1
|
Brown RJ, Panter GH, Burden N, Weltje L, Wheeler JR, Salinas ER, Wolf Y, Lagadic L. A Decision Logic for the Reliability Assessment and Interpretation of Vitellogenin Measurements. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1933-1935. [PMID: 38980265 DOI: 10.1002/etc.5946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 07/10/2024]
Affiliation(s)
| | | | - Natalie Burden
- The National Centre for the Replacement, Refinement and Reduction of Animals in Research, London, UK
| | - Lennart Weltje
- Agricultural Solutions-Ecotoxicology, BASF SE, Limburgerhof, Germany
| | | | - Edward R Salinas
- R&D, Crop Science Division, Environmental Safety, Bayer AG, Monheim am Rhein, Germany
| | - Yvonne Wolf
- R&D, Crop Science Division, Environmental Safety, Bayer AG, Monheim am Rhein, Germany
| | - Laurent Lagadic
- R&D, Crop Science Division, Environmental Safety, Bayer AG, Monheim am Rhein, Germany
| |
Collapse
|
2
|
Wolf JC, Green JW, Mingo V, Marini JP, Schneider SZ, Fort DJ, Wheeler JR. Historical control histopathology data from amphibian metamorphosis assays and fathead minnow fish short term reproductive assays: A tool for data interpretation. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 267:106811. [PMID: 38159458 DOI: 10.1016/j.aquatox.2023.106811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
The Amphibian Metamorphosis Assay (AMA) is used to determine if a tested chemical has potential to impact the hypothalamic-pituitary-thyroid (HPT) axis of Xenopus laevis tadpoles, while the Fish Short Term Reproduction Assay (FSTRA) assesses potential effects on the hypothalamic-pituitary-gonadal (HPG) axis of fish such as the fathead minnow (Pimephales promelas). Several global regulatory programs routinely require these internationally validated tests be performed to determine the potential endocrine activity of chemicals. As such, they are conducted in accordance with standardized protocols and test criteria, which were originally developed more than a decade ago. Sizeable numbers of AMA and FSTRA studies have since been carried out, which allows for the mining of extensive historical control data (HCD). Such data are useful for investigating the existence of outlier results and aberrant control groups, identifying potential confounding variables, providing context for rare diagnoses, discriminating target from non-target effects, and for refining current testing paradigms. The present paper provides histopathology HCD from 55 AMA studies and 45 fathead minnow FSTRA studies, so that these data may become publicly available and thus aid in the interpretation of future study outcomes. Histopathology is a key endpoint in these assays, in which it is considered to be one of the most sensitive indicators of endocrine perturbation. In the current review, granular explorations of HCD data were used to identify background lesions, to assess the utility of particular diagnostic findings for distinguishing endocrine from non-endocrine effects, and to help determine if specific improvements to established regulatory guidance may be warranted. Knowledge gleaned from this investigation, supplemented by information from other recent studies, provided further context for the interpretation of AMA and FSTRA histopathology results. We recommend HCDs for the AMA and FSTRA be maintained to support the interpretation of study results.
Collapse
Affiliation(s)
- Jeffrey C Wolf
- Experimental Pathology Laboratories, Inc., 45600 Terminal Drive, Sterling, VA 20166, USA.
| | - John W Green
- John W Green Ecostatistical Consulting, LLC 372 Chickory Way, Newark, DE 19711, USA
| | - Valentin Mingo
- Corteva Agriscience, Riedenburger Str. 7, München 81677, Germany
| | | | | | - Douglas J Fort
- Fort Environmental Laboratories, Stillwater, OK 74074, USA
| | - James R Wheeler
- Corteva Agriscience, Zuid-Oostsingel 24D, Bergen op Zoom 4611 BB, the Netherlands
| |
Collapse
|
3
|
Burden N, Brown RJ, Holmes B, Panter GH, Salinas ER, Sewell F, Weltje L, Wheeler JR, Wolf Y, Lagadic L. An international cross-laboratory survey on fish vitellogenin analysis: Methodological challenges and opportunities for best practice. Regul Toxicol Pharmacol 2023; 145:105501. [PMID: 37820895 DOI: 10.1016/j.yrtph.2023.105501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/20/2023] [Accepted: 09/28/2023] [Indexed: 10/13/2023]
Abstract
Vitellogenin (VTG) is a biomarker for possible endocrine activity of chemicals acting via the estrogen, androgen, or steroidogenesis pathways. VTG is assessed in standardised fish guideline studies conducted for regulatory safety assessment of chemicals. VTG data can be highly variable leading to concerns for potential equivocal, false positive and/or negative outcomes. Consequently, additional fish testing may be required to address uncertainties in the VTG response, and possibly erroneous/missed identification of endocrine activity. To better understand the technical challenges of VTG assessment and reporting for regulatory purposes, a survey was sent to 27 testing laboratories performing these analyses. The survey results from 16 respondents (6 from the UK, 3 from the USA, and 7 from the EU) were analysed and discussed in a follow-up webinar. High variability in background VTG concentrations was widely acknowledged and thought to be associated with fish batch, husbandry, laboratory practices, and several methodological aspects. These include sample collection and storage, VTG quantification, data handling, and the benchmarks used for data acceptability. Information gathered in the survey provides a basis for improving and harmonizing the measurement of VTG in fish, and an opportunity to reassess the suitability of current acceptability criteria in test guidelines.
Collapse
Affiliation(s)
- Natalie Burden
- National Centre for the Replacement, Refinement and Reduction of Animals in Research, Gibbs Building, 215 Euston Road, London, NW1 2BE, UK.
| | - Rebecca J Brown
- wca Environment Ltd., Brunel House, Volunteer Way, Faringdon, Oxfordshire, SN7 7YR, UK.
| | - Breanne Holmes
- Bayer AG, R&D Crop Science, Environmental Safety, Alfred-Nobel-Str. 50, 40789, Monheim, Germany.
| | - Grace H Panter
- wca Environment Ltd., Brunel House, Volunteer Way, Faringdon, Oxfordshire, SN7 7YR, UK
| | - Edward R Salinas
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117, Limburgerhof, Germany.
| | - Fiona Sewell
- National Centre for the Replacement, Refinement and Reduction of Animals in Research, Gibbs Building, 215 Euston Road, London, NW1 2BE, UK
| | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117, Limburgerhof, Germany.
| | - James R Wheeler
- Corteva Agriscience, Zuid-Oostsingel 24D, 4611 BB, Bergen op Zoom, the Netherlands.
| | - Yvonne Wolf
- Bayer AG, R&D Crop Science, Environmental Safety, Alfred-Nobel-Str. 50, 40789, Monheim, Germany.
| | - Laurent Lagadic
- Bayer AG, R&D Crop Science, Environmental Safety, Alfred-Nobel-Str. 50, 40789, Monheim, Germany.
| |
Collapse
|
4
|
Brown RJ, Panter GH, Burden N, Salinas ER, Weltje L, Wheeler JR, Wolf Y, Lagadic L. Are changes in vitellogenin concentrations in fish reliable indicators of chemical-induced endocrine activity? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115563. [PMID: 37827093 DOI: 10.1016/j.ecoenv.2023.115563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/03/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023]
Abstract
Vitellogenin (VTG), a biomarker for endocrine activity, is a mechanistic component of the regulatory assessment of potential endocrine-disrupting properties of chemicals. This review of VTG data is based on changes reported for 106 substances in standard fish species. High intra-study and inter-laboratory variability in VTG concentrations was confirmed, as well as discrepancies in interpretation of results based on large differences between fish in the dilution water versus solvent control, or due to the presence of outlier measurements. VTG responses in fish were ranked against predictions for estrogen receptor agonist activity and aromatase inhibition from bioactivity model output and ToxCast in vitro assay results, respectively. These endocrine mechanisms explained most of the VTG responses in the absence of systemic toxicity, the magnitude of the VTG response being proportional to the in vitro potency. Interpretation of the VTG data was sometimes confounded by an alternative endocrine mechanism of action. There was evidence for both false positive and negative responses for VTG synthesis, but overall, it was rare for substances without endocrine activity in vitro to cause a concentration-dependent VTG response in fish in the absence of systemic toxicity. To increase confidence in the VTG results, we recommend improvements in the VTG measurement methodologies and greater transparency in reporting of VTG data (including quality control criteria for assay performance). This review supports the application of New Approach Methodologies (NAMs) by demonstrating that endocrine activity in vitro from mammalian cell lines is predictive for in vivo VTG response in fish, suggesting that in vitro mechanistic data could be used more broadly in decision-making to help reduce animal testing.
