1
|
Zhang W, Sun H, Wang P, Zhu Y, Qian C, Yang R, Li Y, Li S, Matsiko J, Zhang Q, Jiang G. Temporal and spatial distribution of novel brominated flame retardants in atmosphere of the Beijing-Tianjin-Hebei region, China. CHEMOSPHERE 2024; 367:143598. [PMID: 39442574 DOI: 10.1016/j.chemosphere.2024.143598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/18/2024] [Accepted: 10/20/2024] [Indexed: 10/25/2024]
Abstract
The occurrence and spatio-temporal distribution of atmospheric novel brominated flame retardants (NBFRs) were studied across five sampling sites in the Beijing-Tianjin-Hebei (BTH) region over a whole year. By collecting samples (gas and particle) with a high-volume active air sampler (HV-AAS), nine NBFRs were analyzed and the sum concentrations ranged from 1.65 to 344 pg/m3, with the highest value found in the urban sampling site in Shijiazhuang City. Decabromodiphenylethane (DBDPE) was the predominant congener, which accounted for 60% of ∑9NBFRs on average, while it was 90% of ∑9NBFRs in the rural site and significantly higher than those observed in the urban sites (one-way ANOVA, p < 0.05). The levels of particle-bound NBFRs were significantly correlated with the variation of total suspended particulates (TSP) and temperature (p < 0.01), indicating their evident impact on the spatio-temporal distribution of NBFRs. Moreover, a significantly positive correlation was observed between the concentrations of 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis (2-ethyl-1-hexyl) tetrabromophthalate (BEH-TEBP) (p < 0.01). Monocyclic brominated flame retardants (including PBBz, PBT, PBEB, HBB and TBP-DBPE) were correlated with each other (p < 0.01) in both gas and particle phase, suggesting their co-occurrence and the similar source in the environment. The gas-particle partitioning behavior was well predicted by the Li-Jia Empirical Model, and the results indicated that the target NBFRs did not reach the equilibrium state in air. This is one of very few studies revealed the spatio-temporal distribution of atmospheric NBFRs in the BTH region.
Collapse
Affiliation(s)
- Weiwei Zhang
- Nutrition and Health Research Institute, COFCO Corporation, Beijing Key Laboratory of Nutrition and Health and Food Safety, Beijing, 102209, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Huizhong Sun
- Key Laboratory of Eco-geochemistry, Ministry of Natural Resources, National Research Center for Geoanalysis, Beijing, 100037, China
| | - Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Health and Environment, Jianghan University, Wuhan, 430056, China.
| | - Ying Zhu
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chengjing Qian
- Nutrition and Health Research Institute, COFCO Corporation, Beijing Key Laboratory of Nutrition and Health and Food Safety, Beijing, 102209, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Shuangjiang Li
- College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Julius Matsiko
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Health and Environment, Jianghan University, Wuhan, 430056, China.
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| |
Collapse
|
2
|
Sjöström Y, Tao F, Ricklund N, de Wit CA, Hagström K, Hagberg J. Children's exposure to halogenated flame retardants and organophosphate esters through dermal absorption and hand-to-mouth ingestion in Swedish preschools. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173635. [PMID: 38821289 DOI: 10.1016/j.scitotenv.2024.173635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/10/2024] [Accepted: 05/28/2024] [Indexed: 06/02/2024]
Abstract
Children are exposed to endocrine disrupting chemicals (EDCs) through inhalation and ingestion, as well as through dermal contact in their everyday indoor environments. The dermal loadings of EDCs may contribute significantly to children's total EDC exposure due to dermal absorption as well as hand-to-mouth behaviors. The aim of this study was to measure potential EDCs, specifically halogenated flame retardants (HFRs) and organophosphate esters (OPEs), on children's hands during preschool attendance and to assess possible determinants of exposure in preschool indoor environments in Sweden. For this, 115 handwipe samples were collected in winter and spring from 60 participating children (arithmetic mean age 4.5 years, standard deviation 1.0) and analyzed for 50 compounds. Out of these, 31 compounds were identified in the majority of samples. Levels were generally several orders of magnitude higher for OPEs than HFRs, and 2-ethylhexyl diphenyl phosphate (EHDPP) and tris(2-butoxyethyl) phosphate (TBOEP) were detected in the highest median masses, 61 and 56 ng/wipe, respectively. Of the HFRs, bis(2-ethyl-1-hexyl)-2,3,4,5-tetrabromobenzoate (BEH-TEBP) and 2,2',3,3',4,4',5,5',6,6'-decabromodiphenyl ether (BDE-209) were detected in the highest median masses, 2.8 and 1.8 ng/wipe, respectively. HFR and/or OPE levels were found to be affected by the number of plastic toys, and electrical and electronic devices, season, municipality, as well as building and/or renovation before/after 2004. Yet, the calculated health risks for single compounds were below available reference dose values for exposure through dermal uptake as well as for ingestion using mean hand-to-mouth contact rate. However, assuming a high hand-to-mouth contact rate, at the 95th percentile, the calculated hazard quotient was above 1 for the maximum handwipe mass of TBOEP found in this study, suggesting a risk of negative health effects. Furthermore, considering additive effects from similar compounds, the results of this study indicate potential concern if additional exposure from other routes is as high.
Collapse
Affiliation(s)
- Ylva Sjöström
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Fang Tao
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China; Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Niklas Ricklund
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Katja Hagström
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Jessika Hagberg
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| |
Collapse
|
3
|
Xie Y, Li M, Ma J, Gong X, Tong Y, Wang D, Ai L, Gong Z. Occurrence and distribution of legacy and novel brominated flame retardants in river and sediments in southwest China: A seasonal investigation. ENVIRONMENTAL RESEARCH 2024; 262:119842. [PMID: 39187148 DOI: 10.1016/j.envres.2024.119842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/21/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Brominated flame retardants (BFRs) and their substitutes are prevalent in the environment, especially near industrial point sources. In non-point source pollution areas, it is crucial to investigate the seasonal pollution characteristics to identify the pollution sources. In this study, compositional profiles, seasonal variations, and ecological risks of legacy BFRs and novel BFRs (NBFRs) in the water and sediment from the Tuojiang River located in southwest China were investigated. The results indicated that ΣBFRs ranged from not detected (n.d.) to 42.0 ng/L in water and from 0.13 to 17.6 ng/g in sediment, while ΣNBFRs ranged from n.d. to 15.8 ng/L in water, and from 0.25 to 6.82 ng/g in sediment. A significant seasonal variation was observed in water and sediments with high proportions of legacy BFRs (median percentage of 68.8% and 51.3% in water and sediment) in the dry season, while NBFRs (median percentage of 53.2% and 71.6% in water and sediment) exhibited predominance in the wet season. This highlighted the importance of surface runoff and atmospheric deposition as important sources of NBFRs in aquatic environments. Moreover, there were high ratios of decabromodiphenyl ethane (DBDPE) and BDE-209 (average: 1.38 and 2.76 in dry and wet season) in sediments adjacent to the residual areas, indicating a consumption shift from legacy BFRs to NBFRs in China. It was observed that legacy BFRs showed higher ecological risks compared to NBFRs in both water and sediment environments, with BDE-209 posing low to medium risks to sediment organisms. This study provides better understanding of contamination characteristics and sources of legacy BFRs and NBFRs in non-point source pollution areas.
Collapse
Affiliation(s)
- Yonghong Xie
- Sichuan Province Ecological Environment Monitoring Station, Chengdu, 610074, China
| | - Mao Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Junyi Ma
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Xinying Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China; Chengdu Research Academy of Environmental Protection Science, Chengdu, 610072, China.
| | - Yuanjun Tong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Dongmei Wang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Lian Ai
- Sichuan Province Ecological Environment Monitoring Station, Chengdu, 610074, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
4
|
Li M, Gong X, Tan Q, Xie Y, Tong Y, Ma J, Wang D, Ai L, Gong Z. A review of occurrence, bioaccumulation, and fate of novel brominated flame retardants in aquatic environments: A comparison with legacy brominated flame retardants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 939:173224. [PMID: 38763187 DOI: 10.1016/j.scitotenv.2024.173224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/08/2024] [Accepted: 05/12/2024] [Indexed: 05/21/2024]
Abstract
Novel brominated flame retardants (NBFRs) have been developed as replacements for legacy brominated flame retardants (BFRs) such as polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecanes (HBCDs). The prevalence of NBFRs in aquatic environments has initiated intense concerns that they resemble to BFRs. To comprehensively elucidate the fate of NBFRs in aquatic environments, this review summarizes the physico-chemical properties, distribution, bioaccumulation, and fates in aquatic environments. 1,2-bis(2,3,4,5,6-pentabromophenyl) ethane (DBDPE) as the major substitute for PBDEs is the primary NBFR. The release from industrial point sources such as e-waste recycling stations is the dominant way for NBFRs to enter the environment, which results in significant differences in the regional distribution of NBFRs. Sediment is the major sink of NBFRs attributed to the high hydrophobicity. Significantly, there is no decreasing trend of NBFRs concentrations, while PBDEs achieved the peak value in 1970-2000 and decreased gradually. The bioaccumulation of NBFRs is reported in both field studies and laboratory studies, which is regulated by the active area, lipid contents, trophic level of aquatic organisms, and the log KOW of NBFRs. The biotransformation of NBFRs showed similar metabolism patterns to that of BFRs, including debromination, hydroxylation, methoxylation, hydrolysis, and glycosylation. In addition, NBFRs show great potential in trophic magnification along the aquatic food chain, which could pose a higher risk to high trophic-level species. The passive uptake by roots dominates the plant uptake of NBFRs, followed by acropetal and basipetal bidirectional transportation between roots and leaves in plants. This review will provide the support to understand the current pollution characteristics of NBFRs and highlight perspectives for future research.
Collapse
Affiliation(s)
- Mao Li
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xinying Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China; Chengdu Research Academy of Environmental Protection Science, Chengdu 610072, China
| | - Qinwen Tan
- Chengdu Research Academy of Environmental Protection Science, Chengdu 610072, China
| | - Yonghong Xie
- Sichuan Province Ecological Environment Monitoring Station, Chengdu 610074, China
| | - Yuanjun Tong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Junyi Ma
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Dongmei Wang
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Lian Ai
- Sichuan Province Ecological Environment Monitoring Station, Chengdu 610074, China
| | - Zhengjun Gong
- School of Environmental Science and Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
5
|
Li H, Liu H, Bi L, Liu Y, Jin L, Peng R. Immunotoxicity of microplastics in fish. FISH & SHELLFISH IMMUNOLOGY 2024; 150:109619. [PMID: 38735599 DOI: 10.1016/j.fsi.2024.109619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/17/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
Plastic waste degrades slowly in aquatic environments, transforming into microplastics (MPs) and nanoplastics (NPs), which are subsequently ingested by fish and other aquatic organisms, causing both physical blockages and chemical toxicity. The fish immune system serves as a crucial defense against viruses and pollutants present in water. It is imperative to comprehend the detrimental effects of MPs on the fish immune system and conduct further research on immunological assessments. In this paper, the immune response and immunotoxicity of MPs and its combination with environmental pollutants on fish were reviewed. MPs not only inflict physical harm on the natural defense barriers like fish gills and vital immune organs such as the liver and intestinal tract but also penetrate cells, disrupting intracellular signaling pathways, altering the levels of immune cytokines and gene expression, perturbing immune homeostasis, and ultimately compromising specific immunity. Initially, fish exposed to MPs recruit a significant number of macrophages and T cells while activating lysosomes. Over time, this exposure leads to apoptosis of immune cells, a decline in lysosomal degradation capacity, lysosomal activity, and complement levels. MPs possess a small specific surface area and can efficiently bind with heavy metals, organic pollutants, and viruses, enhancing immune responses. Hence, there is a need for comprehensive studies on the shape, size, additives released from MPs, along with their immunotoxic effects and mechanisms in conjunction with other pollutants and viruses. These studies aim to solidify existing knowledge and delineate future research directions concerning the immunotoxicity of MPs on fish, which has implications for human health.
Collapse
Affiliation(s)
- Huiqi Li
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Huanpeng Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Liuliu Bi
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Yinai Liu
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Libo Jin
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China
| | - Renyi Peng
- Affiliation: Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, China.
| |
Collapse
|
6
|
Marques Dos Santos M, Li C, Jia S, Thomas M, Gallard H, Croué JP, Carato P, Snyder SA. Formation of halogenated forms of bisphenol A (BPA) in water: Resolving isomers with ion mobility - mass spectrometry and the role of halogenation position in cellular toxicity. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133229. [PMID: 38232544 DOI: 10.1016/j.jhazmat.2023.133229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 01/19/2024]
Abstract
Halogenated BPA (XBPA) forms resulting from water chlorination can lead to increased toxicity and different biological effects. While previous studies have reported the occurrence of different XBPAs, analytical limitation have hindered the analysis and differentiation of the many potential isomeric forms. Using online solid-phase extraction - liquid chromatography - ion-mobility - high-resolution mass spectrometry (OSPE-LC-IM-HRMS), we demonstrated a rapid analysis method for the analysis of XBPA forms after water chlorination, with a total analysis time of less than 10 min including extraction and concentration and low detection limits (∼5-80 ng/L range). A multi in-vitro bioassay testing approach for the identified products revealed that cytotoxicity and bioenergetics impacts were largely associated with the presence of halogen atoms at positions 2 or 2' and the overall number of halogens incorporated into the BPA molecule. Different XBPA also showed distinct impacts on oxidative stress, peroxisome proliferator-activated receptor gamma - PPARγ, and inflammatory response. While increased DNA damage was observed for chlorinated water samples (4.14 ± 1.21-fold change), the additive effect of the selected 20 XBPA studied could not explain the increased DNA damage observed, indicating that additional species or synergistic effects might be at play.
