1
|
Zi S, Wu D, Zhang Y, Jiang X, Liu J. Insights into the controlling factors of the transport of tire wear particles in saturated porous media: The facilitative role of aging and fulvic acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175665. [PMID: 39181254 DOI: 10.1016/j.scitotenv.2024.175665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/14/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
The widespread distribution and potential adverse effects of tire wear particles (TWPs) on soil and groundwater quality pose a growing environmental concern. This study investigated the transport behavior of TWPs in saturated porous media and elucidated the underlying mechanisms influenced by environmental factors. Additionally, the effects of key environmental factors, such as aging, ionic strength, cation species, medium type, and natural organic matter (NOM), on the transport of TWPs were evaluated. The results showed that aging processes simulated through O3 and UV irradiation altered the physicochemical properties of TWPs, increased the mobility of TWPs at low ionic strengths. However, the high ionic strengths and the presence of Ca2+ significantly inhibited the mobility of TWPs due to enhanced aggregation. The transport mechanism of the original and aged TWPs shifted from blocking to ripening under favorable retention conditions (i.e., high ionic strengths, divalent cations, and fine sands). Interestingly, the presence of fulvic acid (FA) inhibited the ripening of the three TWPs, significantly promoting their transport through a spatial site resistance mechanism. The two-site kinetic attachment model (TSKAM), extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, and colloid filtration theory (CFT) were applied to describe the transport behavior of the TWPs. The study provided a comprehensive understanding of the transport behavior of TWPs in groundwater environments, highlighting the environmental risks associated with their widespread distribution.
Collapse
Affiliation(s)
- Shaoxin Zi
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Di Wu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingxin Zhang
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiangtao Jiang
- Marine Science Institute, The University of Texas at Austin, Port Aransas, TX 78373, USA
| | - Jin Liu
- College of Marine and Environmental Sciences, Ministry of Education Key Laboratory of Marine Resource Chemistry and Food Technology, Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Zhou D, Cai Y, Yang Z. Transport of polystyrene microplastics in bare and iron oxide-coated quartz sand: Effects of ionic strength, humic acid, and co-existing graphene oxide. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174270. [PMID: 38925391 DOI: 10.1016/j.scitotenv.2024.174270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
This research explored the effects of widely utilized nanomaterial graphene oxide (GO) and organic matter humic acid (HA) on the transport of microplastics under different ionic solution strengths in bare sand and iron oxide-coated sand. The results found transport of polystyrene microplastics (PS) did not respond to the presence of HA in sand that contains large amounts of iron oxide. Compared to bare quartz sand, ionic strength had little effect: <20 % of PS passed through Fe sand columns. There was a significant promotion of PS transport in the presence of GO, however, which can be attributed to the increased surface electronegativity of PS and steric hindrance. Moreover, GO combined with HA significantly promoted the transport of PS in the Fe sand, and transport further increased when the concentration of HA increased from 5 to 10 mg/L. Interestingly, the degree of this increase exactly corresponded to the change in the surface charge of the microplastics, demonstrating that electrostatic interaction dominated the PS transport. Further results indicated that co-existing pollutants had significant impacts on the transport of microplastics under various conditions by altering the surface characteristics of the plastic particles and the spatial steric hindrance within porous media. This research will offer insights into predicting the transport and fate of microplastics in complex environments.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Zhifeng Yang
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
3
|
Liu Y, Jiang T. Effects of Temperature, Ionic Strength and Humic Acid on the Transport of Graphene Oxide Nanoparticles in Geosynthetic Clay Liner. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2082. [PMID: 38730889 PMCID: PMC11084219 DOI: 10.3390/ma17092082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/13/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024]
Abstract
With the wide application of graphene oxide nanoparticles (GONPs), a great amount of GONP waste is discarded and concentrated in landfills. It has been proven that GONPs have strong toxicity and could gather toxic substances due to their high adsorption capacity. GONPs will seriously pollute the surrounding environment if they leak through the geosynthetic clay liner (GCL) in landfills. To investigate various factors (temperature, ionic strength (IS) and humic acid (HA)) on the transport and retention of GONPs in the GCL, a self-designed apparatus was created and column tests were carried out. The experimental results show that GONPs could be transported through the GCL. The mobility and sorption ratio of GONPs in GCL decreased with an increase in temperature and IS, and increased with an increase in HA. The temperature had little effect on the deposition ratio of GONPs in the GCL. The deposition ratio of GONPs in the GCL increased with IS, and decreased with an increase in HA. The transport of GONPs in GCL, glass beads and quartz sand was compared, and the results show that the retention ability of the GCL is much better than other porous materials. The experimental results could provide significant references for the pollution treatment in landfills.
Collapse
Affiliation(s)
- Yaohui Liu
- School of Mechanics and Civil Engineering, China University of Mining and Technology, Xuzhou 221000, China
| | - Tao Jiang
- Department of Geotechnical Engineering, College of Civil Engineering, Tongji University, Shanghai 200092, China;
| |
Collapse
|
4
|
Wang R, Yue S, Huang C, Jia L, Tibihenda C, Li Z, Yu J. Visual mapping of global nanoplastics research progresses and hotspots: a scientometric assessment analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114739-114755. [PMID: 37906331 DOI: 10.1007/s11356-023-30597-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/18/2023] [Indexed: 11/02/2023]
Abstract
Environmental plastic wastes are continuously degraded into microplastics (MPs) and nanoplastics (NPs); the latter are more potentially harmful to organisms and human health as their smaller size and higher surface-to-volume ratio. Previous reviews on NPs mainly concentrate on specific aspects, such as sources, environmental behavior, and toxicological effects, but few focused on NPs-related scientific publications from a global point of view. Therefore, this bibliometric study aims to summarize the research themes and trends on NPs and also propose potential directions for future inquiry. Related papers were downloaded from the Web of Science Core Collection database on NPs published from 2008 to 2021, and then retrieved information was analyzed using CiteSpace 6.1 R2 and VOSviewer (version 1.6.). Research on NPs mainly involved environmental behaviors, toxicological effects, identification and extraction of NPs, whereas aquatic environments, especially marine systems, attracted more attentions from these scientists compare to terrestrial environments. Furthermore, the adsorption behavior of pollutants by NPs and the toxicological effects of organisms exposed to NPs are the present hotspots, while the regulation of humic acid (HA) on NPs behaviors and the environmental behavior of NPs in freshwater, like rivers and lakes, are the frontier areas of research. This study also explored the possible opportunities and challenges that may be faced in NPs research, which provide a valuable summary and outlook for ongoing NPs-related research, which may be of intrigue and noteworthiness for relevant researchers.
Collapse
Affiliation(s)
- Ruiping Wang
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Shizhong Yue
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Caide Huang
- College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
- Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxon, OX10 8BB, UK
| | - Li Jia
- ISTO UMR7327, CNRS-Université d'Orleans-Brgm, 45071, Orléans, France
| | - Cevin Tibihenda
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, People's Republic of China
| | - Jiafeng Yu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou, 253023, People's Republic of China.
| |
Collapse
|
5
|
Zhou D, Cai Y, Yang Z, Wan H. Interplay of compound pollutants with microplastics transported in saturated porous media: Effect of co-existing graphene oxide and tetracycline. JOURNAL OF CONTAMINANT HYDROLOGY 2023; 259:104255. [PMID: 37852028 DOI: 10.1016/j.jconhyd.2023.104255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/12/2023] [Accepted: 10/06/2023] [Indexed: 10/20/2023]
Abstract
Co-existence of microplastics, nanomaterials, and antibiotics may lead to intensified multifaceted pollution, which may influence their fate in soils. This study investigated the co-transport behavior of polystyrene microplastics (PS) and compound pollutants of graphene oxide (GO) and tetracycline (TC). Packed column experiments for microplastic with or without combined pollutants were performed in KCl (10 and 30 mM) and CaCl2 solutions (0.3 and 1 mM). The results showed transport of PS was facilitated at low ionic strengths and inhibited at high ionic strengths by GO with or without TC under examined conditions. Carrier effect of GO as well as the aggregation of PS in the presence of co-exiting GO or GO-TC could be the contributor. Although the existence of TC relieved the ripening phenomenon of PS and GO deposition due to enhanced electronegativity of sand media, the effect of GO on the PS transport has not been significantly impacted, indicating the dominant role of GO during cotransport process. Furthermore, the transport of PS was increased by TC owing to competition for deposition sites on sand surfaces. In turn, the transport of TC was mainly affected by PS whether graphene was present or not. The increase in electrostatic repulsive force (transport-promoting) and addition adsorption sites (transport-inhibiting) may be responsible for the observations. Our findings could improve understandings of complex environmental behaviors of microplastics and provide insight into investigation on cotransport of emerging contaminants under various conditions relevant to the subsurface environment.
Collapse
Affiliation(s)
- Dan Zhou
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China
| | - Yanpeng Cai
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China.
| | - Zhifeng Yang
- State Key Laboratory of Water Environment Simulation, Beijing Normal University, Beijing 100875, China; Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Hang Wan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China
| |
Collapse
|
6
|
Ibrahim MIM, Awad EAM, Dahdouh SMM, El-Etr WMT, Marey SA, Hatamleh AA, Mahmood M, Elrys AS. Exploring the Influence of Chemical Conditions on Nanoparticle Graphene Oxide Adsorption onto Clay Minerals. Molecules 2023; 28:6162. [PMID: 37630414 PMCID: PMC10458753 DOI: 10.3390/molecules28166162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
High concentrations of graphene oxide (GO), a nanoparticle substance with rapid manufacturing development, have the ability to penetrate the soil surface down to the mineral-rich subsurface layers. The destiny and distribution of such an unusual sort of nanomaterial in the environment must therefore be fully understood. However, the way the chemistry of solutions impacts GO nanoparticle adsorption on clay minerals is still unclear. Here, the adsorption of GO on clay minerals (e.g., bentonite and kaolinite) was tested under various chemical conditions (e.g., GO concentration, soil pH, and cation valence). Non-linear Langmuir and Freundlich models have been applied to describe the adsorption isotherm by comparing the amount of adsorbed GO nanoparticle to the concentration at the equilibrium of the solution. Our results showed fondness for GO in bentonite and kaolinite under similar conditions, but the GO nanoparticle adsorption with bentonite was superior to kaolinite, mainly due to its higher surface area and surface charge. We also found that increasing the ionic strength and decreasing the pH increased the adsorption of GO nanoparticles to bentonite and kaolinite, mainly due to the interaction between these clay minerals and GO nanoparticles' surface oxygen functional groups. Experimental data fit well to the non-linear pseudo-second-order kinetic model of Freundlich. The model of the Freundlich isotherm was more fitting at a lower pH and higher ionic strength in the bentonite soil while the lowest R2 value of the Freundlich model was recorded at a higher pH and lower ionic strength in the kaolinite soil. These results improve our understanding of GO behavior in soils by revealing environmental factors influencing GO nanoparticle movement and transmission towards groundwater.
Collapse
Affiliation(s)
- Marwa I. M. Ibrahim
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Department of Soil Physics and Chemistry, Soil, Water and Environment Research Institute (SWERI), The Agricultural Research Center (ARC), Giza 12619, Egypt
| | - Elsayed A. M. Awad
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Salah M. M. Dahdouh
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Wafaa M. T. El-Etr
- Department of Soil Physics and Chemistry, Soil, Water and Environment Research Institute (SWERI), The Agricultural Research Center (ARC), Giza 12619, Egypt
| | | | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Mohsin Mahmood
- Center for Eco-Environment Restoration Engineering of Hainan Province, College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Ahmed S. Elrys
- Department of Soil Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Liebig Centre for Agroecology and Climate Impact Research, Justus Liebig University, 35390 Giessen, Germany
| |
Collapse
|
7
|
Cao J, Yang Y, Chai J, Wu P, Liang T, Xu Z, Qin Y. Atomistic insights into migration mechanism of graphene-based membranes on soil mineral phases. CHEMOSPHERE 2023; 313:137617. [PMID: 36563727 DOI: 10.1016/j.chemosphere.2022.137617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/15/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Graphene-based membranes (GBM) will migrate in the soil and enter the groundwater system or plant roots, which will eventually pose potential risks to human beings. The migration mechanism of GBM depends on the interface behavior of complex soil components. Herein, we use molecular dynamics (MD) simulations to probe the interface behavior between GBM and three type minerals (quartz, calcite and kaolinite). Based on the investigation of binding energy, maximum pulling force and barrier energy, the order of the difficulty of GBM adsorption and desorption on the three minerals from small to large is roughly: quartz, calcite and kaolinite respectively. The graphene-oxide (GO), improves the binding energy and energy barrier, making GBM difficult to migrate in soil. Remarkably, a larger GBM sheet and high velocity external load improve GBM migration in soil to a certain extent. These investigations give the dynamic information on the GBM/mineral interaction and provide nanoscale insights into the migration mechanisms of GBM in soil.