Collapse
Affiliation(s)
- Rebecca J Brown
- wca, Brunel House, Volunteer Way, Faringdon, Oxfordshire SN7 7YR, UK.
| | - Grace H Panter
- wca, Brunel House, Volunteer Way, Faringdon, Oxfordshire SN7 7YR, UK
| | - Natalie Burden
- NC3Rs, Gibbs Building, 215 Euston Road, London NW1 2BE, UK
| | - Edward R Salinas
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117 Limburgerhof, Germany; Bayer AG, R&D, Crop Science Division, Environmental Safety, Alfred-Nobel Strasse 50, 40789 Monheim am Rhein, Germany
| | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117 Limburgerhof, Germany
| | - James R Wheeler
- Corteva Agriscience, Zuid-Oostsingel 24D, 4611 BB Bergen op Zoom, The Netherlands
| | - Yvonne Wolf
- Bayer AG, R&D, Crop Science Division, Environmental Safety, Alfred-Nobel Strasse 50, 40789 Monheim am Rhein, Germany
| | - Laurent Lagadic
- Bayer AG, R&D, Crop Science Division, Environmental Safety, Alfred-Nobel Strasse 50, 40789 Monheim am Rhein, Germany
| |
Collapse
|
5
|
Panter GH, Brown RJ, Jones A, Körner O, Lagadic L, Weltje L. Detection of anti-androgenic activity of chemicals in fish studies: a data review. Crit Rev Toxicol 2023; 53:326-338. [PMID: 37526219 DOI: 10.1080/10408444.2023.2232398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 08/02/2023]
Abstract
A systematic review was conducted on the sensitivity of fish testing guidelines to detect the anti-androgenic activity of substances. Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) was used to investigate the conservation of the androgen receptor (AR) between humans and fish, and among fish species recommended in test guidelines. The AR is conserved between fish species and humans (i.e. ligand binding domain [LBD] homology ≥70%) and among the recommended fish species (LBD homology >85%). For model anti-androgens, we evaluated literature data on in vitro anti-androgenic activity in fish-specific receptor-based assays and changes in endpoints indicative of endocrine modulation from in vivo studies. Anti-androgenic activity was most consistently and reliably detected in in vitro and in vivo mechanistic studies with co-exposure to an androgen (spiggin in vitro assay, Rapid Androgen Disruption Activity Reporter [RADAR] Assay, and Androgenised Female Stickleback Screen). Regardless of study design (Fish Short-Term Reproduction Assay [FSTRA], Fish Sexual Development Test [FSDT], partial or full life-cycle tests), or endpoint (vitellogenin, secondary sexual characteristics, gonadal histopathology, sex ratio), there was no consistent evidence for detecting anti-androgenic activity in studies without androgen co-exposure, even for the most potent substances (while less potent substances may induce no (clear) response). Therefore, based on studies without androgen co-exposure (35 FSTRAs and 22 other studies), the other studies (including the FSDT) do not outperform the FSTRA for detecting potent anti-androgenic activity, which if suspected, would be best addressed with a RADAR assay. Overall, fish do not appear particularly sensitive to mammalian anti-androgens.
Collapse
Affiliation(s)
- Grace H Panter
- wca, Brunel House, Volunteer Way, Faringdon, Oxfordshire, UK
| | - Rebecca J Brown
- wca, Brunel House, Volunteer Way, Faringdon, Oxfordshire, UK
| | - Alan Jones
- ADAMA US, Environmental Safety, Raleigh, NC, USA
| | - Oliver Körner
- ADAMA Agricultural Solutions Ltd., Environmental Safety, Köln, Germany
| | - Laurent Lagadic
- Bayer AG, R&D, Crop Science Division, Environmental Safety, Monheim am Rhein, Germany
| | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Limburgerhof, Germany
| |
Collapse
|
6
|
Robitaille J, Denslow ND, Escher BI, Kurita-Oyamada HG, Marlatt V, Martyniuk CJ, Navarro-Martín L, Prosser R, Sanderson T, Yargeau V, Langlois VS. Towards regulation of Endocrine Disrupting chemicals (EDCs) in water resources using bioassays - A guide to developing a testing strategy. ENVIRONMENTAL RESEARCH 2022; 205:112483. [PMID: 34863984 DOI: 10.1016/j.envres.2021.112483] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 06/13/2023]
Abstract
Endocrine disrupting chemicals (EDCs) are found in every environmental medium and are chemically diverse. Their presence in water resources can negatively impact the health of both human and wildlife. Currently, there are no mandatory screening mandates or regulations for EDC levels in complex water samples globally. Bioassays, which allow quantifying in vivo or in vitro biological effects of chemicals are used commonly to assess acute toxicity in water. The existing OECD framework to identify single-compound EDCs offers a set of bioassays that are validated for the Estrogen-, Androgen-, and Thyroid hormones, and for Steroidogenesis pathways (EATS). In this review, we discussed bioassays that could be potentially used to screen EDCs in water resources, including in vivo and in vitro bioassays using invertebrates, fish, amphibians, and/or mammalians species. Strengths and weaknesses of samples preparation for complex water samples are discussed. We also review how to calculate the Effect-Based Trigger values, which could serve as thresholds to determine if a given water sample poses a risk based on existing quality standards. This work aims to assist governments and regulatory agencies in developing a testing strategy towards regulation of EDCs in water resources worldwide. The main recommendations include 1) opting for internationally validated cell reporter in vitro bioassays to reduce animal use & cost; 2) testing for cell viability (a critical parameter) when using in vitro bioassays; and 3) evaluating the recovery of the water sample preparation method selected. This review also highlights future research avenues for the EDC screening revolution (e.g., 3D tissue culture, transgenic animals, OMICs, and Adverse Outcome Pathways (AOPs)).
Collapse
Affiliation(s)
- Julie Robitaille
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Quebec City, QC, Canada
| | | | - Beate I Escher
- Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany; Eberhard Karls University Tübingen, Tübingen, Germany
| | | | - Vicki Marlatt
- Simon Fraser University, Burnaby, British Columbia, Canada
| | | | - Laia Navarro-Martín
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Barcelona, Spain
| | | | - Thomas Sanderson
- Centre Armand-Frappier Santé Biotechnologie, INRS, Laval, QC, Canada
| | | | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut National de La Recherche Scientifique (INRS), Quebec City, QC, Canada.
| |
Collapse
|
7
|
Burden N, Embry MR, Hutchinson TH, Lynn SG, Maynard SK, Mitchell CA, Pellizzato F, Sewell F, Thorpe KL, Weltje L, Wheeler JR. Investigating endocrine-disrupting properties of chemicals in fish and amphibians: Opportunities to apply the 3Rs. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:442-458. [PMID: 34292658 PMCID: PMC9292818 DOI: 10.1002/ieam.4497] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/13/2021] [Accepted: 07/16/2021] [Indexed: 05/04/2023]
Abstract
Many regulations are beginning to explicitly require investigation of a chemical's endocrine-disrupting properties as a part of the safety assessment process for substances already on or about to be placed on the market. Different jurisdictions are applying distinct approaches. However, all share a common theme requiring testing for endocrine activity and adverse effects, typically involving in vitro and in vivo assays on selected endocrine pathways. For ecotoxicological evaluation, in vivo assays can be performed across various animal species, including mammals, amphibians, and fish. Results indicating activity (i.e., that a test substance may interact with the endocrine system) from in vivo screens usually trigger further higher-tier in vivo assays. Higher-tier assays provide data on adverse effects on relevant endpoints over more extensive parts of the organism's life cycle. Both in vivo screening and higher-tier assays are animal- and resource-intensive and can be technically challenging to conduct. Testing large numbers of chemicals will inevitably result in the use of large numbers of animals, contradicting stipulations set out within many regulatory frameworks that animal studies be conducted as a last resort. Improved strategies are urgently required. In February 2020, the UK's National Centre for the 3Rs and the Health and Environmental Sciences Institute hosted a workshop ("Investigating Endocrine Disrupting Properties in Fish and Amphibians: Opportunities to Apply the 3Rs"). Over 50 delegates attended from North America and Europe, across academia, laboratories, and consultancies, regulatory agencies, and industry. Challenges and opportunities in applying refinement and reduction approaches within the current animal test guidelines were discussed, and utilization of replacement and/or new approach methodologies, including in silico, in vitro, and embryo models, was explored. Efforts and activities needed to enable application of 3Rs approaches in practice were also identified. This article provides an overview of the workshop discussions and sets priority areas for follow-up. Integr Environ Assess Manag 2022;18:442-458. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
| | | | - Thomas H. Hutchinson
- School of Geography, Earth & Environmental SciencesUniversity of PlymouthPlymouthUK
| | - Scott G. Lynn
- US Environmental Protection Agency (EPA)Office of Science Coordination and PolicyWashingtonDCUSA
- Present address:
US Environmental Protection Agency (EPA)Office of Pesticide ProgramsWashingtonDCUSA
| | | | | | | | | | - Karen L. Thorpe
- Centre for Chemical Safety and StewardshipFera Science Ltd.YorkUK
| | - Lennart Weltje
- BASF SE, Agricultural Solutions−EcotoxicologyLimburgerhofGermany
| | | |
Collapse
|
8
|
Cavallin JE, Beihoffer J, Blackwell BR, Cole AR, Ekman DR, Hofer R, Jastrow A, Kinsey J, Keteles K, Maloney EM, Parman J, Winkelman DL, Villeneuve DL. Effects-based monitoring of bioactive compounds associated with municipal wastewater treatment plant effluent discharge to the South Platte River, Colorado, USA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 289:117928. [PMID: 34426200 PMCID: PMC9169558 DOI: 10.1016/j.envpol.2021.117928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 05/05/2023]
Abstract
Previous studies have detected numerous organic contaminants and in vitro bioactivities in surface water from the South Platte River near Denver, Colorado, USA. To evaluate the temporal and spatial distribution of selected contaminants of emerging concern, water samples were collected throughout 2018 and 2019 at 11 sites within the S. Platte River and surrounding tributaries with varying proximities to a major wastewater treatment plant (WWTP). Water samples were analyzed for pharmaceuticals, pesticides, steroid hormones, and wastewater indicators and screened for in vitro biological activities. Multiplexed, in vitro assays that simultaneously screen for agonistic activity against 24 human nuclear receptors detected estrogen receptor (ER), peroxisome proliferator activated receptor-gamma (PPARγ), and glucocorticoid receptor (GR) bioactivities in water samples near the WWTP outflow. Targeted in vitro bioassays assessing ER, GR, and PPARγ agonism corroborated bioactivities for ER (up to 55 ± 9.7 ng/L 17β-estradiol equivalents) and GR (up to 156 ± 28 ng/L dexamethasone equivalents), while PPARγ activity was not confirmed. To evaluate the potential in vivo significance of the bioactive contaminants, sexually-mature fathead minnows were caged at six locations upstream and downstream of the WWTP for 5 days after which targeted gene expression analyses were performed. Significant up-regulation of male hepatic vitellogenin was observed at sites with corresponding in vitro ER activity. No site-related differences in GR-related transcript abundance were detected in female adipose or male livers, suggesting observed environmental concentrations of GR-active contaminants do not induce a detectable in vivo response. In line with the lack of detectable targeted in vitro PPARɣ activity, there were no significant effects on PPARɣ-related gene expression. Although the chemicals responsible for GR and PPAR-mediated bioactivities are unknown, results from the present study provide insights into the significance (or lack thereof) of these bioactivities relative to short-term in situ fish exposures.