Collapse
Affiliation(s)
- Mauricius Marques Dos Santos
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Caixia Li
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Shenglan Jia
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore
| | - Mikael Thomas
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Hervé Gallard
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Jean-Philippe Croué
- Institut de Chimie des Milieux et des Matériaux de Poitiers, IC2MP UMR 7285 CNRS, Université de Poitiers, France
| | - Pascal Carato
- Laboratoire Ecologie & Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, France; INSERM CIC1402, Université de Poitiers, IHES Research Group, Poitiers, France
| | - Shane Allen Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, CleanTech One, 1 Cleantech Loop, 637141, Singapore.
| |
Collapse
|
7
|
Burkhard LP, Lahren TJ, Hanson KB, Kasparek AJ, Mount DR. Dietary Uptake of Highly Hydrophobic Chemicals by Rainbow Trout (Oncorhynchus Mykiss). ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:390-403. [PMID: 37910193 PMCID: PMC11382341 DOI: 10.1007/s00244-023-01038-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/03/2023] [Indexed: 11/03/2023]
Abstract
Rainbow trout (Oncorhynchus mykiss) was exposed through the diet to a mixture of non-ionic organic chemicals for 28 d, followed by a depuration phase, in accordance with OECD method 305. The mixture included hexachlorobenzene (HCB), 2,2',5,5'-tetrachlorobiphenyl (PCB-52), 2,2',5,5'-hexachlorobiphenyl (PCB-153), decachlorobiphenyl (PCB-209), decabromodiphenyl ether (BDE209), decabromodiphenyl ethane (DBDPE), bis-(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH), perchloro-p-terphenyl (p-TCP), perchloro-m-terphenyl (m-TCP), and perchloro-p-quaterphenyl (p-QTCP), the latter six of which are considered highly hydrophobic based on n-octanol/water partition coefficients (KOW) greater than 108. All chemicals had first-order uptake and elimination kinetics except p-QTCP, whose kinetics could not be verified due to limitations of analytical detection in the elimination phase. For HCB and PCBs, the growth-corrected elimination rates (k2g), assimilation efficiencies (α), and biomagnification factors (BMFL) corrected for lipid content compared well with literature values. For the highly hydrophobic chemicals, elimination rates were faster than the rates for HCB and PCBs, and α's and BMFLs were much lower than those of HCB and PCBs, i.e., ranging from 0.019 to 2.8%, and from 0.000051 to 0.023 (g-lipid/g-lipid), respectively. As a result, the highly hydrophobic organic chemicals were found be much less bioavailable and bioaccumulative than HCB and PCBs. Based on the current laboratory dietary exposures, none of the highly hydrophobic substances would be expected to biomagnify, but Trophic Magnification Factors (TMFs) > 1 have been reported from field studies for TBPH and DBDPE. Additional research is needed to understand and reconcile the apparent inconsistencies in these two lines of evidence for bioaccumulation assessment.
Collapse
Affiliation(s)
- Lawrence P Burkhard
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - Tylor J Lahren
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Kaila B Hanson
- Located at the Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, Oak Ridge Associated Universities, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - Alex J Kasparek
- Located at the Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, Oak Ridge Associated Universities, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - David R Mount
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| |
Collapse
|
8
|
Tao F, Sjöström Y, de Wit CA, Hagström K, Hagberg J. Organohalogenated flame retardants and organophosphate esters from home and preschool dust in Sweden: Pollution characteristics, indoor sources and intake assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165198. [PMID: 37391153 DOI: 10.1016/j.scitotenv.2023.165198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
This study analysed settled dust samples in Sweden to assess children's combined exposure to 39 organohalogenated flame retardants (HFRs) and 11 organophosphate esters (OPEs) from homes and preschools. >94 % of the targeted compounds were present in dust, indicating widespread use of HFRs and OPEs in Swedish homes and preschools. Dust ingestion was the primary exposure pathway for most analytes, except BDE-209 and DBDPE, where dermal contact was predominant. Children's estimated intakes of ∑emerging HFRs and ∑legacy HFRs from homes were 1-4 times higher than from preschools, highlighting higher exposure risk for HFRs in homes compared to preschools. In a worst-case scenario, intakes of tris(2-butoxyethyl) phosphate (TBOEP) were 6 and 94 times lower than the reference dose for children in Sweden, indicating a potential concern if exposure from other routes like inhalation and diet is as high. The study also found significant positive correlations between dust concentrations of some PBDEs and emerging HFRs and the total number of foam mattresses and beds/m2, the number of foam-containing sofas/m2, and the number of TVs/m2 in the microenvironment, indicating these products as the main source of those compounds. Additionally, younger preschool building ages were found to be linked to higher ΣOPE concentrations in preschool dust, suggesting higher ΣOPE exposure. The comparison with earlier Swedish studies indicates decreasing dust concentrations for some banned and restricted legacy HFRs and OPEs but increasing trends for several emerging HFRs and several unrestricted OPEs. Therefore, the study concludes that emerging HFRs and OPEs are replacing legacy HFRs in products and building materials in homes and preschools, possibly leading to increased exposure of children.
Collapse
Affiliation(s)
- Fang Tao
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, People's Republic of China; Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden.
| | - Ylva Sjöström
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Cynthia A de Wit
- Department of Environmental Science, Stockholm University, SE-10691 Stockholm, Sweden
| | - Katja Hagström
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| | - Jessika Hagberg
- Department of Occupational and Environmental Health, Faculty of Business, Science and Engineering, Örebro University, SE 70182 Örebro, Sweden
| |
Collapse
|
9
|
Marinello WP, Gillera SEA, Han Y, Richardson JR, St Armour G, Horman BM, Patisaul HB. Gestational exposure to FireMaster® 550 (FM 550) disrupts the placenta-brain axis in a socially monogamous rodent species, the prairie vole (Microtus ochrogaster). Mol Cell Endocrinol 2023; 576:112041. [PMID: 37562579 PMCID: PMC10795011 DOI: 10.1016/j.mce.2023.112041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/26/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Gestational flame retardant (FR) exposure has been linked to heightened risk of neurodevelopmental disorders, but the mechanisms remain largely unknown. Historically, toxicologists have relied on traditional, inbred rodent models, yet those do not always best model human vulnerability or biological systems, especially social systems. Here we used prairie voles (Microtus ochrogaster), a monogamous and bi-parental rodent, leveraged for decades to decipher the underpinnings of social behaviors, to examine the impact of fetal FR exposure on gene targets in the mid-gestational placenta and fetal brain. We previously established gestational exposure to the commercial mixture Firemaster 550 (FM 550) impairs sociality, particularly in males. FM 550 exposure disrupted placental monoamine production, particularly serotonin, and genes required for axon guidance and cellular respiration in the fetal brains. Effects were dose and sex specific. These data provide insights on the mechanisms by which FRs impair neurodevelopment and later in life social behaviors.
Collapse
Affiliation(s)
- William P Marinello
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | | | - Yoonhee Han
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, 33199, USA
| | - Genevieve St Armour
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | - Brian M Horman
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA
| | - Heather B Patisaul
- Department of Biological Sciences, NC State University, Raleigh, NC, 27695, USA; Center for Human Health and the Environment, NC State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
10
|
Berger ML, Shaw SD, Rolsky C, Harris JH, Guo Y, Kannan K. Occurrence and tissue-specific partitioning of alternative brominated flame retardants in northwest Atlantic harbor seal pups (Phoca vitulina vitulina). CHEMOSPHERE 2023; 318:137968. [PMID: 36708778 DOI: 10.1016/j.chemosphere.2023.137968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Brominated flame retardants such as polybrominated diphenyl ethers (PBDEs) have been used for decades until evidence of negative health effects led to bans in many countries. PBDEs have since been replaced by alternative legacy compounds or newly developed chemicals. In this study, eight alternative brominated flame retardants were analyzed in blubber and liver of harbor seal pups (≤6 months) from the Northwest Atlantic collected during 2001-2010 to elucidate concentrations, patterns, contamination trends, potential maternal transfer, and tissue partitioning. All compounds were detected in liver and blubber tissues with hexabromocyclododecane (HBCD) isomers and 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (TBB) predominating. Overall, α-HBCD was the dominant HBCD isomer in both tissues although the concentrations of γ-HBCD exceeded those of α-HBCD in seven pups, indicating their mothers may have had alternative dietary patterns or recent exposure to the commercial mixture. Although it was detected in less than half of the samples, to our knowledge, this is the first study to report tetrabromobisphenol A (TBBPA) concentrations in multiple tissues of a top marine predator. For the brominated components of Firemaster® flame retardants, TBB concentrations exceeded bis-(2-ethylhexyl)-tetrabromophthalate (TBPH). This pattern may result from recent exposure to commercial mixtures in which TBB exceeds TBPH 4:1 or from differences in perinatal or lactational transfer efficiency of the two compounds. Between the two tissues, lipid-normalized β-HBCD, γ-HBCD, TBB and decabromodiphenyl ethane (DBDPE) concentrations were significantly higher in liver than blubber. This indicates that the bioaccumulation of these chemicals is not simply related to lipid dynamics but may be linked to blood proteins. This study demonstrates that harbor seal pups from this region are contaminated with alternative flame retardants passed to them via placental or lactational transfer. Given the evidence for negative health effects of these chemicals, this contamination adds additional pressure on the first year survival of these young, developing animals.
Collapse
Affiliation(s)
- Michelle L Berger
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA.
| | - Susan D Shaw
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Charles Rolsky
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Jennifer H Harris
- Shaw Institute, Blue Hill Research Center, 55 Main Street, Blue Hill, ME, 04614, USA
| | - Ying Guo
- School of Environment, Jinan University, Guangzhou, 510632, China
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, 550 First Avenue, 698 MSB 6th Floor, New York, NY, 10016, USA
| |
Collapse
|
11
|
Lupton SJ, Pfaff C, Singh A, Chakrabarty S, Hakk H. Bioavailability of non-aromatic brominated flame retardants in rats from dust and oil vehicles. ENVIRONMENTAL RESEARCH 2023; 218:114853. [PMID: 36403649 DOI: 10.1016/j.envres.2022.114853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 06/16/2023]
Abstract
Hexabromocyclododecane (HBCD) is a brominated flame retardant (BFR) labeled by the Stockholm Convention as a persistent organic pollutant (POP) and exists primarily as three stereoisomers, i.e. α-, β-, and γ. One of the major routes of human exposure to HBCD is dust found in homes, offices, and cars and dust may be the most important route of HBCD exposure in young children. A study was conducted to determine the oral bioavailability of HBCD from household dust in rats over a 21-d feeding period relative to HBCD bioavailability from a corn oil matrix. Twenty-four hours after the last exposure, rats were sacrificed, and various tissues were collected. HBCD diastereomers were detected in adipose, blood, and liver of both dose groups, suggesting HBCD is bioavailable from both oil and dust. β-HBCD concentrations were below the limit of detection in all tissues, but α-HBCD was detected in the brain of oil-dose rats and in adipose and liver of both dose groups. γ-HBCD was the dominant diastereomer in adipose, blood, and liver samples regardless of dosing matrix. Except for γ-HBCD in muscle of the oil-dosed group, muscle did not contain measurable HBCDs. Adipose tissue accumulated HBCD to a greater extent than muscle or liver, having bioaccumulation factors greater than 1.
Collapse
Affiliation(s)
- Sara J Lupton
- USDA-ARS Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd N, Fargo, ND, 58102, USA.
| | - Colleen Pfaff
- USDA-ARS Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd N, Fargo, ND, 58102, USA
| | - Anuradha Singh
- USDA-ARS Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd N, Fargo, ND, 58102, USA
| | - Shubhashis Chakrabarty
- USDA-ARS Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd N, Fargo, ND, 58102, USA
| | - Heldur Hakk
- USDA-ARS Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd N, Fargo, ND, 58102, USA
| |
Collapse
|
12
|
Zhang Z, Chen D, Yu J, Su X, Li L. Metabolic perturbations in human hepatocytes induced by bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate exposure: Insights from high-coverage quantitative metabolomics. Anal Biochem 2022; 657:114887. [PMID: 36150471 DOI: 10.1016/j.ab.2022.114887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022]
Abstract
Bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) is an extensively used novel brominated flame retardant that is present ubiquitously in the environment and in biota. However, there is inadequate data on its potential hepatotoxicity to humans. In this study, high-coverage quantitative metabolomics based on 12C-/13C-dansylation labeling LC-MS was performed for the first time to assess the metabolic perturbations and underlying mechanisms of TBPH on human hepatocytes. HepG2 cells were exposed to TBPH at dosages of 0.1,1,10 μM for 24 or 72 h. Overall, 1887 and 1364 amine/phenol-containing metabolites were relatively quantified in cells and culture supernatant. Our results revealed that exposure to 0.1 μM TBPH showed little adverse effects, whereas exposure to 10 μM TBPH for 24 h enhanced intracellular protein catabolism and disrupted energy and lipid homeostasis-related pathways such as histidine metabolism, pantothenate and CoA biosynthesis, alanine, aspartate and glutamate metabolism. Nevertheless, most of these perturbations returned to the same levels as controls after 72 h of exposure. Additionally, prolonged TBPH exposure increased oxidative stress, as reflected by marked disturbances in taurine metabolism. This study sensitively revealed the dysregulations of intracellular and extracellular metabolome induced by TBPH, providing a comprehensive understanding of metabolic responses of cells to novel brominated flame retardants.
Collapse
Affiliation(s)
- Zhehua Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Deying Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jiong Yu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaoling Su
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
13
|
Lee HK, Bak G, Lim JE, Lee JW, Lee S, Moon HB. Historical record of legacy and alternative halogenated flame retardants in dated sediment from a highly industrialized saltwater lake in Korea. CHEMOSPHERE 2022; 297:134264. [PMID: 35271898 DOI: 10.1016/j.chemosphere.2022.134264] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 06/14/2023]
Abstract
Legacy and alternative halogenated flame retardants (HFRs), such as polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and dechlorane plus (DP), were measured in dated sediments from a highly industrialized lake in Korea. All HFRs were detected in almost all of the sediment depth layers for more than 70 years, indicating a history of long-term contamination. Similar historical trends in PBDEs, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), and DP were observed in dated sediments, whereas decabromodiphenylethane (DBDPE), and 2-ethylhexyl-2,3,4,5-octabromo-1,3,3-trimethyl-1-phenylindane (OBIND) concentrations sharply increased since the 1990s. Moreover, the concentration ratios of DBDPE/BDE 209 increased from the early 1990s to the present. Our findings suggest that DBDPE and OBIND have been used as HFR alternatives. The historical record of the concentrations and profiles of legacy and alternative HFRs corresponded with industrial activities, consumption of FRs, and coastal development activities. Inventories of legacy and alternative HFRs were similar to those reported for highly industrialized regions around the globe.