Collapse
Affiliation(s)
- Jing Cao
- State Key Laboratory of Eco-hydrauls in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Yi Yang
- School of Civil Engineering, Xijing University, Xi'an, 710123, China; Shaanxi Key Laboratory of Safety and Durability of Concrete Structures, Xi'an, 710123, China.
| | - Junrui Chai
- State Key Laboratory of Eco-hydrauls in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Puwei Wu
- School of Civil and Hydraulic Engineering, Ningxia University, Yinchuan, 750021, China
| | - Te Liang
- State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zengguang Xu
- State Key Laboratory of Eco-hydrauls in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| | - Yuan Qin
- State Key Laboratory of Eco-hydrauls in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, 710048, China
| |
Collapse
|
8
|
Chen J, Zhang Q, Zhu Y, Li Y, Chen W, Lu T, Qi Z. Biosurfactant-mediated mobility of graphene oxide nanoparticles in saturated porous media. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1883-1894. [PMID: 36148869 DOI: 10.1039/d2em00297c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
There is currently a lack of scientific understanding regarding how bio-surfactants influence the mobility of graphene oxide (GO) through saturated porous media. In this study, the transport characteristics of GO through porous media with different heterogeneities (i.e., quartz sand and goethite-coated sand) after the addition of saponin (a representative bio-surfactant) were investigated. The results demonstrated that saponin (3-10 mg L-1) promoted GO mobility in both types of porous media at pH 7.0. This trend was attributed to the competitive deposition between nanoparticles and bio-surfactant molecules for attachment sites, the enhanced electrostatic repulsion, the decreased strain, the presence of steric effects induced by the adsorbed saponin, and the increase in the hydrophilicity of nanoparticles. Intriguingly, saponin promoted GO mobility in goethite-coated sand (i.e., chemically heterogeneous porous media) to a greater extent than that in sand (i.e., relatively homogeneous porous media) when saponin concentrations increased, which stemmed from the differences in the extent of the deposition site competition for saponin on the two porous media and the electrostatic repulsion between GO and the porous media. Furthermore, a cation-bridging mechanism was also involved in the ability of saponin to increase GO mobility when the electrolyte solution was 0.1 mM Cu2+. Moreover, the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory and the colloid transport model were applicable to elucidate the mobility properties of GO with or without saponin in porous media. The findings from this work highlight the important status of bio-surfactants in the fate of colloidal carbon-based nanomaterials in subsurface systems.
Collapse
Affiliation(s)
- Jiuyan Chen
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Qiang Zhang
- Ecology Institute of the Shandong Academy of Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250353, China
| | - Yuwei Zhu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | - Yanxiang Li
- The Testing Center of Shandong Bureau, China Metallurgical Geology Bureau, Jinan 250014, China
| | - Weifeng Chen
- Key Laboratory for Humid Subtropical Eco-geographical Processes of the Ministry of Education/Fujian Provincial Key Laboratory for Plant Eco-physiology/School of Geographical Sciences, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou, 225009, China.
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
9
|
Wu M, Chen Y, Cheng Z, Hao Y, Hu BX, Mo C, Li Q, Zhao H, Xiang L, Wu J, Wu J, Lu G. Effects of polyamide microplastic on the transport of graphene oxide in porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157042. [PMID: 35777558 DOI: 10.1016/j.scitotenv.2022.157042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 06/05/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
With the rapid development of the nano-material and chemical industry, more and more microplastic (MP) and nano-material were discharged into the environment. In this study, a two-dimensional (2D) surface of Extended Darjaguin-Landau-Verwe-Overbeek (XDLVO) is proposed to quantitatively investigate the effect of polyamide (PA) on the transport of graphene oxide (GO) in porous media. The influences of mass fraction of PA, flow rate, GO concentration, ionic type and strength on the migration of GO in saturated porous media are investigated by column experiments and numerical models. The two-dimensional (2D) surfaces of XDLVO interaction energy between GO and GO, GO and QS, GO and PA, are firstly calculated to analyze the transport of GO in saturated porous media. Experimental results suggest the mobility of GO is enhanced when flow velocity and initial concentration of GO are increased. However, the mobility of GO is inhibited when the mass fraction of PA and ionic strength are increased. More important, the inhibitory effect of divalent cations on GO migration is stronger than that of monovalent cations. Simultaneously, XDLVO results suggest that ionic types and strengths are important factors affecting the mobility of GO in porous media, and the critical ionic strength is observed from the continuous variation of the secondary minimum trap of XDLVO interaction energy. Model results show that there is a linear relationship between the logarithm of the secondary minimum trap of XDLVO interaction energy and the parameters related to GO mobility, which suggests XDLVO energy surface has an important application significance in the accurate quantification of GO mobility in porous media. These findings contribute to GO transport affected by microplastic in porous media, thus laying a significant foundation for the environmental risk and contamination remediation.
Collapse
Affiliation(s)
- Ming Wu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Yanna Chen
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| | - Zhou Cheng
- Guangdong Provincial Academy of Environmental Science, Guangzhou 510045, China.
| | - Yanru Hao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Bill X Hu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; School of Water Conservancy and Environment, University of Jinan, Jinan 250022, China
| | - Cehui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qusheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Haiming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Lei Xiang
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, Department of Hydrosciences, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China
| | - Guoping Lu
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
10
|
Hasan MS, Dong J, Gadhamshetty V, Geza M. Modeling graphene oxide transport and retention in biochar. JOURNAL OF CONTAMINANT HYDROLOGY 2022; 248:104014. [PMID: 35462133 DOI: 10.1016/j.jconhyd.2022.104014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 02/28/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Experimental data from fixed-bed column studies and a numerical model based on convection-dispersion equations were used to describe transport and retention of Graphene Oxide (GO) in sand, biochar (BC), and BC modified with nanoscale zero-valent iron (BC-nZVI). Three blocking functions, namely no blocking, site-blocking, and depth-dependent blocking, were used to analyze GO transport and retention behavior in each media as a function of Ionic Strength (IS). An inverse modeling approach was implemented to determine the attachment coefficient (Ka) and maximum solid-phase retention capacity (Smax). The Langmuirian attachment model with site-blocking function effectively described experimental GO breakthrough curves (R2 ~ 0.70-0.99) compared to other models, indicating the importance of introducing a limit on the attachment capacity of the media. The Ka values for BC and BC-nZVI were significantly higher than sand, attributable to high porosity, roughness, and surface chemical properties. The models predicted an increasing trend in Ka (0.065 to 0.615 min-1) in BC with increasing IS (0.1 to 10 mM), while Ka values decreased (2.26 to 0.349 min-1) for BC-nZVI. A consistent increase in Smax was observed for both BC and BC-nZVI with increasing IS. Scenario analysis was conducted to further understand the effect of influent IS, GO concentration, and treatment depth. BC-nZVI exhibited a higher Ka and Smax and as a result, higher GO retention than BC at lower IS (0.1 and 1.0 mM). BC-nZVI had a relatively lower Ka (0.349 min-1) at 10 mM IS, however, it outperformed BC when GO retention capacities are compared over a longer period attributable to a higher Smax (6.47). Complete GO breakthrough occurred in a 5 cm media after 350 and 465 days for BC and BC-nZVI, respectively at 10 mM IS and influent concentration of 0.1 mg·L-1. GO breakthrough time increased with increasing treatment depth, however, the relation was non-linear.
Collapse
Affiliation(s)
- Md Sazadul Hasan
- Department of Civil and Environmental engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, United States
| | - Jingnuo Dong
- Department of Civil and Environmental engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, United States
| | - Venkataramana Gadhamshetty
- 2-Dimensional Materials for Biofilm Engineering Science and Technology (2DBEST) Center, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, United States
| | - Mengistu Geza
- Department of Civil and Environmental engineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, United States.
| |
Collapse
|
11
|
Dong S, Zhou M, Su X, Xia J, Wang L, Wu H, Suakollie EB, Wang D. Transport and retention patterns of fragmental microplastics in saturated and unsaturated porous media: A real-time pore-scale visualization. WATER RESEARCH 2022; 214:118195. [PMID: 35193078 DOI: 10.1016/j.watres.2022.118195] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/09/2022] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
The environmental behaviors of microplastics (MPs) have garnered ever-increasing attention globally. To overcome the limitations of commonly used "black box", a real-time pore-scale visualization system including microscope, charge coupled device (CCD) microscope camera, and flow cell (connected with pump and sample collector) was used to unravel the transport and retention mechanisms of fragmental microplastics (FMPs) in saturated and unsaturated porous media. The breakthrough curves (BTCs) of effluent concentrations from the flow cells were used to quantitatively analyze FMPs transport. The videos gathered from different transport scenarios indicated that FMPs can move along with the bulk flow in porous media, but also move around the sand surfaces via sliding, rolling, and saltating patterns. The FMPs were retained in porous media mainly via deposition and straining in saturated porous media. Interestingly, little FMPs were captured by the air-water interface in unsaturated conditions. The mobility of FMPs varied with environmental factors, which became lower at higher solution ionic strength (IS), smaller grain size, and lower water content in porous media. Flow rate barely affected the transport of FMPs under 0.1 mM IS with the mass recovery rate ranging between 65.8 and 67.5%, but significantly enhanced FMPs mobility under 10 mM IS through reducing the moving rate. The IS and grain size showed a more significant effect on the transport of FMPs in unsaturated porous media. Our findings, for the first time, visually deciphered the transport and retention patterns of MPs with fragmental shapes on pore-scale, expanding our current knowledge of the fate and transport of more realistic MPs in the environment.
Collapse
Affiliation(s)
- Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China.
| | - Mengzhu Zhou
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Xiaoting Su
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Jihong Xia
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Lei Wang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Huiyi Wu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Emmanuel B Suakollie
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, China
| | - Dengjun Wang
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL 36849, United States
| |
Collapse
|
12
|
Wang D, Zhang J, Cao R, Zhang Y, Li J. The detection and characterization techniques for the interaction between graphene oxide and natural colloids: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:151906. [PMID: 34838546 DOI: 10.1016/j.scitotenv.2021.151906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
The high dispersibility of graphene oxide (GO) and the universality of natural colloids (clay minerals, (hydr)oxides of Al, Fe, silica, etc.) make them interact easily. Many kinds of analytical methods have been used to study the interaction between GO and natural colloids. This review provides a comprehensive overview of analytical methods for the detection and quantification of interaction process. We highlighted the influence of the most relevant environmental factors (ionic strength, pH, etc.) on batch experiment, quartz crystal microbalance with dissipation monitoring measurements, and column experiments. Besides, the benefits and drawbacks of spectroscopic, microscopic techniques, theoretical models, calculation and time-resolved dynamic light scattering methods also have discussed in this work. This review can give some guidance to researchers in their selection and combination of the technique for the research of the interaction between GO and natural colloids.
