1
|
Li S, Li Z, Ke X, Wisawapipat W, Christie P, Wu L. Cadmium toxicity to and accumulation in a soil collembolan (Folsomia candida): major factors and prediction using a back-propagation neural network model. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:23790-23801. [PMID: 38429592 DOI: 10.1007/s11356-024-32638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Accurate prediction of cadmium (Cd) ecotoxicity to and accumulation in soil biota is important in soil health. However, very limited information on Cd ecotoxicity on naturally contaminated soils. Herein, we investigated soil Cd ecotoxicity using Folsomia candida, a standard single-species test animal, in 28 naturally Cd-contaminated soils, and the back-propagation neural network (BPNN) model was used to predict Cd ecotoxicity to and accumulation in F. candida. Soil total Cd and pH were the primary soil properties affecting Cd toxicity. However, soil pH was the main factor when the total Cd concentration was < 3 mg kg-1. Interestingly, correlation analysis and the K-spiked test confirmed nutrient potassium (K) was essential for Cd accumulation, highlighting the significance of studying K in Cd accumulation. The BPNN model showed greater prediction accuracy of collembolan survival rate (R2 = 0.797), reproduction inhibitory rate (R2 = 0.827), body Cd concentration (R2 = 0.961), and Cd bioaccumulation factor (R2 = 0.964) than multiple linear regression models. Then the developed BPNN model was used to predict Cd ecological risks in 57 soils in southern China. Compared to multiple linear regression models, the BPNN models can better identify high-risk regions. This study highlights the potential of BPNN as a novel and rapid tool for the evaluation and monitoring of Cd ecotoxicity in naturally contaminated soils.
Collapse
Affiliation(s)
- Simin Li
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhu Li
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| | - Xin Ke
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Worachart Wisawapipat
- Soil Chemistry and Biogeochemistry Group, Department of Soil Science, Faculty of Agriculture, Kasetsart University, Bangkok, 10900, Thailand
| | - Peter Christie
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Longhua Wu
- Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
2
|
Li W, He E, Van Gestel CAM, Peijnenburg WJGM, Li Y, Liu M, Li Y, Li X, Qiu H. A toxicokinetics approach using Enchytraeus crypticus to evaluate the efficiency of hydroxyapatite to remediate soils contaminated with rare earth elements. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132487. [PMID: 37690204 DOI: 10.1016/j.jhazmat.2023.132487] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/19/2023] [Accepted: 09/03/2023] [Indexed: 09/12/2023]
Abstract
Extensive rare earth element (REE) mining activities pose threats to agricultural soils surrounding the mining areas. Here, low and high REE-contaminated soils from farmlands around mine tailings were remediated with hydroxyapatite. A toxicokinetic approach was applied to assess whether the use of hydroxyapatite reduced the bioavailability of REEs and thus inhibited their accumulation in the terrestrial organism Enchytraeus crypticus. Our results showed that addition of hydroxyapatite increased soil pH, DOC and anion contents. CaCl2-extractable REE concentrations significantly decreased, indicating the stabilization by hydroxyapatite. The influence of hydroxyapatite on the REE accumulation in enchytraeids was quantified by fitting a toxicokinetic model to dynamic REE body concentrations. The estimated uptake (Ku) and elimination rate constants (Ke), and bioaccumulation factor (BAF) for REEs were in the range of 0.000821 - 0.122 kgsoil/kgworm day-1, 0.0224 - 0.136 day-1, and 0.00135 - 1.96, respectively. Both Ku and BAF were significantly reduced by over 80% by hydroxyapatite addition, confirming the decreased REE bioavailability. Low atomic number REEs had higher BAFs in slightly contaminated soil, suggesting a higher bioaccumulation potential of light REEs in soil organisms. Overall, chemical stabilization with amendments can attenuate the bioavailability of REEs and reduce the potential ecological risk of contaminated agricultural soils near REE mining areas.
Collapse
Affiliation(s)
- Wenxing Li
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China.
| | - Cornelis A M Van Gestel
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, the Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden 2333 CC, the Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, 3720 BA Bilthoven, the Netherlands
| | - Yinsheng Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Min Liu
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Ye Li
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Xing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
3
|
Lahive E, Matzke M, Svendsen C, Spurgeon DJ, Pouran H, Zhang H, Lawlor A, Glória Pereira M, Lofts S. Soil properties influence the toxicity and availability of Zn from ZnO nanoparticles to earthworms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120907. [PMID: 36586557 DOI: 10.1016/j.envpol.2022.120907] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
To develop models that support site-specific risk assessment for nanoparticles (NPs), a better understanding of how NP transformation processes, bioavailability and toxicity are influenced by soil properties is needed. In this study, the influence of differing soil properties on the bioavailability and toxicity of zinc oxide (ZnO) NPs and ionic Zn to the earthworm Eisenia fetida was investigated. Earthworms were exposed to ZnO_NPs and ionic Zn, between 100 and 4400 mg Zn/kg, in four different natural soils (organic matter content: 1.8-16.7%, soil pH: 5.4-8.3, representing sandy loam to calcareous soils). Survival and reproduction were assessed after 28 and 56 days, respectively. Zn concentrations in soil pore waters were measured while labile concentrations of Zn were measured using an in-situ dynamic speciation technique (diffusive gradient in thin films, DGT). Earthworm Zn tissue concentrations were also measured. Soil properties influenced earthworm reproduction between soil controls, with highest reproductive output in soils with pH values of 6-7. Toxicity was also influenced by soil properties, with EC50s based on total Zn in soil ranging from 694 to >2200 mg Zn/kg for ZnO_NP and 277-734 mg Zn/kg for ionic Zn. Soil pore water and DGT measurements showed good agreement in the relative amount of Zn extracted across the four soils. Earthworms exposed to ZnO_NPs survived higher Zn concentrations in the soils and had higher tissue concentrations compared with ionic Zn exposures, particularly in the high organic content calcareous soil. These higher tissue concentrations in ZnO_NP exposed earthworm could have consequences for the persistence and trophic mobility of Zn in terrestrial systems and need to be further investigated to elucidate if there any longer-term risks associated with sustained input of ZnO_NP to soil.
Collapse
Affiliation(s)
- E Lahive
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, United Kingdom.
| | - M Matzke
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, United Kingdom
| | - C Svendsen
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, United Kingdom
| | - D J Spurgeon
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, OX10 8BB, United Kingdom
| | - H Pouran
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton, WV1 1LY, United Kingdom
| | - H Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - A Lawlor
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, United Kingdom
| | - M Glória Pereira
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, United Kingdom
| | - S Lofts
- UK Centre for Ecology and Hydrology, Lancaster Environment Centre, Lancaster, LA1 4AP, United Kingdom
| |
Collapse
|
4
|
Wang X, Gong B, He E, Peijnenburg WJGM, Qiu H. Subcellular localization and compartment-specific toxicokinetics of cadmium, arsenic, and zinc in brandling worm Eisenia fetida. CHEMOSPHERE 2022; 308:136482. [PMID: 36126735 DOI: 10.1016/j.chemosphere.2022.136482] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 06/15/2023]
Abstract
Awareness of toxicokinetics at the subcellular level is crucial to deciphering the underlying intoxication processes of metal(loid)s, although this information is often lacking. Here, the toxicokinetics of two non-essential metal(loid)s (Cd and As) and one essential metal (Zn) in both the whole body and subcellular fractions of earthworm (Eisenia fetida) were assessed. Earthworms were exposed to natural soils originating from a gradient of metal(loid) pollution for 14 days followed by a 14-day elimination phase in clean soil. Clearly distinct toxicokinetic patterns were found in the earthworms according to the metal(loid) considered. An obvious concentration-dependent increase was observed in earthworms or subcellular compartments where no equilibrium was reached (with slow or no elimination) for Cd and As throughout the experiment. As for Zn, the earthworms were able to retain a steady-state concentration of Zn in its body or each fraction without a clear intake behavior via the dynamic trade-off between uptake and elimination at different pollution levels. These differences in toxicokinetics at the subcellular level supported the observed differences in bioaccumulation patterns and were indicative of the strategy by which non-essential and essential elements are handled by earthworms. Notably, the concentration of Cd and As in subcellular compartments showed the same pattern as for Zn in the order of cellular cytosol > cellular debris > metal-rich granules, which might be associated with the binding of non-essential/essential elements with metallothionein enriched in the cytosol. Our findings enhance the understanding of the underlying mechanisms for metal(loid) accumulation kinetics in earthworms from the perspective of subcellular partitioning, and will be beneficial for accurate risk assessment of Cd, As, and Zn.
Collapse
Affiliation(s)
- Xupeng Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Bing Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai, 200241, China
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden, 2333CC, the Netherlands; National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven, 3720BA, the Netherlands
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
5
|
Santos FCF, Verweij RA, van Gestel CAM, Amorim MJB. Toxicokinetics and toxicodynamics of copper and cadmium in the soil invertebrate Enchytraeus crypticus (Oligochaeta). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113485. [PMID: 35390690 DOI: 10.1016/j.ecoenv.2022.113485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/18/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
The aim of this study was to evaluate the toxicokinetics-toxicodynamics (TKTD) of Cu and Cd in the soil model organism Enchytraeus crypticus, and assess the development of internal effect concentrations over time. Animals were exposed in LUFA 2.2 soil spiked with increasing concentrations of Cu and Cd. Survival, reproduction and internal metal concentrations in the animals were evaluated at different points in time over a period of 21 days. Internal concentrations increased with time, for Cu reaching a steady state after c. 10 days, except for the highest test concentration, and for Cd continuing to increase after 21 days. Applying a one-compartment model to all data together, estimated uptake and elimination rate constants for Cu and Cd were 0.08 and 0.45 kg soil/kg organism/day and 0.4 and 0.04 per day, respectively. Median lethal concentrations, based on total soil concentrations, decreased with time for Cu and did not reach a steady state level, but they did not change with time for Cd. The LC50inter (based on internal concentrations) was 75 mg Cu/kg body DW and > 800 mg Cd/kg body weight. Animals were able to regulate Cu internal concentrations, keeping them low, while for Cd internal concentrations continued to increase showing lack of regulation and also the importance of exposure time. This study highlights the advantages of using a TKTD approach to understand the relation between organism survival and internal Cu or Cd concentrations over time.
Collapse
Affiliation(s)
- Fátima C F Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudo A Verweij
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
6
|
Zhang L, Van Gestel CAM, Li Z. Toxicokinetics of metals in the soil invertebrate Enchytraeus crypticus exposed to field-contaminated soils from a mining area. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118874. [PMID: 35101558 DOI: 10.1016/j.envpol.2022.118874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/26/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Toxicokinetics may help assessing the risk of metal-contaminated soils by quantifying the development of internal metal concentrations in organisms over time. This study assessed the toxicokinetics in Enchytraeus crypticus of non-essential (Pb and Cd) and essential elements (Zn and Cu) in metal-contaminated field soils from a mining area, containing 3.49-24.3 mg Cd/kg dry soil, 433-1416 mg Pb/kg dry soil, 15.7-44.9 mg Cu/kg dry soil and 1718-6050 mg Zn/kg dry soil. Three different uptake-elimination patterns in E. crypticus were found. Both essential elements (Zn and Cu) showed fast increasing internal concentrations reaching equilibrium within 2 d in the uptake phase, without hardly any elimination after transfer to clean soil. The non-essential Cd showed a slow linear accumulation and excretion with body concentrations not reaching steady state within 21 d. Internal Pb concentrations, however, reached equilibrium within 7 d in the uptake phase. Longer exposure times in ecotoxicological tests, therefore, are required for elements like Cd. Porewater pH and dissolved organic carbon (DOC) levels were the dominant factors controlling Cd uptake from the test soils. The 21-d body Cd and Pb concentrations were best explained from 0.01 M CaCl2-extractable soil concentrations. Steady-state Cu and Zn body concentrations were independent of soil exposure concentrations. Bioaccumulation factors (BAF) were low for Pb (<0.1 kgsoil/kgworm), but high for Cd at 1.78-24.3 kgsoil/kgworm, suggesting a potential risk of Cd biomagnification in the terrestrial food chain of the mining area ecosystem.