Collapse
Affiliation(s)
- Jenna E Cavallin
- US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA.
| | - Jon Beihoffer
- US EPA, National Enforcement Investigations Center, Denver, CO, USA
| | - Brett R Blackwell
- US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Alexander R Cole
- Oak Ridge Institute for Science and Education, US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | - Drew R Ekman
- US EPA, Ecosystem Processes Division, Athens, GA, USA
| | - Rachel Hofer
- Oak Ridge Institute for Science and Education, US EPA, Great Lakes Toxicology and Ecology Division, Duluth, MN, USA
| | | | | | - Kristen Keteles
- US EPA, National Enforcement Investigations Center, Denver, CO, USA
| | - Erin M Maloney
- University of Minnesota, Cooperative Training Agreement, US EPA, Duluth, MN, USA
| | - Jordan Parman
- Metro Wastewater Reclamation District, Denver, CO, USA
| | - Dana L Winkelman
- U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Fort Collins, CO, USA
| | | |
Collapse
|
9
|
Onishi Y, Tatarazako N, Koshio M, Okamura T, Watanabe H, Sawai A, Yamamoto J, Ishikawa H, Sato T, Kawashima Y, Yamazaki K, Iguchi T. Summary of reference chemicals evaluated by the fish short-term reproduction assay, OECD TG229, using Japanese Medaka, Oryzias latipes. J Appl Toxicol 2021; 41:1200-1221. [PMID: 33486801 PMCID: PMC8359193 DOI: 10.1002/jat.4104] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/14/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022]
Abstract
Under the Organisation for Economic Co-operation and Development (OECD), the Ministry of the Environment of Japan (MOE) added Japanese medaka (Oryzias latipes) to the test guideline fish short-term reproduction assay (FSTRA) developed by the United States Environmental Protection Agency (US EPA) using fathead minnow (Pimephales promelas). The FSTRA was designed to detect endocrine disrupting effects of chemicals interacting with the hypothalamic-pituitary-gonadal axis (HPG axis) such as agonists or antagonists on the estrogen receptor (Esr) and/or the androgen receptor (AR) and steroidogenesis inhibitors. We conducted the FSTRA with Japanese medaka, in accordance with OECD test guideline number 229 (TG229), for 16 chemicals including four Esr agonists, two Esr antagonists, three AR agonists, two AR antagonists, two steroidogenesis inhibitors, two progesterone receptor agonists, and a negative substance, and evaluated the usability and the validity of the FSTRA (TG229) protocol. In addition, in vitro reporter gene assays (RGAs) using Esr1 and ARβ of Japanese medaka were performed for the 16 chemicals, to support the interpretation of the in vivo effects observed in the FSTRA. In the present study, all the test chemicals, except an antiandrogenic chemical and a weak Esr agonist, significantly reduced the reproductive status of the test fish, that is, fecundity or fertility, at concentrations where no overt toxicity was observed. Moreover, vitellogenin (VTG) induction in males and formation of secondary sex characteristics (SSC), papillary processes on the anal fin, in females was sensitive endpoints to Esr and AR agonistic effects, respectively, and might be indicators of the effect concentrations in long-term exposure. Overall, it is suggested that the in vivo FSTRA supported by in vitro RGA data can adequately detect effects on the test fish, O. latipes, and probably identify the mode of action (MOA) of the chemicals tested.
Collapse
Affiliation(s)
- Yuta Onishi
- Institute of Environmental EcologyIDEA Consultants, Inc.YaizuJapan
| | - Norihisa Tatarazako
- Department of Science and Technology for Biological Resources and Environment, Graduate School of AgricultureEhime UniversityMatsuyamaJapan
- Center for Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaJapan
| | - Masaaki Koshio
- Center for Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaJapan
| | - Tetsuro Okamura
- Institute of Environmental EcologyIDEA Consultants, Inc.YaizuJapan
| | - Haruna Watanabe
- Center for Environmental Risk ResearchNational Institute for Environmental StudiesTsukubaJapan
| | - Atsushi Sawai
- Institute of Environmental EcologyIDEA Consultants, Inc.YaizuJapan
| | - Jun Yamamoto
- Institute of Environmental EcologyIDEA Consultants, Inc.YaizuJapan
| | | | - Tomomi Sato
- NanobioscienceYokohama City UniversityYokohamaJapan
| | | | - Kunihiko Yamazaki
- Environmental Health DepartmentMinistry of the EnvironmentTokyoJapan
| | | |
Collapse
|
10
|
Ankley GT, Berninger JP, Blackwell BR, Cavallin JE, Collette TW, Ekman DR, Fay KA, Feifarek DJ, Jensen KM, Kahl MD, Mosley JD, Poole ST, Randolph EC, Rearick D, Schroeder AL, Swintek J, Villeneuve DL. Pathway-Based Approaches for Assessing Biological Hazards of Complex Mixtures of Contaminants: A Case Study in the Maumee River. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1098-1122. [PMID: 33270248 PMCID: PMC9554926 DOI: 10.1002/etc.4949] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/16/2020] [Accepted: 11/25/2020] [Indexed: 05/07/2023]
Abstract
Assessment of ecological risks of chemicals in the field usually involves complex mixtures of known and unknown compounds. We describe the use of pathway-based chemical and biological approaches to assess the risk of chemical mixtures in the Maumee River (OH, USA), which receives a variety of agricultural and urban inputs. Fathead minnows (Pimephales promelas) were deployed in cages for 4 d at a gradient of sites along the river and adjoining tributaries in 2012 and during 2 periods (April and June) in 2016, in conjunction with an automated system to collect composite water samples. More than 100 industrial chemicals, pharmaceuticals, and pesticides were detected in water at some of the study sites, with the greatest number typically found near domestic wastewater treatment plants. In 2016, there was an increase in concentrations of several herbicides from April to June at upstream agricultural sites. A comparison of chemical concentrations in site water with single chemical data from vitro high-throughput screening (HTS) assays suggested the potential for perturbation of multiple biological pathways, including several associated with induction or inhibition of different cytochrome P450 (CYP) isozymes. This was consistent with direct effects of water extracts in an HTS assay and induction of hepatic CYPs in caged fish. Targeted in vitro assays and measurements in the caged fish suggested minimal effects on endocrine function (e.g., estrogenicity). A nontargeted mass spectroscopy-based analysis suggested that hepatic endogenous metabolite profiles in caged fish covaried strongly with the occurrence of pesticides and pesticide degradates. These studies demonstrate the application of an integrated suite of measurements to help understand the effects of complex chemical mixtures in the field. Environ Toxicol Chem 2021;40:1098-1122. © 2020 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- GT Ankley
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
- Corresponding Author: Gerald Ankley;
| | - JP Berninger
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - BR Blackwell
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - JE Cavallin
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - TW Collette
- US Environmental Protection Agency, Ecosystem Processes Division, Athens, Georgia, USA
| | - DR Ekman
- US Environmental Protection Agency, Ecosystem Processes Division, Athens, Georgia, USA
| | - KA Fay
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - DJ Feifarek
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - KM Jensen
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - MD Kahl
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - JD Mosley
- US Environmental Protection Agency, Ecosystem Processes Division, Athens, Georgia, USA
| | - ST Poole
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - EC Randolph
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| | - D Rearick
- General Dynamics Information Technology, Great Lakes Toxicology and Ecology Division Duluth, Minnesota, USA
| | - AL Schroeder
- University of Minnesota – Crookston, Math, Science, and Technology Department, Crookston, Minnesota, USA
| | - J Swintek
- Badger Technical Services, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota. USA
| | - DL Villeneuve
- US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, Minnesota, USA
| |
Collapse
|
11
|
Houck KA, Simha A, Bone A, Doering JA, Vliet SMF, LaLone C, Medvedev A, Makarov S. Evaluation of a multiplexed, multispecies nuclear receptor assay for chemical hazard assessment. Toxicol In Vitro 2021; 72:105016. [PMID: 33049310 PMCID: PMC11267479 DOI: 10.1016/j.tiv.2020.105016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/21/2020] [Accepted: 10/05/2020] [Indexed: 01/07/2023]
Abstract
Sensitivity to potential endocrine disrupting chemicals in the environment varies across species and is influenced by sequence conservation of their nuclear receptor targets. Here, we evaluated a multiplexed, in vitro assay testing receptors relevant to endocrine and metabolic disruption from five species. The TRANS-FACTORIAL™ system of human nuclear receptors was modified to include additional species: mouse (Mus musculus), frog (Xenopus laevis), zebrafish (Danio rerio), chicken (Gallus gallus), and turtle (Chrysemys picta). Receptors regulating endocrine function and xenobiotic recognition were included, specifically: ERα, ERβ, AR, TRα, TRβ, PPARγ and PXR. The assay, ECOTOX-FACTORIAL™, was evaluated with 191 chemicals enriched with known receptor ligands. Hierarchical clustering of potency values demonstrated strong coherence of receptor families. Interspecies comparisons of responses within a receptor family showed moderate to high concordance for potencies under 50 μM. PPARγ showed high concordance between mammalian species, 89%, but only 63% between mammalian and zebrafish. For chemicals with potencies below 1 μM, concordances were 89-100% for all receptors except PXR. Concordance showed a strong positive relationship to ligand-binding domain sequence similarity and critical amino acid residues obtained by the Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool. In combination with SeqAPASS, ECOTOX-FACTORIAL may provide efficient screening of important receptors to identify species of high priority for effects monitoring.