Collapse
Affiliation(s)
- De Wang
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jianfeng Zhang
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Ruya Cao
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Yingzi Zhang
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jiaxing Li
- CAS Key Laboratory of Photovoltaic and Energy Conservation Materials, Institute of Plasma Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, PR China.
| |
Collapse
|
13
|
Beryani A, Bianco C, Casasso A, Sethi R, Tosco T. Exploring the potential of graphene oxide nanosheets for porous media decontamination from cationic dyes. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127468. [PMID: 34688001 DOI: 10.1016/j.jhazmat.2021.127468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/15/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Graphene oxide (GO) nanosheets, often embedded in nano-composites, have been studied as promising materials for waste water purification, in particular to adsorb heavy metals and cationic organic contaminants. However, a broader range of potential applications of GO is still unexplored. This work investigated the potential applicability of GO for enhanced in-situ soil washing of secondary sources of groundwater contamination (i.e. the controlled recirculation of a washing GO suspension via injection/extraction wells). The laboratory study aimed at quantifying the capability of GO to effectively remove adsorbed methylene blue (MB) from contaminated sand. The tests were conducted in simplified conditions (synthetic groundwater at NaCl concentration of 20 mM, silica sand) to better highlight the key mechanisms under study. The results indicated a maximum sorption capacity of 1.6 mgMB/mgGO in moderately alkaline conditions. Even though the adsorption of MB onto GO slightly reduced the GO mobility in the porous medium, a breakthrough higher than 95% was obtained for MB/GO mass ratios up to 0.5. This suggests that a very high recovery of the injected particles should be also expected in the field.
Collapse
Affiliation(s)
- Ali Beryani
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
| | - Carlo Bianco
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
| | - Alessandro Casasso
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
| | - Rajandrea Sethi
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy)
| | - Tiziana Tosco
- Department of Environmental, Land and Infrastructure Engineering (DIATI), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (Italy).
| |
Collapse
|
14
|
Dong S, Xia J, Sheng L, Wang W, Liu H, Gao B. Transport characteristics of fragmental polyethylene glycol terephthalate (PET) microplastics in porous media under various chemical conditions. CHEMOSPHERE 2021; 276:130214. [PMID: 34088096 DOI: 10.1016/j.chemosphere.2021.130214] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Transport characteristics of fragmental polyethylene glycol terephthalate (PET) microplastics in porous media were elucidated via column experiments under a series combination of electrolytes, pH, and humic acid (HA) conditions. Fragmental PET microplastics showed low mobility in porous media with a small mass recovery rate (<50.1%) even under unfavorable retention conditions. The electrolyte, pH, and HA showed combined impact on PET microplastic transport. PET microplastics mobility was enhanced with decreasing electrolyte concentration, increasing pH, and increasing HA concentration. Basic properties (e.g. destiny and shape) of PET microplastics showed stronger effect on their transport behaviors in porous media rather than the experimental chemical conditions. In general, both environmental factors and basic properties played important roles in controlling the retention and transport of PET microplastics in porous media. A numerical model considering the second order kinetic deposition sites was applied to depict the retention and transport of PET microplastics in porous media. Model simulations well matched the experimental breakthrough curves. Given the fragmental PET microplastics have more realistic and irregular shapes, results from this study can improve present knowledge of the environmental fate and risk of microplastics in underground soil and water systems.
Collapse
Affiliation(s)
- Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.
| | - Jihong Xia
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Liting Sheng
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Weimu Wang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Hui Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, United States
| |
Collapse
|
15
|
Li X, Gao B, Xu H, Sun Y, Shi X, Wu J. Effect of root exudates on the stability and transport of graphene oxide in saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125362. [PMID: 33930947 DOI: 10.1016/j.jhazmat.2021.125362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Root exudates are a major source of dissolved organic matters that strongly affect the stability and transport behaviors of nanomaterials in porous media. This study investigated the effect of citric acid (CA) and oxalic acid (OA), two common low molecular weight root exudates, on the stability and transport of graphene oxide (GO) in saturated sand columns under different combinations of pH (4.5, 7.0), ionic strength (IS: 10, 50 mM), and organic acid concentrations (10, 25 mM). Both OA and CA accelerated GO aggregation, especially under high IS and acid concentration conditions. With the presence of OA/CA (≥ 10 mM), the transport of GO was higher at pH of 7.0 than 4.5, and the GO mobility decreased with increasing IS and OA/CA concentrations, whereas, enhanced GO transport was observed at a low concentration of OA/CA (0.1 mM), indicating that the influence of organic acid was concentration-dependent. All the results suggest that perturbations of surface potential of GO and sand, as well as the chemical structure of organic acids under different solution chemistry conditions are crucial in controlling GO stability and transport behaviors. Mathematical models based on the advection-dispersion equation with one-site kinetics simulated the experimental breakthrough curves of GO very well.
Collapse
Affiliation(s)
- Xiaohui Li
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China; College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Xiaoqing Shi
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry of Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| |
Collapse
|
16
|
Chen J, Chen W, Lu T, Song Y, Zhang H, Wang M, Wang X, Qi Z, Lu M. Effects of phosphate on the transport of graphene oxide nanoparticles in saturated clean and iron oxide-coated sand columns. J Environ Sci (China) 2021; 103:80-92. [PMID: 33743921 DOI: 10.1016/j.jes.2020.10.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 10/03/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
In this study, transport behaviors of graphene oxide (GO) in saturated uncoated (i.e., clean sand) and goethite-coated sand porous media were examined as a function of the phosphate. We found that phosphate enhanced the transport of GO over a wide range of solution chemistry (i.e., pH 5.0-9.0 and the presence of 10 mmol/L Na+ or 0.5 mmol/L Ca2+). The results were mainly ascribed to the increase of electrostatic repulsion between nanoparticles and porous media. Meanwhile, deposition site competition induced by the retained phosphate was another important mechanism leading to promote GO transport. Interestingly, when the phosphate concentration increased from 0.1 to 1.0 mmol/L, the transport-enhancement effect of phosphate in goethite-coated sand was to a much larger extent than that in clean sand. The observations were primarily related to the difference in the total mass of retained phosphate between the iron oxide-coated sand and clean sand columns, which resulted in different degrees of the electrostatic repulsion and competitive effect of phosphate. When the background solution contained 0.5 mmol/L Ca2+, phosphate could be bind to sand/ goethite-coated sand surface by cation bridging; and consequently, promoted competition between phosphate and nanoparticles for deposition sites, which was an important mechanism for the enhanced effect of phosphate. Moreover, the DLVO theory was applicable to describe GO transport behaviors in porous media in the absence or presence of phosphate. Taken together, these findings highlight the important status and role of phosphate on the transport and fate of colloidal graphene oxide in the subsurface environment.
Collapse
Affiliation(s)
- Jiuyan Chen
- Henan International Joint Laboratory of Medicinal Plants Utilization, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fujian 350007, China
| | - Taotao Lu
- Department of Hydrology, University of Bayreuth, Bayreuth D-95440, Germany
| | - Yumeng Song
- Henan International Joint Laboratory of Medicinal Plants Utilization, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Haojing Zhang
- Henan International Joint Laboratory of Medicinal Plants Utilization, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Mengjie Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Xinhai Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhichong Qi
- Henan International Joint Laboratory of Medicinal Plants Utilization, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China.
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| |
Collapse
|
17
|
Hou W, Lei Z, Hu E, Wang H, Wang Q, Zhang R, Li H. Co-transport of uranyl carbonate and silica colloids in saturated quartz sand under different hydrochemical conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142716. [PMID: 33069474 DOI: 10.1016/j.scitotenv.2020.142716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/26/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
Uranyl carbonate (UC) and silica colloids (cSiO2) are widely distributed in carbonate-rich subsurface environments associated with uranium pollution. Mobile colloids such as cSiO2 can affect uranium's transport efficiency in the groundwater environment. Therefore, elucidating the mechanism of UC and cSiO2 co-transport in a saturated porous medium with different ionic strength (IS), pH, and UC concentration is essential for the prevention and control of groundwater radioactive pollution. At low UC concentrations (<2.1 × 10-5 M), cSiO2 is more prone to be deposited on the surfaces of quartz sand (QS) than UC, resulting in cSiO2 preventing UC transport. Compared to pH 7 and 9, at pH 5 the adsorption of uranium [in the form of 81.5% UO2CO3(aq), 8.6% UO22+, and 5.2% UO2OH+] on cSiO2 renders cSiO2 more prone to aggregate, causing smaller amounts of cSiO2 (86.6%) and UC (55.8%) to be recovered. Mechanisms responsible for the evolution of the pH and zeta potential in effluents have been proposed. Chemical reactions (ligand-exchange reactions and deprotonation) that occur in the QS column between UC and cSiO2/QS cause the pH of the suspension to varying, which in turn causes changes in the zeta potential and particle size of cSiO2. Eventually, the recovery rates of cSiO2 and UC are changed, depending upon the colloid particle size. Changes in ionic strength can seriously affect the stability of cSiO2 particles, and that effect is more significant when UC is present. Moreover, colloidal filtration theory, a non-equilibrium two-site model, and the Derjaguin-Landau-Verwey-Overbeek theory successfully describe the individual-transport and co-transport of cSiO2 and UC in the column. This study provides a strong basis for investigating UC pollution control in porous media.
Collapse
Affiliation(s)
- Wei Hou
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China, Hengyang 421001, China
| | - Zhiwu Lei
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China, Hengyang 421001, China
| | - Eming Hu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China, Hengyang 421001, China
| | - Hongqiang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Soil Pollution Control and Remediation, University of South China, Hengyang 421001, China
| | - Qingliang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China; Cooperative Innovation Center for Nuclear Fuel Cycle Technology and Equipment, University of South China, Hengyang 421001, China.
| | - Rui Zhang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Hui Li
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| |
Collapse
|
18
|
Wang M, Zuo Q, Bai Y. Effects of filtration-induced size change on the subsequent transport and fate of graphene oxide in saturated porous media. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 755:142417. [PMID: 33049539 DOI: 10.1016/j.scitotenv.2020.142417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 08/07/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
A particle size change occurs ubiquitously during transport of nanoparticles in the subsurface and is likely to influence nanoparticle fate and transport behaviours. The effects of this size change on the subsequent transport of eluted graphene oxide (GO) in saturated media were therefore investigated under various ionic strength (IS) and filtration degree conditions. Aggregation kinetics revealed that size change after filtration only occurred at relatively high IS conditions. As the filtration column length increased from 15 cm to 30 cm, sizes of aggregates in filtrates for large-sized and small-sized GO populations decreased and increased, respectively, and both approached to their steady aggregate sizes. Aggregation, straining, sedimentation, bridging, DLVO interactions, or a combination of these mechanisms were involved in the size change process during filtration. After passing through the 30 cm filtration column, filtered GO, in comparison with original GO, exhibited stronger mobility than expected, suggesting neglecting size change will result in underestimation of the nanoparticle mobility in porous media.
Collapse
Affiliation(s)
- Mei Wang
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, China; Henan Key Laboratory of Groundwater Pollution Prevention and Rehabilitation, Zhengzhou 450001, China.
| | - Qiting Zuo
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhengzhou Key Laboratory of Water Resource and Environment, Zhengzhou 450001, China; Henan Key Laboratory of Groundwater Pollution Prevention and Rehabilitation, Zhengzhou 450001, China
| | - Yifan Bai
- Yellow River Engineering Consulting Corporation Limited, Zhengzhou 450003, China
| |
Collapse
|
19
|
Mondal A, Dubey BK, Arora M, Mumford K. Porous media transport of iron nanoparticles for site remediation application: A review of lab scale column study, transport modelling and field-scale application. JOURNAL OF HAZARDOUS MATERIALS 2021; 403:123443. [PMID: 32798796 DOI: 10.1016/j.jhazmat.2020.123443] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/02/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
Injection of surface modified zero valent iron nanoparticles for in situ remediation of soil, contaminated with an array of pollutants has attracted great attention due to the high reactivity of zero valent iron towards a broad range of contaminants, its cost effectiveness, minimal physical disruption and low toxicity. The effectiveness of this technology relies on the stability and mobility of injected iron nanoparticles. Hence the development of a modelling tool capable of predicting nZVI transport is indispensable. This review provides state of the art knowledge on the mobility of iron nanoparticles in porous media, mechanisms involved in subsurface retention of nZVI based on continuum models and field scale application. Special attention is given to the identification of the influential parameters controlling the transport potential of iron nanoparticles and the available numerical models for the simulation of laboratory scale transport data.
