1
|
Aspray EK, Mies TA, McGrath JA, Montes CM, Dalsing B, Puthuval KK, Whetten A, Herriott J, Li S, Bernacchi CJ, DeLucia EH, Leakey ADB, Long SP, McGrath JM, Miglietta F, Ort DR, Ainsworth EA. Two decades of fumigation data from the Soybean Free Air Concentration Enrichment facility. Sci Data 2023; 10:226. [PMID: 37081032 PMCID: PMC10119297 DOI: 10.1038/s41597-023-02118-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
The Soybean Free Air Concentration Enrichment (SoyFACE) facility is the longest running open-air carbon dioxide and ozone enrichment facility in the world. For over two decades, soybean, maize, and other crops have been exposed to the elevated carbon dioxide and ozone concentrations anticipated for late this century. The facility, located in East Central Illinois, USA, exposes crops to different atmospheric concentrations in replicated octagonal ~280 m2 Free Air Concentration Enrichment (FACE) treatment plots. Each FACE plot is paired with an untreated control (ambient) plot. The experiment provides important ground truth data for predicting future crop productivity. Fumigation data from SoyFACE were collected every four seconds throughout each growing season for over two decades. Here, we organize, quality control, and collate 20 years of data to facilitate trend analysis and crop modeling efforts. This paper provides the rationale for and a description of the SoyFACE experiments, along with a summary of the fumigation data and collation process, weather and ambient data collection procedures, and explanations of air pollution metrics and calculations.
Collapse
Affiliation(s)
- Elise Kole Aspray
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Timothy A Mies
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Jesse A McGrath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Christopher M Montes
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Bradley Dalsing
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Kannan K Puthuval
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Andrew Whetten
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, 2200 E Kenwood Blvd, Milwaukee, WI, 53211, USA
| | - Jelena Herriott
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Department of Agriculture and Applied Sciences, Langston University, 701 Sammy Davis Jr. Drive, Langston, OK, 73050, USA
| | - Shuai Li
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Carl J Bernacchi
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Evan H DeLucia
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Andrew D B Leakey
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Stephen P Long
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Justin M McGrath
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Franco Miglietta
- National Research Council of Italy, Institute for Bioeconomy (CNR IBE), Florence, Italy
| | - Donald R Ort
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA.
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA.
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA.
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
2
|
Seppelt R, Klotz S, Peiter E, Volk M. Agriculture and food security under a changing climate: An underestimated challenge. iScience 2022; 25:105551. [PMID: 36458255 PMCID: PMC9706706 DOI: 10.1016/j.isci.2022.105551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Pathways to eradicate global hunger while bending the curve of biodiversity loss unanimously suggest changing to less energy-rich diets, closing yield gaps through agroecological principles, adopting modern breeding technologies to foster stress resilience and yields, as well as minimizing harvest losses and food waste. Against the background of a brief history of global agriculture, we review the available evidence on how the global food system might look given a global temperature increase by 3°. We show that a moderate gain in the area suitable for agriculture is confronted with substantial yield losses through strains on crop physiology, multitrophic interactions, and more frequent extreme events. Self-amplifying feedback are unresolved and might lead to further losses. In light of these uncertainties, we see that complexity is underestimated and more systemic research is needed. Efficiency gains in agriculture, albeit indispensable, will not be enough to achieve food security under severe climate change.