Collapse
Affiliation(s)
- Keith A Houck
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | - Anita Simha
- ORAU, Contractor to U.S. Environmental Protection Agency through the National Student Services Contract, United States
| | - Audrey Bone
- Center for Computational Toxicology and Exposure, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Jon A Doering
- National Research Council, 6201 Congdon Blvd., Duluth, MN 55804, USA
| | - Sara M F Vliet
- Office of Research and Development, Center for Computational Toxicology and Ecology, Great Lakes Toxicology and Ecology Division, Oak Ridge Institute for Science and Education, U.S. Environmental Protection Agency, Duluth, MN 55804, USA
| | - Carlie LaLone
- Great Lakes Toxicology and Ecology Division, Office of Research and Development, U.S. Environmental Protection Agency, Duluth, MN, United States of America
| | - Alex Medvedev
- Attagene, Inc., 7030 Kit Creek Rd, Morrisville, NC 27560, United States of America
| | - Sergei Makarov
- Attagene, Inc., 7030 Kit Creek Rd, Morrisville, NC 27560, United States of America
| |
Collapse
|
12
|
Reproductive Toxicity of 3,4-dichloroaniline (3,4-DCA) on Javanese Medaka ( Oryziasjavanicus, Bleeker 1854). Animals (Basel) 2021; 11:ani11030798. [PMID: 33809309 PMCID: PMC8000808 DOI: 10.3390/ani11030798] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/02/2021] [Accepted: 03/10/2021] [Indexed: 01/18/2023] Open
Abstract
Compound 3,4-dichloroaniline (3,4-DCA) is a metabolite of several urea herbicides and intermediate chemical of several industrial products. Moreover, 3,4-DCA has been frequently detected in aquatic ecosystems around the world. This aniline is more toxic than the parent chemicals, and it affects non-target organisms. This study evaluated a 21-day reproductive response of an emerging aquatic vertebrate model, Javanese medaka (Oryzias javanicus), exposed to 3,4-DCA. Fecundity and gonads histopathology were observed. The spawning rate and fertilisation reduced significantly in the highest exposed-group (250 µg/L). Gonadosomatic index (GSI) was significantly low in females exposed to 250 µg/L. No substantial structural alteration of male gonads. However, oocyte development and ovarian cell structure were disrupted in 250 µg/L exposed females. The gonadal developmental was not affected in the males; however, a significant reduction in the developmental of female gonads was observed at 250 µg/L. These results show that 3,4-DCA interfere with the reproduction of Javanese medaka through fecundity and alteration of gonadal tissues.
Collapse
|
13
|
Cavallin JE, Battaglin WA, Beihoffer J, Blackwell BR, Bradley PM, Cole AR, Ekman DR, Hofer RN, Kinsey J, Keteles K, Weissinger R, Winkelman DL, Villeneuve DL. Effects-Based Monitoring of Bioactive Chemicals Discharged to the Colorado River before and after a Municipal Wastewater Treatment Plant Replacement. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:974-984. [PMID: 33373525 PMCID: PMC8135223 DOI: 10.1021/acs.est.0c05269] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Monitoring of the Colorado River near the Moab, Utah, wastewater treatment plant (WWTP) outflow has detected pharmaceuticals, hormones, and estrogen-receptor (ER)-, glucocorticoid receptor (GR)-, and peroxisome proliferator-activated receptor-gamma (PPARγ)-mediated biological activities. The aim of the present multi-year study was to assess effects of a WWTP replacement on bioactive chemical (BC) concentrations. Water samples were collected bimonthly, pre- and post-replacement, at 11 sites along the Colorado River upstream and downstream of the WWTP and analyzed for in vitro bioactivities (e.g., agonism of ER, GR, and PPARγ) and BC concentrations; fathead minnows were cage deployed pre- and post-replacement at sites with varying proximities to the WWTP. Before the WWTP replacement, in vitro ER (24 ng 17β-estradiol equivalents/L)-, GR (60 ng dexamethasone equivalents/L)-, and PPARγ-mediated activities were detected at the WWTP outflow but diminished downstream. In March 2018, the WWTP effluent was acutely toxic to the fish, likely due to elevated ammonia concentrations. Following the WWTP replacement, ER, GR, and PPARγ bioactivities were reduced by approximately 60-79%, no toxicity was observed in caged fish, and there were marked decreases in concentrations of many BCs. Results suggest that replacement of the Moab WWTP achieved a significant reduction in BC concentrations to the Colorado River.
Collapse
Affiliation(s)
- Jenna E. Cavallin
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN
- Corresponding author: Jenna E. Cavallin, US Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd., Duluth, MN 55804, , 218-529-5246
| | | | - Jon Beihoffer
- U.S. Environmental Protection Agency, National Enforcement Investigations Center, Region 8, Denver, CO
| | - Brett R. Blackwell
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN
| | - Paul M. Bradley
- U.S. Geological Survey, South Atlantic Water Science Center, Columbia, SC
| | - Alex R. Cole
- U.S. Environmental Protection Agency, ORISE Participant, Great Lakes Toxicology and Ecology Division, Duluth, MN
| | - Drew R. Ekman
- U.S. Environmental Protection Agency, Ecosystem Processes Division, Athens, GA
| | - Rachel N. Hofer
- U.S. Environmental Protection Agency, ORISE Participant, Great Lakes Toxicology and Ecology Division, Duluth, MN
| | - Julie Kinsey
- U.S. Environmental Protection Agency, Region 8, Denver, CO
| | - Kristen Keteles
- U.S. Environmental Protection Agency, National Enforcement Investigations Center, Region 8, Denver, CO
| | | | - Dana L. Winkelman
- U.S. Geological Survey, Colorado Cooperative Fish and Wildlife Research Unit, Colorado State University, Fort Collins, CO
| | - Daniel L. Villeneuve
- U.S. Environmental Protection Agency, Great Lakes Toxicology and Ecology Division, Duluth, MN
| |
Collapse
|
14
|
Blackwell BR, Ankley GT. Simultaneous determination of a suite of endogenous steroids by LC-APPI-MS: Application to the identification of endocrine disruptors in aquatic toxicology. J Chromatogr B Analyt Technol Biomed Life Sci 2021; 1163:122513. [PMID: 33440276 DOI: 10.1016/j.jchromb.2020.122513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 12/11/2020] [Accepted: 12/18/2020] [Indexed: 10/22/2022]
Abstract
Exposure to endocrine-disrupting compounds (EDCs) can alter steroid hormone production in vertebrates, sometimes leading to adverse reproductive or developmental effects. Liquid chromatography mass spectrometry methods are the gold standard for analyte confirmation and quantification in biological matrices, but radioimmunoassays (RIAs) are most commonly used for measurement of select steroid hormones in aquatic toxicology studies. Existing methods for steroid quantification often employ derivatization, limiting the range of steroids that can be simultaneously measured in a single process. In the current study, a method for the simultaneous measurement of thirteen endogenous steroids in small sample volumes without derivatization using liquid chromatography atmospheric pressure photoionization tandem mass spectrometry (LC-APPI-MS/MS) was developed. Several physiologically important steroids, including 11-deoxycortisol, 11-ketotestosterone, 17α- and 17β-estradiol, 17α-hydroxyprogesterone, 17,20β-dihydroxyprogesterone, 17,20β,21-trihydroxyprogesterone, androstenedione, cortisol, estriol, estrone, progesterone, and testosterone, were selected for the analysis. The method was validated for application to small volumes of fish plasma and fish holding water. Method detection limits using only 10 µL of plasma ranged from 0.05 to 1.0 ng/mL. As a potential surrogate for plasma steroid measurements, fish holding water was analyzed to measure excreted steroids. Lower limits of quantification when using 0.25 L of water ranged from 0.05 to 1.0 ng/L. The validated method was applied to two different experiments with small fish species exposed to an EDC known to affect steroid synthesis, fadrozole. Concentrations of the 13 steroids were measured in plasma or holding water from the studies. This work demonstrates the potential application of the developed method to measure endogenous steroids for identification of EDCs in aquatic toxicology studies.