Collapse
Affiliation(s)
- Abhisek Mondal
- Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia; Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Meenakshi Arora
- Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia
| | - Kathryn Mumford
- Department of Chemical Engineering, The University of Melbourne, Melbourne, Australia.
| |
Collapse
|
20
|
Wang M, Zhang H, Chen W, Lu T, Yang H, Wang X, Lu M, Qi Z, Li D. Graphene oxide nanoparticles and hematite colloids behave oppositely in their co-transport in saturated porous media. CHEMOSPHERE 2021; 265:129081. [PMID: 33288283 DOI: 10.1016/j.chemosphere.2020.129081] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/09/2020] [Accepted: 11/20/2020] [Indexed: 06/12/2023]
Abstract
Since iron oxide minerals are ubiquitous in natural environments, the release of graphene oxide (GO) into environmental ecosystems can potentially interact with iron oxide particles and thus alter their surface properties, resulting in the change of their transport behaviors in subsurface systems. Column experiments were performed in this study to investigate the co-transport of GO nanoparticles and hematite colloids (a model representative of iron oxides) in saturated sand. The results demonstrated that the presence of hematite inhibited GO transport in quartz sand columns due to the formation of less negatively charged GO-hematite heteroaggregates and additional deposition sites provided by the adsorbed hematite on sand surfaces. Contrarily, GO co-present in suspensions significantly enhanced the transport of hematite colloids through different mechanisms such as the increase of electrostatic repulsion, decreased physical straining, GO-facilitated transport of hematite (i.e., highly mobile GO nanoparticles served as a mobile carrier for hematite). We also found that the co-transport behaviors of GO and hematite depended on solution chemistry (e.g., pH, ionic strength, and divalent cation (i.e., Ca2+)), which affected the electrostatic interaction as well as heteroaggregation behaviors between GO nanoparticles and hematite colloids. The findings provide an insight into the potential fate of carbon nanomaterials affected by mineral colloids existing in natural waters and soils.
Collapse
Affiliation(s)
- Mengjie Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
| | - Haojing Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Weifeng Chen
- Ministry of Education Key Laboratory of Humid Subtropical Eco-geographical Process, Fujian Provincial Key Laboratory for Plant Eco-physiology, College of Geographical Science, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Taotao Lu
- Department of Hydrology, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Huihui Yang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Xinhai Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Minghua Lu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China.
| | - Deliang Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Engineering Research Center for Industrial Recirculation Water Treatment of Henan Province, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| |
Collapse
|
21
|
Jin R, Lu T, Zhang H, Wang M, Wang M, Qi W, Qi Z, Li D. Role of solution chemistry in the attachment of graphene oxide nanoparticles onto iron oxide minerals with different characteristics. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5126-5136. [PMID: 32955667 DOI: 10.1007/s11356-020-10886-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Given the ubiquity and abundance of the iron oxide minerals and their important roles in affecting the environmental fate of graphene oxide (GO) nanoparticles, the attachment of GO onto three iron oxide minerals (i.e., hematite, goethite, and ferrihydrite) under different solution chemistry conditions was investigated in this study. The main mechanism of the attachment of GO was electrostatic interaction. Calculations based on the DLVO theory showed that the attachment was a favorable process. Interestingly, the affinity of GO towards three iron oxide minerals was in the order of ferrihydrite > goethite > hematite. This result indicates that different characteristics of various iron oxides (e.g., specific surface area, crystal structure, and surface charge, and surface hydroxyl densities) can influence their attachment capacities for GO. The attachment of GO depended on the solution pH and ionic strength. Electrostatic attraction and hydrogen bonding were the important retention mechanisms for GO attachment when pH < pHPZC (the point of zero charge) and pH > pHPZC, respectively. The attachment capacities of iron oxides decreased with increasing ionic strength at lower pH because of the decrease of the electrostatic attraction. Meanwhile, the presence of divalent cations (i.e., Ca2+ and Cu2+) could significantly promote GO attachment mainly by the surface-bridging mechanism. Meanwhile, the enhancement effect of Cu2+ was greater than Ca2+ due to the greater complexation affinity of Cu2+. Furthermore, attachment isotherms showed that the presence of phosphate could inhibit the attachment of GO onto minerals obviously. Because phosphate could form inner-sphere surface complex on the iron oxide surface, and consequently decreased the electrostatic attraction between nanoparticles and minerals. Our study has important implications for predicting the fate of GO in natural environment where amounts of iron oxide minerals are present.
Collapse
Affiliation(s)
- Ruixia Jin
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China
- Department of Hydrology, University of Bayreuth, D-95440, Bayreuth, Germany
| | - Haojing Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Mengjie Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Mengli Wang
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Kaifeng, 475004, China
| | - Wei Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China.
| | - Deliang Li
- Henan Engineering Research Center for Control and Remediation of Soil Heavy Pollution, Kaifeng, 475004, China.
| |
Collapse
|
22
|
Ramazanpour Esfahani A, Batelaan O, Hutson JL, Fallowfield HJ. Transport and retention of graphene oxide nanoparticles in sandy and carbonaceous aquifer sediments: Effect of physicochemical factors and natural biofilm. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111419. [PMID: 33126193 DOI: 10.1016/j.jenvman.2020.111419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/25/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
There is a paucity of information regarding the interaction between GONPs and natural aquifer sediments. Therefore, batch and column experiments were carried out to determine the transport, retention and attachment behavior of GONPs with the surfaces of native aquifer sediments. The experiments were performed with sediments comprising contrasting mineralogical features (sand grains, quartz and limestone sediments), at different temperatures, ionic strength and compositions. Uniquely, this research also investigated the effect of natural biofilm on the retention behavior of nanoparticles in porous media. The retention rate of GONPs at 22 °C was higher than at 4 °C. Moreover, there was greater retention of GONPs onto the surfaces of collectors at higher ionic strengths and cation valence. The retention profiles (RPs) of GONPs in pristine porous media at low ionic strength were linear, which contrasted with hyper-exponential shape of RPs at high ionic strength. The size-distribution analysis of retained GONPs showed decreasing particle diameter with increasing distance from the column inlet at high ionic strength and equal diameter at low ionic strengths. The GONP retention rate was higher for natural porous media than for sand, due to the presence of metal oxides heterogeneities. The presence of biofilm on porous media increased the retention rate of GONPs when compared to the porous media in the absence of biofilm.
Collapse
Affiliation(s)
- Amirhosein Ramazanpour Esfahani
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia.
| | - Okke Batelaan
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia
| | - John L Hutson
- College of Science and Engineering, Flinders University, Adelaide, Australia
| | - Howard J Fallowfield
- College of Science and Engineering, Flinders University, Adelaide, Australia; National Centre for Groundwater Research and Training, SA, 5001, Australia
| |
Collapse
|
23
|
Dong S, Cai W, Xia J, Sheng L, Wang W, Liu H. Aggregation kinetics of fragmental PET nanoplastics in aqueous environment: Complex roles of electrolytes, pH and humic acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115828. [PMID: 33120151 DOI: 10.1016/j.envpol.2020.115828] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/06/2020] [Accepted: 10/10/2020] [Indexed: 06/11/2023]
Abstract
The aggregation kinetics of fragmental polyethylene glycol terephthalate (PET) nanoplastics under various chemistry conditions in aqueous environment were firstly investigated in this work. The aggregation of PET nanoplastics increased with increasing electrolyte concentrations and decreasing solution pH, which became stronger with the presence of divalent cations (e.g. Ca2+ and Mg2+) than that of monovalent cations (e.g. Na+ and K+). The effect of cations with the same valence on the aggregation of PET nanoplastics was similar. The measured critical coagulation concentrations (CCC) for PET nanoplastics at pH 6 were 55.0 mM KCl, 54.2 mM NaCl, 2.1 mM CaCl2 and 2.0 mM MgCl2, which increased to 110.4 mM NaCl and 5.6 mM CaCl2 at pH 10. In addition, the aggregation of PET nanoplastics was significantly inhibited with the presence of humic acid (HA), and the CCC values increased to 558.8 mM NaCl and 12.3 mM CaCl2 (1 mg L-1 HA). Results from this study showed that the fragmental PET nanoplastics had the quite higher CCC values and stability in aqueous environment. In addition, the aggregation behaviors of PET nanoplastics can be successfully predicted by the Derjguin Landau Verwey Overbeek (DLVO) theory.
Collapse
Affiliation(s)
- Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.
| | - Wangwei Cai
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Jihong Xia
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Liting Sheng
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Weimu Wang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Hui Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| |
Collapse
|
24
|
Dong S, Cai W, Sheng L, Wang W, Liu H, Xia J. Combined effect of physicochemical factors on the retention and transport of g-C 3N 4 in porous media. CHEMOSPHERE 2020; 256:127100. [PMID: 32460159 DOI: 10.1016/j.chemosphere.2020.127100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/27/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
The environmental behaviors of graphitic carbon nitride (g-C3N4) have drawn increasing attention in recent. Understanding the fate and transport of g-C3N4 in porous media is necessary for evaluating its environmental risks. Column experiments were used in this study to investigate the combined effect of ionic strength (IS) and other common physicochemical factors (i.e. sand grain size, solution pH, and humic acid concentration) on g-C3N4 transport. The one-site kinetic models were applied to simulate the retention and transport of g-C3N4 in porous media, which fitted the breakthrough curves very well. Experimental and model results showed that g-C3N4 had a weak mobility with the transport mass recovery (TMR) less than 39.6% at pH 6.0 in absence of humic acid (HA). The mobility of g-C3N4 was inhibited with decreasing sand grain size, and the inhibited efficiency was enhanced with IS. However, g-C3N4 transport was significantly enhanced with increasing pH and HA concentration, and the enhanced efficiency was more obviously at high IS. The maximum TMR (78.3%) of g-C3N4 was observed with the presence of 5 mg L-1 HA. These results indicated that physicochemical factors played an important and combined role in controlling g-C3N4 transport in porous media, which would lead to the more complex evaluation on the environmental behaviors of g-C3N4.
Collapse
Affiliation(s)
- Shunan Dong
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.
| | - Wangwei Cai
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Liting Sheng
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Weimu Wang
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Hui Liu
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China
| | - Jihong Xia
- College of Agricultural Science and Engineering, Hohai University, Nanjing, 210098, China.
| |
Collapse
|
25
|
Baysal A, Saygin H, Ustabasi GS. Risks of graphene nanomaterial contamination in the soil: evaluation of major ions. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:622. [PMID: 32894359 DOI: 10.1007/s10661-020-08561-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Soils are facing new environmental contaminants, such as nanomaterials. While these emerging contaminants are increasingly being released into soil, their potential impact on this medium and their effect on soil's major chemical components (e.g., sulfate, nitrate, ammonia, and phosphate) have yet to be examined, as well as their relation with microbial toxicity. Herein, column experiments were conducted to investigate the behavior of major ions under 10 and 200 mg/L multiple contaminations of graphene nanomaterials in agricultural and undisturbed soils, as well as the retention of the graphene nanomaterials in the soil and their effect on soil zeta potentials throughout the column. Moreover, to evaluate the impact of the risks of graphene nanomaterial contamination on soil major ions, the present study also examines the bacterial toxicity. The results showed that graphene retention was influenced the soil zeta potentials. Graphene also influenced the concentrations of the major ions in soil and the order of the influence degree was sulfate > phosphate > ammonia > nitrate. The changes of the major ions in soil by the exposure of graphene nanomaterials have also affected the response of selected bacteria.