Collapse
Affiliation(s)
- Hyun-Kyung Lee
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Geunhan Bak
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jae-Eun Lim
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Jae-Won Lee
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
14
|
Zhang Q, Gu S, Yu C, Cao R, Xu Y, Fu L, Wang C. Integrated assessment of endocrine disrupting potential of four novel brominated flame retardants. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 232:113206. [PMID: 35085884 DOI: 10.1016/j.ecoenv.2022.113206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
Novel brominated flame retardants (NBFRs) have emerged as alternatives to the legacy BFRs due to BFRs' persistence, bioaccumulation and evidence of adverse health effects. The increasing production of NBFRs has led to the frequent detection in environmental media and even in organisms. Thus the potential health risks of these novel NBFRs need to be taken into account. Herein, the endocrine disrupting effects of the four NBFRs (α/β-TBCO, PBEB, EHTBB and BEHTBP) were evaluated by constructing an estrogen receptor (ERα), glucocorticoid receptor (GR), and mineralocorticoid receptor (MR) mediated dual-luciferase reporter gene assays on the CHO cells, in combination with steroid experiments on the H295R cells and molecular docking. The results revealed that α/β-TBCO, PBEB and EHTBB induced anti-estrogenic activity at certain concentrations while none of the four NBFRs was agonistic to ERα. For reporter gene assay, only PBEB exhibited GR antagonistic effects. Notably, none of the four NBFRs possess neither agonistic nor antagonistic activity of MR. The molecular docking results were generally consistent with the reporter gene assay, which showed the different binding affinities between NBFRs and the receptors. For steroidogenesis, α/β-TBCO, PBEB, and EHTBB all upregulated genes encoding for steroid synthesis enzymes, including 17βHSD, CYP11B1 and CYP17. Altogether, the data clarified that NBFRs may pose risks of endocrine disruption.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China.
| | - Sijia Gu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Chang Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Rui Cao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Yitian Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Lili Fu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, China
| | - Cui Wang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
15
|
Li J, Zhang Y, Bi R, Ye L, Su G. High-Resolution Mass Spectrometry Screening of Emerging Organophosphate Esters (OPEs) in Wild Fish: Occurrence, Species-Specific Difference, and Tissue-Specific Distribution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:302-312. [PMID: 34898183 DOI: 10.1021/acs.est.1c05726] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
There is a dearth of information regarding the pollution status of emerging organophosphate esters (OPEs) in wild fish. Here, we optimized and validated a quick, easy, cheap, effective, rugged, and safe (QuEChERS) pretreatment method, which was further applied for target, suspect, and nontarget screening of OPEs in n = 48 samples of wild fishes from Taihu Lake (eastern China). This integrated technique allows us to fully identify 20 OPEs, and 9 out of them are emerging OPEs detected in wild fish for the first time. Importantly, some of the emerging OPEs, i.e., tris(2,4-di-tert-butylphenyl) phosphate (TDtBPP), 4-tert-butylphenyl diphenyl phosphate (BPDP), and 2-isopropylphenyl diphenyl phosphate (IPDP), exhibited greater or at least comparable contamination levels as compared to traditional ones. There were no statistically significant interspecies (n = 6) differences regarding OPE concentrations. However, we observed significant differences on OPE concentrations among different tissues of silver carp (Hypophthalmichthys molitrix), for which the intestine has the highest OPE mean concentration (46.5 ng/g wet weight (ww)), followed by the liver (20.1 ng/g ww) ≈ brain (20.0 ng/g ww) > gill (14.8 ng/g ww) > muscle (11.4 ng/g ww). An interesting exception is IPDP, which presents an unexpectedly high concentration in the brain (0.510 ng/g ww). Collectively, this study expands our understanding of OPE contamination in wild fish and clearly shows that emerging TDtBPP, IPDP, and BPDP could play an equally important role as traditional OPEs in contribution of OPE pollution in wild fish samples.
Collapse
Affiliation(s)
- Jianhua Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Yayun Zhang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Ruifeng Bi
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Langjie Ye
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China
| |
Collapse
|
16
|
Goodchild C, Karouna-Renier NK, Henry PFP, Letcher RJ, Schultz SL, Maddox CM, Bean TG, Peters LE, Palace V, Fernie KJ. Thyroid disruption and oxidative stress in American kestrels following embryonic exposure to the alternative flame retardants, EHTBB and TBPH. ENVIRONMENT INTERNATIONAL 2021; 157:106826. [PMID: 34438233 DOI: 10.1016/j.envint.2021.106826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/18/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
Brominated flame retardant chemicals, such as 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTBB) (CAS #: 183658-27-7) and bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) (CAS #: 26040-51-7), have been detected in avian tissues and eggs from remote regions. Exposure to EHTBB and TBPH has been shown to cause oxidative stress and altered thyroid function in rodents and fish, yet no controlled studies have examined potential adverse effects of exposure in birds. Because flame retardants have been detected in wild raptors, we used American kestrels (Falco sparverius) as a model raptor to determine whether in ovo exposure to EHTBB or TBPH affected growth, hatching success, oxidative stress, or thyroid function. We exposed kestrel embryos to nominal concentrations (10, 50, or 100 ng g-1 egg weight) of EHTBB and TBPH via egg-injection on embryonic day 5. Embryonic exposure (~23 d) to EHTBB increased thyroid gland mass, reduced glandular colloid and total thyroxine (T4) in hatchling males and females, whereas deiodinase enzyme activity increased in males but decreased in females. Hatchlings exposed to TBPH in ovo exhibited reduced colloid and increased oxidative stress. Although exposure to EHTBB and TBPH caused several physiological effects (e.g., heart and brain mass), only exposure to 50 ng g-1 EHTBB appeared to reduce hatching success. Our results suggest these flame retardants may be hazardous for predatory birds. Future research should evaluate long-term survival and fitness consequences in birds exposed to these chemicals.
Collapse
Affiliation(s)
- Christopher Goodchild
- U.S. Geological Survey, Eastern Ecological Science Center, Patuxent Research Refuge, Beltsville, MD 20705, USA; Department of Biology, University of Central Oklahoma, Edmond, OK 73034, USA
| | - Natalie K Karouna-Renier
- U.S. Geological Survey, Eastern Ecological Science Center, Patuxent Research Refuge, Beltsville, MD 20705, USA.
| | - Paula F P Henry
- U.S. Geological Survey, Eastern Ecological Science Center, Patuxent Research Refuge, Laurel, MD 20708, USA
| | - Robert J Letcher
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment & Climate Change Canada, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Sandra L Schultz
- U.S. Geological Survey, Eastern Ecological Science Center, Patuxent Research Refuge, Beltsville, MD 20705, USA
| | - Catherine M Maddox
- U.S. Geological Survey, Eastern Ecological Science Center, Patuxent Research Refuge, Beltsville, MD 20705, USA
| | - Thomas G Bean
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20740, USA
| | - Lisa E Peters
- Faculty of Science, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada
| | - Vince Palace
- International Institute of Sustainable Development - Experimental Lakes Area, Winnipeg, Manitoba R3B 0T4, Canada
| | - Kim J Fernie
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada.
| |
Collapse
|
17
|
Bao Z, Jing Y. Brominated flame retardant TBPH induced oxidative damage and reduced the expression of memory-related proteins in mice, with no discernable impairment of learning and memory. Hum Exp Toxicol 2021; 40:S684-S692. [PMID: 34784780 DOI: 10.1177/09603271211058876] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) is one of the new brominated flame retardants with adverse neurobehavioral potential. These flame retardants are often added to household furnishings where children would come into contact with them. This study explores whether oral exposure to TBPH for 28 days would impair neurobehavioral function in mice and the role of curcumin (CUR) in this process. CUR is a natural antioxidant and is thought to be of use in the treatment of neurological toxicity due to its neuroprotective effects. Learning and memory of mice exposed to TBPH was investigated using the Morris water maze. Levels of malondialdehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH) were determined to assess oxidative damage. Western blot was used to detect the expression of glucose-regulated protein 78-kDa (GRP78), PKR-like ER kinase (PERK), and C/EBP homologous protein (CHOP) in the hippocampus. End-point effects were evaluated through observing post-synaptic density protein-95 (PSD-95), brain-derived neurotrophic factor (BDNF), and phosphorylated cAMP response element binding protein (p-CREB). Although TBPH exposure alone does not impair learning and memory, oxidative stress markers and endoplasmic reticulum stress-associated proteins were adversely affected in exposed mice. TBPH could significantly decrease the levels of BDNF, p-CREB, and PSD-95 in the hippocampus, and these TBPH-induced neurotoxic effects were attenuated by CUR. These findings provide further understanding of the neurotoxic effects of TBPH and the protective effect of CUR on TBPH exposure.
Collapse
Affiliation(s)
- Zhang Bao
- Department of Emergency, 117732Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| | - Yin Jing
- Department of Anesthesiology, 117732Affiliated Renhe Hospital of China Three Gorges University, Yichang, China
| |
Collapse
|
18
|
Yin J, Zhang B. Effects of bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate on liver injury in Balb/c mice. Toxicol Ind Health 2021; 37:547-554. [PMID: 34486454 DOI: 10.1177/07482337211031688] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Bis(2-ethylhexyl) 2,3,4,5-tetrabromophthalate (TBPH) has been used as a replacement in some commercial flame-retardant mixtures. It is widely used in industrial products, so the probability of human exposure to TBPH is high. Yet, little is known about how it is metabolized or its toxicity. To this end, we investigated what effect oral exposure of Balb/c mice to TBPH at concentrations of 200 mg kg-1 had on hepatic damage. Staining results showed liver injury in the mice exposed to TBPH. Oxidative stress markers and endoplasmic reticulum stress associated proteins were altered in the TBPH exposed mice, and these changes could be attenuated by administration of curcumin at 25 mg kg-1. Overall, TBPH induces hepatic damage via increasing oxidative stress, and curcumin plays a protective role in alleviating the TBPH-mediated histopathological alterations in the liver.
Collapse
Affiliation(s)
- Jing Yin
- Department of Emergency, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| | - Bao Zhang
- Department of Emergency, Affiliated Renhe Hospital of China Three Gorges University, Yichang, Hubei, China
| |
Collapse
|
19
|
Niu Y, Yang R, Wu Y, Zhao Y, Zhang J, Duan H, Shao B. Emerging Brominated Flame Retardants 2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTBB) and Bis(2-ethylhexyl)-tetrabromophthalate (BEH-TEBP) in Chinese Food and Their Health Implications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8546-8554. [PMID: 34292724 DOI: 10.1021/acs.jafc.1c03341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (EHTBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP) have been frequently detected in the environment, whereas studies in food are scare. The European Food Safety Authority has requested data for their risk assessment. Herein, dietary exposure and hazard quotient (HQ) were studied based on the 5th (2009-2012) and 6th (2015-2018) Chinese total diet studies (TDSs). EHTBB was found in 61.1 and 75.9% of the two TDS sample sets, respectively. The concentrations of EHTBB in animal-derived food were higher than those in plant-derived food. The estimated daily intakes (EDIs) were 1.33 and 0.97 ng/kg bw/day, and vegetables contributed to 48.5 and 39.2% of the EDIs based on the 5th and 6th TDS, respectively. The dietary exposure to EHTBB was similar to that to hexabromocyclododecane, brominated diphenyl ether-209, and tetrabromobisphenol A (TBBPA). The HQ for EHTBB was similar to that for decabromodiphenyl ethane and surpassed that for TBBPA. Therefore, EHTBB warrants further study in food.
Collapse
Affiliation(s)
- Yumin Niu
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Runhui Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongning Wu
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Yunfeng Zhao
- NHC Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing 100021, China
| | - Jing Zhang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Hejun Duan
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
| | - Bing Shao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing 100013, China
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
20
|
Hou R, Lin L, Li H, Liu S, Xu X, Xu Y, Jin X, Yuan Y, Wang Z. Occurrence, bioaccumulation, fate, and risk assessment of novel brominated flame retardants (NBFRs) in aquatic environments - A critical review. WATER RESEARCH 2021; 198:117168. [PMID: 33962238 DOI: 10.1016/j.watres.2021.117168] [Citation(s) in RCA: 91] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 06/12/2023]
Abstract
Novel brominated flame retardants (NBFRs), which have been developed as replacements for legacy flame retardants such as polybrominated diphenyl ethers (PBDEs), are a class of alternative flame retardants with emerging and widespread applications. The ubiquitous occurrence of NBFRs in the aquatic environments and the potential adverse effects on aquatic organisms have initiated intense global concerns. The present article, therefore, identifies and analyzes the current state of knowledge on the occurrence, bioaccumulation, fates, and environmental and health risks of NBFRs in aquatic environments. The key findings from this review are that (1) the distribution of NBFRs are source-dependent in the global aquatic environments, and several NBFRs have been reported at higher concentrations than that of the legacy flame retardants; (2) high bioaccumulative properties have been found for all of the discussed NBFRs due to their strong hydrophobic characteristics and weak metabolic rates; (3) the limited information available suggests that NBFRs are resistant to biotic and abiotic degradation processes and that sorption to sludge and sediments are the main fate of NBFRs in the aquatic environments; (4) the results of ecological risk assessments have indicated the potential risks of NBFRs and have suggested that source areas are the most vulnerable environmental compartments. Knowledge gaps and perspectives for future research regarding the monitoring, toxicokinetics, transformation processes, and development of ecological risk assessments of NBFRs in aquatic environments are proposed.
Collapse
Affiliation(s)
- Rui Hou
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Lang Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hengxiang Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Shan Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiangrong Xu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| | - Yiping Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaowei Jin
- China National Environmental Monitoring Center, Beijing 100012, China
| | - Yong Yuan
- Guangzhou Key Laboratory Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zijian Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
21
|
Pasecnaja E, Perkons I, Bartkevics V, Zacs D. Legacy and alternative brominated, chlorinated, and organophosphorus flame retardants in indoor dust-levels, composition profiles, and human exposure in Latvia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25493-25502. [PMID: 33462688 DOI: 10.1007/s11356-021-12374-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Flame retardants (FRs) are additives used in consumer products to reduce flammability, even though they can easily contaminate the indoor environment. Since it is common for people in modern cities to spend up to 85% of time indoors, the quality of the indoor environment is critical for human health. In this study, polybrominated diphenyl ethers (PBDEs), organophosphorus flame retardants (OPFRs), emerging brominated flame retardants (EBFRs), and dechlorane-related compounds (DRCs) were measured in household dust samples (n = 34) from Latvia, followed by human exposure assessment. Among all studied compounds, OPFRs showed the highest concentrations (1380-133,000 ng g-1). Despite the phase-out of PBDEs, they were the second most significant flame retardants in the studied dust samples (468-25,500 ng g-1) and the predominant compound was BDE-209. The concentrations of EBFRs were in the range of 120-7295 ng g-1, with the most abundant contaminant being DBDPE, which is widely used as a substitute for the deca-BDE formulation. DRCs were the least common flame retardants in the Latvian indoor environments, with concentrations ranging 22.4-192 ng g-1. Although the concentrations of specific FRs are known to vary between different countries, the levels and patterns observed in dust samples from Latvia were similar to those reported from Central Europe. Human exposure was evaluated as the estimated daily intake (EDI). The calculated exposure to most of the FRs was several orders of magnitude lower than the available reference dose (RfD) values.