Collapse
Affiliation(s)
- Brett R Blackwell
- US EPA, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA.
| | - Gerald T Ankley
- US EPA, Great Lakes Toxicology and Ecology Division, 6201 Congdon Blvd, Duluth, MN 55804, USA
| |
Collapse
|
15
|
Wheeler JR, Gao Z, Lagadic L, Salinas ER, Weltje L, Burden N. Hormone data collection in support of endocrine disruption (ED) assessment for aquatic vertebrates: Pragmatic and animal welfare considerations. ENVIRONMENT INTERNATIONAL 2021; 146:106287. [PMID: 33276311 DOI: 10.1016/j.envint.2020.106287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/19/2020] [Accepted: 11/16/2020] [Indexed: 06/12/2023]
Affiliation(s)
- James R Wheeler
- Shell International B.V., Shell Health, Carel van Bylandtlaan 16, 2596 HR The Hague, the Netherlands.
| | - Zhenglei Gao
- Bayer AG Research and Development, Crop Science, Environmental Safety, Environmental Effects, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany.
| | - Laurent Lagadic
- Bayer AG Research and Development, Crop Science, Environmental Safety, Environmental Effects, Alfred-Nobel-Straße 50, 40789 Monheim am Rhein, Germany.
| | - Edward R Salinas
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117 Limburgerhof, Germany.
| | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117 Limburgerhof, Germany.
| | - Natalie Burden
- NC3Rs, Gibbs Building, 215 Euston Road, London NW1 2BE, UK.
| |
Collapse
|
16
|
Zhang P, Lu G, Liu J, Yan Z, Wang Y. Toxicological responses of Carassius auratus induced by benzophenone-3 exposure and the association with alteration of gut microbiota. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141255. [PMID: 32771788 DOI: 10.1016/j.scitotenv.2020.141255] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
Gut microbiota plays a fundamental role in host's physiology. However, the effect of organic UV filters, an emerging contaminant on gut microbiota is poorly understood. Here, fish (Carassius auratus) were exposed to 2, 20 and 200 μg/L of benzophenone-3 (BP3) for 28 days to explore the toxicological effects and its association with the changes in the gut microbiota. The BP3 accumulation is time and dose dependent in the liver and intestine. Under BP3 subchronic exposure, fish's body and intestinal weights, reactive oxygen species (ROS), immunoglobulin M (IgM) and vitellogenin (VTG) levels, as well as 7-benzyloxy-4-trifluoromethylcoumarin-O-debenzyloxylase (BFCOD) activities, were decreased. BP3 exposure has increased the abundance of Bacteroidetes phylum and Mycobacterium genus. Bioinformatic analysis revealed that the levels of ROS, IgM, estrogen receptor and VTG, activities of lysozyme, BFCOD and 7-ethoxyresorufin-O-deethylase were significantly correlated with the relative abundance of intestinal microbial genus (p < 0.05). These results highlight for the first time the association between the effects of organic UV filters on the antioxidant, immune, endocrine, and metabolic systems of the fish and changes in the gut microbiota, which extend knowledge of the role of gut microbiota in ecotoxicology.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
17
|
Wheeler JR, Segner H, Weltje L, Hutchinson TH. Interpretation of sexual secondary characteristics (SSCs) in regulatory testing for endocrine activity in fish. CHEMOSPHERE 2020; 240:124943. [PMID: 31574443 DOI: 10.1016/j.chemosphere.2019.124943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/20/2019] [Accepted: 09/21/2019] [Indexed: 06/10/2023]
Abstract
Secondary sexual characteristics (SSCs) are important features that have evolved in many fish species because of inter-individual competition for mates. SSCs are crucial not only for sexual selection, but also for other components of the reproductive process and parental care. Externally, they are especially clear in males (for instance, tubercles, fatpad, anal finnage, colouration) but are also externally present in the females (for instance, ovipositor). These characters are under hormonal control and as such there has been much interest in incorporating them as measures in fish test methods to assess the potential endocrine activity of chemicals. Here we describe the external SSCs in typical laboratory test species for endocrine testing - fathead minnow (Pimephales promelas), Japanese medaka (Oryzias latipes), zebrafish (Danio rerio) and the three-spined stickleback (Gasterosteus aculeatus L.). We also provide some examples and discuss the utility of SSC responses to the endocrine activity of chemicals in the field and the laboratory. This paper is not aimed to provide a comprehensive review of SSCs in fish but presents a view on the assessment of SSCs in regulatory testing. Due to the current regulatory importance of establishing an endocrine mode-of-action for chemicals, we also consider other, non-endocrine factors that may lead to SSC responses in fish. We conclude with recommendations for how the assessment of SSCs in fish could be usefully incorporated into the endocrine hazard and risk assessment of chemicals.
Collapse
Affiliation(s)
- James R Wheeler
- Shell Health, Shell International B.V., Carel van Bylandtlaan 16, 2596, HR, The Hague, the Netherlands.
| | - Helmut Segner
- Centre for Fish and Wildlife Health, University of Bern, Laenggass-Strasse 122, 3012, Bern, Switzerland
| | - Lennart Weltje
- BASF SE, Agricultural Solutions - Ecotoxicology, Speyerer Strasse 2, 67117, Limburgerhof, Germany.
| | - Thomas H Hutchinson
- Plymouth University, School of Life Sciences, Drake Circus, Plymouth, PL4 8AA, UK
| |
Collapse
|
18
|
Zhou R, Lu G, Yan Z, Bao X, Zhang P, Jiang R. Bioaccumulation and biochemical effects of ethylhexyl methoxy cinnamate and its main transformation products in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 214:105241. [PMID: 31301543 DOI: 10.1016/j.aquatox.2019.105241] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/04/2019] [Accepted: 07/04/2019] [Indexed: 06/10/2023]
Abstract
The purpose of this study was to investigate the bioaccumulation and biochemical responses exposed to one of the main organic ultraviolet (UV) pollutants in the environment, ethylhexyl methoxy cinnamate (EHMC), and its main transformation product, either alone or in combination in zebrafish (Danio rerio). Four-month-old zebrafish were exposed to EHMC (34.4, 344 nmol/L) solution for 14 days, the species and contents of EHMC transformation products in zebrafish were determined and 3,5-dichloro-2-hydroxyacetophenone (3,5DCl2HAcP) was the one with the highest concentration in transformation products. Then, zebrafish were exposed to EHMC, 3,5DCl2HAcP alone and mixed solution for 21 days. At 7, 14 and 21 d, the related indexes of antioxidant defense system were determined. Results showed that both EHMC and 3,5DCl2HAcP can lead to the increase of malondialdehyde (MDA) and glutathione (GSH) contents, superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) activities in visceral mass compared with the corresponding control group, thus produced oxidative stress effect in organism and 3,5DCl2HAcP even showed stronger oxidative stress than EHMC. The effects of the two lower concentration co-exposure groups were similar and more significant to that of single exposure groups, while excessive oxidative stress occurred at the highest co-exposure group indicated by the decrease of GSH content, SOD, CAT, GR activities and the continued increase of MDA content. At 21 d, estradiol (E2), vitellogenin (Vtg) and testosterone (T) contents, estrogen receptor (Esr), progesterone receptor (Pgr), androgen receptor (Ar), Vtg1, P450 aromatase (Cyp19a1) and 17β-hydroxysteroid dehydrogenase (Hsd17b3) expression were all significantly increased when exposed to 3,5DCl2HAcP alone, showing complex estrogen and androgen effects. When exposed to EHMC alone, E2 and Vtg contents, Esr, Pgr, Vtg1, Cyp19a1 and Hsd17b1 gene expression levels decreased significantly, and T content and Ar and Hsd17b3 expression increased significantly, indicated that EHMC can produce anti-estrogen and androgen effect. Last, the decrease of estrogen effect and increase of androgen effect in co-exposure group suggested that 3,5DCl2HAcP might weaken the estrogen effect and promote the androgen effect of EHMC.