Collapse
Affiliation(s)
- A Baysal
- Health Services Vocational School of Higher Education, T.C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey.
| | - H Saygin
- Application and Research Center for Advanced Studies, T.C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| | - G S Ustabasi
- Health Services Vocational School of Higher Education, T.C. Istanbul Aydin University, Sefakoy Kucukcekmece, 34295, Istanbul, Turkey
| |
Collapse
|
26
|
Zhang H, Lu T, Zhang R, Wang M, Krishnan S, Liu S, Zhou Y, Li D, Qi Z. Effects of clay colloids on ciprofloxacin transport in saturated quartz sand porous media under different solution chemistry conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 199:110754. [PMID: 32446105 DOI: 10.1016/j.ecoenv.2020.110754] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/23/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Antibiotics, a highly prevalent class of environmental organic pollutants, are becoming a matter of global concern. Clay minerals that are ubiquitous in subsurface environments may play an important role in the fate and transport of antibiotics. Taking ciprofloxacin (CIP) as a model antibiotic, this work explored the role of clay colloids (kaolinite and montmorillonite) on the adsorption and transport of CIP under different chemical solution conditions. The adsorption isotherms showed that montmorillonite colloids had a larger CIP sorption capacity than kaolinite colloids. The results of transport experiments indicated that montmorillonite colloids could promote CIP transport in saturated sand columns, but the addition of kaolinite colloids affected CIP mobility to a much smaller extent. The much stronger transport-enhancement effect of montmorillonite colloids was due to CIP adsorbed strongly to the colloids and desorption hysteresis of colloid-adsorbed CIP, likely stemming from the intercalation of this antibiotic in the interlayer of montmorillonite. Interestingly, transport of clay colloids increased with the increasing pH from 5.0 to 9.0; however, CIP transport decreased with the increasing pH in the presence of clay colloids. The observations were likely attributable to pH-dependent ciprofloxacin adsorption/desorption to clay minerals. Increasing the concentrations of NaCl and CaCl2 generally decreased the contaminant-mobilizing ability of montmorillonite colloids, mainly by increasing the aggregation of colloids and thus, decreasing the transport of colloid-adsorbed CIP. Moreover, under the test conditions (1 mM NaCl and pH 7.0), the presence of CIP inhibited the transport of clay colloids due to the increase in aggregate size of clay colloids with the addition of CIP. Overall, these findings suggest that clay colloids with high adsorption abilities for antibiotics in the subsurface environment may act as a carrier for certain antibiotic compounds.
Collapse
Affiliation(s)
- Haojing Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Taotao Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China; Department of Hydrology, University of Bayreuth, Bayreuth D, 95440, Germany
| | - Ruoyu Zhang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Mengjie Wang
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Srinivasan Krishnan
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Shanhu Liu
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Yanmei Zhou
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Deliang Li
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China
| | - Zhichong Qi
- Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
27
|
Syngouna VI, Giannadakis GI, Chrysikopoulos CV. Interaction of graphene oxide nanoparticles with quartz sand and montmorillonite colloids. ENVIRONMENTAL TECHNOLOGY 2020; 41:1127-1138. [PMID: 30198818 DOI: 10.1080/09593330.2018.1521876] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Graphene oxide (GO) nanomaterials are used extensively in a wide range of commercial applications. With GO production growing rapidly, it is expected that GO eventually could reach sensitive environmental systems, including subsurface formations, where montmorillonite, one of the most common minerals, is in abundance. This study examines the interaction of GO with quartz sand and montmorillonite (MMT) colloids at pH = 7, ionic strength IS = 2 mM, and 25°C, under dynamic conditions. Moreover, the effect of pH on MMT kinetic attachment onto quartz sand was investigated. The experimental data suggested that pH affected slightly the attachment of MMT colloids onto quartz sand. GO was attached in greater amounts onto MMT than quartz sand. Also, the attachment of GO onto quartz sand was shown to increase slightly in the presence of MMT colloids. However, when GO and MMT coexisted, the total GO mass attached onto quartz sand, suspended MMT, and attached MMT was increased. Furthermore, the equilibrium attachment experimental data were fitted nicely with a Freundlich isotherm, and the attachment kinetics were satisfactorily described with a pseudo-second-order model. Finally, the extended DLVO (XDLVO) theory was used to quantify the various interaction energy profiles based on electrokinetic and hydrodynamic measurements.
Collapse
Affiliation(s)
- Vasiliki I Syngouna
- School of Environmental Engineering, Technical University of Crete, Chania, Greece
| | | | | |
Collapse
|
28
|
He J, Wang D, Zhang W, Zhou D. Deposition and release of carboxylated graphene in saturated porous media: Effect of transient solution chemistry. CHEMOSPHERE 2019; 235:643-650. [PMID: 31276877 DOI: 10.1016/j.chemosphere.2019.06.187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Chemical perturbation of pore-water in porous media may remobilize and release deposited colloids/nanomaterials into bulk flow. This re-entrainment process is important to accurately assessing the fate and transport of colloids/nanomaterials in the subsurface. This study investigated deposition and subsequent release of carboxylated graphene nanomaterials (CG) in water-saturated sand columns by first depositing CG at 100 mM NaCl or 2 mM CaCl2 (Phase 1), followed by Phase 2 (elution with sequences of 50, 10, and 1 mM NaCl, or sequences of 0.5 and 0.1 mM CaCl2), and then Phase 3 elution using deionized water. Approximate 89.2%-98.7% of injected CG was retained in sand through Derjaguin-Landau-Verwey-Overbeek (DLVO) interactions, Ca2+ bridging, and straining in Phase 1. Sequential reduction of ionic strength in Phases 2 and 3 resulted in increased release of deposited CG mainly due to the expansion of the electrical double layer thickness and thus decreased depth of the attractive secondary minimum. With increasing pulses of flushing solution, unrecoverable CG increased because weakly associated CG via the secondary minimum was likely translated to immobile regions. Significant tailing of CG released in Phase 3 suggests that CG retained in CaCl2 was more resistant upon detachment than in NaCl. In cation exchange experiment, only 0.7% of applied CG was released, possibly ascribed to the CG remobilized by cation exchange was immediately re-entrained by the secondary minimum in 50 mM NaCl. Our findings indicate that retained nanomaterials (e.g., CG) can be remobilized and transported downward in transient solution chemistries, raising concerns about their potential migration risk to groundwater.
Collapse
Affiliation(s)
- Jianzhou He
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - Dengjun Wang
- National Research Council Resident Research Associate at the U.S. Environmental Protection Agency, Ada, OK, 74820, United States.
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, United States
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
29
|
Xia T, Lin Y, Guo X, Li S, Cui J, Ping H, Zhang J, Zhong R, Du L, Han C, Zhu L. Co-transport of graphene oxide and titanium dioxide nanoparticles in saturated quartz sand: Influences of solution pH and metal ions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 251:723-730. [PMID: 31112926 DOI: 10.1016/j.envpol.2019.05.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/24/2019] [Accepted: 05/08/2019] [Indexed: 06/09/2023]
Abstract
Increasing production and application of nanomaterials lead to their environmental release possible. The nanomaterials with different properties may transport together in porous media, and consequently affect their environmental fates. In this study, column experiments were conducted to investigate the co-transport of two typical nanomaterials, graphene oxide (GO) and nano-titanium dioxide (nTiO2), in saturated quartz sand in NaCl and CaCl2 electrolyte solutions under both favorable and unfavorable conditions. The breakthrough curves as well as the retained profiles of single and binary nanoparticles were examined. The results indicated that nTiO2 significantly enhanced the GO retention under all examined conditions, especially at lower pH, higher ionic strength and the presence of divalent cation Ca2+. This might be attributed to the formation of less negatively charged and larger-sized GO-nTiO2 agglomerates as well as the increased retention sites on sand surface by preferentially deposited nTiO2. However, GO merely slightly enhanced the transport of nTiO2 in NaCl solutions, whereas had negligible effect on nTiO2 transport and retention in CaCl2 solutions. The highly hydrophilic and mobile GO served as a carrier and facilitated the transport of nTiO2 in NaCl solutions. In CaCl2 solutions, the strong attachment affinity between positively charged nTiO2 and negatively charged quartz sand (at pH 4.5), and dramatical accumulation of large nTiO2 agglomerates near the column inlets (at pH 6.5) led to significant deposition of nTiO2 on quartz sand. The co-presence of GO failed to counteract the retention of nTiO2 particles on sand.
Collapse
Affiliation(s)
- Tianjiao Xia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Yixuan Lin
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Xuetao Guo
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Shunli Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Jingshan Cui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Huaixiang Ping
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Jin Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Rongwei Zhong
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Lisha Du
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Chunxiao Han
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China
| | - Lingyan Zhu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, 712100, PR China.
| |
Collapse
|
30
|
Li J, Chen J, Lu T, Wang Y, Zhang H, Shang Z, Li D, Zhou Y, Qi Z. Effects of low-molecular weight organic acids on the transport of graphene oxide nanoparticles in saturated sand columns. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:94-102. [PMID: 30798247 DOI: 10.1016/j.scitotenv.2019.02.242] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 02/12/2019] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
The impact of low-molecular weight organic acids (LMWOAs) on the transport of graphene oxide (GO) nanoparticles in saturated quartz sand was investigated. The different LMWOAs such as acetic acid, glycolic acid, malonic acid, and tartaric acid were used in experiments. The effects of LMWOAs on the transport of GO were markedly dependent upon organic acid species. In general, the transport enhancement effects followed the order of tartaric acid > malonic acid > glycolic acid > acetic acid, the regular pattern might be related to amount and type of functional groups of LMWOAs. Additionally, the different enhanced ability of LMWOAs was determined by their molecular weight. In the presence of Na+, the main deposition mechanism was ascribed to steric hindrance and competition between LMWOA and GO for deposition sites on grain surfaces under acidic conditions (i.e., pH 4.0 and 5.0). Batch adsorption experiments indicated the extents of competitive adsorption between LMWOAs and GO on quartz sand. In addition, the DLVO theory was not applicable to describe the transport of GO in the presence of LMWOAs at pH 5.0. Nevertheless, electrostatic and steric repulsion, existing between GO and sand grains, were the most important deposition mechanisms under the neutral condition (i.e., pH 7.0). When Ca2+ was the main cation in the background solution, the transport enhancement effects followed quite similar order to those of Na+, mainly due to different complexing strength of organic acids.
Collapse
Affiliation(s)
- Jiaqi Li
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Jiuyan Chen
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Taotao Lu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China; Department of Hydrology, University of Bayreuth, Bayreuth D-95440, Germany
| | - Ying Wang
- Henan University Minsheng College, Kaifeng 475004, China
| | - Haojing Zhang
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhongbo Shang
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Deliang Li
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Yanmei Zhou
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China
| | - Zhichong Qi
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China; Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Nankai University, Tianjin 300350, China.
| |
Collapse
|
31
|
Dong S, Gao B, Sun Y, Guo H, Wu J, Cao S, Wu J. Visualization of graphene oxide transport in two-dimensional homogeneous and heterogeneous porous media. JOURNAL OF HAZARDOUS MATERIALS 2019; 369:334-341. [PMID: 30784963 DOI: 10.1016/j.jhazmat.2019.02.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 01/31/2019] [Accepted: 02/12/2019] [Indexed: 06/09/2023]
Abstract
Graphene oxide (GO) has been indicated to be biotoxic and risky in environment, its environmental behavior thus has received increasing attention in recent. In this study, homogeneous and heterogeneous sand tanks were used to examine the transport behaviors of GO nanoparticles in two-dimensional (2-D) porous media under various conditions. Light transmission visualization (LTV) technology was applied to visualize the real-time transport, retention, and release of GO. GO transport in 2-D porous media was simulated with a simplified Double Monod model. GO mobility decreased with the increasing solution ionic strength (IS) and decreasing media grain size. Preferential flow played an important role in GO transport in 2-D heterogeneous porous media. Even without vertical flow in the sand tanks, GO still spread vertically through dispersion, suggesting the importance of the dispersion process to nanoparticle fate and transport in 2-D porous media. LTV images and breakthrough curves showed that some of the previous retained GO particles were instantaneously remobilized with IS decreasing. With the consideration of the vertical dispersion, simulations of the Double Monod model matched the experimental data well. Findings from this work contribute to expand current knowledge of environmental fate and transport of GO, leading to better assessment and prediction of its environmental risks.