Collapse
Affiliation(s)
- Elina Pasecnaja
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes street 3, Riga, LV-1076, Latvia.
- University of Latvia, Jelgavas street 1, Riga, LV-1004, Latvia.
| | - Ingus Perkons
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes street 3, Riga, LV-1076, Latvia
- University of Latvia, Jelgavas street 1, Riga, LV-1004, Latvia
| | - Vadims Bartkevics
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes street 3, Riga, LV-1076, Latvia
- University of Latvia, Jelgavas street 1, Riga, LV-1004, Latvia
| | - Dzintars Zacs
- Institute of Food Safety, Animal Health and Environment "BIOR", Lejupes street 3, Riga, LV-1076, Latvia
| |
Collapse
|
22
|
Burkhard LP, Lahren TJ, Highland TL, Hockett JR, Mount DR, Norberg-King TJ. Bioaccumulation of Bis-(2-ethylhexyl)-3,4,5,6-tetrabromophthalate and Mono-(2-ethylhexyl)-3,4,5,6-tetrabromophthalate by Lumbriculus variegatus. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 80:579-586. [PMID: 33730174 PMCID: PMC8168711 DOI: 10.1007/s00244-021-00824-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/19/2021] [Indexed: 05/15/2023]
Abstract
The brominated flame retardant bis(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBPH) is used widely in consumer items including polyurethane foam used in furniture. Information on its bioaccumulation in aquatic species is limited. In the current study, sediment bioaccumulation tests with the oligochaete Lumbriculus variegatus were performed on a spiked natural sediment equilibrated for 14.5 months. Analysis showed the TBPH used to spike the sediment contained a small amount (0.046% by mass) of mono-(2-ethylhexyl)-3,4,5,6-tetrabromophthalate (TBMEHP), a potential biotransformation product of the parent chemical. Steady-state biota-sediment accumulation factors (BSAFs) of 0.254 and 1.50 (kg organic carbon/kg lipid) were derived for TBPH and TBMEHP, respectively. TBPH had biphasic elimination behavior where 94% of the body burden was depleted within the first 12 h of elimination (i.e., half-life of 1.2 h or less) and the remaining 6% eliminated very slowly thereafter (half-life of 15 days). There was little evidence for biotransformation of either chemical by L. variegatus. This investigation confirms the extremely hydrophobic behavior of TBPH and its impact on its bioavailability.
Collapse
Affiliation(s)
- Lawrence P Burkhard
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA.
| | - Tylor J Lahren
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - Terry L Highland
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - James R Hockett
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - David R Mount
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| | - Teresa J Norberg-King
- Great Lakes Toxicology and Ecology Division, Center for Computational Toxicology and Exposure (CCTE), Office of Research and Development, U.S. Environmental Protection Agency, 6201 Congdon Blvd, Duluth, MN, 55804, USA
| |
Collapse
|
23
|
Zhang X, Robson M, Jobst K, Pena-Abaurrea M, Muscalu A, Chaudhuri S, Marvin C, Brindle ID, Reiner EJ, Helm P. Halogenated organic contaminants of concern in urban-influenced waters of Lake Ontario, Canada: Passive sampling with targeted and non-targeted screening. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114733. [PMID: 32417577 DOI: 10.1016/j.envpol.2020.114733] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 05/01/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Passive samplers are useful tools for monitoring hydrophobic, persistent, and potentially bioaccumulative contaminants in the environment. In this study, low density polyethylene passive samplers were deployed in urban-influenced and background nearshore freshwaters of northwestern Lake Ontario and analyzed for a broad range of both legacy halogenated organic contaminants (HOCs) and halogenated flame retardants (HFRs). Non-targeted analysis was conducted for screening additional halogenated substances. For most compounds, concentrations were greatest in the industrialized Hamilton Harbour and more generally at sites that have stronger influences of wastewater effluent discharges and stormwater run-off through rivers and creeks. Polychlorinated biphenyls (PCBs) remain the dominant class of HOCs in water, with dissolved-phase concentrations ranging from 10 to 4100 pg/L (ΣPCBs), followed by polybrominated diphenylethers (ΣPBDEs; 14-960 pg/L) and the organochlorine pesticides (OCPs; 22-290 pg/L). Several non-PBDE brominated flame retardants (nBFRs) and chlorinated Dechlorane-related compounds were detected, with hexabromocyclododecanes (ΣHBCDD; sum of 3 diastereoisomers) the most abundant (1.0-21 pg/L). Non-targeted screening of samples by high resolution mass spectrometry using Kendrick mass defect plots for data analysis indicated that several other halogenated compounds were present in waters at relatively high abundances compared to the flame retardants, based on semi-quantitative estimates. These included methyl-triclosan, four halogenated anisoles (2,4,6-tribromoanisole, dimethyl-trichloroanisole, pentachloroanisole, and pentachlorothioanisole), and pentachloro-aniline. Dissolved-phase methyl-triclosan was estimated to contribute up to approximately 40% of the summed target HOC concentrations. Polyethylene passive samplers provided an excellent medium for both non-targeted screening of HOCs not currently included in monitoring programs and tracking brominated and chlorinated chemicals slated for reductions in uses and emissions through international (Stockholm Convention) and binational (Great Lakes) agreements.
Collapse
Affiliation(s)
- Xianming Zhang
- Ontario Ministry of the Environment, Conservations and Parks, Toronto, Ontario, M9P 3V6, Canada.
| | - Matthew Robson
- Ontario Ministry of the Environment, Conservations and Parks, Toronto, Ontario, M9P 3V6, Canada; Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Karl Jobst
- Ontario Ministry of the Environment, Conservations and Parks, Toronto, Ontario, M9P 3V6, Canada
| | - Miren Pena-Abaurrea
- Ontario Ministry of the Environment, Conservations and Parks, Toronto, Ontario, M9P 3V6, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Alina Muscalu
- Ontario Ministry of the Environment, Conservations and Parks, Toronto, Ontario, M9P 3V6, Canada
| | - Sri Chaudhuri
- Ontario Ministry of the Environment, Conservations and Parks, Toronto, Ontario, M9P 3V6, Canada
| | - Chris Marvin
- Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - Ian D Brindle
- Department of Chemistry, Brock University, St. Catharines, Ontario, L2S 3A1, Canada
| | - Eric J Reiner
- Ontario Ministry of the Environment, Conservations and Parks, Toronto, Ontario, M9P 3V6, Canada; Department of Chemistry, University of Toronto, Toronto, Ontario, M5S 3H6, Canada
| | - Paul Helm
- Ontario Ministry of the Environment, Conservations and Parks, Toronto, Ontario, M9P 3V6, Canada; School for the Environment, University of Toronto, Toronto, Ontario, M5S 3E8, Canada
| |
Collapse
|
24
|
Lee HK, Kang H, Lee S, Kim S, Choi K, Moon HB. Human exposure to legacy and emerging flame retardants in indoor dust: A multiple-exposure assessment of PBDEs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137386. [PMID: 32112953 DOI: 10.1016/j.scitotenv.2020.137386] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Human exposure to flame retardants (FRs) in indoor environments is a growing concern. In this study, the concentrations of polybrominated diphenyl ethers (PBDEs) and their alternatives, such as novel brominated flame retardants (NBFRs), dechlorane plus (DP), and organophosphate flame retardants (OPFRs), were measured in dust from indoor environments in Korea to investigate their occurrence, contamination profiles, and health risks. Legacy and emerging FRs were detected in dust samples, indicating widespread contamination of indoor environments. The concentrations of alternative FRs were higher in dust from offices compared with house dust, suggesting that office environments are major consumers of alternative FRs. Similar compositional profiles for indoor dust were found for PBDEs in different microenvironments and regions, while OPFR composition varied widely due to disparate applications. The estimated daily intakes of PBDEs, NBFRs, and OPFRs via dust ingestion were lower than the reference doses proposed by previous studies. A multiple-exposure assessment showed that dust ingestion was a major contributor to total PBDEs for toddlers and adults. However, major exposure pathways of BDEs 47 and 209 differed between toddlers and adults. Our study suggests that multiple exposure pathways should be considered in a comprehensive exposure assessment of PBDEs.
Collapse
Affiliation(s)
- Hyun-Kyung Lee
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Habyeong Kang
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Sunmi Kim
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungho Choi
- Department of Environmental Health Sciences, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Engineering, College of Science and Convergence Technology, Hanyang University, Ansan 15588, Republic of Korea.
| |
Collapse
|
25
|
Percy Z, La Guardia MJ, Xu Y, Hale RC, Dietrich KN, Lanphear BP, Yolton K, Vuong AM, Cecil KM, Braun JM, Xie C, Chen A. Concentrations and loadings of organophosphate and replacement brominated flame retardants in house dust from the home study during the PBDE phase-out. CHEMOSPHERE 2020; 239:124701. [PMID: 31499316 PMCID: PMC6854320 DOI: 10.1016/j.chemosphere.2019.124701] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 05/05/2023]
Abstract
Polybrominated diphenyl ethers, a class of flame retardants and endocrine disruptors, have been substituted in new products by organophosphate (OPFR) and replacement brominated flame retardants (RBFR). OPFRs and RBFRs readily migrate from consumer products into dust where humans are exposed via incidental ingestion and inhalation. We quantified concentrations and loadings of OPFRs and RBFRs in house dust samples (n = 317) collected from the homes of Cincinnati women between 2003 and 2006 and examined their associations with demographic and house characteristics. Tris-(1-chloro-2-propyl)-phosphate (TCIPP, geometric mean [GM]: 2140 ng g-1, range: 70.1-166,000 ng g-1), tris-(1,3-dichloro-2-propyl)-phosphate (TDCIPP, GM: 1840 ng g-1, range: 55.2-228,000 ng g-1), triphenyl phosphate (TPHP, GM: 1070 ng g-1, range: 34.1-62,100 ng g-1), 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB, GM: 59.5 ng g-1, range: 2.82-7800 ng g-1), and bis-(2-ethylhexyl)-tetrabromophthalate (BEH-TEBP, GM: 121 ng g-1, range 2.17-13,600 ng g-1) were all detected in >90% of dust samples; tris-(2-chloroethyl)-phosphate (TCEP, GM: 669 ng g-1, range: 56.8-160,000 ng g-1) was detected in 80.1% of samples. Concentrations of EH-TBB and BEH-TEBP increased in house dust from 2003 to 2006. The number of people living in the home, race, education, floor type, and year of sample collection were associated with some OPFR and RBFR concentrations and loadings. This study suggests that OPFRs and RBFRs were ubiquitous in house dust during the PBDE phase-out and justifies more research on the consequences of exposure to these environmental chemicals.
Collapse
Affiliation(s)
- Zana Percy
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Mark J La Guardia
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA
| | - Yingying Xu
- Department of General Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Robert C Hale
- Virginia Institute of Marine Science, William and Mary, Gloucester Point, VA, USA
| | - Kim N Dietrich
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | - Kimberly Yolton
- Department of General Pediatrics, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Ann M Vuong
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA; School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, USA
| | - Kim M Cecil
- Imaging Research Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Joseph M Braun
- Department of Epidemiology, Brown University, Providence, RI, USA
| | - Changchun Xie
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Aimin Chen
- Department of Environmental Health, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
26
|
Guo Z, Zhang L, Liu X, Yu Y, Liu S, Chen M, Huang C, Hu G. The enrichment and purification of hexabromocyclododecanes and its effects on thyroid in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109690. [PMID: 31563749 DOI: 10.1016/j.ecoenv.2019.109690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/14/2019] [Accepted: 09/17/2019] [Indexed: 06/10/2023]
Abstract
Hexabromocyclododecanes (HBCDs) are the third most highly produced brominated flame retardants (BFRs) all over the world. Based on the current research status of HBCDs, zebrafish were exposed to three dietary concentrations of HBCDs (0, 10, 100, 400 ng/g) for 56 days, and followed by clean food for 28 days. In order to investigate the enrichment and purification of HBCDs in zebrafish, HBCD enantiomers in zebrafish were determined using ultra performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). To investigate the effects of long-term exposure of HBCDs on thyroid dysfunction and oxidative stress in zebrafish, the concentrations of thyroid hormone (T3, T4, FT3 and FT4) and the activities of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and reduced glutathione (GSH) were measured. RT-PCR was used to reveal the molecular mechanism of HBCDs' influence on thyroid hormone in zebrafish. The result of UPLC-MS/MS showed that there were three main reasons for the existence of α-HBCD as the major isomer in the organism. HBCDs had significant inhibitory effect on T3 and T4 in liver of adult zebrafish after 56 days' exposure. Compared with the control group, the ratio of T3 and T4was significantly higher in the medium and high concentration group. The content of FT3 and FT4 in the liver tissue of zebrafish increased first and then decreased with the increase of exposure concentration. With the increase of exposure concentration, the content of MDA in zebrafish liver decreased firstly and then increased. The activity of SOD and CAT in zebrafish liver showed the opposite trend with MDA. And the concentration of GSH in liver decreased gradually, which showed a significant dose-effect relationship. HBCDs exposure has an inhibitory effect on thyroid hormone receptor gene (TRβ) and adrenocorticotropin-releasing hormone gene (Crh) in zebrafish.