Collapse
Affiliation(s)
- Ralf Seppelt
- Helmholtz Centre for Environmental Research (UFZ), Department Computational Landscape Ecology, Leipzig, Germany
- Martin Luther University Halle-Wittenberg, Institute for Geosciences and Geography, Halle (Saale), Germany
- iDiv – German Centre for Integrative Biodiversity Research, Leipzig, Germany
| | - Stefan Klotz
- iDiv – German Centre for Integrative Biodiversity Research, Leipzig, Germany
- Helmholtz Centre for Environmental Research, Department Community Ecology, Halle (Saale), Germany
| | - Edgar Peiter
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle (Saale), Germany
| | - Martin Volk
- Helmholtz Centre for Environmental Research (UFZ), Department Computational Landscape Ecology, Leipzig, Germany
- Martin Luther University Halle-Wittenberg, Institute for Geosciences and Geography, Halle (Saale), Germany
| |
Collapse
|
3
|
Laffitte B, Seyler BC, Wang W, Li P, Du J, Tang Y. Declining tree growth rates despite increasing water-use efficiency under elevated CO 2 reveals a possible global overestimation of CO 2 fertilization effect. Heliyon 2022; 8:e11219. [PMID: 36339991 PMCID: PMC9626951 DOI: 10.1016/j.heliyon.2022.e11219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Though rising atmospheric CO2 concentrations (Ca) harm the environment and society, they may also raise photosynthetic rates and enhance intrinsic water-use efficiency (iWUE). Numerous short-term studies have investigated tree growth under elevated CO2 (eCO2) conditions, but no long-duration study has investigated eCO2 impacts on tree growth and iWUE under natural conditions. Utilizing a new dendrochronological experimental design in a heavily-touristed nature preserve in Southwest China (Jiuzhaigou National Nature Reserve), we compared tree growth (e.g., basal area increment) and iWUE in two biophysically and environmentally similar valleys with contrasting anthropogenic activities. Trees in the control valley with ambient CO2 benefited from increasing Ca, possibly due to the CO2 fertilization effect and optimal environmental conditions. However, trees in the treatment valley with intensive tourism experienced comparatively higher localized eCO2 and growth rate declines. While iWUE increased (1959–2017) in the control (25.3%) and treatment sites (47.8%), declining tree growth rates in the treatment site was likely because comparatively extreme CO2 exposure levels encouraged stomatal closures. As the first long-term study investigating eCO2 impacts on tree growth and iWUE under natural conditions, we demonstrate that increased forest iWUE is unlikely to overcome negative drought stress and rising temperature impacts. Thus, forest potential for mitigating eCO2 and global climate change is likely overestimated, particularly under dry temperate conditions.
Collapse
Affiliation(s)
- Benjamin Laffitte
- Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China
| | - Barnabas C. Seyler
- Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China
| | - Wenzhi Wang
- The Key Laboratory of Mountain Environment Evolution and Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Pengbo Li
- Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China
| | - Jie Du
- Jiuzhaigou Administrative Bureau, Zhangzha, Jiuzhaigou, Sichuan 623402, China
| | - Ya Tang
- Department of Environment, College of Architecture and Environment, Sichuan University, No. 24, South Section One, First Ring Road, Chengdu, Sichuan 610065, China,Corresponding author.
| |
Collapse
|
4
|
Liu C, Wu Z, Hu Z, Yin N, Islam ARMT, Wei Z. Characteristics and influencing factors of carbon fluxes in winter wheat fields under elevated CO 2 concentration. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119480. [PMID: 35588957 DOI: 10.1016/j.envpol.2022.119480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/03/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Elevated carbon dioxide (ECO2) concentration has profound impacts on ecosystem carbon fluxes, with consequent changes in carbon sequestration and its feedback to climate change. Agroecosystem plays an essential role in global carbon sequestration. However, it is not well understood how the carbon fluxes of agroecosystem respond to increasing atmospheric CO2 concentrations. In this study, an in-situ 2-year field experiment was conducted using open-top chamber with treatments including ambient CO2 concentration (CK) and ambient plus 200 μmol mol-1 (T) to investigate the characteristics and main factors influencing carbon fluxes during the 2017-2019 winter wheat growing seasons. Results showed that the dynamics of CO2 fluxes under different treatments had similar seasonal trends, with the peak flux observed at the heading-filling stage. Compared to the CK, T treatment increased the cumulative amount of CO2 (CAC) by 17.2% and 24.0% in 2017-2018 and 2018-2019 growing seasons, respectively. In addition, the seasonal CAC was highly dependent on treatment and varied with year, while there was no interactive effect of treatment and year (p > 0.05). ECO2 concentration increased the biomass of wheat by an average of 8.28% over two growing seasons. There was a significant positive correlation between biomass and CAC, with biomass elucidating 52% and 76% of the variations in CAC under CK and T treatments, respectively. A good correlation was found between net ecosystem exchange (NEE) and environmental variables under different treatments. During the pre-milk ripening period, the NEE mainly depended on photosynthetically active radiation (PAR) and air temperature (Ta), while NEE was mainly controlled by PAR and soil water content (SWC) during the post-milk ripening period. Overall, the findings presented here demonstrate that the carbon exchange in wheat fields under different treatments serves as carbon sequestration, while ECO2 concentration enhances the capacity of winter wheat fields to act as carbon sinks, which may have feedback to the climate system in the future.