Collapse
Affiliation(s)
- Shunan Dong
- Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL 32611, United States
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| | - Hongyan Guo
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Shaohua Cao
- Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemisty, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
32
|
Zhao K, Chen C, Cheng T, Shang J. Graphene oxide-facilitated uranium transport and release in saturated medium: Effect of ionic strength and medium structure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:668-677. [PMID: 30711822 DOI: 10.1016/j.envpol.2019.01.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 01/08/2019] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Natural subsurface environment is a complex heterogeneous system. To investigate the effect of ionic strength (IS) and heterogeneity on the transport and remobilization of graphene oxide (GO)-facilitated uranium (U(VI)) in saturated porous media, column experiments were performed by the injection of U(VI) alone and U(VI)+GO mixtures into homogeneous and heterogeneous porous media under low and high ionic strength (1 and 50 mM) conditions, and then the columns were successively flushed with background solution and DI water. Results showed that when U(VI) only was introduced into the columns, IS had little effect on the migration of U(VI) alone in both media and the presence of preferential flow in heterogeneous media slightly enhanced the mobility of U(VI). As U(VI)+GO mixtures were injected into the columns, GO showed strong mobility at low IS and high released peak at high IS. The appearance of GO significantly enhanced U(VI) transport in both media. Under low IS condition, the mobility of U(VI) was significantly enhanced at the injection phase, and the medium heterogeneity further promoted the amount of GO-sorbed U(VI) transport. At high IS, less GO-sorbed U(VI) was observed during injection phase, and a large amount of retained GO-sorbed U(VI) were released with GO remobilization during water flushing phase, and the release showed the longer-tailing phenomenon and the release amount was more pronounced in heterogeneous media. The findings in this study showed that the coupled effect of solution chemistry and media heterogeneity played important roles on GO-facilitated U(VI) transport and release in soil and groundwater system.
Collapse
Affiliation(s)
- Kang Zhao
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Chong Chen
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, PR China
| | - Tao Cheng
- Department of Earth Sciences, Memorial University, St. John's, Newfoundland and Labrador, A1B 3X5, Canada
| | - Jianying Shang
- Department of Soil and Water Sciences, China Agricultural University, Beijing, 100193, PR China.
| |
Collapse
|
33
|
Xia T, Ma P, Qi Y, Zhu L, Qi Z, Chen W. Transport and retention of reduced graphene oxide materials in saturated porous media: Synergistic effects of enhanced attachment and particle aggregation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:383-391. [PMID: 30690234 DOI: 10.1016/j.envpol.2019.01.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Accepted: 01/14/2019] [Indexed: 06/09/2023]
Abstract
The increasing production and use of graphene-based nanomaterials (e.g., graphene oxide (GO) and reduced graphene oxide (RGO)) will lead to their environmental release. To date, transport of RGOs in saturated porous media is poorly understood. Here, we examined the transport behaviors of three RGO materials obtained by reducing a GO product with commonly used reducing agents - N2H4, NaBH4 and L-ascorbic acid (referred to as N2H4-RGO, NaBH4-RGO and VC-RGO, respectively). When the dominant background cation was Na+, K+ or Mg2+, the mobility of the RGOs and GO in saturated quartz sand correlated well with their surface C/O ratio. Interestingly, the lower mobility of the more reduced materials (the ones with higher C/O values) was not only the results of their less negative surface charges and larger particle sizes, but also the outcome of their greater hydrophobicity, in line with the calculated extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) profiles. Counterintuitively, when the background cation was Ca2+, the least reduced material among the three RGOs, VC-RGO, exhibited the lowest mobility. Analysis of electrophoretic and aggregation properties, as well as pH-effect experiments, indicated that the surprisingly low mobility of VC-RGO was attributable to the strong cation-bridging effect (primarily Ca2+-bridging between RGO and quartz sand) associated with this material, as VC-RGO contained the highest amount of surface carboxyl group (a strong metal-binding moiety). Notably, enhanced attachment (due to increased hydrophobic effect and cation-bridging) and particle aggregation appeared to work synergistically to increase RGO retention, as the attachment of large RGO aggregates significantly enhanced particle straining by narrowing the flow path. These observations reveal a largely overlooked link between the mobility of graphene-based materials and their key physicochemical properties.
Collapse
Affiliation(s)
- Tianjiao Xia
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Pengkun Ma
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Yu Qi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Lingyan Zhu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Zhichong Qi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
34
|
Qi Z, Du T, Ma P, Liu F, Chen W. Transport of graphene oxide in saturated quartz sand containing iron oxides. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 657:1450-1459. [PMID: 30677911 DOI: 10.1016/j.scitotenv.2018.12.143] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 06/09/2023]
Abstract
The environmental implications of graphene oxide (GO) have received much attention. Transport of GO in subsurface environment is a critical process affecting the migration and potential risks of this important class of carbonaceous nanomaterials. To date, the effects of heterogeneity in porous media, in particular, iron oxides, on GO transport are not well studied. In this study, we investigated the transport properties of GO in saturate quartz sand as affected by the presence of iron oxides, using goethite, hematite and ferrihydrite as the model iron oxide species, and applied a two-site transport model (which accounts for both attachment and straining) to fit the transport data. We found that iron oxide coating on sand surfaces markedly inhibited GO transport, mainly due to increased electrostatic attraction between particles and collectors, as the positively charged iron oxides provided favorable deposition sites for the negatively charged GO nanosheets. Additionally, increased surface roughness was likely an additional mechanism leading to the enhanced GO deposition. The extent of transport inhibition by iron oxides also depended on the morphology iron oxides, in that at the same Fe loading a larger effect was observed when iron oxides existed as the coating on sand surface than as discreet particles. The presence of iron oxide coatings (tested using goethite) could magnify the effects of cations on GO transport. Specifically, the presence of goethite facilitated the accumulation of cations on the surface of sand, and in the case of Ca2+, the binding of GO via the cation-bridging mechanism was enhanced, as goethite contained abundant surface hydroxyl groups that are strong metal-complexing moieties.
Collapse
Affiliation(s)
- Zhichong Qi
- College of Chemistry and Chemical Engineering, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, Henan University, Kaifeng, Henan 475004, China; College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Tingting Du
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Pengkun Ma
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Fangfei Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin 300350, China.
| |
Collapse
|
35
|
Lu X, Lu T, Zhang H, Shang Z, Chen J, Wang Y, Li D, Zhou Y, Qi Z. Effects of solution chemistry on the attachment of graphene oxide onto clay minerals. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:506-513. [PMID: 30681085 DOI: 10.1039/c8em00480c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
With the increase in production and wide application of graphene oxide (GO), colloidal GO particles are expectantly released into soil and groundwater, where a large number of mineral particles exist. In addition, the porewater chemistry (e.g. organic acid, valence of cation) is a neglected but important aspect to comprehensively investigate the fate of GO. The interactions of GO with three ubiquitous clay minerals (i.e., montmorillonite, kaolinite and diatomite) have been systematically investigated through batch experiments across different solution chemistry conditions. In general, the affinity towards GO is in the order of montmorillonite > kaolinite > diatomite under the same experimental conditions. This observation can be explained by the characteristics of different clay minerals, such as surface charge and surface area. The results indicated that increasing the ionic strength or decreasing the pH enhanced the attachment of GO nanoparticles onto clay minerals as a result of electrostatic interactions. With the increase in concentration of Ca2+, more GO particles were attached onto clay mineral particles. This is caused by complexation between the surface oxygen functional groups of both GO nanoparticles and clay minerals. The presence of 0.1 mM tartaric acid significantly inhibited the attachment of GO onto clay minerals. This is possibly linked to the increased negative charges of the organic acids and the competition between organic acids and GO. The interaction energies were also calculated by applying the classical DLVO theory. The results of this study have helped to understand the behavior and fate of GO in subsurface formations.
Collapse
Affiliation(s)
- Xiaoyan Lu
- Institute of Environmental and Analytical Sciences, Henan Joint International Research Laboratory of Environmental Pollution Control Materials, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liang Y, Bradford SA, Šimůnek J, Klumpp E. Mechanisms of graphene oxide aggregation, retention, and release in quartz sand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:70-79. [PMID: 30502736 DOI: 10.1016/j.scitotenv.2018.11.258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/15/2018] [Accepted: 11/17/2018] [Indexed: 06/09/2023]
Abstract
The roles of graphene oxide (GO) particle geometry, GO surface orientation, surface roughness, and nanoscale chemical heterogeneity on interaction energies, aggregation, retention, and release of GO in porous media were not fully considered in previous studies. Consequently, mechanisms controlling the environmental fate of GO were incompletely or inaccurately quantified. To overcome this limitation, plate-plate interaction energies were modified to account for these factors and used in conjunction with a mathematical model to interpret the results of GO aggregation, retention, and release studies. Calculations revealed that these factors had a large influence on the predicted interaction energy parameters. Similar to previous literature, the secondary minimum was predicted to dominate on smooth, chemically homogeneous surfaces that were oriented parallel to each other, especially at higher ionic strength (IS). Conversely, shallow primary minimum interactions were sometimes predicted to occur on surfaces with nanoscale roughness and chemical heterogeneity due to adsorbed Ca2+ ions, especially when the GO particles were oriented perpendicular to the interacting surface. Experimental results were generally consistent with these predictions and indicated that the primary minimum played a major role in GO retention and the secondary minimum contributed to GO release with IS reduction. Cation exchange (Na+ replacing Ca2+) enhanced GO release with IS reduction when particles were initially deposited in the presence of Ca2+ ions. However, retained GO were always completely recovered into the excess deionized water when the sand pore structure was destroyed during excavation, and this indicates that primary minima were shallow and that the pore structure also played an important role in GO retention. Further evidence for the role of pore structure on GO retention was obtained by conducting experiments in finer textured sand and at higher input concentrations that induced greater aggregation. In both cases, greater GO retention occurred, and retention profiles became more hyperexponential in shape.
Collapse
Affiliation(s)
- Yan Liang
- School of Resources, Environment and Materials, Guangxi University, Nanning, China
| | - Scott A Bradford
- US Salinity Laboratory, USDA, ARS, Riverside, CA, United States.
| | - Jiří Šimůnek
- Department of Environmental Sciences, University of California, Riverside, CA, United States
| | - Erwin Klumpp
- Agrosphere Institute, IBG-3, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
37
|
Jahan S, Alias YB, Bakar AFBA, Yusoff IB. Transport and retention behavior of carbonaceous colloids in natural aqueous medium: Impact of water chemistry. CHEMOSPHERE 2019; 217:213-222. [PMID: 30415119 DOI: 10.1016/j.chemosphere.2018.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 10/21/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Carbon based materials are emerging as a sustainable alternative to their metal-oxide counterparts. However, their transport behavior under natural aqueous environment is poorly understood. This study investigated the transport and retention profiles of carbon nanoparticles (CNPs) and graphene oxide quantum dots (GOQDs) through column experiments in saturated porous media. CNPs and GOQDs (30 mg/L) were dispersed in natural river water (RW) and passed through the column at a flow rate of 1 mL/min, which mimicking the natural water flow rate. After every 10 min, the column effluents were collected and the mass recovery and retention profiles were monitored. Results indicated that the transport of both carbonaceous colloids was predominantly controlled by surface potential and ionic composition of natural water. The CNPs with its high surface potential (-40 mV) exhibited more column transport and was less susceptible to solution pH (5.6-6.8) variation as compared to GOQDs (-24 mV). The results showed that, monovalent salt (NaCl) was one of the dominating factors for the retention and transport of carbonaceous colloids compared to divalent salt (CaCl2). Furthermore, the presence of natural organic matter (NOM) increased the transport of both carbonaceous colloids and thereby decreases the tendency for column retention.