Collapse
Affiliation(s)
- Ranran Zhou
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Xuhui Bao
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Peng Zhang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
19
|
Ankley GT, Coady KK, Gross M, Holbech H, Levine SL, Maack G, Williams M. A critical review of the environmental occurrence and potential effects in aquatic vertebrates of the potent androgen receptor agonist 17β-trenbolone. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2064-2078. [PMID: 29701261 PMCID: PMC6129983 DOI: 10.1002/etc.4163] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/14/2018] [Accepted: 04/25/2018] [Indexed: 05/25/2023]
Abstract
Trenbolone acetate is widely used in some parts of the world for its desirable anabolic effects on livestock. Several metabolites of the acetate, including 17β-trenbolone, have been detected at low nanograms per liter concentrations in surface waters associated with animal feedlots. The 17β-trenbolone isomer can affect androgen receptor signaling pathways in various vertebrate species at comparatively low concentrations/doses. The present article provides a comprehensive review and synthesis of the existing literature concerning exposure to and biological effects of 17β-trenbolone, with an emphasis on potential risks to aquatic animals. In vitro studies indicate that, although 17β-trenbolone can activate several nuclear hormone receptors, its highest affinity is for the androgen receptor in all vertebrate taxa examined, including fish. Exposure of fish to nanograms per liter water concentrations of 17β-trenbolone can cause changes in endocrine function in the short term, and adverse apical effects in longer exposures during development and reproduction. Impacts on endocrine function typically are indicative of inappropriate androgen receptor signaling, such as changes in sex steroid metabolism, impacts on gonadal stage, and masculinization of females. Exposure of fish to 17β-trenbolone during sexual differentiation in early development can greatly skew sex ratios, whereas adult exposures can adversely impact fertility and fecundity. To fully assess ecosystem-level risks, additional research is warranted to address uncertainties as to the degree/breadth of environmental exposures and potential population-level effects of 17β-trenbolone in sensitive species. Environ Toxicol Chem 2018;37:2064-2078. Published 2018 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Gerald T. Ankley
- US Environmental Protection Agency, Office or Research and Development, Duluth, MN, USA
| | - Katherine K. Coady
- The Dow Chemical Company, Toxicology and Environmental Research and Consulting, Midland, MI, USA
| | | | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | | | - Gerd Maack
- German Environment Agency (UBA), Dessau-Roβlau, Germany
| | | |
Collapse
|
20
|
Andersson N, Arena M, Auteri D, Barmaz S, Grignard E, Kienzler A, Lepper P, Lostia AM, Munn S, Parra Morte JM, Pellizzato F, Tarazona J, Terron A, Van der Linden S. Guidance for the identification of endocrine disruptors in the context of Regulations (EU) No 528/2012 and (EC) No 1107/2009. EFSA J 2018; 16:e05311. [PMID: 32625944 PMCID: PMC7009395 DOI: 10.2903/j.efsa.2018.5311] [Citation(s) in RCA: 205] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
This Guidance describes how to perform hazard identification for endocrine-disrupting properties by following the scientific criteria which are outlined in Commission Delegated Regulation (EU) 2017/2100 and Commission Regulation (EU) 2018/605 for biocidal products and plant protection products, respectively.
Collapse
|
21
|
Haggard DE, Karmaus AL, Martin MT, Judson RS, Woodrow Setzer R, Friedman KP. High-Throughput H295R Steroidogenesis Assay: Utility as an Alternative and a Statistical Approach to Characterize Effects on Steroidogenesis. Toxicol Sci 2018; 162:509-534. [PMID: 29216406 PMCID: PMC10716795 DOI: 10.1093/toxsci/kfx274] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The U.S. Environmental Protection Agency Endocrine Disruptor Screening Program and the Organization for Economic Co-operation and Development (OECD) have used the human adrenocarcinoma (H295R) cell-based assay to predict chemical perturbation of androgen and estrogen production. Recently, a high-throughput H295R (HT-H295R) assay was developed as part of the ToxCast program that includes measurement of 11 hormones, including progestagens, corticosteroids, androgens, and estrogens. To date, 2012 chemicals have been screened at 1 concentration; of these, 656 chemicals have been screened in concentration-response. The objectives of this work were to: (1) develop an integrated analysis of chemical-mediated effects on steroidogenesis in the HT-H295R assay and (2) evaluate whether the HT-H295R assay predicts estrogen and androgen production specifically via comparison with the OECD-validated H295R assay. To support application of HT-H295R assay data to weight-of-evidence and prioritization tasks, a single numeric value based on Mahalanobis distances was computed for 654 chemicals to indicate the magnitude of effects on the synthesis of 11 hormones. The maximum mean Mahalanobis distance (maxmMd) values were high for strong modulators (prochloraz, mifepristone) and lower for moderate modulators (atrazine, molinate). Twenty-five of 28 reference chemicals used for OECD validation were screened in the HT-H295R assay, and produced qualitatively similar results, with accuracies of 0.90/0.75 and 0.81/0.91 for increased/decreased testosterone and estradiol production, respectively. The HT-H295R assay provides robust information regarding estrogen and androgen production, as well as additional hormones. The maxmMd from this integrated analysis may provide a data-driven approach to prioritizing lists of chemicals for putative effects on steroidogenesis.
Collapse
Affiliation(s)
- Derik E. Haggard
- Oak Ridge Institute for Science and Education Postdoctoral Fellow, Oak Ridge, TN. 37831
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711
| | - Agnes L. Karmaus
- Oak Ridge Institute for Science and Education Postdoctoral Fellow, Oak Ridge, TN. 37831
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711
| | - Matthew T. Martin
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711
| | - Richard S. Judson
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711
| | - R. Woodrow Setzer
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711
| | - Katie Paul Friedman
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Durham, NC 27711
| |
Collapse
|
22
|
Coady KK, Biever RC, Denslow ND, Gross M, Guiney PD, Holbech H, Karouna-Renier NK, Katsiadaki I, Krueger H, Levine SL, Maack G, Williams M, Wolf JC, Ankley GT. Current limitations and recommendations to improve testing for the environmental assessment of endocrine active substances. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2017; 13:302-316. [PMID: 27791330 PMCID: PMC6059567 DOI: 10.1002/ieam.1862] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 09/22/2016] [Accepted: 10/20/2016] [Indexed: 05/18/2023]
Abstract
In the present study, existing regulatory frameworks and test systems for assessing potential endocrine active chemicals are described, and associated challenges are discussed, along with proposed approaches to address these challenges. Regulatory frameworks vary somewhat across geographies, but all basically evaluate whether a chemical possesses endocrine activity and whether this activity can result in adverse outcomes either to humans or to the environment. Current test systems include in silico, in vitro, and in vivo techniques focused on detecting potential endocrine activity, and in vivo tests that collect apical data to detect possible adverse effects. These test systems are currently designed to robustly assess endocrine activity and/or adverse effects in the estrogen, androgen, and thyroid hormone signaling pathways; however, there are some limitations of current test systems for evaluating endocrine hazard and risk. These limitations include a lack of certainty regarding: 1) adequately sensitive species and life stages; 2) mechanistic endpoints that are diagnostic for endocrine pathways of concern; and 3) the linkage between mechanistic responses and apical, adverse outcomes. Furthermore, some existing test methods are resource intensive with regard to time, cost, and use of animals. However, based on recent experiences, there are opportunities to improve approaches to and guidance for existing test methods and to reduce uncertainty. For example, in vitro high-throughput screening could be used to prioritize chemicals for testing and provide insights as to the most appropriate assays for characterizing hazard and risk. Other recommendations include adding endpoints for elucidating connections between mechanistic effects and adverse outcomes, identifying potentially sensitive taxa for which test methods currently do not exist, and addressing key endocrine pathways of possible concern in addition to those associated with estrogen, androgen, and thyroid signaling. Integr Environ Assess Manag 2017;13:302-316. © 2016 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals, Inc. on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Katherine K Coady
- The Dow Chemical Company, Toxicology and Environmental Research and Consulting, Midland, Michigan, USA
- Address correspondence to
| | | | - Nancy D Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, USA
| | | | - Patrick D Guiney
- Molecular and Environmental Toxicology Center, University of Wisconsin, Madison, Madison, Wisconsin, USA
| | - Henrik Holbech
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | | | - Ioanna Katsiadaki
- Centre for Environment Fisheries and Aquaculture Science, Dorset, United Kingdom
| | - Hank Krueger
- Wildlife International, Division of EAG Laboratories, Easton, Maryland, USA
| | - Steven L Levine
- Global Regulatory Sciences, Monsanto Company, St Louis, Missouri, USA
| | - Gerd Maack
- German Environment Agency, Dessau-Roßlau, Germany
| | | | - Jeffrey C Wolf
- Experimental Pathology Laboratories, Sterling, Virginia, USA
| | | |
Collapse
|
23
|
Milsk R, Cavallin JE, Durhan EJ, Jensen KM, Kahl MD, Makynen EA, Martinović-Weigelt D, Mueller N, Schroeder A, Villeneuve DL, Ankley GT. A study of temporal effects of the model anti-androgen flutamide on components of the hypothalamic-pituitary-gonadal axis in adult fathead minnows. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 180:164-172. [PMID: 27716581 DOI: 10.1016/j.aquatox.2016.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/29/2016] [Accepted: 09/30/2016] [Indexed: 06/06/2023]
Abstract
The aim of this study was to investigate temporal changes in the hypothalamic-pituitary-gonadal (HPG) axis of fathead minnows (Pimephales promelas) treated with the model androgen receptor (AR) antagonist flutamide. Reproductively-mature fish were exposed in a flow-through test to analytically-confirmed concentrations of either 50 or 500μg flutamide/L for 8 d, followed by an 8-d recovery period in clean water. Fish were sampled at 1, 2, 4 and 8days during each phase of the experiment. Flutamide (500μg/L) caused significant reductions in relative gonad size of the females on day 8 of the exposure and day 1 of the recovery, and reduced expression of secondary sex characteristics in males during the exposure phase of the experiment. Ex vivo gonadal synthesis of testosterone in both sexes (and 17β-estradiol in females) was reduced in the 500μg/L treatment within 2 d of exposure; however, steroid synthesis returned to levels comparable to controls by the end of the exposure portion of the test. Ex vivo testosterone synthesis in males exposed to 50μg flutamide/L was greater than in controls on days 4 and 8 of the exposure. Both the enhanced steroid production in the low treatment males, and return to control levels in the high treatment males and females during chemical exposure are indicative of a compensatory HPG response. One contributor to this response could be increased expression of genes responsible for enzymes involved in steroid synthesis; for example, transcripts for both cytochrome P450 side- chain cleavage and 11β-hydroxysteroid dehydrogenase were significantly elevated in flutamide-exposed males. Overall, responses of the HPG axis in adult male and female fathead minnows exposed to flutamide were both dynamic and comparatively rapid during exposure and recovery. These observations have ramifications both for the development of short-term fish assays to detect endocrine-active chemicals, and the derivation of robust adverse outcome pathways for AR antagonists in fish.