Collapse
Affiliation(s)
- Chao Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Zhurong Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Zhenghua Hu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Nan Yin
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - A R M Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur, 5400, Bangladesh
| | - Zhaowei Wei
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| |
Collapse
|
5
|
Feitosa-Araujo E, da Fonseca-Pereira P, Pena MM, Lana-Costa J, Coelho DG, de Oliveira Silva FM, Medeiros DB, Linka N, Araújo WL, Weber APM, Fernie AR, Nunes-Nesi A. Mitochondrial and peroxisomal NAD + uptake are important for improved photosynthesis and seed yield under elevated CO 2 concentrations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:713-730. [PMID: 35644998 DOI: 10.1111/tpj.15846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
As sessile organisms, plants must adapt their physiology and developmental processes to cope with challenging environmental circumstances, such as the ongoing elevation in atmospheric carbon dioxide (CO2 ) levels. Nicotinamide adenine dinucleotide (NAD+ ) is a cornerstone of plant metabolism and plays an essential role in redox homeostasis. Given that plants impaired in NAD metabolism and transport often display growth defects, low seed production and disturbed stomatal development/movement, we hypothesized that subcellular NAD distribution could be a candidate for plants to exploit the effects of CO2 fertilization. We report that an efficient subcellular NAD+ distribution is required for the fecundity-promoting effects of elevated CO2 levels. Plants with reduced expression of either mitochondrial (NDT1 or NDT2) or peroxisomal (PXN) NAD+ transporter genes grown under elevated CO2 exhibited reduced total leaf area compared with the wild-type while PXN mutants also displayed reduced leaf number. NDT2 and PXN lines grown under elevated CO2 conditions displayed reduced rosette dry weight and lower photosynthetic rates coupled with reduced stomatal conductance. Interestingly, high CO2 doubled seed production and seed weight in the wild-type, whereas the mutants were less responsive to increases in CO2 levels during reproduction, producing far fewer seeds than the wild-type under both CO2 conditions. These data highlight the importance of mitochondrial and peroxisomal NAD+ uptake mediated by distinct NAD transporter proteins to modulate photosynthesis and seed production under high CO2 levels.
Collapse
Affiliation(s)
- Elias Feitosa-Araujo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Mateus Miranda Pena
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Jaciara Lana-Costa
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Daniel Gomes Coelho
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | | | - David Barbosa Medeiros
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam Golm, Germany
| | - Nicole Linka
- Institute for Plant Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Heinrich Heine University, Düsseldorf, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam Golm, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
6
|
Wang W, Loladze I, Wang J, Han Y, Gu J, Zhang H, Liu L, Wang J, Xu Y, Zhang W, Wang Z, Yang J. Improving the accuracy of meta-analysis for datasets with missing measures of variance: Elevated [CO 2] effect on plant growth as a case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150669. [PMID: 34597563 DOI: 10.1016/j.scitotenv.2021.150669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
Ongoing increases in atmospheric carbon dioxide (CO2) are expected to stimulate biomass and yield of plants possessing the C3 photosynthetic pathway; however, the extent of stimulation is likely to vary both intra- and inter-species specifically. Meta-analytic approaches can be applied to decrease variation and uncertainty by delineating and characterizing variation, allowing results to be used in modeling plant responses to elevated [CO2]. However, the use of meta-analysis in this effort could be limited by missing measures of variance, including standard deviations (SDs) of the compiled dataset. Here, we examined whether there were differences in effect sizes of elevated [CO2] on plant growth using various weighting and imputation approaches. Our results showed that the efficacy of different weighting functions and data interpolation methods on meta-analysis outcomes depended on the SDs provided by the studies. Comparing different methodologies for [CO2] fumigation as a case study, if the ratio of missing SD was low, the overall trend of effect values and 95% confidence interval (CI) were not changed. For datasets of greenhouse and growth chamber [CO2] methodologies, which had a high ratio of missing SDs, effect sizes and 95% confidence intervals using different weighing and imputation methods were influenced relative to that of the raw dataset, with reduced effect sizes and broader CI. Overall these results suggest that application of meta-analysis to discern general biological responses could be influenced by the number of missing SDs. As such, efforts should be made to check the proportion of missing SDs of the compiled dataset and if necessary, to apply various weighting functions and imputation methods to fully discern meta-analysis implications. Our findings could improve the assessment of methodological choices for future [CO2] experimentation and discerning long-term trends for agricultural productivity and food security.