Collapse
Affiliation(s)
- Zhen Guo
- Jinzhou Medical University, Jinzhou, 121001, China; South China Institute of Environment Sciences, The Ministry of Environment Protection, Guangzhou, 510535, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510535, China
| | - Lijuan Zhang
- South China Institute of Environment Sciences, The Ministry of Environment Protection, Guangzhou, 510535, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510535, China
| | - Xiaoyan Liu
- South China Institute of Environment Sciences, The Ministry of Environment Protection, Guangzhou, 510535, China; Chang'an University, Xi'an, 710064, China
| | - Yunjiang Yu
- South China Institute of Environment Sciences, The Ministry of Environment Protection, Guangzhou, 510535, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510535, China
| | - Shan Liu
- Chang'an University, Xi'an, 710064, China
| | - Mianbiao Chen
- South China Institute of Environment Sciences, The Ministry of Environment Protection, Guangzhou, 510535, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510535, China
| | - Chushan Huang
- South China Institute of Environment Sciences, The Ministry of Environment Protection, Guangzhou, 510535, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510535, China
| | - Guocheng Hu
- Jinzhou Medical University, Jinzhou, 121001, China; South China Institute of Environment Sciences, The Ministry of Environment Protection, Guangzhou, 510535, China; State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Guangzhou, 510535, China.
| |
Collapse
|
27
|
Xiong P, Yan X, Zhu Q, Qu G, Shi J, Liao C, Jiang G. A Review of Environmental Occurrence, Fate, and Toxicity of Novel Brominated Flame Retardants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13551-13569. [PMID: 31682424 DOI: 10.1021/acs.est.9b03159] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Use of legacy brominated flame retardants (BFRs), including polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCD), has been reduced due to adverse effects of these chemicals. Several novel brominated flame retardants (NBFRs), such decabromodiphenyl ethane (DBDPE) and bis(2,4,6-tribromophenoxy) ethane (BTBPE), have been developed as replacements for PBDEs. NBFRs are used in various industrial and consumer products, which leads to their ubiquitous occurrence in the environment. This article reviews occurrence and fate of a select group of NBFRs in the environment, as well as their human exposure and toxicity. Occurrence of NBFRs in both abiotic, including air, water, dust, soil, sediment and sludge, and biotic matrices, including bird, fish, and human serum, have been documented. Evidence regarding the degradation, including photodegradation, thermal degradation and biodegradation, and bioaccumulation and biomagnification of NBFRs is summarized. The toxicity data of NBFRs show that several NBFRs can cause adverse effects through different modes of action, such as hormone disruption, endocrine disruption, genotoxicity, and behavioral modification. The primary ecological risk assessment shows that most NBFRs exert no significant environmental risk, but it is worth noting that the result should be carefully used owing to the limited toxicity data.
Collapse
Affiliation(s)
- Ping Xiong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xueting Yan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
- Institute of Environment and Health , Jianghan University , Wuhan , Hubei 430056 , China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
- Institute of Environment and Health , Jianghan University , Wuhan , Hubei 430056 , China
| | - Chunyang Liao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
- Institute of Environment and Health , Jianghan University , Wuhan , Hubei 430056 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- College of Resources and Environment , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
28
|
Chen Y, Cao Z, Covaci A, Li C, Cui X. Novel and legacy flame retardants in paired human fingernails and indoor dust samples. ENVIRONMENT INTERNATIONAL 2019; 133:105227. [PMID: 31639601 DOI: 10.1016/j.envint.2019.105227] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/26/2019] [Accepted: 09/26/2019] [Indexed: 06/10/2023]
Abstract
In this study, the occurrence of 8 polybrominated diphenyl ethers (PBDEs), 5 alternative flame retardants (AFRs), and 7 organophosphate flame retardants (OPFRs) was determined in 50 pairs of human fingernail and indoor dust samples. The concentrations in fingernail were 9.79-242 ng/g, 17.7-926 ng/g, and 58.0-590 ng/g for PBDEs, AFRs, and OPFRs. Male fingernail showed significantly (p < 0.05) higher Σ8PBDE concentrations than female fingernails, while no significant gender differences were observed for AFRs and OPFRs. Lower ratios of BDE209 to Σ8PBDE and DBDPE to Σ5AFRs were found in fingernails than in dust. Due to their relatively rapid in vivo debromination, BDE 209 and DBDPE in fingernails were most likely from external sources rather than internal exposure (such as through blood circulation). Similar composition profiles between fingernail and dust were observed for PBDEs (excluding BDE209), AFRs (excluding DBDPE), and OPFRs, indicating that indoor dust may be a significant source for these FRs in human fingernails. Significant correlations between fingernail and dust were observed for BDE 47 (p < 0.01; r = 0.50), TBPH (p < 0.01; r = 0.37) and TBOEP (p < 0.01; r = 0.53). Results in this study provided information about contamination levels and exposure sources of FRs, which is important for long-term biomonitoring and health risk assessment of FRs.
Collapse
Affiliation(s)
- Yi Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Zhiguo Cao
- School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Normal University, Xinxiang 453007, China.
| | - Adrian Covaci
- Toxicological Center, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Chao Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xinyi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| |
Collapse
|
29
|
Zhang W, Wang P, Zhu Y, Yang R, Li Y, Wang D, Matsiko J, Han X, Zhao J, Zhang Q, Zhang J, Jiang G. Brominated flame retardants in atmospheric fine particles in the Beijing-Tianjin-Hebei region, China: Spatial and temporal distribution and human exposure assessment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 171:181-189. [PMID: 30605847 DOI: 10.1016/j.ecoenv.2018.12.080] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/10/2018] [Accepted: 12/24/2018] [Indexed: 06/09/2023]
Abstract
Atmospheric fine particle (PM2.5) samples were collected over a whole year (April 2016 - March 2017) across five sampling locations in the Beijing-Tianjin-Hebei (BTH) region, to investigate the occurrence of novel brominated flame retardants (NBFRs) and polybrominated diphenyl ethers (PBDEs). The concentrations of ∑9NBFRs were in the range of 0.63-104 pg/m3 (15.6 ± 16.8 pg/m3) in atmospheric PM2.5, while the levels of ∑9PBDEs (excluding BDE-209) ranged from 0.05 to 19.1 pg/m3 (2.9 ± 3.8 pg/m3) and BDE-209 concentrations ranged from 0.88 to 138 pg/m3 (22 ± 28 pg/m3). Relatively higher levels of NBFRs and PBDEs were found at urban sampling sites in Beijing City and Shijiazhuang City. Decabromodiphenylethane (DBDPE) and BDE-209 were the dominant compounds with the relative abundances of 72% in ∑9NBFRs and 90% in ∑10PBDEs, respectively. Generally, the levels of most target BFRs in summer were lower than those in other seasons. However, there were no notable seasonal differences in levels of DBDPE and BDE-209 in atmospheric PM2.5 samples across the BTH region. Significant and positive correlations were found between the concentrations of BFRs and PM2.5. Daily human exposure via inhalation revealed that children have a higher probability of suffering from the adverse effects of BFRs than that of adults. In addition, residents living near sampling locations across the BTH region may suffer high exposure risks to BDE-209 and NBFRs.
Collapse
Affiliation(s)
- Weiwei Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pu Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ying Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruiqiang Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingming Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Dou Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Julius Matsiko
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Han
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junpeng Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinghua Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Jianqing Zhang
- Shenzhen Center for Disease Control and Prevention, Shenzhen 518055, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Huang W, Bencic DC, Flick RL, Nacci DE, Clark BW, Burkhard L, Lahren T, Biales AD. Characterization of the Fundulus heteroclitus embryo transcriptional response and development of a gene expression-based fingerprint of exposure for the alternative flame retardant, TBPH (bis (2-ethylhexyl)-tetrabromophthalate). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:696-705. [PMID: 30721860 PMCID: PMC7495336 DOI: 10.1016/j.envpol.2019.01.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/18/2018] [Accepted: 01/03/2019] [Indexed: 05/07/2023]
Abstract
Although alternative Flame Retardant (FR) chemicals are expected to be safer than the legacy FRs they replace, their risks to human health and the environment are often poorly characterized. This study used a small volume, fish embryo system to reveal potential mechanisms of action and diagnostic exposure patterns for TBPH (bis (2-ethylhexyl)-tetrabromophthalate), a component of several widely-used commercial products. Two different concentration of TBPH were applied to sensitive early life stages of an ecologically important test species, Fundulus heteroclitus (Atlantic killifish), with a well-annotated genome. Exposed fish embryos were sampled for transcriptomics or chemical analysis of parent compound and primary metabolite or observed for development and survival through larval stage. Global transcript profiling using RNA-seq was conducted (n = 16 per treatment) to provide a non-targeted and statistically robust approach to characterize TBPH gene expression patterns. Transcriptomic analysis revealed a dose-response in the expression of genes associated with a surprisingly limited number of biological pathways, but included the aryl hydrocarbon receptor signal transduction pathway, which is known to respond to several toxicologically-important chemical classes. A transcriptional fingerprint using Random Forests was developed that was able to perfectly discriminate exposed vs. non-exposed individuals in test sets. These results suggest that TBPH has a relatively low potential for developmental toxicity (at least in fishes), despite concerns related to its structural similarities to endocrine disrupting chemicals and that the early life stage Fundulus system may provide a convenient test system for exposure characterization. More broadly, this study advances the usefulness of a biological testing and analysis system utilizing non-targeted transcriptomics profiling and early developmental endpoints that complements current screening methods to characterize chemicals of ecological and human health concern.
Collapse
Affiliation(s)
- Weichun Huang
- U.S. EPA Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH, 45268, USA
| | - David C Bencic
- U.S. EPA Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH, 45268, USA
| | - Robert L Flick
- U.S. EPA Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH, 45268, USA
| | - Diane E Nacci
- U.S. EPA National Health and Environmental Effects Research Laboratory, 27 Tarzwell Drive Narragansett, RI, 02882, USA
| | - Bryan W Clark
- U.S. EPA National Health and Environmental Effects Research Laboratory, 27 Tarzwell Drive Narragansett, RI, 02882, USA
| | - Lawrence Burkhard
- U.S. EPA National Health and Environmental Effects Research Laboratory, 6201 Congdon Boulevard, Duluth, MN, 55804, USA
| | - Tylor Lahren
- U.S. EPA National Health and Environmental Effects Research Laboratory, 6201 Congdon Boulevard, Duluth, MN, 55804, USA
| | - Adam D Biales
- U.S. EPA Office of Research and Development, National Exposure Research Laboratory, 26 W. Martin Luther King Dr., Cincinnati, OH, 45268, USA.
| |
Collapse
|
31
|
Ganci AP, Vane CH, Abdallah MAE, Moehring T, Harrad S. Legacy PBDEs and NBFRs in sediments of the tidal River Thames using liquid chromatography coupled to a high resolution accurate mass Orbitrap mass spectrometer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 658:1355-1366. [PMID: 30677996 DOI: 10.1016/j.scitotenv.2018.12.268] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/18/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Surface sediment samples (n = 45) were collected along a 110 km transect of the river Thames in October 2011, starting from Teddington Lock out through the industrial area of London to the southern North Sea. Several legacy and novel brominated flame retardants (NBFRs) were analysed, including 13 polybrominated diphenyl ethers (PBDEs) (congeners 17, 28, 47, 99, 100, 153, 154, 183, 196, 197, 206, 207 and 209), hexabromocyclododecane (HBCDDs), tetrabromobisphenol A (TBBPA), hexabromobenzene (HBB), 2,4,6-tribromophenol (TBP), 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB or TBB), bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP or TBPH), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), decabromodiphenyl ethane (DBDPE), pentabromoethylbenzene (PBEB), anti/syn-dechlorane plus (a/s-DP), 2,2',4,4',5,5'-hexabromobiphenyl (BB153) and α-,β-1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane (α-,β-DBE-DBCH or TBECH). A novel analysis method based on liquid chromatographic separation, followed by high resolution accurate mass detection using the Orbitrap platform was used for quantification. Results revealed that BDE-209 had the highest concentrations (<0.1 to 540 μg kg-1 dw) and detection frequency, accounting for 95% of all PBDE congeners measured. Indicative evidence of debromination of the PentaBDE technical mixture was observed through elevated relative abundance of BDE-28 in sediment compared to the Penta-BDE formulation. NBFRs were detected at comparable levels to PBDEs (excluding BDE-209), which indicates increasing use of the former. Spatial trend analysis showed that samples from industrial areas had significantly higher concentrations of Σ12PBDEs, ΣHBCDDs, TBBPA, BEH-TEBP, BTBPE and TBP. Three locations showed high concentrations of HBCDDs with diastereomer patterns comparable to the technical mixture, which indicate recent input sources to the sediment.
Collapse
Affiliation(s)
- Aristide P Ganci
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, United Kingdom.
| | - Christopher H Vane
- British Geological Survey, Centre for Environmental Geochemistry, Keyworth, Nottingham NG12 5GG, United Kingdom
| | - Mohamed A-E Abdallah
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, United Kingdom; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Thomas Moehring
- Thermo Fisher Scientific (GmbH) Bremen, Hanna-Kunath-Str. 11, 28199 Bremen, Germany
| | - Stuart Harrad
- University of Birmingham, School of Geography, Earth and Environmental Sciences, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
32
|
Tao F, Sellström U, de Wit CA. Organohalogenated Flame Retardants and Organophosphate Esters in Office Air and Dust from Sweden. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2124-2133. [PMID: 30681843 DOI: 10.1021/acs.est.8b05269] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A wide range of organohalogenated flame retardants (HFRs) and organophosphate esters (OPEs) were measured in air and floor dust from 10 offices in Stockholm, Sweden. Concentrations of ∑18 emerging HFRs, ∑21 legacy HFRs and ∑11 OPEs from the offices were found to be 420, 510, and 1600000 ng/g, respectively, in floor dust and 400, 15, and 160 000 pg/m3 respectively in active air samples. All targeted compounds were detected in dust except 2,3,5,6-tetrabromo- p-xylene (pTBX) indicating widespread application of a broad range of FRs in the Swedish offices while only 54% of targeted compounds were detected in indoor air. Estimated ∑OPE exposure in Swedish offices is 3-4 orders of magnitude higher than for ∑emerging HFRs and ∑legacy HFRs via all three different exposure routes in our study. Adult's estimated intakes of emerging and legacy HFRs and OPEs from office air and dust during working hours (30% of a day) are some orders of magnitude lower than the corresponding reference doses (RfD). However, in worst case exposure scenarios (maximum concentrations and high dust intake), the intake of tris(2-butoxyethyl) phosphate (TBOEP) was one-third of its RfD, which may be of potential concern if exposure is as high in other microenvironments.
Collapse
Affiliation(s)
- Fang Tao
- College of Quality and Safety Engineering , China Jiliang University , Hangzhou 310018 , People's Republic of China
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Ulla Sellström
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , SE-106 91 Stockholm , Sweden
| | - Cynthia A de Wit
- Department of Environmental Science and Analytical Chemistry (ACES) , Stockholm University , SE-106 91 Stockholm , Sweden
| |
Collapse
|
33
|
Guigueno MF, Karouna-Renier NK, Henry PFP, Peters LE, Palace VP, Letcher RJ, Fernie KJ. Sex-specific responses in neuroanatomy of hatchling American kestrels in response to embryonic exposure to the flame retardants bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:3032-3040. [PMID: 30035332 DOI: 10.1002/etc.4238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/11/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), flame retardant components of FireMaster 550® and 600® have been detected in tissues of wild birds. To address the paucity of information regarding potential impacts of flame retardants on the brain, brain volume regions of hatchling American kestrels (Falco sparverius) were evaluated following in ovo injection at embryonic day 5 with safflower oil or to 1 of 3 doses of either BEH-TEBP (12, 60, or 107 ng/g egg) or EH-TBB (11, 55, or 137 ng/g egg). The doses for both chemicals reflected concentrations reported in wild birds. The volumes of the hippocampus and telencephalon and volumetric differences between left and right hemispheres were measured in hatchlings (embryonic day 28). A sex-specific effect of BEH-TEBP on relative hippocampus volume was evident: the hippocampus was significantly enlarged in high-dose females compared to control females but smaller in low-dose females than the other females. There was no significant effect of EH-TBB on hippocampus volume in female kestrel hatchlings or of either chemical in male hatchlings and no effects of these concentrations of EH-TBB or BEH-TEBP on telencephalon volume or the level of symmetry between the hemispheres of the brain. In sum, embryonic exposure of female kestrels to these BEH-TEBP concentrations altered hippocampus volume, having the potential to affect spatial memory relating to ecologically relevant behavior such as prey capture, predator avoidance, and migration. Environ Toxicol Chem 2018;37:3032-3040. © 2018 SETAC.