Collapse
Affiliation(s)
- Rebecca Milsk
- Oak Ridge Institute for Science Education Research Participation Program, Midcontinent Ecology Division, Duluth, MN, USA
| | - Jenna E Cavallin
- Badger Technical Services, Midcontinent Ecology Division, Duluth, MN, USA
| | - Elizabeth J Durhan
- US Environmental Protection Agency, Midcontinent Ecology Division, Duluth, MN, USA
| | - Kathleen M Jensen
- US Environmental Protection Agency, Midcontinent Ecology Division, Duluth, MN, USA
| | - Michael D Kahl
- US Environmental Protection Agency, Midcontinent Ecology Division, Duluth, MN, USA
| | - Elizabeth A Makynen
- US Environmental Protection Agency, Midcontinent Ecology Division, Duluth, MN, USA
| | | | - Nathan Mueller
- Harvard University, Organismic and Evolutionary Biology, Cambridge, MA, USA
| | - Anthony Schroeder
- University of Minnesota-Crookston, Department of Biology, Crookston, MN, USA
| | - Daniel L Villeneuve
- US Environmental Protection Agency, Midcontinent Ecology Division, Duluth, MN, USA
| | - Gerald T Ankley
- US Environmental Protection Agency, Midcontinent Ecology Division, Duluth, MN, USA.
| |
Collapse
|
24
|
Perkins EJ, Antczak P, Burgoon L, Falciani F, Garcia-Reyero N, Gutsell S, Hodges G, Kienzler A, Knapen D, McBride M, Willett C. Adverse Outcome Pathways for Regulatory Applications: Examination of Four Case Studies With Different Degrees of Completeness and Scientific Confidence. Toxicol Sci 2016; 148:14-25. [PMID: 26500288 DOI: 10.1093/toxsci/kfv181] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Adverse outcome pathways (AOPs) offer a pathway-based toxicological framework to support hazard assessment and regulatory decision-making. However, little has been discussed about the scientific confidence needed, or how complete a pathway should be, before use in a specific regulatory application. Here we review four case studies to explore the degree of scientific confidence and extent of completeness (in terms of causal events) that is required for an AOP to be useful for a specific purpose in a regulatory application: (i) Membrane disruption (Narcosis) leading to respiratory failure (low confidence), (ii) Hepatocellular proliferation leading to cancer (partial pathway, moderate confidence), (iii) Covalent binding to proteins leading to skin sensitization (high confidence), and (iv) Aromatase inhibition leading to reproductive dysfunction in fish (high confidence). Partially complete AOPs with unknown molecular initiating events, such as 'Hepatocellular proliferation leading to cancer', were found to be valuable. We demonstrate that scientific confidence in these pathways can be increased though the use of unconventional information (eg, computational identification of potential initiators). AOPs at all levels of confidence can contribute to specific uses. A significant statistical or quantitative relationship between events and/or the adverse outcome relationships is a common characteristic of AOPs, both incomplete and complete, that have specific regulatory uses. For AOPs to be useful in a regulatory context they must be at least as useful as the tools that regulators currently possess, or the techniques currently employed by regulators.
Collapse
Affiliation(s)
- Edward J Perkins
- *Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg Mississippi;
| | - Philipp Antczak
- Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside L69 3BX, UK
| | - Lyle Burgoon
- *Environmental Laboratory, US Army Engineer Research and Development Center, Vicksburg Mississippi
| | - Francesco Falciani
- Institute of Integrative Biology, University of Liverpool, Liverpool, Merseyside L69 3BX, UK
| | - Natàlia Garcia-Reyero
- Mississippi State University, Institute for Genomics, Biocomputing and Biotechnology, Starkville, Mississippi
| | - Steve Gutsell
- Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Geoff Hodges
- Unilever, Colworth Science Park, Sharnbrook MK44 1LQ, UK
| | - Aude Kienzler
- JRC Institute for Health and Consumer Protection, Ispra, Italy
| | - Dries Knapen
- University of Antwerp, Zebrafishlab, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Mary McBride
- Agilent Technologies, Washington, District of Columbia; and
| | - Catherine Willett
- The Humane Society of the United States, Washington, District of Columbia, USA
| |
Collapse
|
25
|
Dang Z. Interpretation of fish biomarker data for identification, classification, risk assessment and testing of endocrine disrupting chemicals. ENVIRONMENT INTERNATIONAL 2016; 92-93:422-441. [PMID: 27155823 DOI: 10.1016/j.envint.2016.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/03/2016] [Accepted: 04/03/2016] [Indexed: 06/05/2023]
Abstract
Chemical induced changes in fish biomarkers vitellogenin (VTG), secondary sex characteristics (SSC), and sex ratio indicate modes/mechanisms of action (MOAs) of EAS (estrogen, androgen and steroidogenesis) pathways. These biomarkers could be used for defining MOAs and the causal link between MOAs and adverse effects in fish for the identification of endocrine disrupting chemicals (EDCs). This paper compiled data sets of 150 chemicals for VTG, 57 chemicals for SSC and 38 chemicals for sex ratio in fathead minnow, medaka and zebrafish. It showed 1) changes in fish biomarkers can indicate the MOAs as anticipated; 2) in addition to EAS pathways, chemicals with non-EAS pathways induced changes in fish biomarkers; 3) responses of fish biomarkers did not always follow the anticipated patterns of EAS pathways. These responses may result from the interaction of chemical-induced multiple MOAs and confounding factors like fish diet, infection, culture conditions, general toxicity and stress response. The complex response of fish biomarkers to a chemical of interest requires EDC testing at multiple biological levels. Interpretation of fish biomarker data should be combined with relevant information at different biological levels, which is critical for defining chemical specific MOAs. The utility of fish biomarker data for identification, classification, PBT assessment, risk assessment, and testing of EDCs in the regulatory context was discussed. This paper emphasizes the importance of fish biomarker data in the regulatory context, a weight of evidence approach for the interpretation of fish biomarker data and the need for defining levels of evidence for the identification of EDCs.
Collapse
Affiliation(s)
- ZhiChao Dang
- National Institute for Public Health and the Environment (RIVM), A. van Leeuwenhoeklaan 9, Bilthoven, The Netherlands.
| |
Collapse
|
26
|
Cavallin JE, Jensen KM, Kahl MD, Villeneuve DL, Lee KE, Schroeder AL, Mayasich J, Eid EP, Nelson KR, Milsk RY, Blackwell BR, Berninger JP, LaLone CA, Blanksma C, Jicha T, Elonen C, Johnson R, Ankley GT. Pathway-based approaches for assessment of real-time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:702-716. [PMID: 26332155 DOI: 10.1002/etc.3228] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 08/03/2015] [Accepted: 08/27/2015] [Indexed: 06/05/2023]
Abstract
Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, which can affect the hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined reproductive effects in fathead minnows exposed for 21 d to a historically estrogenic WWTP effluent. Fathead minnow breeding pairs were held in control water or 1 of 3 effluent concentrations (5%, 20%, and 100%) in a novel onsite, flow-through system providing real-time exposure. The authors examined molecular and biochemical endpoints representing key events along adverse outcome pathways linking estrogen receptor activation and other molecular initiating events to reproductive impairment. In addition, the authors used chemical analysis of the effluent to construct a chemical-gene interaction network to aid in targeted gene expression analyses and identifying potentially impacted biological pathways. Cumulative fecundity was significantly reduced in fish exposed to 100% effluent but increased in those exposed to 20% effluent, the approximate dilution factor in the receiving waters. Plasma vitellogenin concentrations in males increased in a dose-dependent manner with effluent concentration; however, male fertility was not impacted. Although in vitro analyses, analytical chemistry, and biomarker responses confirmed the effluent was estrogenic, estrogen receptor agonists were unlikely the primary driver of impaired reproduction. The results provide insights into the significance of pathway-based effects with regard to predicting adverse reproductive outcomes.