Collapse
Affiliation(s)
- Shanaz Jahan
- Department of Geology, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia.
| | - Yatimah Binti Alias
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia; University of Malaya Centre for Ionic Liquids (UMCiL), University of Malaya, Kuala Lumpur, 50603, Malaysia
| | | | - Ismail Bin Yusoff
- Department of Geology, Faculty of Science, University of Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
38
|
Chen C, Shang J, Zheng X, Zhao K, Yan C, Sharma P, Liu K. Effect of physicochemical factors on transport and retention of graphene oxide in saturated media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:168-176. [PMID: 29414337 DOI: 10.1016/j.envpol.2018.01.026] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/28/2017] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Fate and transport of graphene oxide (GO) have received much attention recently with the increase of GO applications. This study investigated the effect of salt concentration on the transport and retention behavior of GO particles in heterogeneous saturated porous media. Transport experiments were conducted in NaCl solutions with three concentrations (1, 20, and 50 mM) using six structurally packed columns (two homogeneous and four heterogeneous) which were made of fine and coarse grains. The results showed that GO particles had high mobility in all the homogeneous and heterogeneous columns when solution ionic strength (IS) was low. When IS was high, GO particles showed distinct transport ability in six structurally heterogeneous porous media. In homogeneous columns, decreasing ionic strength and increasing grain size increased the mobility of GO. For the column containing coarse-grained channel, the preferential flow path resulted in an early breakthrough of GO, and further larger contact area between coarse and fine grains caused a lower breakthrough peak and a stronger tailing at different IS. In the layered column, there was significant GO retention at coarse-fine grain interface where water flowed from coarse grain to fine grain. Our results indicated that the fate and transport of GO particles in the natural heterogeneous porous media was highly related to the coupled effect of medium structure and salt solution concentration.
Collapse
Affiliation(s)
- Chong Chen
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Resources and Environment, China Agricultural University, Beijing, 100193, China
| | - Jianying Shang
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Resources and Environment, China Agricultural University, Beijing, 100193, China.
| | - Xiaoli Zheng
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Resources and Environment, China Agricultural University, Beijing, 100193, China
| | - Kang Zhao
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Resources and Environment, China Agricultural University, Beijing, 100193, China
| | - Chaorui Yan
- Key Laboratory of Plant-Soil Interactions, Ministry of Education, Key Laboratory of Arable Land Conservation (North China), Ministry of Agriculture, College of Resources and Environment, China Agricultural University, Beijing, 100193, China
| | - Prabhakar Sharma
- School of Ecology and Environment Studies, Nalanda University, Rajgir, Nalanda, Bihar, India
| | - Kesi Liu
- Dep. of Grassland Science, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
39
|
Kamrani S, Rezaei M, Kord M, Baalousha M. Transport and retention of carbon dots (CDs) in saturated and unsaturated porous media: Role of ionic strength, pH, and collector grain size. WATER RESEARCH 2018; 133:338-347. [PMID: 28864305 DOI: 10.1016/j.watres.2017.08.045] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 07/23/2017] [Accepted: 08/19/2017] [Indexed: 05/14/2023]
Abstract
Carbon-based engineered nanoparticles (ENPs) are widely used in consumer products due to their small size and unique physicochemical properties. Therefore, their release and distribution into the surface and subsurface environment is a subject of concern. Several studies have evaluated the transport and retention of carbon nanotubes and fullerenes, but none investigated the transport and retention of carbon dots (CDs). The aim of this research is to fill this knowledge gap by evaluating the transport and retention of CDs in saturated and unsaturated porous medium. Here, we investigate the effects of solution ionic strength (IS, 1-700 mM NaCl) and pH (4-9), the initial concentration of CDs (50-200 mg L-1), and porous media grain size (0.20-0.50 mm, 0.50-1 mm, 1-1.5 mm and 1.5-2 mm grain diameters) on the transport and retention of CDs in saturated (upward flow) and unsaturated (downward flow) quartz porous media. A mathematical model based on the advection-dispersion equation coupled with the second-order kinetics was used to fit the breakthrough curves and to calculate the attachment and straining rates under the different experimental conditions. These analyses were underpinned by characterization of CD surface functional groups, surface charge and aggregation under the different experimental conditions, calculation of CD-CD and CD-quartz sand interaction potential according to DLVO theory. Transport and retention of CDs in quartz porous media are consistent with those observed for other types of carbon-based ENPs such as fullerenes and carbon nanotubes. Mobility of CDs in both saturated and unsaturated porous media increases with the decrease in ionic strength, increase in pH, and increase in collector grain size. Retention of CDs increases with the increase in IS, decrease in pH and decrease in grain size. Generally, CDs mobility was higher under saturated than under unsaturated flow conditions, for the same experimental conditions. Overall, CDs tend to be highly mobile and could travel for long distances at a wide range of environmental conditions.
Collapse
Affiliation(s)
- Salahaddin Kamrani
- Department of Applied Geology, Faculty of Earth Sciences, Hydrogeology, Kharazmi University, Tehran, Iran.
| | - Mohsen Rezaei
- Department of Applied Geology, Faculty of Earth Sciences, Hydrogeology, Kharazmi University, Tehran, Iran
| | - Mehdi Kord
- Department of Earth Sciences, Faculty of Sciences, University of Kurdistan, Iran
| | - Mohammed Baalousha
- Center for Environmental Nanoscience and Risk, Arnold School of Public Health, University of South Carolina, USA; Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, USA.
| |
Collapse
|
40
|
Radnia H, Solaimany Nazar AR, Rashidi A. Experimental assessment of graphene oxide adsorption onto sandstone reservoir rocks through response surface methodology. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2017.07.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Park MVDZ, Bleeker EAJ, Brand W, Cassee FR, van Elk M, Gosens I, de Jong WH, Meesters JAJ, Peijnenburg WJGM, Quik JTK, Vandebriel RJ, Sips AJAM. Considerations for Safe Innovation: The Case of Graphene. ACS NANO 2017; 11:9574-9593. [PMID: 28933820 DOI: 10.1021/acsnano.7b04120] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
The terms "Safe innovation" and "Safe(r)-by-design" are currently popular in the field of nanotechnology. These terms are used to describe approaches that advocate the consideration of safety aspects already at an early stage of the innovation process of (nano)materials and nanoenabled products. Here, we investigate the possibilities of considering safety aspects during various stages of the innovation process of graphene, outlining what information is already available for assessing potential hazard, exposure, and risks. In addition, we recommend further steps to be taken by various stakeholders to promote the safe production and safe use of graphene.
Collapse
Affiliation(s)
- Margriet V D Z Park
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Eric A J Bleeker
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Walter Brand
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Flemming R Cassee
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Merel van Elk
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Ilse Gosens
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Wim H de Jong
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | | | | | - Joris T K Quik
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Rob J Vandebriel
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| | - Adriënne J A M Sips
- Rijksinstituut voor Volksgezondheid en Milieu , 3720 BA Bilthoven, The Netherlands
| |
Collapse
|
42
|
Yao W, Wang J, Wang P, Wang X, Yu S, Zou Y, Hou J, Hayat T, Alsaedi A, Wang X. Synergistic coagulation of GO and secondary adsorption of heavy metal ions on Ca/Al layered double hydroxides. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 229:827-836. [PMID: 28760526 DOI: 10.1016/j.envpol.2017.06.084] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 06/20/2017] [Accepted: 06/24/2017] [Indexed: 06/07/2023]
Abstract
With the extensive application of graphene oxide (GO), it is noticeable that part of GO is directly/indirectly released into the environment and widespread research indicated that it had adverse influences on human health and ecological balance. In this work, a novel nanobelt-like Ca/Al layered double hydroxides (CA-LDH) was synthesized and applied as efficient coagulant for the removal of GO from aqueous solutions. The results indicated that neutral pH, co-existing cations and higher temperature were beneficial to the coagulation of GO. The sequence of cation effect for promoting of GO coagulation was Ca2+ > Mg2+ > K+ > Na+, whereas the effect of anions on GO coagulation was PO43- > CO32- > SO42- > Cl-. Comparing with anions, the cations showed more dominate effect for GO coagulation than anions. Hydrogen bonds and electrostatic interaction were the main coagulation mechanisms for GO coagulation, which were evidenced by FT-IR and XPS analysis. Specifically, for the first time, the reclaimed product of CA-LDH after GO coagulation (CA-LDH + GO) was applied as adsorbents for the secondary application in the removal of heavy metal ions from aqueous solutions. Interestingly, the CA-LDH + GO still had high adsorption capacities, i.e., the maximum adsorption capacities (qmax) for Cu(II), Pb(II), and Cr(VI) were 122.7 mg/g, 221.2 mg/g and 64.4 mg/g, respectively, higher than other similar materials. This paper highlighted the LDH-based nanomaterials are promising materials for the elimination of environmental pollutants and the migration and transformation of carbon nanomaterials in the natural environment.
Collapse
Affiliation(s)
- Wen Yao
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jian Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Pengyi Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Xiangxue Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Shujun Yu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yidong Zou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Jing Hou
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Tasawar Hayat
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123 Suzhou, PR China
| | - Ahmed Alsaedi
- Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123 Suzhou, PR China
| | - Xiangke Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China; Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions and School for Radiological and Interdisciplinary Sciences, Soochow University, 215123 Suzhou, PR China; NAAM Research Group, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
43
|
Dong S, Sun Y, Gao B, Shi X, Xu H, Wu J, Wu J. Retention and transport of graphene oxide in water-saturated limestone media. CHEMOSPHERE 2017; 180:506-512. [PMID: 28431388 DOI: 10.1016/j.chemosphere.2017.04.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/27/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
In this work, column experiments were conducted to investigate the transport characteristics of graphene oxide (GO) nanoparticles in limestone media under various electrolytes, solution pH, and humic acid (HA) concentration conditions. In the limestone media, GO exhibited relatively low mobility with the mass recovery rate lower than 65.2%, even when solution ionic strength was low. The presence of HA enhanced its mobility. In addition, the presence of S2-, a divalent anion, also promoted GO transport in limestone media compared to Cl- under similar ionic strength conditions through neutralizing more positive charge and thus diminishing the cation bridging. Solution pH showed slight effect on the transport of GO in limestone with the mass recovery range from 40.3% to 51.7%. Over all, decreases in solution pH, HA concentration and increases in solution ionic strength reduced the mobility of GO in the limestone media under the tested conditions. These results indicated both environmental conditions and media characteristics played important roles in controlling GO fate and transport in porous media. The one-site kinetic deposition model was applied to describe the interactions between the GO and limestone media and model simulations fitted the observed experimental data very well. As limestone is an important component of aquiferous media in subsurface, findings from this study elucidated the key factors and processes controlling the fate of GO particles in limestone media, which can inform the prediction and assessment of the risks of GO in groundwater environment.