Collapse
Affiliation(s)
- Mélanie F Guigueno
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment & Climate Change Canada, Burlington, Ontario
- Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| | | | - Paula F P Henry
- US Geological Survey, Patuxent Wildlife Research Center, Beltsville, Maryland
| | - Lisa E Peters
- Riddell Faculty of Earth Environment and Resources, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Vince P Palace
- International Institute of Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada
| | - Robert J Letcher
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment & Climate Change Canada, Carleton University, Ottawa, Ontario
| | - Kim J Fernie
- Ecotoxicology & Wildlife Health Division, Science & Technology Branch, Environment & Climate Change Canada, Burlington, Ontario
- Natural Resource Sciences, McGill University, Ste. Anne de Bellevue, Quebec, Canada
| |
Collapse
|
34
|
Nacci D, Clark B, La Guardia MJ, Miller K, Champlin D, Kirby I, Bertrand A, Jayaraman S. Bioaccumulation and effects of dietary exposure to the alternative flame retardant, bis(2-ethylhexyl) tetrabromophthalate (TBPH), in the Atlantic killifish, Fundulus heteroclitus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2350-2360. [PMID: 29846010 PMCID: PMC6123825 DOI: 10.1002/etc.4180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 02/05/2018] [Accepted: 05/29/2018] [Indexed: 05/23/2023]
Abstract
Bis(2-ethylhexyl) tetrabromophthalate (TBPH), a high production volume flame retardant chemical used as a replacement for banned flame retardants, has been detected in media and human and wildlife tissues globally. We describe bioaccumulation and biological effects from dietary exposure of TBPH to an estuarine fish, Atlantic killifish, Fundulus heteroclitus. Briefly, adult fish were fed carrier control or chemically amended diets for 28 d, followed by 14 d of control diet feeding. Diets were amended with TBPH (TBPH_LO diet, 139 μg/g dry wt, or TBPH_HI diet, 4360 μg/g dry wt) or a polychlorinated biphenyl congener (PCB153 diet, 13 μg/g dry wt), which was included as a positive control for bioaccumulation. Although bioaccumulation of either chemical correlated with fish size, only a small proportion of the TBPH offered (<0.5% total TBPH) had bioaccumulated into TBPH-treated fish by 28 d. In contrast, 24.5% of the PCB153 offered was accounted for in 28-d PCB-treated fish. Although 28-d bioaccumulated concentrations of TBPH differed by sex and treatment, sexes did not differ in their rates of TBPH bioaccumulation, and the time to achieve 50% of 28 d concentration (T1/2 ) was estimated to be 13 d. Depuration rates of TBPH did not differ by sex or treatment, and the time after exposure to achieve T1/2 was estimated to be 22 d. Independent of treatment, male fish grew faster than female fish, but for both sexes reproductive condition (gonadal somatic index) declined unexpectedly over the experimental period. Across treatments, only the TBPH_LO treatment affected growth, reducing male but increasing female growth rates by small amounts relative to respective controls. In summary, our study used very high concentrations of dietary TBPH to contaminate fish tissues above the highest levels reported to date in wild biota, yet we observed few adverse biological effects. Environ Toxicol Chem 2018;37:2350-2360. © 2018 SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Diane Nacci
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Bryan Clark
- Atlantic Ecology Division, Oak Ridge Institute for Science and Education, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Mark J La Guardia
- Aquatic Health Sciences, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, Virginia, USA
| | - Ken Miller
- CSC Government Solutions, A CSRA Company, Alexandria, Virginia, USA
| | - Denise Champlin
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Ian Kirby
- Atlantic Ecology Division, Student Services Contractor, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Ashley Bertrand
- Atlantic Ecology Division, Student Services Contractor, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| | - Saro Jayaraman
- Atlantic Ecology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island, USA
| |
Collapse
|
35
|
Ma Z, Peng H, Jin Y, Zhang X, Xie X, Jian K, Liu H, Su G, Tang S, Yu H. Multigenerational Effects and Demographic Responses of Zebrafish ( Danio rerio) Exposed to Organo-Bromine Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8764-8773. [PMID: 29984988 DOI: 10.1021/acs.est.8b00569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Long-term exposure to toxic chemicals often has deleterious effects on aquatic organisms. In order to support appropriate environmental management of chemicals, a mathematical model was developed to characterize the effects of chemicals on multigenerational population dynamics in aquatic animals. To parametrize the model, we conducted a multigenerational laboratory toxicity test in zebrafish ( Danio rerio) exposed to 2-bromo-4,6-dinitroaniline (BDNA). Long-term exposure to BDNA considerably reduced the fecundity of adult zebrafish (F0 and F1) and caused deformities in the offspring (F2). Life history data, including changes in fecundity and population growth, were then integrated into the model to predict population dynamics of zebrafish exposed to two novel brominated flame retardants, bis(2-ethylhexyl)-2,3,4,5-tetrabromophthalate (TBPH) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB). The model predicted that the fecundity of adult zebrafish would be significantly impaired after exposure to 90.36 μM TBPH and 99.16 μM TBB. Thus, prolonged exposure to such levels over multiple generations could result in population extinction within 20 years. Our results provide an intensive temporal perspective to investigate a keystone that connects with individual response to chemicals, population dynamics, and ultimately ecosystem influences.
Collapse
Affiliation(s)
- Zhiyuan Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Hui Peng
- Department of Chemistry , University of Toronto , Toronto , Ontario M5S 3H6 , Canada
| | - Yaru Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Xianming Zhang
- Department of Physical and Environmental Sciences , University of Toronto Scarborough , Toronto , Ontario M1C 1A4 , Canada
| | - Xianyi Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Kang Jian
- Jiangsu Key Laboratory of Chemical Pollution Control and Resource, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| | - Guanyong Su
- Jiangsu Key Laboratory of Chemical Pollution Control and Resource, School of Environmental and Biological Engineering , Nanjing University of Science and Technology , Nanjing 210094 , China
| | - Song Tang
- National Institute of Environmental Health Chinese Center for Disease Control and Prevention , No.7 Panjiayuan Nanli Chaoyang District , Beijing 100021 , China
| | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing 210023 , China
| |
Collapse
|
36
|
Hou M, Wang Y, Zhao H, Zhang Q, Xie Q, Zhang X, Chen R, Chen J. Halogenated flame retardants in building and decoration materials in China: Implications for human exposure via inhalation and dust ingestion. CHEMOSPHERE 2018; 203:291-299. [PMID: 29625318 DOI: 10.1016/j.chemosphere.2018.03.182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 03/27/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
In this study, polybrominated diphenyl ethers (PBDEs), novel brominated flame retardants (NBFRs), and dechlorane plus (DPs) were analyzed in seven categories of building and decoration materials. The total concentrations of analyzed FRs ranged from 1.19 ng/g (diatomite powder) to 9532 ng/g (expanded polystyrene panel). Relatively high concentrations were detected in foam samples and PVC materials, followed by sealing materials, boards, wallpaper, paints, and wall decoration powders. BDE209 was the most detected compound with the highest concentrations in almost all materials, followed by decabromodiphenyl ethane (DBDPE), which was consistent with their productions and consumptions in China. The estimated PBDE concentrations in air and dust based on material concentration and emission rate were comparable with those detected in real samples. Adult and infant exposures via inhalation and dust ingestion were assessed. The estimated exposures to BDE209 via dust ingestion were 1.36 and 0.12 ng/(kg bw d), which were 19- and 4-fold higher than those via inhalation for infants and adults, respectively. This suggested that dust ingestion was a significant pathway of human BDE209 exposure, especially for infants. For the other PBDE congeners (∑7PBDEs), the estimated exposures via inhalation were 2.60 and 1.32 ng/(kg bw d) for infants and adults, respectively. Despite the low estimated human exposures to PBDEs compared to the oral reference doses, the exposure associated with building and decoration materials still requires more attention because of the potential risks from other exposure pathways and undetected FRs in those materials.
Collapse
Affiliation(s)
- Minmin Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiaonan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaojing Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruize Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
37
|
Zheng G, Wan Y, Shi S, Zhao H, Gao S, Zhang S, An L, Zhang Z. Trophodynamics of Emerging Brominated Flame Retardants in the Aquatic Food Web of Lake Taihu: Relationship with Organism Metabolism across Trophic Levels. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4632-4640. [PMID: 29608280 DOI: 10.1021/acs.est.7b06588] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Despite the increasing use and discharge of novel brominated flame retardants, little information is available about their trophodynamics in the aquatic food web, and their subsequent relationships to compound metabolism. In this study, concentrations of 2,4,6-tribromophenyl allyl ether (ATE), 1,2-dibromo-4-(1,2-dibromoethyl)cyclohexane (TBECH), tetrabromo- o-chlorotoluene (TBCT), pentabromobenzyl acrylate (PBBA), 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE), bis(2-ethylhexyl)-3,4,5,6-tetrabromo-phthalate (TBPH), and decabromodiphenyl ethane (DBDPE) were measured in 17 species, including plankton, invertebrates, and fish from Lake Taihu, South China. Trophodynamics of the compounds were assessed, and metabolic rates were measured in the liver microsomes of crucian (trophic level [TL]: 2.93), catfish (TL: 3.86), and yellow-head catfish (TL: 4.3). Significantly positive relationships were found between trophic levels and lipid-normalized concentrations of ATE, BTBPE, and TBPH; their trophic magnification factors (TMFs) were 2.85, 2.83, and 2.42, respectively. Consistently, the three chemicals were resistant to metabolism in all fish microsomes. No significant relationship was observed for βTBECH ( p = 0.116), and DBDPE underwent trophic dilution in the food web (TMFs = 0.37, p = 0.021). Moreover, these two chemicals showed steady metabolism with incubation time in all fish microsomes. TBCT and PBBA exhibited significant trophic magnifications in the food web (TMF = 4.56, 2.01). Though different metabolic rates were observed for the two compounds among the tested fish species, TBCT and PBBA both showed metabolic resistance in high-trophic-level fish. These results indicated that metabolism of organisms at high trophic levels plays an important role in the assessment of trophic magnification potentials of these flame retardant chemicals.
Collapse
Affiliation(s)
- Guomao Zheng
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Sainan Shi
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Haoqi Zhao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Shixiong Gao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Shiyi Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Lihui An
- State Environmental Protection Key Laboratory of Estuarine and Coastal Research , Chinese Research Academy of Environmental Sciences , Beijing 100012 , China
| | - Zhaobin Zhang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| |
Collapse
|
38
|
McGrath TJ, Morrison PD, Ball AS, Clarke BO. Concentrations of legacy and novel brominated flame retardants in indoor dust in Melbourne, Australia: An assessment of human exposure. ENVIRONMENT INTERNATIONAL 2018; 113:191-201. [PMID: 29428609 DOI: 10.1016/j.envint.2018.01.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/09/2018] [Accepted: 01/30/2018] [Indexed: 05/19/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and novel brominated flame retardants (NBFR) have been used in a range of polymers to inhibit the spread of fires but also have a propensity to migrate out of consumer materials and contaminate indoor dust. In this study, a total of 57 dust samples were collected from 12 homes, eight offices and eight vehicles in Melbourne, Australia and analysed for eight PBDEs (-28, -47, -99, -100, -153, -154, -183 and -209) and seven NBFRs (PBT, PBEB, HBB, EH-TBB, BEH-TEBP, BTBPE and DBDPE) to determine human exposure risks from dust ingestion. Samples were analysed using selective pressurized liquid extraction (S-PLE) and gas chromatography coupled to tandem mass spectrometry (GC-MS/MS). Legacy and replacement flame retardants were detected in all samples with overall ∑PBDE concentrations ranging from 120 to 1700,000 ng/g (median 2100 ng/g) and ∑NBFRs ranging from 1.1 to 10,000 ng/g (median 1800 ng/g). BDE-209 and DBDPE were the dominant compounds in dust samples, followed by congeners associated with commercial Penta-BDE formulations (-47, -99, -100, -153 and -154) and then EH-TBB of the FireMaster 550 and BZ-54 products. ∑Penta-BDE concentrations were elevated in office samples compared with homes and vehicles, while EH-TBB and BDE-209 measured higher concentrations in vehicles compared with their respective levels in homes and offices. Risk assessment estimates revealed the majority of exposure to occur in the home for both adults and toddlers in the City of Melbourne. Generally, body weight adjusted exposure to PBDEs and NBFRs was predicted to be 1 to 2 orders of magnitude higher for toddlers than adults. Estimated rates of BDE-47, -99, -153 and -209 ingestion were each 2 orders of magnitude or more below the USEPA's prescribed oral reference dose values (RfDs) for typical exposure scenarios. However, exposure rates for BDE-47 and -99 reached as high as 52 and 95% of RfDs, respectively, for adults and 4.4 and 7.4%, respectively, for toddlers in high exposure scenarios. This study provides the first wide-ranging survey of NBFRs in indoor dust from homes, offices and vehicles in Australia and offers further evidence of human exposure to legacy and novel brominated flame retardants via dust ingestion.