Collapse
Affiliation(s)
- Jenna E Cavallin
- ORISE Research Participation Program, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
- Integrated Biosciences Graduate Program, University of Minnesota-Duluth, Duluth, Minnesota, USA
| | - Kathleen M Jensen
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Michael D Kahl
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Daniel L Villeneuve
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Kathy E Lee
- Toxic Substances Hydrology Program, US Geological Survey, Grand Rapids, Minnesota, USA
| | - Anthony L Schroeder
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, University of Minnesota-Water Resources Center, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Joe Mayasich
- Western Lake Superior Sanitary District, Duluth, Minnesota, USA
| | - Evan P Eid
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Krysta R Nelson
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Rebecca Y Milsk
- ORISE Research Participation Program, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Brett R Blackwell
- ORISE Research Participation Program, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Jason P Berninger
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Carlie A LaLone
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Chad Blanksma
- Badger Technical Services, Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Terri Jicha
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Colleen Elonen
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Rodney Johnson
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| | - Gerald T Ankley
- Office of Research and Development, National Health and Environmental Effects Research Laboratory, Mid-Continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota, USA
| |
Collapse
|
27
|
Watanabe KH, Mayo M, Jensen KM, Villeneuve DL, Ankley GT, Perkins EJ. Predicting Fecundity of Fathead Minnows (Pimephales promelas) Exposed to Endocrine-Disrupting Chemicals Using a MATLAB®-Based Model of Oocyte Growth Dynamics. PLoS One 2016; 11:e0146594. [PMID: 26756814 PMCID: PMC4710531 DOI: 10.1371/journal.pone.0146594] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 12/18/2015] [Indexed: 11/18/2022] Open
Abstract
Fish spawning is often used as an integrated measure of reproductive toxicity, and an indicator of aquatic ecosystem health in the context of forecasting potential population-level effects considered important for ecological risk assessment. Consequently, there is a need for flexible, widely-applicable, biologically-based models that can predict changes in fecundity in response to chemical exposures, based on readily measured biochemical endpoints, such as plasma vitellogenin (VTG) concentrations, as input parameters. Herein we describe a MATLAB® version of an oocyte growth dynamics model for fathead minnows (Pimephales promelas) with a graphical user interface based upon a previously published model developed with MCSim software and evaluated with data from fathead minnows exposed to an androgenic chemical, 17β-trenbolone. We extended the evaluation of our new model to include six chemicals that inhibit enzymes involved in steroid biosynthesis: fadrozole, ketoconazole, propiconazole, prochloraz, fenarimol, and trilostane. In addition, for unexposed fathead minnows from group spawning design studies, and those exposed to the six chemicals, we evaluated whether the model is capable of predicting the average number of eggs per spawn and the average number of spawns per female, which was not evaluated previously. The new model is significantly improved in terms of ease of use, platform independence, and utility for providing output in a format that can be used as input into a population dynamics model. Model-predicted minimum and maximum cumulative fecundity over time encompassed the observed data for fadrozole and most propiconazole, prochloraz, fenarimol and trilostane treatments, but did not consistently replicate results from ketoconazole treatments. For average fecundity (eggs•female(-1)•day(-1)), eggs per spawn, and the number of spawns per female, the range of model-predicted values generally encompassed the experimentally observed values. Overall, we found that the model predicts reproduction metrics robustly and its predictions capture the variability in the experimentally observed data.
Collapse
Affiliation(s)
- Karen H. Watanabe
- Division of Environmental and Biomolecular Systems, Institute of Environmental Health, and School of Public Health, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Michael Mayo
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, United States of America
| | - Kathleen M. Jensen
- Mid-Continent Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota, United States of America
| | - Daniel L. Villeneuve
- Mid-Continent Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota, United States of America
| | - Gerald T. Ankley
- Mid-Continent Ecology Division, U.S. Environmental Protection Agency, Duluth, Minnesota, United States of America
| | - Edward J. Perkins
- Environmental Laboratory, U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi, United States of America
| |
Collapse
|
28
|
Collette TW, Skelton DM, Davis JM, Cavallin JE, Jensen KM, Kahl MD, Villeneuve DL, Ankley GT, Martinović-Weigelt D, Ekman DR. Metabolite profiles of repeatedly sampled urine from male fathead minnows (Pimephales promelas) contain unique lipid signatures following exposure to anti-androgens. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2016; 19:190-198. [PMID: 26810197 DOI: 10.1016/j.cbd.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/10/2015] [Accepted: 01/03/2016] [Indexed: 11/16/2022]
Abstract
The purpose of this study was twofold. First, we sought to identify candidate markers of exposure to anti-androgens by analyzing endogenous metabolite profiles in the urine of male fathead minnows (mFHM, Pimephales promelas). Based on earlier work, we hypothesized that unidentified lipids in the urine of mFHM were selectively responsive to exposure to androgen receptor antagonists, which is otherwise difficult to confirm using established fish toxicity assays. A second goal was to evaluate the feasibility of non-lethally and repeatedly sampling urine from individual mFHMs over the time course of response to a chemical exposure. Accordingly, we exposed mFHM to the model anti-androgens vinclozolin or flutamide. Urine was collected from each fish at 48hour intervals over the course of a 14day exposure. Parallel experiments were conducted with mFHM exposed to bisphenol A or control water. The frequent handling/sampling regime did not cause apparent adverse effects on the fish. Endogenous metabolite profiling was conducted with gas chromatography-mass spectrometry (GC-MS), which exhibited lower variation for the urinary metabolome than was found in earlier work with nuclear magnetic resonance (NMR) spectroscopy. Specifically, for inter- and intra-individual variations, the median spectrum-wide relative standard deviation (RSD) was 32.6% and 33.3%, respectively, for GC-MS analysis of urine from unexposed mFHM. These results compared favorably with similar measurements of urine from other model species, including the Sprague Dawley rat. In addition, GC-MS allowed us to identify several lipids (e.g., certain saturated fatty acids) in mFHM urine as candidate markers of exposure to androgen receptor antagonists.
Collapse
Affiliation(s)
| | - David M Skelton
- U.S. EPA, National Exposure Research Laboratory, Athens, GA 30605, USA
| | - John M Davis
- U.S. EPA, National Exposure Research Laboratory, Athens, GA 30605, USA
| | - Jenna E Cavallin
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN 55804, USA
| | - Kathleen M Jensen
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN 55804, USA
| | - Michael D Kahl
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN 55804, USA
| | - Daniel L Villeneuve
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN 55804, USA
| | - Gerald T Ankley
- U.S. EPA, National Health and Environmental Effects Research Laboratory, Duluth, MN 55804, USA
| | | | - Drew R Ekman
- U.S. EPA, National Exposure Research Laboratory, Athens, GA 30605, USA
| |
Collapse
|
29
|
Mihaich E, Erler S, Le Blanc G, Gallagher S. Short-term fish reproduction assays with methyl tertiary butyl ether with zebrafish and fathead minnow: Implications for evaluation of potential for endocrine activity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2013-2022. [PMID: 25866897 DOI: 10.1002/etc.3017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 12/19/2014] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
The authors report on short-term fish reproduction assays in zebrafish and fathead minnow conducted to examine the potential for methyl tertiary butyl ether (MTBE) to cause effects on the endocrine system. Both studies were performed under good laboratory practice and in accordance with Organisation for Economic Co-operation and Development and US Environmental Protection Agency test guidelines. The results of the first study demonstrated that exposure to a high test concentration (147 mg/L) of MTBE impaired reproductive output of female zebrafish, evident by a reduction in fecundity. Based on the endpoints evaluated in the present study however, there was no supporting evidence to indicate that this effect was caused by disruption of or interaction with the endocrine system. In the second study, fathead minnows exposed to a wider but lower range of test concentrations showed no effects on any reproductive parameter of male or female fish, at the maximum recommended testing concentration of 100 mg/L (62 mg/L measured). The results of these 2 guideline studies indicate that MTBE does not interact with the hypothalamic-pituitary-gonadal axis of zebrafish or fathead minnow.
Collapse
Affiliation(s)
- Ellen Mihaich
- Environmental and Regulatory Resources, Durham, North Carolina, USA
| | - Steffen Erler
- SABIC, Saudi Basic Industries Corporation, Pittsfield, Massachusettes, USA
| | - Gerald Le Blanc
- Department of Biological Sciences, North Carolina State University, Raleigh, North Carolina, USA
| | | |
Collapse
|
30
|
Knapen D, Vergauwen L, Villeneuve DL, Ankley GT. The potential of AOP networks for reproductive and developmental toxicity assay development. Reprod Toxicol 2015; 56:52-5. [PMID: 25889759 DOI: 10.1016/j.reprotox.2015.04.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 03/31/2015] [Accepted: 04/06/2015] [Indexed: 10/23/2022]
Abstract
Historically, the prediction of reproductive and developmental toxicity has largely relied on the use of animals. The adverse outcome pathway (AOP) framework forms a basis for the development of new non-animal test methods. It also provides biological context for mechanistic information from existing assays. However, a single AOP may not capture all events that contribute to any relevant toxic effect, even in single chemical exposure scenarios. AOP networks, defined as sets of AOPs sharing at least one common element, are capable of more realistically representing potential chemical effects. They provide information on interactions between AOPs and have the potential to reveal previously unknown links between biological pathways. Analysis of these AOP networks can aid the prioritization of assay development, whether the goal is to develop a single assay with predictive utility of multiple outcomes, or development of assays that are highly specific for a particular mode of action. This paper provides a brief overview of the AOPs related to reproductive and developmental toxicity currently available in the AOP Wiki (http://aopwiki.org), and gives an example of an AOP network based on five reproductive and developmental toxicity-related AOPs for fish to illustrate how AOP networks can be used for assay development and refinement.
Collapse
Affiliation(s)
- Dries Knapen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| | - Lucia Vergauwen
- Zebrafishlab, Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Daniel L Villeneuve
- Mid-Continent Ecology Division, Office of Research and Development, US Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, USA
| | - Gerald T Ankley
- Mid-Continent Ecology Division, Office of Research and Development, US Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN 55804, USA
| |
Collapse
|
31
|
Ankley GT, Villeneuve DL. Temporal Changes in Biological Responses and Uncertainty in Assessing Risks of Endocrine-Disrupting Chemicals: Insights from Intensive Time-Course Studies with Fish. Toxicol Sci 2015; 144:259-75. [DOI: 10.1093/toxsci/kfu320] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|