Collapse
Affiliation(s)
- Shunan Dong
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Yuanyuan Sun
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Xiaoqing Shi
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China.
| | - Hongxia Xu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jianfeng Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jichun Wu
- Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
44
|
Babakhani P, Bridge J, Doong RA, Phenrat T. Continuum-based models and concepts for the transport of nanoparticles in saturated porous media: A state-of-the-science review. Adv Colloid Interface Sci 2017. [PMID: 28641812 DOI: 10.1016/j.cis.2017.06.002] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Environmental applications of nanoparticles (NP) increasingly result in widespread NP distribution within porous media where they are subject to various concurrent transport mechanisms including irreversible deposition, attachment/detachment (equilibrium or kinetic), agglomeration, physical straining, site-blocking, ripening, and size exclusion. Fundamental research in NP transport is typically conducted at small scale, and theoretical mechanistic modeling of particle transport in porous media faces challenges when considering the simultaneous effects of transport mechanisms. Continuum modeling approaches, in contrast, are scalable across various scales ranging from column experiments to aquifer. They have also been able to successfully describe the simultaneous occurrence of various transport mechanisms of NP in porous media such as blocking/straining or agglomeration/deposition/detachment. However, the diversity of model equations developed by different authors and the lack of effective approaches for their validation present obstacles to the successful robust application of these models for describing or predicting NP transport phenomena. This review aims to describe consistently all the important NP transport mechanisms along with their representative mathematical continuum models as found in the current scientific literature. Detailed characterizations of each transport phenomenon in regards to their manifestation in the column experiment outcomes, i.e., breakthrough curve (BTC) and residual concentration profile (RCP), are presented to facilitate future interpretations of BTCs and RCPs. The review highlights two NP transport mechanisms, agglomeration and size exclusion, which are potentially of great importance in controlling the fate and transport of NP in the subsurface media yet have been widely neglected in many existing modeling studies. A critical limitation of the continuum modeling approach is the number of parameters used upon application to larger scales and when a series of transport mechanisms are involved. We investigate the use of simplifying assumptions, such as the equilibrium assumption, in modeling the attachment/detachment mechanisms within a continuum modelling framework. While acknowledging criticisms about the use of this assumption for NP deposition on a mechanistic (process) basis, we found that its use as a description of dynamic deposition behavior in a continuum model yields broadly similar results to those arising from a kinetic model. Furthermore, we show that in two dimensional (2-D) continuum models the modeling efficiency based on the Akaike information criterion (AIC) is enhanced for equilibrium vs kinetic with no significant reduction in model performance. This is because fewer parameters are needed for the equilibrium model compared to the kinetic model. Two major transport regimes are identified in the transport of NP within porous media. The first regime is characterized by higher particle-surface attachment affinity than particle-particle attachment affinity, and operative transport mechanisms of physicochemical filtration, blocking, and physical retention. The second regime is characterized by the domination of particle-particle attachment tendency over particle-surface affinity. In this regime although physicochemical filtration as well as straining may still be operative, ripening is predominant together with agglomeration and further subsequent retention. In both regimes careful assessment of NP fate and transport is necessary since certain combinations of concurrent transport phenomena leading to large migration distances are possible in either case.
Collapse
|
45
|
Wang M, Gao B, Tang D, Sun H, Yin X, Yu C. Effects of temperature on graphene oxide deposition and transport in saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2017; 331:28-35. [PMID: 28242526 DOI: 10.1016/j.jhazmat.2017.02.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 06/06/2023]
Abstract
Laboratory batch sorption and sand column experiments were conducted to examine the effects of temperature (6 and 24°C) on the retention and transport of GO in water-saturated porous media with different combination of solution ionic strength (IS, 1 and 10mM), sand type (natural and acid-cleaned), and grain size (coarse and fine). Although results from batch sorption experiment showed that temperature affected the sorption of GO onto the sand grains at the low IS, the interactions between GO and the sand were relatively weak, which did make the temperature effect prominent. When the IS was 1mM, experimental temperature showed little effect on GO retention and transport regardless of the medium properties. GO was highly mobile in the sand columns with mass recovery rates ranged from 77.3% to 92.4%. When the IS increased to 10mM, temperature showed notable effects on GO retention and transport in saturated porous media. For all the combinations of sand type and grain size, the higher the temperature was, the less mobile GO particles were. The effects of temperature on GO retention and transport in saturated porous media were further verified though simulations from an advection-dispersion-reaction model.
Collapse
Affiliation(s)
- Mei Wang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, 210098, China; Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Bin Gao
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
| | - Deshan Tang
- College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, 210098, China
| | - Huimin Sun
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA; College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xianqiang Yin
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA; College of Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Congrong Yu
- College of Hydrology and Water Conservancy and Water Resources, Hohai University, Nanjing, 210098, China
| |
Collapse
|
46
|
Peng S, Wu D, Ge Z, Tong M, Kim H. Influence of graphene oxide on the transport and deposition behaviors of colloids in saturated porous media. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 225:141-149. [PMID: 28365511 DOI: 10.1016/j.envpol.2017.03.064] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/17/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
The effects of graphene oxide (GO) on the transport and deposition behaviors of colloids with different sizes in packed quartz sand were investigated in both NaCl (10 and 50 mM) and CaCl2 solutions (1 and 5 mM) at pH 6. Fluorescent carboxylate-modified polystyrene latex microspheres (CMLs) with size ranging from 0.2 to 2 μm were utilized as model colloids. Both breakthrough curves and retained profiles of colloids in the presence and absence of GO in suspensions under all examined solution conditions were analyzed. The breakthrough curves of all three different-sized CMLs with GO were higher yet the retained profiles were lower than those without GO at both examined ionic strengths in NaCl solutions. The observation showed that GO increased the transport and decreased the deposition of all three different-sized CMLs in NaCl solutions. However, in CaCl2 solutions, opposite observation was achieved at two different ionic strength conditions. Specifically, the presence of GO increased the transport and decreased the deposition of all three different-sized CMLs in 1 mM CaCl2 solutions, whereas, it decreased the transport and increased the deposition of all three different-sized CMLs in 5 mM CaCl2 solutions. Comparison the breakthrough curves and retained profiles of CMLs versus those of GO yielded that the overall transport and deposition behaviors of all three different-sized CMLs with GO copresent in suspensions agreed well with the transport and deposition behaviors of GO under all examined conditions. The transport and deposition behaviors of CMLs in packed porous media clearly were controlled by those of GO under the conditions investigated in present study due to the adsorption of CMLs onto GO surfaces. Our study showed that once released into natural environment, GO would adsorb (interact with) different types of colloids and thus have significant influence on the fate and transport of colloids in porous media.
Collapse
Affiliation(s)
- Shengnan Peng
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China
| | - Dan Wu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Zhi Ge
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China
| | - Meiping Tong
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.
| | - Hyunjung Kim
- Department of Mineral Resources and Energy Engineering, Chonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do, 561-756, Republic of Korea.
| |
Collapse
|
47
|
He K, Chen G, Zeng G, Peng M, Huang Z, Shi J, Huang T. Stability, transport and ecosystem effects of graphene in water and soil environments. NANOSCALE 2017; 9:5370-5388. [PMID: 28406500 DOI: 10.1039/c6nr09931a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Graphene nanomaterials (GMs), such as graphene oxide (GO) and reduced graphene oxide (rGO), have been widely applied in various fields. Due to the rapid increase in production and application, the inevitable release of GMs into water and soil environments poses potential health and ecosystem risks. Upon exposure, the behavior, transport, and fate of GMs may be altered after interacting with the relevant environmental conditions. GMs can affect the microbial communities as well. Thus, it is imperative to understand the interaction between the GMs and the environmental systems for predicting their risks. For this purpose, this review highlights the influence of the most relevant environmental factors on the stability, aggregation, and transformation of GMs in aquatic environments. Moreover, the transport of GMs and microbial communities changes have also been presented based on the recent findings. To the best of our knowledge, this review covered most of the recent related studies and will allow for accurate predictions of the fate and risks associated with GMs. In consideration of the diversity of GMs and the complexity of environmental factors, further studies should be focused on their inherent properties and amicable development.
Collapse
Affiliation(s)
- Kai He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China.
| | | | | | | | | | | | | |
Collapse
|
48
|
Lu T, Xia T, Qi Y, Zhang C, Chen W. Effects of clay minerals on transport of graphene oxide in saturated porous media. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:655-660. [PMID: 27585368 DOI: 10.1002/etc.3605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Revised: 07/27/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
The presence of kaolinite, montmorillonite, and illite in packed quartz sand inhibited the transport of graphene oxide to different degrees. Transport inhibition was exerted mainly by the presence of positively charged sites on clay edges (which served as favorable deposition sites), whereas the effects on the overall particle-collector interaction energy and flow path were small. Kaolinite exhibited the most significant transport-inhibition effects because of its high percentage of edge area. Environ Toxicol Chem 2017;36:655-660. © 2016 SETAC.
Collapse
Affiliation(s)
- Taotao Lu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, China
| | - Tianjiao Xia
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, China
| | - Yu Qi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, China
| | - Chengdong Zhang
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University, Tianjin, China
| |
Collapse
|
49
|
He JZ, Wang DJ, Fang H, Fu QL, Zhou DM. Inhibited transport of graphene oxide nanoparticles in granular quartz sand coated with Bacillus subtilis and Pseudomonas putida biofilms. CHEMOSPHERE 2017; 169:1-8. [PMID: 27855326 DOI: 10.1016/j.chemosphere.2016.11.040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
Increasing production and use of graphene oxide nanoparticles (GONPs) boost their wide dissemination in the subsurface environments where biofilms occur ubiquitously, representative of the physical and chemical heterogeneities. This study aimed at investigating the influence of Gram-positive Bacillus subtilis (BS) and Gram-negative Pseudomonas putida (PP) biofilms on the transport of GONPs under different ionic strengths (0.1, 0.5, and 1.0 mM CaCl2) at neutral pH 7.2 in water-saturated porous media. Particularly, the X-ray micro-computed tomography was used to quantitatively characterize the pore structures of sand columns in the presence and absence of biofilms. Our results indicated that the presence of biofilms reduced the porosity and narrowed down the pore sizes of packed columns. Transport experiments in biofilm-coated sand showed that biofilms, irrespective of bacterial species, significantly inhibited the mobility of GONPs compared to that in cleaned sand. This could be due to the Ca2+ complexation, increased surface roughness and charge heterogeneities of collectors, and particularly enhanced physical straining caused by biofilms. The two-site kinetic retention model-fitted value of maximum solid-phase concentration (Smax2) for GONPs was higher for biofilm-coated sand than for cleaned sand, demonstrating that biofilms act as favorable sites for GONPs retention. Our findings presented herein are important to deepen our current understanding on the nature of particle-collector interactions.
Collapse
Affiliation(s)
- Jian-Zhou He
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Deng-Jun Wang
- Department of Plant and Soil Sciences, University of Delaware, Newark, DE 19716, United States
| | - Huan Fang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing-Long Fu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong-Mei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
50
|
Xia T, Qi Y, Liu J, Qi Z, Chen W, Wiesner MR. Cation-Inhibited Transport of Graphene Oxide Nanomaterials in Saturated Porous Media: The Hofmeister Effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:828-837. [PMID: 27996240 DOI: 10.1021/acs.est.6b05007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Transport of negatively charged nanoparticles in porous media is largely affected by cations. To date, little is known about how cations of the same valence may affect nanoparticle transport differently. We observed that the effects of cations on the transport of graphene oxide (GO) and sulfide-reduced GO (RGO) in saturated quartz sand obeyed the Hofmeister series; that is, transport-inhibition effects of alkali metal ions followed the order of Na+ < K+ < Cs+, and those of alkaline earth metal ions followed the order of Mg2+ < Ca2+ < Ba2+. With batch adsorption experiments and microscopic data, we verified that cations having large ionic radii (and thus being weakly hydrated) interacted with quartz sand and GO and RGO more strongly than did cations of small ionic radii. In particular, the monovalent Cs+ and divalent Ca2+ and Ba2+, which can form inner-sphere complexes, resulted in very significant deposition of GO and RGO via cation bridging between quartz sand and GO and RGO, and possibly via enhanced straining, due to the enhanced aggregation of GO and RGO from cation bridging. The existence of the Hofmeister effects was further corroborated with the interesting observation that cation bridging was more significant for RGO, which contained greater amounts of carboxyl and phenolic groups (i.e., metal-complexing moieties) than did GO. The findings further demonstrate that transport of nanoparticles is controlled by the complex interplay between nanoparticle surface functionalities and solution chemistry constituents.
Collapse
Affiliation(s)
- Tianjiao Xia
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University , Tianjin 300350, China
| | - Yu Qi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University , Tianjin 300350, China
| | - Jing Liu
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University , Tianjin 300350, China
| | - Zhichong Qi
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University , Tianjin 300350, China
| | - Wei Chen
- College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Nankai University , Tianjin 300350, China
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Center for the Environmental Implications of NanoTechnology, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|