Collapse
Affiliation(s)
- Lulu Zhang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| | - Cornelis A M Van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, the Netherlands
| | - Zhian Li
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China
| |
Collapse
|
7
|
Fu M, Liu F, Abbas G, Zhou S, Ling S, Zhang W, Peng C, Yang J, Zhou B. Cytotoxicity profiling of decabromodiphenyl ethane to earthworm (Eisenia fetida): Abnormity-recovery-dysregulation physiological pattern reflects the coping mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152607. [PMID: 34971680 DOI: 10.1016/j.scitotenv.2021.152607] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/09/2021] [Accepted: 12/18/2021] [Indexed: 06/14/2023]
Abstract
Response of terrestrial invertebrates to decabromodiphenyl ethane (DBDPE) is an emerging field of research nowadays, while cytotoxicity of DBDPE and self-defense strategies of invertebrates are poorly understood. In this study, earthworms (Eisenia fetida) were incubated in the DBDPE-spiked soil system (10, 30, 50, 70, and 100 mg kg-1 dw) for 28-d uptake. The bioaccumulation and distribution of DBDPE, a series of biomarkers associated with lysosomes/mitochondria, and the apoptosis rate of coelomocytes have been evaluated on the 7th, 14th, 21th, and 28th day. At experimental endpoint, the autophagy/apoptosis phenomena have been observed under transmission electron microscopy and the expression levels of six target genes have been explored. Findings in this paper revealed that: bioaccumulation factors decreased with the incremental DBDPE concentrations in the soil. Intestinal ingestion, but not epidermal contact predominated the absorption of DBDPE. The fluctuations of biomarkers and the apoptosis rate were described as the "abnormity-recovery-dysregulation" pattern. Intense oxidative stress, energy demands, membrane-system damage, pathological organelles, and apoptosis were observed in the treated groups. Conclusively, the cytotoxicity of DBDPE initiated the mitochondrial apoptosis pathway which affected the physiological status of lysosomes, autophagy, and the expression of genes. The coping mechanisms of Eisenia fetida to DBDPE included activating mitochondrial electron transport processes, reorganizing actin cytoskeleton, and initiating autophagy. Earthworms resisted the cytotoxicity of DBDPE to a certain extent, while long-term exposure still resulted in apoptosis of coelomocytes. This study works as a laboratory simulation for the environmental safety evaluation of DBDPE and the detoxification mechanisms for earthworm.
Collapse
Affiliation(s)
- Mengru Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fang Liu
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Ghulam Abbas
- Department of chemical engineering, HH campus, university of Gujrat, Gujrat, Pakistan
| | - Shanqi Zhou
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Siyuan Ling
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wei Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Cheng Peng
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resource and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Yang
- State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Sciences, Shanghai 200233, China.
| | - Bingsheng Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
8
|
Santos FCF, van Gestel CAM, Amorim MJB. Toxicokinetics of copper and cadmium in the soil model Enchytraeus crypticus (Oligochaeta). CHEMOSPHERE 2021; 270:129433. [PMID: 33401072 DOI: 10.1016/j.chemosphere.2020.129433] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Toxicokinetics information is key to understanding the underlying intoxication processes, although this is often lacking. Hence, in the present study the toxicokinetics of copper (Cu) and cadmium (Cd) was assessed in the soil invertebrate Enchytraeus crypticus. The animals were exposed in LUFA 2.2 natural soil spiked to the estimated EC20 for reproduction effects in the Enchytraeid Reproduction Test (ERT), i.e. 80 mg Cu/kg soil Dry Weight (DW) and 20 mg Cd/kg soil DW. Tests followed the OECD guideline 317, including a 14-day uptake phase in spiked soil followed by 14 days elimination in clean soil, with samplings at days 0, 1, 2, 4, 7, 10, and 14. Exposure to Cu showed fast uptake, reaching a steady state after approx. 7 days, whereas for Cd, internal concentration increased and did not reach a clear steady state even after 14 days. When transferred to clean soil, Cu was rapidly eliminated returning to initial levels, while Cd-exposed animals still contained increased residue levels after 14 days. These differences in toxicokinetics have consequences for the toxicity and toxicodynamics and are indicative of the way essential and non-essential elements are handled by enchytraeids, likely also other soil invertebrates. This argues for the relevancy of longer exposure testing for elements like Cd compared to Cu, where phenotypical effects can well occur later at non-tested periods, e.g. after the 21 days' duration of the standard ERT using E. crypticus.
Collapse
Affiliation(s)
- Fátima C F Santos
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Cornelis A M van Gestel
- Department of Ecological Science. Faculty of Science, Vrije Universiteit Amsterdam De Boelelaan 1085, 1081, HV Amsterdam, the Netherlands
| | - Mónica J B Amorim
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
9
|
Fernández MD, Obrador A, García-Gómez C. Zn concentration decline and apical endpoints recovery of earthworms (E. andrei) after removal from an acidic soil spiked with coated ZnO nanoparticles. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 211:111916. [PMID: 33485012 DOI: 10.1016/j.ecoenv.2021.111916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 01/04/2021] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
ZnO nanoparticles (ZnO-NPs) can reach soil in both deliberate and non-deliberate ways, which leads to contamination. Notwithstanding knowledge about ZnO-NPs impacts on earthworms inhabiting these soils is limited and gaps appear in the recovery of damaged functions after their migration to unpolluted environments. To estimate these impacts, earthworms (Eisenia andrei) were exposed to different concentrations of coated ZnO-NPs (20, 250, 500, 1000 mgZnkg-1) in an acidic agricultural soil (pH 5.4) for 28 days. Subsequently, earthworms were placed in the same unpolluted soil to study the depletion of Zn accumulated and the recovery potential of the affected functions for another 28-day period.In the exposure phase, ecotoxicological responses were dose-dependent. Mortality and growth were affected at 500 and 1000 mg kg- 1, and the reproduction was impaired from 250 mgZnkg- 1 compared to control (54% fecundity and 80% fertility reduction). Zn uptake increased with coated ZnO-NPs in soil but it did not exceed 163 mgZnkg- 1 earthworm. During the recovery period, the Zn in earthworms were similar to the control regardless of the initially Zn accumulated. Reproduction parameters returned to the control values in the animals pre-exposed to 250 mgZnkg- 1 as coated ZnO-NP. In the earthworms preexposed to the two highest doses, growth and fertility were stimulated compared to the control when placed in clean soil, but not fecundity. However, the total hatchlings number did not reach the control figures after 28 days, but probably would for in longer times, which would be key for maintaining earthworm populations.
Collapse
Affiliation(s)
- María Dolores Fernández
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente y Agronomía, Ctra. A Coruña, km 7.5, 28040 Madrid, Spain.
| | - Ana Obrador
- Universidad Politécnica de Madrid (UPM), Chemical and Food Technology Department, CEIGRAM, Research Centre for the Management of Agricultural and Environmental Risks, Avda. Complutense s/n, 28040 Madrid, Spain.
| | - Concepción García-Gómez
- Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Departamento de Medio Ambiente y Agronomía, Ctra. A Coruña, km 7.5, 28040 Madrid, Spain.
| |
Collapse
|
10
|
Huang X, He E, Qiu H, Zhang L, Tang Y, Zhao C, Li M, Xiao X, Qiu R. Do toxicokinetic and toxicodynamic processes hold the same for light and heavy rare earth elements in terrestrial organism Enchytraeus crypticus? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114234. [PMID: 32126438 DOI: 10.1016/j.envpol.2020.114234] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/10/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
The widespread use of rare earth elements (REEs) in numerous sectors have resulted in their release into the environment. Existing knowledge about the effects of REEs were acquired mainly based on toxicity tests with aquatic organisms and a fixed exposure time, Here, the dynamic accumulation and toxicity of REEs (La, Ce, and Gd) in soil organism Enchytraeus crypticus were determined and modeled by a first-order one-compartment model and a time-toxicity logistic model, respectively. Generally, the accumulation and toxicity of REEs were both exposure level- and time-dependent. The overall uptake rate constants were 2.97, 2.48, and 2.38 L kg-1d-1 for La, Ce, and Gd, respectively. The corresponding elimination rate constants were 0.99, 0.78, and 0.56 d-1, respectively. The worms exhibited faster uptake and elimination ability for light REEs (La and Ce) than for heavy REEs (Gd). For all three REEs, the LC50 values based on exposure concentrations decreased with time and reached ultimate values after approximately 10 d exposure. The estimated ultimate LC50 values (LC50∞) were 279, 334, and 358 mg L-1 for Ce, Gd, and La, respectively. When expressed as body concentration, the LC50inter value was almost constant with time, demonstrating that internal body concentration could be a better indicator of dynamic toxicity of REEs than external dose. This study highlights that specific REE and exposure time should be taken into account in accurately assessing risk of REEs.
Collapse
Affiliation(s)
- Xueying Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Erkai He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Lulu Zhang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Yetao Tang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Chunmei Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Min Li
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xue Xiao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Provincial Key Lab for Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agriculture University, Guangzhou, 510642, China
| |
Collapse
|
11
|
Wang K, Qiao Y, Li H, Huang C. Use of integrated biomarker response for studying the resistance strategy of the earthworm Metaphire californica in Cd-contaminated field soils in Hunan Province, South China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:114056. [PMID: 32041026 DOI: 10.1016/j.envpol.2020.114056] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 12/26/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Research was conducted to study the response and detoxification mechanisms of earthworms collected from Cd-contaminated areas in Hunan Province, South China. Metaphire californica, the dominant earthworm species in fields, referred as earthworm-A and -B that collected from low- (0.81 mg kg-1) and high-Cd soil (13.3 mg kg-1), respectively, for exchanging incubation in laboratory. The results showed that earthworm-A gradually accumulated higher Cd when exposed in the high-Cd soil, whereas Cd concentration of earthworm-B decreased after being transferred to low-Cd soil (albeit BAFCd >20). The integrated biomarker response index was calculated with the biomarkers of antioxidant systems (e.g., superoxide dismutase (SOD), peroxidase (POD), glutathione (GSH), glutathione peroxidase (GPx), glutathione-S transferase (GST), and malondialdehyde (MDA)) and energy index (e.g., protein and glycogen) in M. californica. GSH, GPx, and GST contributed the most to the integrated biomarker response (IBR) in earthworm-A when exposed in high-Cd soil for 14 d. Earthworm-B responded with higher GST and GPx activities and decreased protein content in low-Cd soil. For 28 d, the response of earthworm-A was not evident in either low- or high-Cd soil, and the inductive effect of metal stress on earthworm-B tended to be stable, except for the higher MDA content (p < 0.05) when exposed in low-Cd soil. The IBR index of earthworm-B (2.93 and 3.40) in low- and high-Cd soil, respectively, was higher than that of earthworm-A (0.89 and 1.0). Overall, earthworm-A exhibited a detoxification process to resist high-Cd toxicity from low-to high-Cd soil. Earthworm-B exhibited a physiological resilience once its habitat had changed to a normal or low-Cd soil environment, possibly owing to the cost of its resistance adaptation to the historical highly contaminated soil in fields.
Collapse
Affiliation(s)
- Kun Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China; College of Resources and Environmental Science, Hebei Agricultural University, Baoding, 071001, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China.
| | - Huafen Li
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| | - Caide Huang
- College of Resources and Environmental Science, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
12
|
Urionabarrenetxea E, Garcia-Velasco N, Marigómez I, Soto M. Effects of elevated temperatures and cadmium exposure on stress biomarkers at different biological complexity levels in Eisenia fetida earthworms. Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108735. [PMID: 32142922 DOI: 10.1016/j.cbpc.2020.108735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/10/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
Several ecotoxicological studies assessed metal toxicity upon soil biota and other communities but were mainly focused on the study of a single chemical and usually under optimal conditions of temperature. Meanwhile an increasing global warming is leading to new scenarios by combining different stress factors; chemical stress and thermal stress. Presently, this study aims to assess the joint effects produced by cadmium and elevated temperature on earthworms different levels of biological complexity. Eisenia fetida earthworms were maintained at 19 °C and 26 °C and simultaneously exposed to four Cd concentrations (1.25, 2.5, 25 and 125 mg Cd/Kg soil) for 14 (Short term exposure) and 56 days (reproduction test). Endpoints were addressed at different levels of biological complexity: reproductive impairment (cocoons and juvenile productions), Cd tissue accumulation, mortality of adults, weight loss and cytotoxic effects (coelomocyte viability). In the Short term exposure, increase in temperature produced a larger accumulation of Cd. Hence, earthworms exposed to 125 mg Cd/kg soil under heat stress (26 °C) showed a two fold higher Cd accumulation comparing to those at 19 °C. Earthworms exposed to moderate-high concentrations of Cd (2.5-125 mg Cd/kg) and maintained at 26 °C showed severe weight loss and high mortality rates. The neutral red uptake capacity of coelomocytes extruded from earthworms exposed to the highest Cd concentration decreased after 14 d at 19 °C, and more markedly at 26 °C. The reproduction impairment (decreased number of cocoons) was enhanced after exposure to concentrations higher than 2.5 mg Cd/kg at 26 °C, and after exposure to 125 mg Cd/kg at 19 °C. Earthworm reproduction capability is highly vulnerable to the effect of toxicants at elevated temperatures and sublethal concentrations.