Collapse
Affiliation(s)
- Thomas J McGrath
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Paul D Morrison
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia; Australian Centre for Research on Separation Science (ACROSS), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia
| | - Bradley O Clarke
- Centre for Environmental Sustainability and Remediation (EnSuRe), School of Science, RMIT University, GPO Box 2476, Melbourne, Victoria 3001, Australia.
| |
Collapse
|
39
|
Phillips AL, Hammel SC, Konstantinov A, Stapleton HM. Characterization of Individual Isopropylated and tert-Butylated Triarylphosphate (ITP and TBPP) Isomers in Several Commercial Flame Retardant Mixtures and House Dust Standard Reference Material SRM 2585. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:13443-13449. [PMID: 29076339 PMCID: PMC5966724 DOI: 10.1021/acs.est.7b04179] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Since the phase-out of pentaBDE in the early 2000s, replacement flame-retardant mixtures including Firemaster 550 (FM 550), Firemaster 600 (FM 600), and organophosphate aryl ester technical mixtures have been increasingly used to treat polyurethane foam in residential upholstered furniture. These mixtures contain isomers of isopropylated and tert-butylated triarylphosphate esters (ITPs and TBPPs), which have similar or greater neuro- and developmental toxicity compared to BDE 47 in high-throughput assays. Additionally, human exposure to ITPs and TBPPs has been demonstrated to be widespread in several recent studies; however, the relative composition of these mixtures has remained largely uncharacterized. Using available authentic standards, the present study quantified the contribution of individual ITP and TBPP isomers in four commercial flame retardant mixtures: FM 550, FM 600, an ITP mixture, and a TBPP mixture. Findings suggest similarities between FM 550 and the ITP mixture, with 2-isopropylphenyl diphenyl phosphate (2IPPDPP), 2,4-diisopropylphenyl diphenyl phosphate (24DIPPDPP), and bis(2-isopropylphenyl) phenyl phosphate (B2IPPPP) being the most prevalent ITP isomers in both mixtures. FM 600 differed from FM 550 in that it contained TBPP isomers instead of ITP isomers. These analytes were also detected and quantified in a house dust standard reference material, SRM 2585, demonstrating their environmental relevance.
Collapse
Affiliation(s)
- Allison L. Phillips
- Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708 United States
| | - Stephanie C. Hammel
- Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708 United States
| | | | - Heather M. Stapleton
- Nicholas School of the Environment, Duke University, Durham, North Carolina, 27708 United States
| |
Collapse
|
40
|
Geier MC, Chlebowski AC, Truong L, Massey Simonich SL, Anderson KA, Tanguay RL. Comparative developmental toxicity of a comprehensive suite of polycyclic aromatic hydrocarbons. Arch Toxicol 2017; 92:571-586. [PMID: 29094189 DOI: 10.1007/s00204-017-2068-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/18/2017] [Indexed: 12/16/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants that occur in complex mixtures. Several PAHs are known or suspected mutagens and/or carcinogens, but developmental toxicity data is lacking for PAHs, particularly their oxygenated and nitrated derivatives. Such data are necessary to understand and predict the toxicity of environmental mixtures. 123 PAHs were assessed for morphological and neurobehavioral effects for a range of concentrations between 0.1 and 50 µM, using a high throughput early-life stage zebrafish assay, including 33 parent, 22 nitrated, 17 oxygenated, 19 hydroxylated, 14 methylated, 16 heterocyclic, and 2 aminated PAHs. Additionally, each PAH was evaluated for AHR activation, by assessing CYP1A protein expression using whole animal immunohistochemistry (IHC). Responses to PAHs varied in a structurally dependent manner. High-molecular weight PAHs were significantly more developmentally toxic than the low-molecular weight PAHs, and CYP1A expression was detected in five distinct tissues, including vasculature, liver, skin, neuromasts and yolk.
Collapse
Affiliation(s)
- Mitra C Geier
- Department of Environmental and Molecular Toxicology, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Anna C Chlebowski
- Department of Environmental and Molecular Toxicology, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Staci L Massey Simonich
- Department of Environmental and Molecular Toxicology, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Kim A Anderson
- Department of Environmental and Molecular Toxicology, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University, ALS 1007, Corvallis, OR, 97331, USA.
| |
Collapse
|
41
|
Li WL, Ma WL, Zhang ZF, Liu LY, Song WW, Jia HL, Ding YS, Nakata H, Minh NH, Sinha RK, Moon HB, Kannan K, Sverko E, Li YF. Occurrence and Source Effect of Novel Brominated Flame Retardants (NBFRs) in Soils from Five Asian Countries and Their Relationship with PBDEs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11126-11135. [PMID: 28866877 DOI: 10.1021/acs.est.7b03207] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
This paper presents the first comprehensive survey of 19 novel brominated flame retardants (NBFRs) in soil samples collected among five Asian countries. High variability in concentrations of all NBFRs was found in soils with the geometric mean (GM) values ranging from 0.50 ng/g dry weight (dw) in Vietnam to 540 ng/g dw in the vicinity of a BFR manufacturer in China. In urban, rural, and background locations, the GM concentrations of ∑19NBFRs decreased in the order of Japan > South Korea > China > India > Vietnam. Correlations among different NBFR compounds were positive and statistically significant (p < 0.05), suggesting that they originate from similar sources. Evidence for simultaneous application between polybrominated diphenyl ethers (PBDEs) and NBFRs were also noted. Principal component analysis of NBFR concentrations revealed specific pollution sources for different NBFRs coming from urban, BFR-related industrial, and e-waste sites. For the first time, this study demonstrates a "point source fractionation effect" for NBFRs and PBDEs. The concentrations of all NBFRs and PBDEs were negatively and significantly correlated with the distance from BFR-related industrial and e-waste regions. Positive and significant correlation between population density and NBFR concentrations in soils was identified. Our study revealed that the primary sources effects were stronger than the secondary sources effects in controlling the levels and distribution of NBFRs and PBDEs in soils in these five Asian countries.
Collapse
Affiliation(s)
- Wen-Long Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology , Harbin 150090, China
| | - Wan-Li Ma
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology , Harbin 150090, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology , Harbin 150090, China
| | - Li-Yan Liu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology , Harbin 150090, China
| | - Wei-Wei Song
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology , Harbin 150090, China
| | - Hong-Liang Jia
- IJRC-PTS, College of Environmental Science and Engineering, Dalian Maritime University , Dalian 116026, China
| | - Yong-Sheng Ding
- IJRC-PTS/College of Ocean Science and Engineering, Shanghai Maritime University , Shanghai 200135, China
| | - Haruhiko Nakata
- IJRC-PTS, Graduate School of Science and Technology, Kumamoto University , 2-39-1 Kurokami, Kumamoto 860-8555, Japan
| | - Nguyen Hung Minh
- Dioxin laboratory, Center for Environmental Monitoring (CEM), Vietnam Environmental Administration (VEA) , 556 Nguyen Van Cu, Long Bien, Ha Noi, Vietnam
| | | | - Hyo-Bang Moon
- IJRC-PTS, Department of Marine Sciences and Convergent Technology, Hanyang University , 55 Hanyangdaehak-ro, Sangnok-gu, Ansan City, Gyeonggi-do 426-791, Republic of Korea
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany , Empire State Plaza, P.O. Box 509, Albany, New York 12201, United States
| | - Ed Sverko
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology , Harbin 150090, China
| | - Yi-Fan Li
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology , Harbin 150090, China
- IJRC-PTS, College of Environmental Science and Engineering, Dalian Maritime University , Dalian 116026, China
- IJRC-PTS-NA , Toronto, M2N 6X9, Canada
| |
Collapse
|
42
|
Peng H, Sun J, Saunders DMV, Codling G, Wiseman S, Jones PD, Giesy JP. Hydroxylated 2-Ethylhexyl tetrabromobenzoate isomers in house dust and their agonistic potencies with several nuclear receptors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:578-586. [PMID: 28505588 DOI: 10.1016/j.envpol.2017.04.094] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 06/07/2023]
Abstract
In the current study, by combining ultra-high resolution (UHR) MS1 spectra, MS2 spectra, and derivatization, three hydroxylated isomers of 2-ethylhexyl tetrabromobenzoate (OH-TBB) were identified in Firemaster® 550 and BZ-54 technical products. Also, a new LC-UHRMS method, using atmospheric pressure chemical ionization (APCI), was developed for simultaneous analysis of OH-TBB, TBB, hydroxylated bis(2-ethylhexyl)-tetrabromophthalate (OH-TBPH) and TBPH in 23 samples of dust collected from houses in Saskatoon, SK, Canada. OH-TBBs were detected in 91% of samples, with a geometric mean concentration of 0.21 ng/g, which was slightly less than those of OH-TBPH (0.35 ng/g). TBB was detected in 100% of samples of dust with a geometric mean concentration of 992 ng/g. Significant (p < 0.001) log-linear relationships between concentrations of OH-TBBs, TBB, or OH-TBPHs and TBPH in dust support the hypothesis of a common source of these compounds. OH-TBBs were found to be strong agonists of peroxisome proliferator-activated receptor gamma (PPARγ) and weaker agonists of the estrogen receptor (ER), but no agonistic potencies was observed with the androgen receptor (AR). Occurrence of OH-TBBs in technical products and house dust, together with their relatively strong PPARγ potencies, indicated their potential risk to health of humans.
Collapse
Affiliation(s)
- Hui Peng
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Jianxian Sun
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada.
| | - David M V Saunders
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Garry Codling
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Steve Wiseman
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada
| | - Paul D Jones
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; School of Environment and Sustainability, 117 Science Place, Saskatoon, SK, S7N 5C8, Canada
| | - John P Giesy
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, S7N 5B3, Canada; Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5B3, Canada; Zoology Department, Center for Integrative Toxicology, Michigan State University, East Lansing, MI, USA; Department of Biology and Chemistry, City University of Hong Kong, Kowloon, People's Republic of China; School of Biological Sciences, University of Hong Kong, People's Republic of China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
43
|
Tao F, Abou-Elwafa Abdallah M, Ashworth DC, Douglas P, Toledano MB, Harrad S. Emerging and legacy flame retardants in UK human milk and food suggest slow response to restrictions on use of PBDEs and HBCDD. ENVIRONMENT INTERNATIONAL 2017; 105:95-104. [PMID: 28525835 DOI: 10.1016/j.envint.2017.05.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/10/2017] [Accepted: 05/10/2017] [Indexed: 05/06/2023]
Abstract
The legacy flame retardants (LFRs) polybrominated diphenyl ethers (PBDEs) and hexabromocyclododecane (HBCDD), together with six emerging flame retardants (EFRs) were measured in United Kingdom (UK) human milk collected in 2010 (n=25) and 2014-15 (n=10). These data are the first report of the presence of EFRs in UK human milk. The most abundant EFR was β-tetrabromoethylcyclohexane (DBE-DBCH) (average=2.5ng/g lw; geometric mean=1.5ng/g lw), which is comparable to the concentrations of the most abundant LFRs i.e. BDE 47 and α-HBCDD at 2.8 and 2.1ng/g lw, respectively (geometric mean=2.1 and 1.7). The estimated median dietary intake of ΣEFRs by UK nursing infants was 18ng/kg bw/day. EFRs were also measured in UK foodstuffs with β-DBE-DBCH again the predominant compound detected, accounting - on average - for 64.5±23.4% of ΣEFRs. Average estimated dietary intakes of ∑EFRs in the UK were 89 and 26ng/day (1.3 and 2.6ng/body weight/day) for adults and toddlers, respectively. Concentrations of Σtri-hexa BDEs in our UK food samples exceeded those reported in UK samples from the same food categories collected in 2003-04 and 2006. Despite this and our recent report elsewhere of significant temporal declines in concentrations of BDE 209 in UK indoor dust (p<0.05) and HBCDDs in UK indoor dust and air (p<0.001), no significant temporal differences (p>0.05) were observed between concentrations of Σtri-hexa BDEs, BDE 209 and HBCDDs in human milk sampled in 2010 and those obtained in 2014-15. UK adult body burdens for EFRs were predicted via inhalation, diet and dust ingestion using a simple pharmacokinetic model. The predicted EFR body burdens compared well with observed concentrations in human milk.
Collapse
Affiliation(s)
- Fang Tao
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Mohamed Abou-Elwafa Abdallah
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK; Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt.
| | - Danielle C Ashworth
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, W2 1PG, UK; National Institute for Health Research Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London, a Partnership with Public Health England, and collaboration with Imperial College London, W2 1PG, UK
| | - Philippa Douglas
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, W2 1PG, UK; National Institute for Health Research Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London, a Partnership with Public Health England, and collaboration with Imperial College London, W2 1PG, UK
| | - Mireille B Toledano
- MRC-PHE Centre for Environment and Health, Department of Epidemiology and Biostatistics, Imperial College London, W2 1PG, UK; National Institute for Health Research Health Protection Research Unit in Health Impact of Environmental Hazards at King's College London, a Partnership with Public Health England, and collaboration with Imperial College London, W2 1PG, UK
| | - Stuart Harrad
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
44
|
Xiang P, Liu RY, Sun HJ, Yang YW, Cui XY, Ma LQ. Effects of novel brominated flame retardant TBPH and its metabolite TBMEHP on human vascular endothelial cells: Implication for human health risks. ENVIRONMENTAL RESEARCH 2017; 156:834-842. [PMID: 28318508 DOI: 10.1016/j.envres.2017.02.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
As a replacement for polybrominated diphenyl ethers, bis-(2-ethylhexyl) tetrabromophthalate (TBPH) is widely used as a novel flame retardant and has been detected in many environmental matrix including human blood. TBPH can be metabolized into mono-(2-ethyhexyl) tetrabromophthalate (TBMEHP) by carboxylesterase. However, their adverse effects on human vascular endothelium and their potential impacts on human cardiovascular disease are unknown. In this study, their adverse effects and associated molecular mechanisms on human vascular endothelial cells (HUVECs) were investigated. A concentration-dependent inhibition on HUVECs' viability and growth was observed for TBMEHP but not for TBPH. TBMEHP induced a marked G0/G1 cell cycle arrest and robust cell apoptosis at 1μg/mL by inducing expression of p53, GADD45α and cyclin dependent kinase (CDK) inhibitors (p21and p27) while suppressing the expression of cyclin D1, CDK2, CDK6, and Bcl-2. Unlike TBMEHP, TBPH caused early apoptosis after G2/M phase arrest only at 10μg/mL via up-regulation of p21 and down-regulation of CDK2 and CDK4. TBMEHP decreased mitochondrial membrane potential and increased caspase-3 activity at 1μg/mL, suggesting that activation of p53 and mitochondrial pathway were involved in the cell apoptosis. The data showed that TBPH and TBMEHP induced different cell cycle arrest and apoptosis through different molecular mechanisms with much higher toxicity for TBMEHP. Our study implies that the metabolites of TBPH, possibly other novel brominated flame retardants, may be of potential concern for human cardiovascular disease.