Collapse
Affiliation(s)
- Weilu Wang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Irakli Loladze
- Bryan College of Health Sciences, Bryan Medical Center, Lincoln, NE 68506, USA; School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ 85281, USA.
| | - Juan Wang
- School of Economics and Management, Nanchang Hangkong University, Nanchang 330063, China
| | - Yunxia Han
- School of Business, Yangzhou University, Yangzhou 225009, China
| | - Junfei Gu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Hao Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Lijun Liu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Jinyang Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yunji Xu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Weiyang Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Zhiqin Wang
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| | - Jianchang Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Crop Genetics and Physiology, Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
7
|
Shook J, Gangopadhyay T, Wu L, Ganapathysubramanian B, Sarkar S, Singh AK. Crop yield prediction integrating genotype and weather variables using deep learning. PLoS One 2021; 16:e0252402. [PMID: 34138872 PMCID: PMC8211294 DOI: 10.1371/journal.pone.0252402] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/16/2021] [Indexed: 11/19/2022] Open
Abstract
Accurate prediction of crop yield supported by scientific and domain-relevant insights, is useful to improve agricultural breeding, provide monitoring across diverse climatic conditions and thereby protect against climatic challenges to crop production. We used performance records from Uniform Soybean Tests (UST) in North America to build a Long Short Term Memory (LSTM)-Recurrent Neural Network based model that leveraged pedigree relatedness measures along with weekly weather parameters to dissect and predict genotype response in multiple-environments. Our proposed models outperformed other competing machine learning models such as Support Vector Regression with Radial Basis Function kernel (SVR-RBF), least absolute shrinkage and selection operator (LASSO) regression and the data-driven USDA model for yield prediction. Additionally, for providing interpretability of the important time-windows in the growing season, we developed a temporal attention mechanism for LSTM models. The outputs of such interpretable models could provide valuable insights to plant breeders.
Collapse
Affiliation(s)
- Johnathon Shook
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Tryambak Gangopadhyay
- Department of Mechanical Engineering, Iowa State University, Ames, IA, United States of America
| | - Linjiang Wu
- Department of Mechanical Engineering, Iowa State University, Ames, IA, United States of America
| | | | - Soumik Sarkar
- Department of Mechanical Engineering, Iowa State University, Ames, IA, United States of America
| | - Asheesh K. Singh
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| |
Collapse
|
8
|
Fan Y, Tjiputra J, Muri H, Lombardozzi D, Park CE, Wu S, Keith D. Solar geoengineering can alleviate climate change pressures on crop yields. NATURE FOOD 2021; 2:373-381. [PMID: 37117731 DOI: 10.1038/s43016-021-00278-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 04/16/2021] [Indexed: 04/30/2023]
Abstract
Solar geoengineering (SG) and CO2 emissions reduction can each alleviate anthropogenic climate change, but their impacts on food security are not yet fully understood. Using an advanced crop model within an Earth system model, we analysed the yield responses of six major crops to three SG technologies (SGs) and emissions reduction when they provide roughly the same reduction in radiative forcing and assume the same land use. We found sharply distinct yield responses to changes in radiation, moisture and CO2, but comparable significant cooling benefits for crop yields by all four methods. Overall, global yields increase ~10% under the three SGs and decrease 5% under emissions reduction, the latter primarily due to reduced CO2 fertilization, relative to business as usual by the late twenty-first century. Relative humidity dominates the hydrological effect on yields of rainfed crops, with little contribution from precipitation. The net insolation effect is negligible across all SGs, contrary to previous findings.