Collapse
Affiliation(s)
- Erik Urionabarrenetxea
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Nerea Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Ionan Marigómez
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain
| | - Manu Soto
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080 Bilbao, Basque Country, Spain.
| |
Collapse
|
13
|
He E, Qiu H, Huang X, Van Gestel CAM, Qiu R. Different dynamic accumulation and toxicity of ZnO nanoparticles and ionic Zn in the soil sentinel organism Enchytraeus crypticus. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 245:510-518. [PMID: 30458381 DOI: 10.1016/j.envpol.2018.11.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/09/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
There is still no consensus over the specific effects of metal-based nanoparticles when compared with the conventional metal salts. Here, the accumulation and toxicity of ZnO-NPs and ZnCl2 in Enchytraeus crypticus over time (1-14 d) were investigated using a sand-solution exposure medium and applying a toxicokinetics and toxicodynamics approach. For both Zn forms, body Zn concentration in the organisms was dependent on both the exposure concentration and exposure time, with equilibrium being reached after 7-14 days of exposure. Generally, the uptake and elimination rate constants (Ku and Ke1) were smaller for ZnO-NPs (5.74-12.6 mg kg-1d-1 and 0.17-0.39 d-1) than for ZnCl2 (8.32-40.1 mg kg-1d-1 and 0.31-2.05 d-1), suggesting that ionic Zn was more accessible for E. crypticus than nanoparticulate Zn. Based on external exposure concentrations, LC50s for ZnO-NPs and ZnCl2 decreased with time from 123 to 67 Zn mg L-1 and from 86 to 62 Zn mg L-1, reaching an almost similar ultimate value within 14 d. LC50s based on body Zn concentrations were almost constant over time (except for 1 d) for both ZnO-NPs and ZnCl2, with overall LC50body of Zn being 1720 and 1306 mg kg-1 dry body weight, respectively. Body Zn concentration, which considers all available pathways, was a good predictor of dynamic toxicity of ZnCl2, but not for ZnO-NPs. This may be attributed to the specific internal distribution and detoxification mechanisms of ZnO-NPs. The particles from ZnO-NPs dominated the accumulation (>75%) and toxicity (∼100%). Our results suggest that dynamic aspects should be taken into account when assessing and comparing NPs and metals uptake and consequent patterns of toxicity.
Collapse
Affiliation(s)
- Erkai He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Xueyin Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Cornelis A M Van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081HV, Amsterdam, the Netherlands
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| |
Collapse
|
14
|
Wang K, Qiao Y, Zhang H, Yue S, Li H, Ji X, Liu L. Influence of metal-contamination on distribution in subcellular fractions of the earthworm (Metaphire californica) from Hunan Province, China. J Environ Sci (China) 2018; 73:127-137. [PMID: 30290861 DOI: 10.1016/j.jes.2018.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/23/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
Earthworms have the ability to accumulate of heavy metals, however, there was few studies that addressed the metals in earthworm at subcellular levels in fields. The distributions of metals (Cd, Cu, Zn, and Pb) in subcellular fractions (cytosol, debris, and granules) of earthworm Metaphire californica were investigated. The relationship between soil metals and earthworms were analyzed to explain its high plasticity to inhabit in situ contaminated soil of Hunan Province, south China. The concentration of Cd in subcellular compartments showed the same pattern as Cu in the order of cytosol > debris > granules. The distribution of Zn and Pb in earthworms indicated a similar propensity for different subcellular fractions that ranked as granules > debris > cytosol for Zn, and granules > cytosol > debris for Pb. The internal metal concentrations in earthworms increased with the soil metals (p<0.05). Significant positive correlations were found between soil Cd and Cd concentrations in cytosol and debris (p<0.01). Moreover, the soil Pb concentration significantly influenced the Pb concentrations in cytosol and debris (p<0.01), similar to that of Cd. The soil Cu concentrations was only associated with the Cu in granules (p<0.05). Soil Zn concentrations correlated with the Zn concentrations in each subcellular fraction (p<0.05). Our results provide insights into the variations of metals partitioning in earthworms at subcellular levels and the relationships of soil metals, which could be one of the detoxification strategies to adapt the long-term contaminated environment.
Collapse
Affiliation(s)
- Kun Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Huiqi Zhang
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Shizhong Yue
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Huafen Li
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Xionghui Ji
- Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Longsheng Liu
- Hengyang Academy of Agricultural Sciences, Hengyang 421151, China
| |
Collapse
|
15
|
Coelho C, Foret C, Bazin C, Leduc L, Hammada M, Inácio M, Bedell JP. Bioavailability and bioaccumulation of heavy metals of several soils and sediments (from industrialized urban areas) for Eisenia fetida. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 635:1317-1330. [PMID: 29710585 DOI: 10.1016/j.scitotenv.2018.04.213] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 06/08/2023]
Abstract
Soils and sediments are susceptible to anthropogenic contamination with Metallic Trace Elements (MTEs) and it can present some risks to ecosystems and human health. The levels of Cd, Cu, Fe, Ni, Pb and Zn were assessed in soils (C, G, K, L) from Estarreja (Portugal) and sediments from a stormwater basin in Lyon (DJG), a harbour (LDB) and a Rhône river site (TRS) (France). An ecotoxicological study was performed with Eisenia fetida (E. fetida) to infer about potential transfer risks to the soil invertebrates. To assess risks associated with MTEs contamination, it is important to know their total concentrations, fractionation and the potential available fractions. CaCl2, DTPA and NaOAc extractions were performed to assess the extractable and available MTEs fractions. The studied sediments were much more contaminated than the soils for all the MTEs analysed. The trace elements fraction linked with DTPA extraction shows higher values when compared with the NaOAc and the CaCl2 pools. Low mortality effects were recorded in the tests with E. fetida. The MTEs levels in soils and sediments and the concentrations bioaccumulated in adult earthworms contributed to a reduction in the number of juveniles produced. E. fetida adults and juveniles accumulated ETMs as follows: Cd > Cu = Zn > Ni > Pb > Fe. Determined BAFs were mostly lower than 1 with some higher values for Cd, Cu and Zn. Calculated SET and ERITME indexes allowed to classify the samples from the most to the less toxic for E. fetida as: LDB > DJG > L > G > C > K > TRS. Despite this order of toxicity, the earthworms exposed to the sediment TRS presented the lowest reproduction rate. The combination of "chemical" measurements with the calculation of BAFs, but especially SET and ERITME indexes can be a useful tool in risk assessment.
Collapse
Affiliation(s)
- C Coelho
- Université de Lyon, CNRS, UMR 5023 LEHNA, Université Lyon 1, ENTPE, 2 rue Maurice Audin, Vaulx-en-Velin F-69518, France.
| | - C Foret
- Université de Lyon, CNRS, UMR 5023 LEHNA, Université Lyon 1, ENTPE, 2 rue Maurice Audin, Vaulx-en-Velin F-69518, France
| | - C Bazin
- INSAVALOR - PROVADEMSE, 20 Avenue Albert Einstein, F-69621 Villeurbanne, France
| | - L Leduc
- Université de Lyon, CNRS, UMR 5023 LEHNA, Université Lyon 1, ENTPE, 2 rue Maurice Audin, Vaulx-en-Velin F-69518, France; INSAVALOR - PROVADEMSE, 20 Avenue Albert Einstein, F-69621 Villeurbanne, France
| | - M Hammada
- Université de Lyon, CNRS, UMR 5023 LEHNA, Université Lyon 1, ENTPE, 2 rue Maurice Audin, Vaulx-en-Velin F-69518, France
| | - M Inácio
- GEOBIOTEC Research Centre, Department of Geosciences, University of Aveiro, Portugal.
| | - J P Bedell
- Université de Lyon, CNRS, UMR 5023 LEHNA, Université Lyon 1, ENTPE, 2 rue Maurice Audin, Vaulx-en-Velin F-69518, France
| |
Collapse
|
16
|
Mortensen LH, Rønn R, Vestergård M. Bioaccumulation of cadmium in soil organisms - With focus on wood ash application. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:452-462. [PMID: 29605665 DOI: 10.1016/j.ecoenv.2018.03.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 02/23/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Harvesting whole-tree biomass for biofuel combustion intensifies removal of nutrients from the ecosystem. This can be partly amended by applying ash from the combustion back to the system and thus recycle the nutrients. However, besides being rich in inorganic nutrients, ash also contains trace amounts of heavy metals. Due to the risk of toxic effects and trophic transfer of heavy metals, especially cadmium, legislation usually restricts the use of ash as a soil amendment. In order to provide researchers and governmental agencies with a tool to assess the risk of cadmium bioaccumulation in specific soil systems after ash application, we review: 1) the properties of ash; 2) the chemical and toxic properties of cadmium; 3) the key factors affecting cadmium bioavailability, cadmium uptake-, storage- and elimination-abilities in soil organisms and the risk of cadmium accumulation and biomagnification in the soil food web; 4) how ash impact on soil can change the risk of cadmium bioaccumulation. We conclude that for assessing the risk of cadmium bioaccumulation for specific sites, it is necessary to consider both the type and composition of ash, the soil conditions and organism composition on the site. On a general basis, we conclude that granulated ashes low in cadmium content, applied to low pH soils with high organic matter content, in systems with low abundances of earthworms, isopods and gastropods, will have a low risk of cadmium accumulation.
Collapse
Affiliation(s)
- Louise Hindborg Mortensen
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark.
| | - Regin Rønn
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark; Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China; Arctic Station, University of Copenhagen, Qeqertarsuaq, Greenland.
| | - Mette Vestergård
- Terrestrial Ecology Section, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen Ø, Denmark; Department of Agroecology, Aarhus University, Forsøgsvej 1, DK-4200 Slagelse, Denmark.
| |
Collapse
|
17
|
Wang K, Qiao Y, Li H, Zhang H, Yue S, Ji X, Liu L. Structural equation model of the relationship between metals in contaminated soil and in earthworm (Metaphire californica) in Hunan Province, subtropical China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 156:443-451. [PMID: 29605664 DOI: 10.1016/j.ecoenv.2018.03.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 06/08/2023]
Abstract
Earthworms have the ability to take up heavy metals in soil and partition them in different subcellular compartments. In this study, we used a structural equation model (SEM) to investigate the two-step causal relationship between environmental availability (EA) and environmental bioavailability (EB) of heavy metals (Cd, Cu, Zn, and Pb), as reflected by their levels in soil fractions and in earthworms from field-contaminated areas in Southern China. In the SEM, the correlation between EA and EB reflected the bioavailability of Cd, Zn, and Pb. For Cd, the causal relationship between the latent variables EA and EB was reflected by DTPA fractions in soil as well as by earthworm internal and subcellular cytosol fractions. The extractable and oxidizable fractions of Zn in soil influenced Zn concentrations in the cytosol and debris. The DTPA and reducible Pb fractions were bioavailable to earthworm internal Pb concentrations and those in cytosol fractions. These results implied that the DTPA, extractable, oxidizable, or reducible fractions of different metals could be the bioavailable sources to earthworm internal metals and partitioned in their subcellular compartments.