Collapse
Affiliation(s)
- Ping Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Rong-Yan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Hong-Jie Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | - Yun-Wen Yang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science, Nanjing University, Nanjing 210046, People's Republic of China
| | - Xin-Yi Cui
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China.
| | - Lena Q Ma
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China; Soil and Water Science Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
45
|
Giraudo M, Douville M, Letcher RJ, Houde M. Effects of food-borne exposure of juvenile rainbow trout (Oncorhynchus mykiss) to emerging brominated flame retardants 1,2-bis(2,4,6-tribromophenoxy)ethane and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2017; 186:40-49. [PMID: 28249227 DOI: 10.1016/j.aquatox.2017.02.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/20/2017] [Accepted: 02/21/2017] [Indexed: 06/06/2023]
Abstract
Brominated flame retardants (BFRs) represent a large group of chemicals used in a variety of household and commercial products to prevent fire propagation. The environmental persistence and toxicity of some of the most widely used BFRs has resulted in a progressive ban worldwide and the development of novel BFRs for which the knowledge on environmental health impacts remains limited. The objectives of this study were to evaluate the effects of two emerging BFRs, 1,2-bis(2,4,6-tribromophenoxy)ethane (BTBPE) and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB), in diet exposed juvenile rainbow trout (Oncorhynchus mykiss). Both compounds were detected in fish carcasses at 76% and 2% of the daily dosage of BTBPE and EH-TBB, respectively, indicating accumulation of BTBPE and by contrast extensive depuration/metabolism of EH-TBB. Liver gene transcription analysis using RNA-sequencing indicated that the chronic 28-d dietary exposure of trout to EH-TBB down-regulated one single gene related to endocrine-mediated processes, whereas BTBPE impacted the transcription of 33 genes, including genes involved in the immune response, reproduction, and oxidative stress. Additional analysis using qRT-PCR after 48-h and 28-d of exposure confirmed the impact of BTBPE on immune related genes in the liver (apolipoprotein A-I, lysozyme) and the head-kidney (complement c3-4). However, the activity of lysozymes measured at the protein level did not reflect transcriptomic results. Overall, results suggested an impact on immune-related gene transcription in BTBPE exposed fish, as well as oxidative stress and endocrine disruption potentials.
Collapse
Affiliation(s)
- Maeva Giraudo
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC, H2Y 2E7 Canada.
| | - Mélanie Douville
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC, H2Y 2E7 Canada
| | - Robert J Letcher
- Environment and Climate Change Canada, Ecotoxicology and Wildlife Health Division, National Wildlife Research Centre, Bldg. 33, 1125 Colonel By Dr. (Raven Road), Carleton University, Ottawa, ON, K1A 0H3 Canada
| | - Magali Houde
- Environment and Climate Change Canada, Aquatic Contaminants Research Division, 105 McGill Street, Montreal, QC, H2Y 2E7 Canada
| |
Collapse
|
46
|
Wang Y, Wu X, Zhao H, Xie Q, Hou M, Zhang Q, Du J, Chen J. Characterization of PBDEs and novel brominated flame retardants in seawater near a coastal mariculture area of the Bohai Sea, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:1446-1452. [PMID: 28024741 DOI: 10.1016/j.scitotenv.2016.12.114] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 06/06/2023]
Abstract
The concentrations and distributions of PBDEs and novel brominated flame retardants (NBFRs) in dissolved phase of surface seawater near a coastal mariculture area of the Bohai Sea were investigated. The total concentrations of PBDE and NBFRs were in the range of 15.4-65.5 and 2.12-13.6ng/L, respectively. The highest concentration was discovered in the water near an anchorage ground, whereas concentrations in water samples from offshore cage-culture area were not elevated. Relatively high concentrations of BDE28, 99, and 100 were discovered in the medium range of distance from shore, where is the path of tidal or coastal current. This suggested that inputs from ships or through tidal current rather than mariculture activities may be the main sources of BFRs in this area. BDE209, BDE47, hexabromobenzene (HBB), and 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (TBB) were the most abundant BFR congeners. Relatively high proportions of these BFRs may originate from discharge of wastewater nearby or degradation from higher brominated PBDEs. No correlations were found between BFR concentrations and water dissolved organic carbon, suggesting that concentrations and distributions of BFRs in this area were source-dependent. The relatively high concentrations in this study emphasized the importance of monitoring and managing BFR contaminations in mariculture areas of China.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Xiaowei Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Minmin Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qiaonan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Juan Du
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
47
|
Haggard DE, Das SR, Tanguay RL. Comparative Toxicogenomic Responses to the Flame Retardant mITP in Developing Zebrafish. Chem Res Toxicol 2016; 30:508-515. [PMID: 27957850 DOI: 10.1021/acs.chemrestox.6b00423] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Monosubstituted isopropylated triaryl phosphate (mITP) is a major component of Firemaster 550, an additive flame retardant mixture commonly used in polyurethane foams. Developmental toxicity studies in zebrafish established mITP as the most toxic component of FM 550, which causes pericardial edema and heart looping failure. Mechanistic studies showed that mITP is an aryl hydrocarbon receptor (AhR) ligand; however, the cardiotoxic effects of mITP were independent of the AhR. We performed comparative whole genome transcriptomics in wild-type and ahr2hu3335 zebrafish, which lack functional ahr2, to identify transcriptional signatures causally involved in the mechanism of mITP-induced cardiotoxicity. Regardless of ahr2 status, mITP exposure resulted in decreased expression of transcripts related to the synthesis of all-trans-retinoic acid and a host of Hox genes. Clustered gene ontology enrichment analysis showed unique enrichment in biological processes related to xenobiotic metabolism and response to external stimuli in wild-type samples. Transcript enrichments overlapping both genotypes involved the retinoid metabolic process and sensory/visual perception biological processes. Examination of the gene-gene interaction network of the differentially expressed transcripts in both genetic backgrounds demonstrated a strong AhR interaction network specific to wild-type samples, with overlapping genes regulated by retinoic acid receptors (RARs). A transcriptome analysis of control ahr2-null zebrafish identified potential cross-talk among AhR, Nrf2, and Hif1α. Collectively, we confirmed that mITP is an AhR ligand and present evidence in support of our hypothesis that mITP's developmental cardiotoxic effects are mediated by inhibition at the RAR level.
Collapse
Affiliation(s)
- Derik E Haggard
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97333, United States
| | - Siba R Das
- Pacific Northwest Diabetes Research Institute , Seattle, Washington 98122, United States
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97333, United States
| |
Collapse
|
48
|
Tao F, Abdallah MAE, Harrad S. Emerging and Legacy Flame Retardants in UK Indoor Air and Dust: Evidence for Replacement of PBDEs by Emerging Flame Retardants? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:13052-13061. [PMID: 27782391 DOI: 10.1021/acs.est.6b02816] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Concentrations of 27 emerging (EFRs) and legacy flame retardants (LFRs) were measured in samples of indoor air (n = 35) and indoor dust (n = 77) from UK homes and offices. All target compounds were detected in indoor air and dust samples. Relatively volatile EFRs (e.g., tetrabromoethylcyclohexane-DBE-DBCH) were more frequently detected in indoor air (detection frequencies >60%), while less volatile EFRs (e.g., tetrabromobisphenolA-bis(2,3-dibromopropyl ether (TBBPA-BDBPE) and decabromodiphenyl ethane (DBDPE)) were predominant in dust. Concentrations of some EFRs (e.g., DBDPE) exceeded significantly those reported previously in UK dust (p < 0.05), while concentrations of BDE-209 in office dust were significantly lower (p < 0.05) than those reported previously in UK offices, consistent with the application of DBDPE as an alternative to the Deca-BDE formulation, of which BDE-209 is the principal constituent. Moreover, concentrations of BDEs-47 and -99 (both major constituents of the Penta-BDE product) in office air were significantly lower (p < 0.05) than those in previous UK studies. Our results constitute important early evidence that restrictions on PBDEs have increased demand for EFRs in the UK, with the result that human exposure to PBDEs in UK homes and offices has decreased while exposure to EFRs has risen.
Collapse
Affiliation(s)
- Fang Tao
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham , Birmingham, B15 2TT, United Kingdom
| | - Mohamed Abou-Elwafa Abdallah
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham , Birmingham, B15 2TT, United Kingdom
- Department of Analytical Chemistry Faculty of Pharmacy, Assiut University 71526 Assiut, Egypt
| | - Stuart Harrad
- Division of Environmental Health and Risk Management, School of Geography, Earth and Environmental Sciences, University of Birmingham , Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
49
|
Knudsen GA, Hughes MF, Sanders JM, Hall SM, Birnbaum LS. Estimation of human percutaneous bioavailability for two novel brominated flame retardants, 2-ethylhexyl 2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl) tetrabromophthalate (BEH-TEBP). Toxicol Appl Pharmacol 2016; 311:117-127. [PMID: 27732871 DOI: 10.1016/j.taap.2016.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 10/04/2016] [Accepted: 10/07/2016] [Indexed: 01/07/2023]
Abstract
2-Ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis(2-ethylhexyl)tetrabromophthalate (BEH-TEBP) are novel brominated flame retardants used in consumer products. A parallelogram approach was used to predict human dermal absorption and flux for EH-TBB and BEH-TEBP. [14C]-EH-TBB or [14C]-BEH-TEBP was applied to human or rat skin at 100nmol/cm2 using a flow-through system. Intact rats received analogous dermal doses. Treated skin was washed and tape-stripped to remove "unabsorbed" [14C]-radioactivity after continuous exposure (24h). "Absorbed" was quantified using dermally retained [14C]-radioactivity; "penetrated" was calculated based on [14C]-radioactivity in media (in vitro) or excreta+tissues (in vivo). Human skin absorbed EH-TBB (24±1%) while 0.2±0.1% penetrated skin. Rat skin absorbed more (51±10%) and was more permeable (2±0.5%) to EH-TBB in vitro; maximal EH-TBB flux was 11±7 and 102±24pmol-eq/cm2/h for human and rat skin, respectively. In vivo, 27±5% was absorbed and 13% reached systemic circulation after 24h (maximum flux was 464±65pmol-eq/cm2/h). BEH-TEBP in vitro penetrance was minimal (<0.01%) for rat or human skin. BEH-TEBP absorption was 12±11% for human skin and 41±3% for rat skin. In vivo, total absorption was 27±9%; 1.2% reached systemic circulation. In vitro maximal BEH-TEBP flux was 0.3±0.2 and 1±0.3pmol-eq/cm2/h for human and rat skin; in vivo maximum flux for rat skin was 16±7pmol-eq/cm2/h. EH-TBB was metabolized in rat and human skin to tetrabromobenzoic acid. BEH-TEBP-derived [14C]-radioactivity in the perfusion media could not be characterized. <1% of the dose of EH-TBB and BEH-TEHP is estimated to reach the systemic circulation following human dermal exposure under the conditions tested. CHEMICAL COMPOUNDS STUDIED IN THIS ARTICLE 2-Ethylhexyl 2,3,4,5-tetrabromobenzoate (PubChem CID: 71316600; CAS No. 183658-27-7 FW: 549.92g/mol logPest: 7.73-8.75 (12)) Abdallah et al., 2015a. Other published abbreviations for 2-ethylhexyl-2,3,4,5-tetrabromobenzoate are TBB EHTeBB or EHTBB Abdallah and Harrad, 2011. bis(2-ethylhexyl) tetrabromophthalate (PubChem CID: 117291; CAS No. 26040-51-7 FW: 706.14g/mol logPest: 9.48-11.95 (12)). Other published abbreviations for bis(2-ethylhexyl)tetrabromophthalate are TeBrDEPH TBPH or BEHTBP.
Collapse
Affiliation(s)
- Gabriel A Knudsen
- NCI Laboratory of Toxicology and Toxicokinetics, 111 T W Alexander Dr., Research Triangle Park, NC, USA.
| | - Michael F Hughes
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - J Michael Sanders
- NCI Laboratory of Toxicology and Toxicokinetics, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| | - Samantha M Hall
- NCI Laboratory of Toxicology and Toxicokinetics, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| | - Linda S Birnbaum
- NCI Laboratory of Toxicology and Toxicokinetics, 111 T W Alexander Dr., Research Triangle Park, NC, USA
| |
Collapse
|
50
|
Phillips AL, Chen A, Rock KD, Horman B, Patisaul HB, Stapleton HM. Editor's Highlight: Transplacental and Lactational Transfer of Firemaster® 550 Components in Dosed Wistar Rats. Toxicol Sci 2016; 153:246-57. [PMID: 27370412 DOI: 10.1093/toxsci/kfw122] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Firemaster® 550 (FM 550) is a commercial mixture of organophosphate and brominated flame retardants currently in use as a replacement for pentaBDE. Its organophosphate components include triphenyl phosphate (TPHP) and a suite of isopropylated triarylphosphate isomers (ITPs); its brominated components include 2-ethylhexyl-2,3,4,5-tetrabromobenzoate (EH-TBB) and bis (2-ethylhexyl)-2,3,4,5-tetrabromophthalate (BEH-TEBP). Taken together, these chemicals have been shown to be endocrine disrupting and potentially toxic, and human exposure to them is widespread. In this study, maternal transfer of FM 550 components, and in some cases their metabolites, was investigated in dosed Wistar rats. Gestational and lactational transfer were examined separately, with dams orally exposed to 300 or 1000 µg of FM 550 for 10 consecutive days during gestation (gestational day [GD] 9-18) or lactation (postnatal day [PND] 3-12). Levels of parent compounds were measured in fetus and whole pup tissue homogenates, and in dam and pup serum, and several metabolites were measured in dam and pup urine. EH-TBB body burdens resulting from lactational transfer were approximately 200- to 300-fold higher than those resulting from placental transfer, whereas low levels of BEH-TEBP were transferred during both lactation and gestation. TPHP and ITPs were rapidly metabolized by the dams and were not detected in whole tissue homogenates. However, diphenyl phosphate (DPHP) and mono-isopropylphenyl phenyl phosphate (ip-PPP) were detected in urine from the dosed animals. This study is the first to confirm ip-PPP as a urinary metabolite of ITPs and establish a pharmacokinetic profile of FM 550 in a mammalian model. KEY WORDS Firemaster 550 ;: lactational transfer ;: gestational transfer; metabolites; rodent.
Collapse
Affiliation(s)
- Allison L Phillips
- *Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, North Carolina 27710
| | - Albert Chen
- *Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, North Carolina 27710
| | - Kylie D Rock
- Department of Biology, North Carolina State University, Raleigh, North Carolina, 27695
| | - Brian Horman
- Department of Biology, North Carolina State University, Raleigh, North Carolina, 27695
| | - Heather B Patisaul
- Department of Biology, North Carolina State University, Raleigh, North Carolina, 27695
| | - Heather M Stapleton
- *Nicholas School of the Environment, Levine Science Research Center, Duke University, Durham, North Carolina 27710;
| |
Collapse
|