7 or 11 μg Cu L(-1)) for 96 h, through a multi biomarkers approach. Liver histopathological findings revealed leukocyte infiltration, hepatocyte vacuolization and areas of necrosis, causing raised levels of lesions upon exposure to 7 and 11 μg Cu L(-1). Decreased occurrence of free melano-macrophages and increased densities of melano-macrophage centers were noted upon exposure to 11 μg Cu L(-1). Gills showed damages on their secondary lamellae already at 2 μg Cu L(-1); hypertrophy and loss of the microridges of pavement cells at 7 and 11 μg L(-1), and increased in chloride cell (CC) apical surface area (4.9-fold) and in CC density (1.5-fold) at 11 μg Cu L(-1). In the liver, catalase (CAT), glutathione peroxidase activities (GPx) and glutathione concentration (GSH) remained unchanged, compared to the control group. However, there was inhibition of 7-ethoxyresorufin-O-deethylase (EROD) at all copper concentrations tested. Glutathione reductase activity (GR) was reduced and levels of lipid peroxidation (LPO) were increased at 11 μg Cu L(-1). Glutathione S-transferase activity (GST) at 7 μg Cu L(-1) and superoxide dismutase activity (SOD) at both 7 and 11 μg Cu L(-1) were reduced. However, copper exposure did not alter brain and muscle acetylcholinesterase (AChE) activity. Osmoregulatory function was also disturbed, in agreement with the above-mentioned changes noted in the gills, as detected by plasma osmolality reduction in the group exposed to 11 μg Cu L(-1), and plasma chloride reduction at 2 μg Cu L(-1). These concentrations also, coherently, lead to inhibition of branchial carbonic anhydrase activity. In the kidney, increased carbonic anhydrase activity was measured in the groups exposed to 2 and 7 μg Cu L(-1). When these effects are compared to data available in the literature for other freshwater fish, also for 96 h of exposure, R. quelen appears as a relatively sensitive species. In addition, the concentrations employed here were quite low in comparison to levels used for disease control in real culture practices (ranging from 4 μg Cu L(-1) used against bacteria to 6000 μg Cu L(-1) against fungal infections). We can conclude that the concentrations frequently employed in aquaculture are in fact not safe enough for this species. Such data are essential for the questioning and establishment of new policies to the sector.
Collapse
Affiliation(s)
- M Mela
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Guardiola FA, Cuesta A, Meseguer J, Esteban MA. Risks of using antifouling biocides in aquaculture. Int J Mol Sci 2012; 13:1541-1560. [PMID: 22408407 PMCID: PMC3291976 DOI: 10.3390/ijms13021541] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 01/11/2012] [Accepted: 01/19/2012] [Indexed: 11/16/2022] Open
Abstract
Biocides are chemical substances that can deter or kill the microorganisms responsible for biofouling. The rapid expansion of the aquaculture industry is having a significant impact on the marine ecosystems. As the industry expands, it requires the use of more drugs, disinfectants and antifoulant compounds (biocides) to eliminate the microorganisms in the aquaculture facilities. The use of biocides in the aquatic environment, however, has proved to be harmful as it has toxic effects on the marine environment. Organic booster biocides were recently introduced as alternatives to the organotin compounds found in antifouling products after restrictions were imposed on the use of tributyltin (TBT). The replacement products are generally based on copper metal oxides and organic biocides. The biocides that are most commonly used in antifouling paints include chlorothalonil, dichlofluanid, DCOIT (4,5-dichloro-2-n-octyl-4-isothiazolin-3-one, Sea-nine 211®), Diuron, Irgarol 1051, TCMS pyridine (2,3,3,6-tetrachloro-4-methylsulfonyl pyridine), zinc pyrithione and Zineb. There are two types of risks associated with the use of biocides in aquaculture: (i) predators and humans may ingest the fish and shellfish that have accumulated in these contaminants and (ii) the development of antibiotic resistance in bacteria. This paper provides an overview of the effects of antifouling (AF) biocides on aquatic organisms. It also provides some insights into the effects and risks of these compounds on non-target organisms.
Collapse
Affiliation(s)
| | | | | | - Maria Angeles Esteban
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-868887665; Fax: +34-868883963
| |
Collapse
|