Collapse
Affiliation(s)
- Kun Wang
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Yuhui Qiao
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China.
| | - Huafen Li
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Huiqi Zhang
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Shizhong Yue
- College of Resources and Environmental Science, China Agricultural University, Beijing 100193, China
| | - Xionghui Ji
- Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Longsheng Liu
- Hengyang Academy of Agricultural Sciences, Hengyang 421151, China
| |
Collapse
|
18
|
González-Alcaraz MN, Loureiro S, van Gestel CAM. Toxicokinetics of Zn and Cd in the earthworm Eisenia andrei exposed to metal-contaminated soils under different combinations of air temperature and soil moisture content. CHEMOSPHERE 2018; 197:26-32. [PMID: 29331715 DOI: 10.1016/j.chemosphere.2018.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/15/2017] [Accepted: 01/05/2018] [Indexed: 06/07/2023]
Abstract
This study evaluated how different combinations of air temperature (20 °C and 25 °C) and soil moisture content (50% and 30% of the soil water holding capacity, WHC), reflecting realistic climate change scenarios, affect the bioaccumulation kinetics of Zn and Cd in the earthworm Eisenia andrei. Earthworms were exposed for 21 d to two metal-contaminated soils (uptake phase), followed by 21 d incubation in non-contaminated soil (elimination phase). Body Zn and Cd concentrations were checked in time and metal uptake (k1) and elimination (k2) rate constants determined; metal bioaccumulation factor (BAF) was calculated as k1/k2. Earthworms showed extremely fast uptake and elimination of Zn, regardless of the exposure level. Climate conditions had no major impacts on the bioaccumulation kinetics of Zn, although a tendency towards lower k1 and k2 values was observed at 25 °C + 30% WHC. Earthworm Cd concentrations gradually increased with time upon exposure to metal-contaminated soils, especially at 50% WHC, and remained constant or slowly decreased following transfer to non-contaminated soil. Different combinations of air temperature and soil moisture content changed the bioaccumulation kinetics of Cd, leading to higher k1 and k2 values for earthworms incubated at 25 °C + 50% WHC and slower Cd kinetics at 25 °C + 30% WHC. This resulted in greater BAFs for Cd at warmer and drier environments which could imply higher toxicity risks but also of transfer of Cd within the food chain under the current global warming perspective.
Collapse
Affiliation(s)
- M Nazaret González-Alcaraz
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Susana Loureiro
- Department of Biology & CESAM, Campus Universitário de Santiago, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
19
|
Świątek ZM, van Gestel CAM, Bednarska AJ. Toxicokinetics of zinc-oxide nanoparticles and zinc ions in the earthworm Eisenia andrei. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2017; 143:151-158. [PMID: 28531765 DOI: 10.1016/j.ecoenv.2017.05.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 04/25/2017] [Accepted: 05/17/2017] [Indexed: 05/26/2023]
Abstract
The toxicokinetics of zinc in the earthworm Eisenia andrei was investigated following exposure for 21 days to ionic zinc (ZnCl2) or zinc oxide nanoparticles (ZnO-NPs) in Lufa 2.2 soil, followed by 21 days elimination in clean soil. Two concentrations were tested for both ZnCl2 (250 and 500μg Zn g-1) and ZnO-NPs (500 and 1000μg Zn g-1), corresponding to EC25 and EC50 for effects on reproduction. Based on the measured internal Zn concentrations in the earthworms over time of exposure, the kinetics parameters ka - assimilation rate constant (gsoil g-1body weight day-1) and ke - elimination rate constant (day-1) were estimated using a one-compartment model for either total Zn concentrations in the soil or porewater Zn concentrations. In the ZnCl2 treatments, ka was higher for total Zn concentrations in soil, whereas in the ZnO-NP treatments, ka was higher for porewater Zn concentrations. The value of ke did not differ between the two Zn forms (ZnCl2 vs ZnO-NPs) for either EC50 or EC25 when related to total Zn concentrations in soil, but for EC50, ke related to porewater Zn concentrations was significantly higher for ZnCl2 than for ZnO-NPs. It is concluded that differences in kinetic parameters between treatments were connected with exposure concentrations rather than with the form of Zn. Zinc was efficiently regulated by the earthworms in all treatments: a 2-fold increase in exposure concentration resulted in a less than 2-fold increase in internal concentration, and after transfer to uncontaminated soil the internal Zn concentrations in the earthworms returned to ca 111μgg-1 dw in all treatments.
Collapse
Affiliation(s)
- Zuzanna M Świątek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Kraków, Poland
| |
Collapse
|
20
|
Bednarska AJ, Choczyński M, Laskowski R, Walczak M. Combined effects of chlorpyriphos, copper and temperature on acetylcholinesterase activity and toxicokinetics of the chemicals in the earthworm Eisenia fetida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 220:567-576. [PMID: 27743795 DOI: 10.1016/j.envpol.2016.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 09/30/2016] [Accepted: 10/02/2016] [Indexed: 06/06/2023]
Abstract
In polluted environments organisms are commonly exposed to a combination of chemicals with different modes of action, and their effects can be additionally modified by natural abiotic conditions. One possible mechanism for interactions in mixtures is via toxicokinetics, as chemicals may alter the uptake, distribution, biotransformation and/or elimination of each other, and all these processes can be affected by temperature. In this study, the effect of temperature (T) on the toxicokinetics of copper (Cu) and chlorpyriphos (CHP), applied either singly or in binary mixtures, was studied in the earthworm Eisenia fetida. The experiments were conducted at 10 or 20 °C and the earthworms were exposed to environmentally realistic concentrations of Cu and/or CHP for 16 d, followed by a depuration period of 4 d in uncontaminated soil. The earthworms were sampled for body Cu and/or CHP concentrations and acetylcholinesterase (AChE) activity measurements. The CHP degradation rate in the soil was substantially higher at 20 °C and in soil treated with Cu. The significant (p < 0.05) inhibition of AChE activity in the earthworms exposed to CHP was found. The effect of Cu was significant only at p < 0.1. No synergistic effect of the parallel CHP and Cu exposure was found. Four days after transferring the earthworms to uncontaminated soil, the AChE activity recovered to the level observed in control animals. The temperature effect on the toxicokinetic parameters was more pronounced for CHP than for Cu. In the case of CHP, the assimilation rate constant (kA) was significantly higher at 20 °C than at 10 °C, both in CHP-only and CHP + Cu treatments. A similar trend was found for the elimination rate constant (kE), but the difference was statistically significant only for non-Cu treatments. In the case of Cu, the general trend of higher kA and kE at 20 °C and in the absence of CHP was observed.
Collapse
Affiliation(s)
- Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, Mickiewicza 33, 31-120 Kraków, Poland.
| | - Maciej Choczyński
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Ryszard Laskowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Marcin Walczak
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
21
|
Demuynck S, Lebel A, Grumiaux F, Pernin C, Leprêtre A, Lemière S. Comparative avoidance behaviour of the earthworm Eisenia fetida towards chloride, nitrate and sulphate salts of Cd, Cu and Zn using filter paper and extruded water agar gels as exposure media. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:66-74. [PMID: 26995062 DOI: 10.1016/j.ecoenv.2016.03.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 03/03/2016] [Accepted: 03/08/2016] [Indexed: 06/05/2023]
Abstract
We studied the avoidance behaviour of the earthworm Eisenia fetida towards Cd, Cu, and Zn, trace elements (TEs) tested as chloride, nitrate and sulphate salts. Sub adults were exposed individually using dual-cell chambers at 20+2°C in the dark. Recordings were realised at different dates from 2h to 32h. We used filter paper and extruded water agar gel as exposure media to evaluate the contribution of the dermal and the digestive exposure routes on the avoidance reactions. Exposures to Cu or Cd (10mgmetal ionL(-1)) resulted in highly significant avoidance reactions through the exposure duration. Worms avoided Zn poorly and reactions towards Zn salts varied along the exposure. Worm sensitivity towards TEs differed between salts and this could result from differential toxicity or accessibility of these TE salts to earthworms. The anion in itself was not the determinant of the avoidance reactions since exposures to similar concentrations of these anions using calcium salts did not result in significant avoidance worm behaviour. Avoidance responses towards TEs were higher in the case of water agar exposures than in filter paper exposures. Thus, dermal contacts with TE solutions would elicit worm avoidance but signals from receptors located inside the digestive tract could reinforce this behaviour. The use of extruded water agar gels as the substrate allows checking the real sensitivity of earthworm species towards TEs since the TE concentrations leading to significant avoidance reactions were below those reported in the literature when using TE-spiked soils.
Collapse
Affiliation(s)
- Sylvain Demuynck
- Université Lille Nord de France, Lille, France; Laboratoire Génie Civil et géo-Environnement (LGCgE) Université de Lille, Univ. Lille 1, Équipe Fonctionnement des Ecosystèmes Terrestres Anthropisés, Bâtiment SN3, Cité Scientifique, F-59655 Villeneuve d'Ascq, Cedex, France
| | | | - Fabien Grumiaux
- Université Lille Nord de France, Lille, France; Laboratoire Génie Civil et géo-Environnement (LGCgE) Université de Lille, Univ. Lille 1, Équipe Fonctionnement des Ecosystèmes Terrestres Anthropisés, Bâtiment SN3, Cité Scientifique, F-59655 Villeneuve d'Ascq, Cedex, France; Ecole Supérieure du Professorat et de l'Education (ESPE), Site d'Arras, 7 bis rue Raoul François, BP 30927, F-62022 Arras Cedex, France
| | - Céline Pernin
- Université Lille Nord de France, Lille, France; Laboratoire Génie Civil et géo-Environnement (LGCgE) Université de Lille, Univ. Lille 1, Équipe Fonctionnement des Ecosystèmes Terrestres Anthropisés, Bâtiment SN3, Cité Scientifique, F-59655 Villeneuve d'Ascq, Cedex, France
| | - Alain Leprêtre
- Université Lille Nord de France, Lille, France; Laboratoire Génie Civil et géo-Environnement (LGCgE) Université de Lille, Univ. Lille 1, Équipe Fonctionnement des Ecosystèmes Terrestres Anthropisés, Bâtiment SN3, Cité Scientifique, F-59655 Villeneuve d'Ascq, Cedex, France
| | - Sébastien Lemière
- Université Lille Nord de France, Lille, France; Laboratoire Génie Civil et géo-Environnement (LGCgE) Université de Lille, Univ. Lille 1, Équipe Fonctionnement des Ecosystèmes Terrestres Anthropisés, Bâtiment SN3, Cité Scientifique, F-59655 Villeneuve d'Ascq, Cedex, France
| |
Collapse
|
22
|
Topuz E, van Gestel CAM. Toxicokinetics and toxicodynamics of differently coated silver nanoparticles and silver nitrate in Enchytraeus crypticus upon aqueous exposure in an inert sand medium. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:2816-2823. [PMID: 26094724 DOI: 10.1002/etc.3123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/02/2015] [Accepted: 06/14/2015] [Indexed: 06/04/2023]
Abstract
The aim of the present study was to evaluate the effect of silver nanoparticles (AgNPs) on Enchytraeus crypticus, applying a combined toxicokinetics and toxicodynamics approach to understand the relationship between survival and the development of internal Ag concentrations in the animals over time. Toxicity tests were conducted in medium composed of well-defined aqueous solutions added to inert quartz sand to avoid the complexity of soil conditions. Citrate-coated AgNPs (AgNP-Cit) and polyvinylpyrrolidone-coated AgNPs (AgNP-PVP) were tested and compared with silver nitrate (AgNO3), which was used as a positive control for Ag ion effects. The median lethal concentration (LC50) values based on Ag concentrations in the solution phase of the test medium decreased over time and reached steady state after 7 d, with AgNO3 and AgNP-PVP being more toxic than AgNP-Cit. Slow dissolution may explain the low uptake kinetics and lower toxicity of AgNP-Cit compared with the other 2 Ag forms. The LC50 values based on internal Ag concentrations in the animals were almost stable over time, highlighting the importance of integrating toxicokinetics and toxicodynamics and relating survival with internal Ag concentrations. Neither survival-based elimination rates nor internal LC50s in the organisms showed any significant evidence of nano-specific effects for both AgNPs, although they suggested some uptake of particulate Ag for AgNP-Cit. The authors conclude that the toxicity of both types of AgNP probably is mainly attributable to the release of Ag ions.