Collapse
Affiliation(s)
- Yuanchao Fan
- NORCE Norwegian Research Centre and Bjerknes Centre for Climate Research, Bergen, Norway.
- Center for the Environment, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, USA.
| | - Jerry Tjiputra
- NORCE Norwegian Research Centre and Bjerknes Centre for Climate Research, Bergen, Norway
| | - Helene Muri
- Industrial Ecology Programme, Department of Energy and Process Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Danica Lombardozzi
- Climate and Global Dynamics Laboratory, National Center for Atmospheric Research, Boulder, CO, USA
| | - Chang-Eui Park
- Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, Seoul, Republic of Korea
| | - Shengjun Wu
- Three Gorges Research Center for Ecology and Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - David Keith
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
- John F. Kennedy School of Government, Harvard University, Cambridge, MA, USA
| |
Collapse
|
9
|
Ruiz-Vera UM, De Souza AP, Ament MR, Gleadow RM, Ort DR. High sink strength prevents photosynthetic down-regulation in cassava grown at elevated CO2 concentration. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:542-560. [PMID: 33045084 PMCID: PMC7853607 DOI: 10.1093/jxb/eraa459] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Accepted: 10/06/2020] [Indexed: 05/20/2023]
Abstract
Cassava has the potential to alleviate food insecurity in many tropical regions, yet few breeding efforts to increase yield have been made. Improved photosynthetic efficiency in cassava has the potential to increase yields, but cassava roots must have sufficient sink strength to prevent carbohydrates from accumulating in leaf tissue and suppressing photosynthesis. Here, we grew eight farmer-preferred African cassava cultivars under free-air CO2 enrichment (FACE) to evaluate the sink strength of cassava roots when photosynthesis increases due to elevated CO2 concentrations ([CO2]). Relative to the ambient treatments, elevated [CO2] treatments increased fresh (+27%) and dry (+37%) root biomass, which was driven by an increase in photosynthesis (+31%) and the absence of photosynthetic down-regulation over the growing season. Moreover, intrinsic water use efficiency improved under elevated [CO2] conditions, while leaf protein content and leaf and root cyanide concentrations were not affected. Overall, these results suggest that higher cassava yields can be expected as atmospheric [CO2] increases over the coming decades. However, there were cultivar differences in the partitioning of resources to roots versus above-grown biomass; thus, the particular responses of each cultivar must be considered when selecting candidates for improvement.
Collapse
Affiliation(s)
- Ursula M Ruiz-Vera
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amanda P De Souza
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Michael R Ament
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Roslyn M Gleadow
- School of Biological Sciences, Monash University, Clayton, Victoria, Australia
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Departments of Plant Biology and Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
10
|
Ainsworth EA, Long SP. 30 years of free-air carbon dioxide enrichment (FACE): What have we learned about future crop productivity and its potential for adaptation? GLOBAL CHANGE BIOLOGY 2021; 27:27-49. [PMID: 33135850 DOI: 10.1111/gcb.15375] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/17/2020] [Accepted: 09/22/2020] [Indexed: 05/03/2023]
Abstract
Free-air CO2 enrichment (FACE) allows open-air elevation of [CO2 ] without altering the microclimate. Its scale uniquely supports simultaneous study from physiology and yield to soil processes and disease. In 2005 we summarized results of then 28 published observations by meta-analysis. Subsequent studies have combined FACE with temperature, drought, ozone, and nitrogen treatments. Here, we summarize the results of now almost 250 observations, spanning 14 sites and five continents. Across 186 independent studies of 18 C3 crops, elevation of [CO2 ] by ca. 200 ppm caused a ca. 18% increase in yield under non-stress conditions. Legumes and root crops showed a greater increase and cereals less. Nitrogen deficiency reduced the average increase to 10%, as did warming by ca. 2°C. Two conclusions of the 2005 analysis were that C4 crops would not be more productive in elevated [CO2 ], except under drought, and that yield responses of C3 crops were diminished by nitrogen deficiency and wet conditions. Both stand the test of time. Further studies of maize and sorghum showed no yield increase, except in drought, while soybean productivity was negatively affected by early growing season wet conditions. Subsequent study showed reduced levels of nutrients, notably Zn and Fe in most crops, and lower nitrogen and protein in the seeds of non-leguminous crops. Testing across crop germplasm revealed sufficient variation to maintain nutrient content under rising [CO2 ]. A strong correlation of yield response under elevated [CO2 ] to genetic yield potential in both rice and soybean was observed. Rice cultivars with the highest yield potential showed a 35% yield increase in elevated [CO2 ] compared to an average of 14%. Future FACE experiments have the potential to develop cultivars and management strategies for co-promoting sustainability and productivity under future elevated [CO2 ].