Collapse
Affiliation(s)
- Emel Topuz
- Faculty of Earth and Life Sciences, Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
- Department of Environmental Engineering, Istanbul Technical University, Maslak, Istanbul, Turkey
| | - Cornelis A M van Gestel
- Faculty of Earth and Life Sciences, Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
23
|
Bednarska AJ, Stępień K. Concentration dependent toxicokinetics of copper in the red flour beetle Tribolium castaneum (Coleoptera: Tenebrionidae). ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:1823-1830. [PMID: 26169625 PMCID: PMC4661212 DOI: 10.1007/s10646-015-1518-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 07/08/2015] [Indexed: 06/04/2023]
Abstract
To predict internal metal concentrations in animals under specific environmental exposures, the relationship between the exposure concentrations and values of toxicokinetic parameters must be known. At high exposure levels, the availability of carriers transporting metal ions through cellular membranes may become limited, thereby decreasing the assimilation rates (k A ). Furthermore, increased metal concentrations in food may result in greater damage to the gut and reduce the assimilation efficiency and/or increase the elimination rate (k E ). Therefore, k A should decrease and k E should increase with increasing metal concentrations. In fact, our study on Tribolium castaneum exposed to Cu at 500, 1000, 2000 and 4000 mg kg(-1) of dry flour showed that with increasing Cu concentrations, k A decreased from 0.0042 day(-1) at 500 mg kg(-1) to 0.0026 day(-1) at 4000 mg kg(-1) in females and from 0.0029 to 0.001 day(-1) in males and k E increased from 0.027 to 0.064 day(-1) and from 0.018 to 0.04 day(-1) in females and males, respectively. Significant differences in k A between the sexes were observed at 2000 and 4000 mg kg(-1), whereas significant differences between treatments were found for k A in males. Copper was efficiently regulated by T. castaneum: an eightfold increase in exposure concentrations resulted in only a ca. twofold increase in the internal concentration. No Cu effect on the respiratory metabolism of T. castaneum was found.
Collapse
Affiliation(s)
- Agnieszka J Bednarska
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| | - Katarzyna Stępień
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| |
Collapse
|
24
|
Rodriguez-Ruiz A, Etxebarria J, Boatti L, Marigómez I. Scenario-targeted toxicity assessment through multiple endpoint bioassays in a soil posing unacceptable environmental risk according to regulatory screening values. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:13344-61. [PMID: 25940475 DOI: 10.1007/s11356-015-4564-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 04/19/2015] [Indexed: 06/04/2023]
Abstract
Lanestosa is a chronically polluted site (derelict mine) where the soil (Lanestosa (LA) soil) exceeds screening values (SVs) of regulatory policies in force (Basque Country; Europe) for Zn, Pb and Cd. A scenario-targeted toxicity assessment was carried out on the basis of a multi-endpoint bioassay approach. Acute and chronic toxicity bioassays were conducted with selected test species (Vibrio fischeri, Dictyostelium discoideum, Lactuca sativa, Raphanus sativus and Eisenia fetida) in combination with chemical analysis of soils and elutriates and with bioaccumulation studies in earthworms. Besides, the toxicity profile was compared with that of the mine runoff (RO) soil and of a fresh artificially polluted soil (LAAPS) resembling LA soil pollutant profile. Extractability studies in LA soil revealed that Pb, Zn and Cd were highly available for exchange and/or release into the environment. Indeed, Pb and Zn were accumulated in earthworms and LA soil resulted to be toxic. Soil respiration, V. fischeri, vegetative and developmental cycles of D. discoideum and survival and juvenile production of E. fetida were severely affected. These results confirmed that LA soil had unacceptable environmental risk and demanded intervention. In contrast, although Pb and Zn concentrations in RO soil revealed also unacceptable risk, both metal extractability and toxicity were much lower than in LA soil. Thus, within the polluted site, the need for intervention varied between areas that posed dissimilar risk. Besides, since LAAPS, with a high exchangeable metal fraction, was the most toxic, ageing under in situ natural conditions seemingly contributed to attenuate LA soil risk. As a whole, combining multi-endpoint bioassays with scenario-targeted analysis (including leaching and ageing) provides reliable risk assessment in soils posing unacceptable environmental risk according to SVs, which is useful to optimise the required intervention measures.
Collapse
Affiliation(s)
- A Rodriguez-Ruiz
- Ekoiz-Berrilur Consortium, CBET Res. Grp, Zoology & Animal Cell Biology Department, Science & Technology Faculty, University of the Basque Country (UPV/EHU), Sarriena, 48940, Leioa, Bizkaia, Basque Country (Spain)
| | | | | | | |
Collapse
|
25
|
Bednarska AJ, Opyd M, Żurawicz E, Laskowski R. Regulation of body metal concentrations: Toxicokinetics of cadmium and zinc in crickets. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 119:9-14. [PMID: 25958030 DOI: 10.1016/j.ecoenv.2015.04.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/30/2015] [Accepted: 04/30/2015] [Indexed: 05/09/2023]
Abstract
Previous studies indicated that essential and xenobiotic metals differ substantially in terms of their toxicokinetics. Whether these differences are due to different assimilation rates, different elimination rates, or both, and whether all metals are regulated in a similar manner but with different efficiency remains unclear. To compare the mechanisms responsible for the regulation of different metals, parameters for toxicokinetic models have to be tested under exposures to the identical molar concentration of those metals. In this study, the cricket Gryllus assimilis was exposed to Zn or Cd at 2.5, 10, and 40mMkg(-1) dry food. The body concentrations of the metals were not perfectly regulated by the crickets. For Zn, a clear increase in the body concentration was found only at the highest treatment; whereas at the lowest treatment, the internal concentration remained unchanged throughout the experiment. At the lowest Zn concentration, the assimilation (kA) [day(-1)] and elimination (kE) [day(-1)] rate constants were balanced (kA=0.024, kE=0.024). When increasing the Zn exposure, kA decreased to 0.018 at 10mMkg(-1) and 0.01 at 40mMkg(-1), and kE increased to 0.05 and 0.07, respectively. Therefore, the body concentration of Zn was regulated by simultaneously changing the assimilation and elimination rate. By contrast, even at the lowest treatment, a significant increase in Cd concentration was observed in the crickets. The equilibrium Cd concentration resulted almost exclusively from increasing kE from 0.17, through 0.28 to 0.61 at 2.5, 10 and 40mMkg(-1). The kA for Cd did not reveal any clear trend. Zn was more efficiently regulated by crickets than was Cd: a 16-fold increase in exposure concentration (from 2.5 to 40mM Znkg(-1)) resulted only in a twofold increase of internal concentration, whereas the identical increase in Cd exposure concentration resulted in almost a sevenfold increase in internal concentration of this metal.
Collapse
Affiliation(s)
- Agnieszka J Bednarska
- Institute of Nature Conservation, Polish Academy of Sciences, Al. Mickiewicza 33, 31-120 Kraków, Poland.
| | - Marta Opyd
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Ewelina Żurawicz
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | - Ryszard Laskowski
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| |
Collapse
|
26
|
Owojori OJ, Siciliano SD. The potentiation of zinc toxicity by soil moisture in a boreal forest ecosystem. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:600-607. [PMID: 25502519 DOI: 10.1002/etc.2846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 06/04/2023]
Abstract
Northern boreal forests often experience forest dieback as a result of metal ore mining and smelting. The common solution is to lime the soil, which increases pH, reducing metal toxicity and encouraging recovery. In certain situations, however, such as in Flin Flon, Manitoba, Canada, liming has yielded only moderate benefits, with some locations responding well to liming and other locations not at all. In an effort to increase the effectiveness of the ecorestoration strategy, the authors investigated if these differences in liming responsiveness were linked to differences in toxicity. Toxicity of metal-impacted Flin Flon soils on the oribatid mite Oppia nitens and the collembolan Folsomia candida was assessed, with a view toward identifying the metal of concern in the area. The effects of moisture content on metal sorption, uptake, and toxicity to the invertebrates were also investigated. Toxicity tests with the invertebrates were conducted using either Flin Flon soils or artificial soils with moisture content adjusted to 30%, 45%, 60%, or 75% of the maximum water-holding capacity of the soil samples. The Relative to Cd Toxicity Model identified Zn as the metal of concern in the area, and this was confirmed using validation tests with field contaminated soils. Furthermore, increasing the moisture content in soils increased the amount of mobile Zn available for uptake with the ion exchange resin. Survival and reproduction of both invertebrates were reduced under Zn exposure as moisture level increased. Thus, moisture-collecting landforms, which are often also associated with high Zn concentrations at Flin Flon, have, as a result, higher Zn toxicity to the soil ecosystem because of increases in soil moisture.
Collapse
Affiliation(s)
- Olugbenga J Owojori
- Department of Soil Science, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; Department of Zoology, Obafemi Awolowo University, Ile-Ife, Nigeria
| | | |
Collapse
|
27
|
He E, Baas J, Van Gestel CAM. Interaction between nickel and cobalt toxicity in Enchytraeus crypticus is due to competitive uptake. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2015; 34:328-337. [PMID: 25451140 DOI: 10.1002/etc.2802] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/05/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
Uptake and toxicity of Ni-Co mixtures in Enchytraeus crypticus were determined after 4 d, 7 d, 10 d, and 14 d exposure. Generally, body concentrations of Ni and Co increased with increasing exposure concentrations. Ni body concentration was significantly reduced in the presence of Co, whereas Ni only marginally affected Co uptake. When expressed as free ion activities, individual toxicity of Ni and Co increased with time, with median lethal concentrations (LC50) decreasing from 78.3 μM and 511 μM at 4 d to 40.4 μM and 393 μM at 14 d, respectively. When expressed as body concentrations, LC50BodyNi remained constant with time whereas LC50BodyCo increased during the first 7 d but remained stable afterwards. As identified by the MIXTOX model, interactions between Ni and Co were mainly antagonistic when based on free ion activities, however, no interaction was observed when based on body concentrations. A process-based model, incorporating exposure time to analyze the mechanisms underlying the dynamic mixture toxicity confirmed the differences in toxicokinetics of the 2 metals. The author's findings suggest that body concentrations, which incorporate bioaccumulation processes, are time-independent and can act as a more constant indicator of metal toxicity. The observed antagonism was mainly caused by competition between Co and Ni for binding sites and subsequent inhibition of Ni uptake. This competitive interaction occurred at the uptake level (toxicokinetics), but not at the target level (toxicodynamics).
Collapse
Affiliation(s)
- Erkai He
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
28
|
Irizar A, Rodríguez MP, Izquierdo A, Cancio I, Marigómez I, Soto M. Effects of soil organic matter content on cadmium toxicity in Eisenia fetida: implications for the use of biomarkers and standard toxicity tests. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2015; 68:181-192. [PMID: 25015731 DOI: 10.1007/s00244-014-0060-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/02/2014] [Indexed: 06/03/2023]
Abstract
Bioavailability is affected by soil physicochemical characteristics such as pH and organic matter (OM) content. In addition, OM constitutes the energy source of Eisenia fetida, a well established model species for soil toxicity assessment. The present work aimed at assessing the effects of changes in OM content on the toxicity of Cd in E. fetida through the measurement of neutral red uptake (NRU) and mortality, growth, and reproduction (Organisation for Economic Co-operation and Development [OECD] Nos. 207 and 222). Complementarily, metallothionein (MT) and catalase transcription levels were measured. To decrease variability inherent to natural soils, artificial soils (Organization for Economic Cooperation and Development 1984) with different OM content (6, 10, and 14%) and spiked with Cd solutions at increasing concentrations were used. Low OM in soil decreased soil ingestion and Cd bioaccumulation but also increased Cd toxicity causing lower NRU of coelomocytes, 100 % mortality, and stronger reproduction impairment, probably due to the lack of energy to maintain protection mechanisms (production of MT).Cd bioaccumulation did not reflect toxicity, and OM played a pivotal role in Cd toxicity. Thus, OM content should be taken into account when using E. fetida in in vivo exposures for soil health assessment.
Collapse
|
29
|
García-Gómez C, Babin M, Obrador A, Álvarez JM, Fernández MD. Toxicity of ZnO nanoparticles, ZnO bulk, and ZnCl₂ on earthworms in a spiked natural soil and toxicological effects of leachates on aquatic organisms. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 67:465-473. [PMID: 24793192 DOI: 10.1007/s00244-014-0025-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/25/2014] [Indexed: 06/03/2023]
Abstract
The present study assessed the uptake and toxicity of ZnO nanoparticles (NPs), ZnO bulk, and ZnCl₂ salt in earthworms in spiked agricultural soils. In addition, the toxicity of aqueous extracts to Daphnia magna and Chlorella vulgaris was analyzed to determine the risk of these soils to the aquatic compartment. We then investigated the distribution of Zn in soil fractions to interpret the nature of toxicity. Neither mortality nor differences in earthworm body weight were observed compared with the control. The most sensitive end point was reproduction. ZnCl₂ was notably toxic in eliminating the production of cocoons. The effects induced by ZnO-NPs and bulk ZnO on fecundity were similar and lower than those of the salt. In contrast to ZnO bulk, ZnO-NPs adversely affected fertility. The internal concentrations of Zn in earthworms in the NP group were greater than those in the salt and bulk groups, although bioconcentration factors were consistently <1. No relationship was found between toxicity and internal Zn amounts in earthworms. The results from the sequential extraction of soil showed that ZnCl₂ displayed the highest availability compared with both ZnO. Zn distribution was consistent with the greatest toxicity showed by the salt but not with Zn body concentrations. The soil extracts from both ZnO-NPs and bulk ZnO did not show effects on aquatic organisms (Daphnia and algae) after short-term exposure. However, ZnCl₂ extracts (total and 0.45-μm filtered) were toxic to Daphnia.
Collapse
Affiliation(s)
- C García-Gómez
- Department of the Environment, INIA, Ctra A Coruña km 7.5, 28040, Madrid, Spain,
| | | | | | | | | |
Collapse
|
30
|
Ardestani MM, van Straalen NM, van Gestel CAM. Uptake and elimination kinetics of metals in soil invertebrates: a review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 193:277-295. [PMID: 25043314 DOI: 10.1016/j.envpol.2014.06.026] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Revised: 06/13/2014] [Accepted: 06/20/2014] [Indexed: 06/03/2023]
Abstract
Uptake and elimination kinetics of metals in soil invertebrates are a function of both soil and organism properties. This study critically reviewed metal toxicokinetics in soil invertebrates and its potential use for assessing bioavailability. Uptake and elimination rate constants of different metals are summarized. Invertebrates have different strategies for essential and non-essential metals. As a consequence, different types of models must be applied to describe metal uptake and elimination kinetics. We discuss model parameters for each metal separately and show how they are influenced by exposure concentrations and by physiological properties of the organisms. Soil pH, cation exchange capacity, clay and organic matter content significantly affect uptake rates of non-essential metals in soil invertebrates. For essential metals, kinetics is hardly influenced by soil properties, but rather prone to physiological regulation mechanisms of the organisms. Our analysis illustrates that toxicokinetics can be a valuable measurement to assess bioavailability of soil-bound metals.
Collapse
Affiliation(s)
- Masoud M Ardestani
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands.
| | - Nico M van Straalen
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Earth and Life Sciences, Vrije University, De Boelelaan 1085, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
31
|
García-Gómez C, Esteban E, Sánchez-Pardo B, Fernández MD. Assessing the ecotoxicological effects of long-term contaminated mine soils on plants and earthworms: relevance of soil (total and available) and body concentrations. ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1195-209. [PMID: 24875255 DOI: 10.1007/s10646-014-1262-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/17/2014] [Indexed: 05/08/2023]
Abstract
The interactions and relevance of the soil (total and available) concentrations, accumulation, and acute toxicity of several essential and non-essential trace elements were investigated to determine their importance in environmental soil assessment. Three plant species (T. aestivum, R. sativum, and V. sativa) and E. fetida were simultaneously exposed for 21 days to long-term contaminated soils collected from the surroundings of an abandoned pyrite mine. The soils presented different levels of As and metals, mainly Zn and Cu, and were tested at different soil concentrations [12.5, 25, 50, and 100% of contaminated soil/soil (w/w)] to increase the range of total and available soil concentrations necessary for the study. The total concentrations in the soils (of both As and metals) were better predictors of earthworm uptake than were the available concentrations. In plants, the accumulation of metals was related to the available concentrations of Zn and Cu, which could indicate that plants and earthworms accumulate elements from different pools of soil contaminants. Moreover, Zn and Cu, which are essential elements, showed controlled uptake at low concentrations. The external metal concentrations predicted earthworm mortality, whereas in plants, the effects on growth were correlated to the As and metal contents in the plants. In general, the bioaccumulation factors were lower at higher exposure levels, which implies the existence of auto-regulation in the uptake of both essential and non-essential elements by plants and earthworms.
Collapse
Affiliation(s)
- Concepción García-Gómez
- Environment Department, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra. A Coruña, km 7.5, 28040, Madrid, Spain
| | | | | | | |
Collapse
|
32
|
Ardestani MM, Oduber F, van Gestel CAM. A combined toxicokinetics and toxicodynamics approach to assess the effect of porewater composition on cadmium bioavailability to Folsomia candida. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2014; 33:1570-1577. [PMID: 24846504 DOI: 10.1002/etc.2585] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/24/2014] [Accepted: 03/17/2014] [Indexed: 06/03/2023]
Abstract
The aim of the present study was to improve our understanding of cadmium bioavailability by linking toxicokinetics and toxicodynamics. The springtail Folsomia candida was exposed to different cadmium concentrations in solutions embedded in inert quartz sand. Survival and cadmium uptake in the animals were followed for 21 d. After 10 d, some animals were transferred to clean medium to assess cadmium elimination. Using a first-order one-compartment model, an overall uptake rate constant (k1) of 0.18 L kg(animal)(-1) d(-1) and an elimination rate constant (k(2-TK)) of 0.02 d(-1) were calculated. Survival decreased with time, resulting in an estimated final median lethal concentration (LC50) of 0.51 mM. A lethal body concentration (LBC) of 4.6 µmol Cd g(-1) dry body weight was estimated by multiplying the final LC50 by the bioconcentration factor (k1/k(2-TK)). The LC50(animal) values based on internal cadmium concentrations were between 3.56 µmol Cd g(-1) and 9.91 µmol Cd g(-1) dry body weight, with an overall value of 7.9 µmol Cd g(-1) dry body weight (95% confidence interval [CI]: 3.8-12.0 µmol Cd g(-1) dry body wt). Because the 95% CI of the LC50(animal) included the LBC, there was good agreement of cadmium toxicokinetics and toxicodynamics.
Collapse
Affiliation(s)
- Masoud M Ardestani
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands
| | | | | |
Collapse
|
33
|
Reddy M, Moodley R, Jonnalagadda SB. Elemental uptake and distribution of nutrients in avocado mesocarp and the impact of soil quality. ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:4519-4529. [PMID: 24671616 DOI: 10.1007/s10661-014-3716-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
The distribution of 14 elements (both essential and non-essential) in the Hass and Fuerte cultivars of avocados grown at six different sites in KwaZulu-Natal, South Africa, was investigated. Soils from the different sites were concurrently analysed for elemental concentration (both total and exchangeable), pH, organic matter and cation exchange capacity. In both varieties of the fruit, concentrations of the elements Cd, Co, Cr, Pb and Se were extremely low with the other elements being in decreasing order of Mg > Ca > Fe > Al > Zn > Mn > Cu > Ni > As. Nutritionally, avocados were found to be a good dietary source of the micronutrients Cu and Mn. In soil, Pb concentrations indicated enrichment (positive geoaccumuluation indices) but this did not influence uptake of the metal by the plant. Statistical analysis was done to evaluate the impact of soil quality parameters on the nutrient composition of the fruits. This analysis indicated the prevalence of complex metal interactions at the soil-plant interface that influenced their uptake by the plant. However, the plant invariably controlled metal uptake according to metabolic needs as evidenced by their accumulation and exclusion.
Collapse
Affiliation(s)
- Mageshni Reddy
- School of Chemistry & Physics, Westville campus, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | | | | |
Collapse
|
34
|
Rodriguez-Ruiz A, Asensio V, Zaldibar B, Soto M, Marigómez I. Toxicity assessment through multiple endpoint bioassays in soils posing environmental risk according to regulatory screening values. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:9689-708. [PMID: 24819436 DOI: 10.1007/s11356-014-2915-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Toxicity profiles of two soils (a brownfield in Legazpi and an abandoned iron mine in Zugaztieta; Basque Country) contaminated with several metals (As, Zn, Pb and Cu in Legazpi; Zn, Pb, Cd and Cu in Zugaztieta) and petroleum hydrocarbons (in Legazpi) were determined using a multi-endpoint bioassay approach. Investigated soils exceeded screening values (SVs) of regulatory policies in force (Basque Country; Europe). Acute and chronic toxicity bioassays were conducted with a selected set of test species (Vibrio fischeri, Dictyostelium discoideum, Lactuca sativa, Raphanus sativus and Eisenia fetida) in combination with chemical analysis of soils and elutriates, as well as with bioaccumulation studies in earthworms. The sensitivity of the test species and the toxicity endpoints varied depending on the soil. It was concluded that whilst Zugaztieta soil showed very little or no toxicity, Legazpi soil was toxic according to almost all the toxicity tests (solid phase Microtox, D. discoideum inhibition of fruiting body formation and developmental cycle solid phase assays, lettuce seed germination and root elongation test, earthworm acute toxicity and reproduction tests, D. discoideum cell viability and replication elutriate assays). Thus, albeit both soils had similar SVs, their ecotoxicological risk, and therefore the need for intervening, was different for each soil as unveiled after toxicity profiling based on multiple endpoint bioassays. Such a toxicity profiling approach is suitable to be applied for scenario-targeted soil risk assessment in those cases where applicable national/regional soil legislation based on SVs demands further toxicity assessment.
Collapse
Affiliation(s)
- A Rodriguez-Ruiz
- Ekoiz-Berrilur Consortium, CBET Res. Grp. Zoology and Animal Cell Biology Department, Science and Technology Faculty, University of the Basque Country (UPV/EHU), Sarriena, 48940, Leioa-Bizkaia, Basque Country, Spain
| | | | | | | | | |
Collapse
|
35
|
Cedergreen N. Quantifying synergy: a systematic review of mixture toxicity studies within environmental toxicology. PLoS One 2014; 9:e96580. [PMID: 24794244 PMCID: PMC4008607 DOI: 10.1371/journal.pone.0096580] [Citation(s) in RCA: 489] [Impact Index Per Article: 48.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 04/09/2014] [Indexed: 11/18/2022] Open
Abstract
Cocktail effects and synergistic interactions of chemicals in mixtures are an area of great concern to both the public and regulatory authorities. The main concern is whether some chemicals can enhance the effect of other chemicals, so that they jointly exert a larger effect than predicted. This phenomenon is called synergy. Here we present a review of the scientific literature on three main groups of environmentally relevant chemical toxicants: pesticides, metal ions and antifouling compounds. The aim of the review is to determine 1) the frequency of synergy, 2) the extent of synergy, 3) whether any particular groups or classes of chemicals tend to induce synergy, and 4) which physiological mechanisms might be responsible for this synergy. Synergy is here defined as mixtures with minimum two-fold difference between observed and predicted effect concentrations using Concentration Addition (CA) as a reference model and including both lethal and sub-lethal endpoints. The results showed that synergy occurred in 7%, 3% and 26% of the 194, 21 and 136 binary pesticide, metal and antifoulants mixtures included in the data compilation on frequency. The difference between observed and predicted effect concentrations was rarely more than 10-fold. For pesticides, synergistic mixtures included cholinesterase inhibitors or azole fungicides in 95% of 69 described cases. Both groups of pesticides are known to interfere with metabolic degradation of other xenobiotics. For the four synergistic metal and 47 synergistic antifoulant mixtures the pattern in terms of chemical groups inducing synergy was less clear. Hypotheses in terms of mechanisms governing these interactions are discussed. It was concluded that true synergistic interactions between chemicals are rare and often occur at high concentrations. Addressing the cumulative rather than synergistic effect of co-occurring chemicals, using standard models as CA, is therefore regarded as the most important step in the risk assessment of chemical cocktails.
Collapse
Affiliation(s)
- Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
36
|
Li L, Wu H, van Gestel CAM, Peijnenburg WJGM, Allen HE. Soil acidification increases metal extractability and bioavailability in old orchard soils of Northeast Jiaodong Peninsula in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 188:144-152. [PMID: 24583712 DOI: 10.1016/j.envpol.2014.02.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/02/2014] [Accepted: 02/07/2014] [Indexed: 06/03/2023]
Abstract
The bioavailability of Cu, Zn, Pb and Cd from field-aged orchard soils in a certified fruit plantation area of the Northeast Jiaodong Peninsula in China was assessed using bioassays with earthworms (Eisenia fetida) and chemical assays. Soil acidity increased with increasing fruit cultivation periods with a lowest pH of 4.34. Metals were enriched in topsoils after decades of horticultural cultivation, with highest concentrations of Cu (132 kg(-1)) and Zn (168 mg kg(-1)) in old apple orchards and Pb (73 mg kg(-1)) and Cd (0.57 mg kg(-1)) in vineyard soil. Earthworm tissue concentrations of Cu and Pb significantly correlated with 0.01 M CaCl2-extractable soil concentrations (R(2) = 0.70, p < 0.001 for Cu; R(2) = 0.58, p < 0.01 for Pb). Because of the increased bioavailability, regular monitoring of soil conditions in old orchards and vineyards is recommended, and soil metal guidelines need reevaluation to afford appropriate environmental protection under acidifying conditions.
Collapse
Affiliation(s)
- Lianzhen Li
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China
| | - Huifeng Wu
- Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Provincial Key Laboratory of Coastal Zone Environmental Processes, YICCAS, Yantai, Shandong 264003, PR China.
| | - Cornelis A M van Gestel
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | - Willie J G M Peijnenburg
- National Institute of Public Health and The Environment, Laboratory for Ecological Risk Assessment, P.O. Box 1, 3720 BA Bilthoven, The Netherlands; Institute of Environmental Sciences (CML), Leiden University, Leiden, The Netherlands
| | - Herbert E Allen
- Department of Civil and Environmental Engineering, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
37
|
Qiu H, Peijnenburg WJGM, van Gestel CAM, Vijver MG. Can commonly measurable traits explain differences in metal accumulation and toxicity in earthworm species? ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:21-32. [PMID: 24193403 DOI: 10.1007/s10646-013-1147-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/17/2013] [Indexed: 06/02/2023]
Abstract
There is no clear consensus in the literature on the metal accumulation pattern and sensitivity of different earthworm species. In the present study, accumulation and toxicity of Cu, Cd, Ni, and Zn in the earthworms Lumbricus rubellus (epigeic), Aporrectodea longa (anecic), and Eisenia fetida (ultra-epigeic) were determined after 28 days exposure in two soils. Metal accumulation and sensitivity were interpreted using the specific traits of different earthworm species. Results showed that for all four metals tested L. rubellus was the most sensitive species, followed by A. longa and E. fetida. At the same exposure concentration, internal concentrations followed the order: L. rubellus > E. fetida > A. longa for Cu and Ni, L. rubellus ≈ E. fetida ≈ A. longa for Cd, and L. rubellus > A. longa > E. fetida for Zn. Langmuir isotherms were used to model metal accumulation at both nontoxic and toxic exposure concentrations. The Cu, Cd, and Zn concentrations in E. fetida generally leveled off at high exposure concentrations but not for the other two species. A. longa showed a high capability of regulating internal Ni concentrations. The traits-based approaches suggested that most likely a group of earthworm traits together determined (differences in) metal accumulation and sensitivity. More research is needed in this respect to build up solid relationships between species-specific responses and traits, enabling cross-species extrapolation of accumulation and toxicity data.
Collapse
Affiliation(s)
- Hao Qiu
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands,
| | | | | | | |
Collapse
|
38
|
Cedergreen N, Nørhave NJ, Nielsen K, Johansson HKL, Marcussen H, Svendsen C, Spurgeon DJ. Low temperatures enhance the toxicity of copper and cadmium to Enchytraeus crypticus through different mechanisms. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:2274-83. [PMID: 23661382 DOI: 10.1002/etc.2274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/15/2012] [Accepted: 04/22/2013] [Indexed: 05/07/2023]
Abstract
Knowledge about how toxicity changes with temperature is important for determining the extent of safety factors required when extrapolating from standard laboratory conditions to variable field scenarios. In the present study, the authors evaluated the toxicity of Cu and Cd to the potworm Enchytraeus crypticus at 6 temperatures in the range of 11 °C to 25 °C. For both metals, reproductive toxicity decreased approximately 2.5-fold with increasing temperature. This is contrary to what most other studies have found. Measurements of the bioavailable fraction of the metals in the soils and the internal metal concentrations in the worms over time showed that the major cause of change in toxicity with temperature for Cu was the worms' ability to regulate internal concentration at high temperatures. Uptake of Cd increased with time at all temperatures and with higher rates at high temperatures. Hence, the lower toxicity of Cd at high temperatures is proposed to be due to the E. crypticus being more efficient at immobilizing Cd and/or repairing damages at high compared to low temperatures. The present study concludes that no consistent relationship between metal toxicity and temperature across species can be made. The metabolic dependence of the species in terms of regulating metal uptake, excretion, immobilization, damage, and repair processes, will be crucial factors in determining species susceptibility to metals at varying temperatures.
Collapse
Affiliation(s)
- Nina Cedergreen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | |
Collapse
|
39
|
Ardestani MM, van Gestel CAM. Using a toxicokinetics approach to explain the effect of soil pH on cadmium bioavailability to Folsomia candida. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 180:122-30. [PMID: 23747820 DOI: 10.1016/j.envpol.2013.05.024] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 04/24/2013] [Accepted: 05/02/2013] [Indexed: 05/22/2023]
Abstract
The aim of this study was to improve our understanding of metal bioavailability in soil by linking the biotic ligand approach with toxicokinetics modelling. We determined cadmium bioaccumulation kinetics in Folsomia candida (Collembola) as a function of soil pH. Animals were exposed for 21 days to LUFA 2.2 soil at 5 or 20 μg Cd g(-1) dry soil followed by 21 days elimination in clean soil. Internal cadmium concentrations were modelled using a first-order one-compartment model, relating uptake rate constants (k1) to total soil, water or 0.01 M CaCl2 extractable and porewater concentrations. Based on total soil concentrations, k1 was independent of soil pH while it strongly increased with increasing pH based on porewater concentrations explaining the reduced competition of H(+) ions making cadmium more bioavailable in pore water at high pH. This shows that the principles of biotic ligand modelling are applicable to predict cadmium accumulation kinetics in soil-living invertebrates.
Collapse
Affiliation(s)
- Masoud M Ardestani
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands.
| | | |
Collapse
|
40
|
He E, van Gestel CAM. Toxicokinetics and toxicodynamics of nickel in Enchytraeus crypticus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2013; 32:1835-41. [PMID: 23625585 DOI: 10.1002/etc.2253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Revised: 03/19/2013] [Accepted: 04/16/2013] [Indexed: 05/09/2023]
Abstract
Metal toxicity is usually determined at a fixed time point, which may bias the assessment of risks associated with varied exposure time. Time-dependent accumulation and toxicity of nickel in the potworm Enchytraeus crypticus were investigated in solutions embedded in an inert quartz sand matrix. Internal Ni concentration and mortality were determined at 7 different time intervals and interpreted from the perspective of toxicokinetics and toxicodynamics. A 1-compartment model was used to describe the uptake and elimination kinetics of Ni. At each exposure concentration, Ni concentration in the organisms increased with increasing exposure time, reaching equilibrium after approximately 14 d. Median lethal concentration (LC50) decreased with time and reached an ultimate value of 0.182 mg/L. The LC50 values expressed as internal Ni concentrations (LC50inter) were almost constant (16.7 mg/kg body dry wt) at each exposure time. The LC50inter was independent of exposure time, suggesting that internal concentration was a better indicator of Ni toxicity than external concentration. The uptake rate constant was 11.9 L/kg/d, and elimination rate constants were 0.325/d (based on internal concentration) and 0.070/d (based on survival), indicating that not all internal Ni contributes to toxicity. The present study highlights the importance of taking time into account in future toxicity testing and risk assessment practices.
Collapse
Affiliation(s)
- Erkai He
- Department of Ecological Science, Faculty of Earth and Life Sciences, VU University, Amsterdam, The Netherlands
| | | |
Collapse
|
41
|
Novais SC, Soares AMVM, De Coen W, Amorim MJB. Exposure of Enchytraeus albidus to Cd and Zn - changes in cellular energy allocation (CEA) and linkage to transcriptional, enzymatic and reproductive effects. CHEMOSPHERE 2013; 90:1305-1309. [PMID: 23062832 DOI: 10.1016/j.chemosphere.2012.09.030] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 07/04/2012] [Accepted: 09/08/2012] [Indexed: 06/01/2023]
Abstract
Cellular energy allocation (CEA) is a measure of the energy status of an organism. The effects of Cd and Zn (reproduction EC(50)s and EC(90)s) on the total energy budget of Enchytraeus albidus (Oligochaeta) were assessed through CEA determination, over periods of time from 0 to 8 d. Results showed reduction on the energy reserves for both metals after 2 d exposure. Lipids were the first reserves to be used and carbohydrates were reduced exclusively after Cd exposure. Electron transport system (ETS) activities were enhanced, suggesting increased metabolism and higher energy requirements for metal detoxification. This was supported by previous results at transcription level, where an up-regulation of genes involved in the mitochondrial oxidative phosphorylation was verified. Additionally, the reduction of CEA may be related with the decrease on the reproductive output. These results showed the relevance of integrating various endpoints, which enabled an overview of various processes and to unravel mechanisms of action of chemicals.
Collapse
Affiliation(s)
- Sara C Novais
- Department of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | | | | | | |
Collapse
|
42
|
Voua Otomo P, Reinecke SA, Reinecke AJ. Combined effects of metal contamination and temperature on the potwormEnchytraeus doerjesi(Oligochaeta). J Appl Toxicol 2012; 33:1520-4. [PMID: 23047761 DOI: 10.1002/jat.2820] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 11/06/2022]
Affiliation(s)
- Patricks Voua Otomo
- Department of Botany and Zoology; Stellenbosch University; Private Bag X1 Matieland 7602 South Africa
| | - Sophie A. Reinecke
- Department of Botany and Zoology; Stellenbosch University; Private Bag X1 Matieland 7602 South Africa
| | - Adriaan J. Reinecke
- Department of Botany and Zoology; Stellenbosch University; Private Bag X1 Matieland 7602 South Africa
| |
Collapse
|
43
|
Santorufo L, Van Gestel CAM, Maisto G. Ecotoxicological assessment of metal-polluted urban soils using bioassays with three soil invertebrates. CHEMOSPHERE 2012; 88:418-425. [PMID: 22445389 DOI: 10.1016/j.chemosphere.2012.02.057] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/20/2012] [Accepted: 02/17/2012] [Indexed: 05/31/2023]
Abstract
This study aimed at assessing the quality of urban soils by integrating chemical and ecotoxicological approaches. Soils from five sites in downtown Naples, Italy, were sampled and characterized for physical-chemical properties and total and water-extractable metal concentrations. Bioassays with Eisenia andrei, Enchytraeus crypticus and Folsomia candida were performed to assess toxicity of the soils, using survival, reproduction and growth as the endpoints. Metal bioaccumulation in the animals was also measured. The properties and metal concentrations of the soils strongly differed. Metal bioaccumulation was related with total metal concentrations in soil and was highest in E. crypticus, which was more sensitive than E. andrei and F. candida. Responses of the three species to the investigated soils seemed due to both metal contamination and soil properties.
Collapse
Affiliation(s)
- Lucia Santorufo
- Department of Structural and Functional Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, via Cinthia, 80126 Naples, Italy.
| | | | | |
Collapse
|
44
|
Smith BA, Greenberg B, Stephenson GL. Bioavailability of copper and zinc in mining soils. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2012; 62:1-12. [PMID: 21594672 DOI: 10.1007/s00244-011-9682-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/04/2011] [Indexed: 05/30/2023]
Abstract
The soil-contact exposure pathway can be the main driver of ecological risk assessments. There is currently no standard method to measure bioavailability of metals in soil to ecological receptors, yet the influence of metal bioavailability on toxicity has been known for decades and is a major factor influencing risk to ecological receptors. Bioavailability is to a large degree governed by varying soil characteristics within and among sites, yet ecological screening benchmarks are often derived on a total-concentration basis. We compared a calcium chloride (CaCl2) extraction, cyclodextrin extraction, simulated earthworm gut (SEG) test, earthworm kinetic bioaccumulation test, and metal residues in plant tissues with a battery of invertebrate and toxicity tests using mining soils consisting of high organic-matter content cocontaminated with copper (Cu) and zinc (Zn). Earthworm (Eisenia andrei) tissue concentrations of Cu and Zn were regulated and were not predictive of invertebrate toxicity. All chemical measures of bioavailability correlated with several biological responses; however, CaCl2-extractable Cu and SEG-extractable Cu and Zn best predicted effects to E. andrei. Total Cu concentrations in soil best correlated with effects to plants. Overall, a chemical measure was the best predictor of toxicity to each organism compared with biological measures, although the exact measure was dependent on organism and end point. Chemical-extraction techniques provide relatively quick, inexpensive indicators of essential metal bioavailability compared with biological measures; however, no single measure was indicative of all effects to all organisms.
Collapse
Affiliation(s)
- Ben A Smith
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| | | | | |
Collapse
|
45
|
Vermeulen F, Covaci A, D'Havé H, Van den Brink NW, Blust R, De Coen W, Bervoets L. Accumulation of background levels of persistent organochlorine and organobromine pollutants through the soil-earthworm-hedgehog food chain. ENVIRONMENT INTERNATIONAL 2010; 36:721-727. [PMID: 20579736 DOI: 10.1016/j.envint.2010.05.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 05/29/2023]
Abstract
The bioaccumulation of persistent organic pollutants (POPs), such as polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and DDT and metabolites, was investigated in the soil-earthworm-hedgehog food chain. Concentrations of selected POPs were measured in soil and earthworms collected in grassland and open woodland and in hair and blood of hedgehogs foraging in two parks containing these habitats. Despite background concentrations in soil (ranging from 1.3 to 9.3 ng/g for DDTs, 2.3 to 6.5 ng/g for PCBs and 0.08 to 0.20 ng/g for PBDEs), biota-soil accumulation factors (BSAFs) indicated that earthworms accumulated POPs (0.48-1.70 for DDTs, 1.09-2.76 for PCBs and 1.99-5.67 for PBDEs) and that animals feeding on earthworms are potentially exposed to higher concentrations of pollutants. BSAFs decreased with increasing soil concentrations for the three groups of compounds, suggesting that steady-state equilibrium was not reached in soil or earthworms. Positive, but low, log-linear relationships were found for DDT (r(2)=0.23, p<0.05 for Brasschaat and r(2)=0.63, p<0.01 for Hoboken) and PCB (r(2)=0.13, p<0.05 for both parks) concentrations between soil and earthworms. In order to relate earthworm to hedgehog POP concentrations, the foraging behavior of each individual was taken into account. The use of hair as a potential biomonitoring tissue in exposure and risk assessment of POPs was evaluated by examining the relationship between PCB and p,p'-DDE levels in hedgehogs' hair and blood. Contaminant profiles were used to gain insight into biotransformation of the studied compounds in each step of the investigated food chain and in the blood of hedgehogs, as well as the consequences thereof for their incorporation in hair. The absence of a discernable relationship between POP concentrations in earthworms and hair is possible due to variation in individual foraging behavior and POP uptake. Our results suggest that POPs in tissues should be measured from an adequate number of individuals per population instead of relying on indirect estimates from levels in soil or prey items.
Collapse
Affiliation(s)
- Frouke Vermeulen
- Ecophysiology, Biochemistry and Toxicology Group (U7), University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
46
|
Smith BA, Greenberg B, Stephenson GL. Comparison of biological and chemical measures of metal bioavailability in field soils: test of a novel simulated earthworm gut extraction. CHEMOSPHERE 2010; 81:755-766. [PMID: 20678790 DOI: 10.1016/j.chemosphere.2010.07.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 07/06/2010] [Accepted: 07/12/2010] [Indexed: 05/29/2023]
Abstract
Bioavailability of metals in soil is a major factor influencing estimates of risk associated with exposure of ecological receptors. Metal concentrations in soil are often compared to ecological screening benchmarks, which are based on total concentrations in soil. Often, the total concentration is not correlated with toxicity. No standardised method exists for determining the bioavailability of metals in soil to ecological receptors. Several surrogate measures of bioavailability were compared to the results of a battery of toxicity tests using copper (Cu), lead (Pb), and zinc (Zn)-contaminated soils collected from a former industrial area. A calcium chloride (CaCl(2)) extraction, cyclodextrin (HPCD) extraction, simulated earthworm gut (SEG) test, and earthworm bioaccumulation test were performed using the soils. Extractable metals using the CaCl(2) solution were not correlated with any biological responses of earthworms (Eisenia andrei), collembola (Folsomia candida), northern wheatgrass (Elymus lanceolatus), or alfalfa (Medicago sativa L.). Concentrations of metals in the HPCD extracts were highly variable and were not adequate for revealing adverse effects. E. andrei tissue concentrations were variable but were predictive of adverse effects to invertebrates. The results of the SEG test correlated with most of the biological endpoints. Bioavailable Cu was correlated with adverse effects to invertebrates and plants using the SEG test. Overall, coefficients of determination associated with the relationships between the biological responses and each measure of bioavailability indicated that those for the SEG test were greater than those for the other surrogate measures of bioavailability. Further validation is required before this test is routinely used to estimate metal bioavailability and toxicity.
Collapse
Affiliation(s)
- Ben A Smith
- Department of Biology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario, Canada.
| | | | | |
Collapse
|
47
|
Smith BA, Egeler P, Gilberg D, Hendershot W, Stephenson GL. Uptake and elimination of cadmium and zinc by Eisenia andrei during exposure to low concentrations in artificial soil. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 59:264-273. [PMID: 20130851 DOI: 10.1007/s00244-009-9459-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 12/21/2009] [Indexed: 05/28/2023]
Abstract
Bioaccumulation factors (BAFs) are often used in the risk assessment process to estimate trophic transfer of contaminants such as metals from soil. BAFs can be derived from laboratory studies through the determination of steady-state concentrations or kinetic estimation methods. In this study, bioaccumulation tests were performed with artificial soil spiked at low levels with cadmium or zinc to determine uptake and elimination kinetics of both metals by the compost worm Eisenia andrei. The metal-amended soils were acclimated for 21 days prior to the test, after which worms were individually incubated in the soils. The uptake phase comprised 0-21 days, after which the test organisms were transferred into clean soil and the elimination phase continued for an additional 21 days. Subsamples of soil and earthworms (whole body) were collected from independent replicates throughout the uptake phase and elimination phase and analyzed for total metal concentrations. Uptake of Cd in E. andrei increased linearly with time and did not reach steady state within the testing period. Cd uptake and excretion were described by a one-compartment first-order kinetics model. Zn concentrations rapidly increased in E. andrei after 1 day of exposure but subsequently decreased to background levels throughout the remainder of the uptake phase; internal Zn concentrations did not change from background levels during the elimination phase. Kinetic BAFs were calculated for Cd and Zn. Cd is a nonessential metal that is bioaccumulated at a relatively rapid rate, while Zn is an essential metal, and as such, it is regulated by E. andrei. Metal essentiality and concentration significantly impact bioaccumulation of metals by terrestrial invertebrates.
Collapse
Affiliation(s)
- Ben A Smith
- University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1, Canada.
| | | | | | | | | |
Collapse
|
48
|
Owojori OJ, Reinecke AJ, Rozanov AB. Influence of clay content on bioavailability of copper in the earthworm Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2010; 73:407-414. [PMID: 19962760 DOI: 10.1016/j.ecoenv.2009.03.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 03/25/2009] [Accepted: 03/31/2009] [Indexed: 05/28/2023]
Abstract
We investigated the effect of clay content on the bioavailability of copper to the earthworm Eisenia fetida, in the laboratory for 28 days using OECD artificial soil adjusted to 5%, 20% and 40% clay. Mortality, growth, cocoon production and internal copper concentrations were assessed in worms, and total, DTPA and CaCl(2) extractable copper in the substrates were also determined. The results showed that with increased clay content, there was significant reduction in internal Cu concentration of worms as well as toxicity of copper as shown by data for growth and mortality. However, internal copper concentrations of worms could not explain fully the observed toxicity in this study probably because of Cu regulation. Among the three extraction methods, DTPA extraction revealed the strongest relationship between partitioning and toxicity of Cu in this study. DTPA extract is thus a promising surrogate measure of bioavailability of Cu to earthworms. It is concluded that clay content has significant influence on the bioavailability of copper to earthworms and other similar species.
Collapse
Affiliation(s)
- Olugbenga J Owojori
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| | | | | |
Collapse
|
49
|
Li L, Zhou D, Wang P, Peijnenburg WJGM. Kinetics of cadmium uptake and subcellular partitioning in the earthworm Eisenia fetida exposed to cadmium-contaminated soil. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2009; 57:718-24. [PMID: 19234863 DOI: 10.1007/s00244-009-9296-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2008] [Accepted: 01/25/2009] [Indexed: 05/09/2023]
Abstract
To understand the bioaccumulation kinetics of cadmium (Cd) at the subcellular level, toxicokinetics and subcellular fractionation of Cd were determined for the terrestrial earthworm Eisenia fetida exposed to Cd-contaminated red soil. The bioaccumulation factor was 1.74 after exposure to soil containing 1 mg Cd/kg dry weight for 21 days. Four distinct compartments with different Cd-binding affinities were obtained by sequential centrifugations, including the cytosolic fraction (G), the organelles fraction (F), the granular fraction (D), and the tissue, cell membrane, and intact cell fraction (E). Most of the accumulated Cd in the organisms existed as fraction G. Cd bound to the tissue and cell membrane fraction (E) was <8% of total Cd. Only approximately 3% of Cd existed in fraction F, and <1% was found in fraction D. Accumulation and elimination kinetics of Cd in different fractions were accurately described by one-compartment models, and kinetic parameters (uptake rate constant k ( 1 ) and elimination rate constant k ( 2 )) were derived. Fractions G and F were responsible for the linear accumulation pattern during 3 weeks of exposure, whereas fractions D and E showed a nonlinear uptake curve, and steady state was achieved after 7 and 14 days of exposure, respectively.
Collapse
Affiliation(s)
- Lianzhen Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | | | | | | |
Collapse
|
50
|
Andre J, Charnock J, Stürzenbaum SR, Kille P, Morgan AJ, Hodson ME. Accumulated metal speciation in earthworm populations with multigenerational exposure to metalliferous soils: cell fractionation and high-energy synchrotron analyses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:6822-6829. [PMID: 19764255 DOI: 10.1021/es900275e] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Predicting metal bioaccumulation and toxicity in soil organisms is complicated by site-specific biotic and abiotic parameters. In this study we exploited tissue fractionation and digestion techniques, combined with X-ray absorption spectroscopy (XAS), to investigate the whole-body and subcellular distributions, ligand affinities, and coordination chemistry of accumulated Pb and Zn in field populations of the epigeic earthworm Lumbricus rubellus inhabiting three contrasting metalliferous and two unpolluted soils. Our main findings were (i) earthworms were resident in soils with concentrations of Pb and Zn ranging from 1200 to 27,000 mg kg(-1) and 200 to 34,000 mg kg(-1), respectively; (ii) Pb and Zn primarily accumulated in the posterior alimentary canal in nonsoluble subcellular fractions of earthworms; (iii) site-specific differences in the tissue and subcellular partitioning profiles of populations were observed, with earthworms from a calcareous site partitioning proportionally more Pb to their anterior body segments and Zn to the chloragosome-rich subcellular fraction than their acidic-soil inhabiting counterparts; (iv) XAS indicated that the interpopulation differences in metal partitioning between organs were not accompanied by qualitative differences in ligand-binding speciation, because crystalline phosphate-containing pyromorphite was a predominant chemical species in the whole-worm tissues of all mine soil residents. Differences in metal (Pb, Zn) partitioning at both organ and cellular levels displayed by field populations with protracted histories of metal exposures may reflect theirinnate ecophysiological responses to essential edaphic variables, such as Ca2+ status. These observations are highly significant in the challenging exercise of interpreting holistic biomarker data delivered by "omic" technologies.
Collapse
Affiliation(s)
- Jane Andre
- Cardiff School of Biosciences, Cardiff University, Park Place, Cardiff CF10 3US, UK.
| | | | | | | | | | | |
Collapse
|