Collapse
Affiliation(s)
- Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Stephen P Long
- Departments of Plant Biology and of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
11
|
Singer SD, Chatterton S, Soolanayakanahally RY, Subedi U, Chen G, Acharya SN. Potential effects of a high CO 2 future on leguminous species. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2020; 1:67-94. [PMID: 37283729 PMCID: PMC10168062 DOI: 10.1002/pei3.10009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/07/2020] [Accepted: 01/13/2020] [Indexed: 06/08/2023]
Abstract
Legumes provide an important source of food and feed due to their high protein levels and many health benefits, and also impart environmental and agronomic advantages as a consequence of their ability to fix nitrogen through their symbiotic relationship with rhizobia. As a result of our growing population, the demand for products derived from legumes will likely expand considerably in coming years. Since there is little scope for increasing production area, improving the productivity of such crops in the face of climate change will be essential. While a growing number of studies have assessed the effects of climate change on legume yield, there is a paucity of information regarding the direct impact of elevated CO2 concentration (e[CO2]) itself, which is a main driver of climate change and has a substantial physiological effect on plants. In this review, we discuss current knowledge regarding the influence of e[CO2] on the photosynthetic process, as well as biomass production, seed yield, quality, and stress tolerance in legumes, and examine how these responses differ from those observed in non-nodulating plants. Although these relationships are proving to be extremely complex, mounting evidence suggests that under limiting conditions, overall declines in many of these parameters could ensue. While further research will be required to unravel precise mechanisms underlying e[CO2] responses of legumes, it is clear that integrating such knowledge into legume breeding programs will be indispensable for achieving yield gains by harnessing the potential positive effects, and minimizing the detrimental impacts, of CO2 in the future.
Collapse
Affiliation(s)
- Stacy D. Singer
- Agriculture and Agri‐Food CanadaLethbridge Research and Development CentreLethbridgeABCanada
| | - Syama Chatterton
- Agriculture and Agri‐Food CanadaLethbridge Research and Development CentreLethbridgeABCanada
| | | | - Udaya Subedi
- Agriculture and Agri‐Food CanadaLethbridge Research and Development CentreLethbridgeABCanada
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonABCanada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional ScienceUniversity of AlbertaEdmontonABCanada
| | - Surya N. Acharya
- Agriculture and Agri‐Food CanadaLethbridge Research and Development CentreLethbridgeABCanada
| |
Collapse
|
12
|
Impact of increasing atmospheric CO2 concentration on growth characteristics and yield in maize and rice. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2020. [DOI: 10.15586/qas.v12i2.628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
13
|
Gray SB, Rodriguez‐Medina J, Rusoff S, Toal TW, Kajala K, Runcie DE, Brady SM. Translational regulation contributes to the elevated CO 2 response in two Solanum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:383-397. [PMID: 31797460 PMCID: PMC7216843 DOI: 10.1111/tpj.14632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 11/17/2019] [Accepted: 11/20/2019] [Indexed: 05/12/2023]
Abstract
Understanding the impact of elevated CO2 (eCO2 ) in global agriculture is important given climate change projections. Breeding climate-resilient crops depends on genetic variation within naturally varying populations. The effect of genetic variation in response to eCO2 is poorly understood, especially in crop species. We describe the different ways in which Solanum lycopersicum and its wild relative S. pennellii respond to eCO2 , from cell anatomy, to the transcriptome, and metabolome. We further validate the importance of translational regulation as a potential mechanism for plants to adaptively respond to rising levels of atmospheric CO2 .
Collapse
Affiliation(s)
- Sharon B. Gray
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Joel Rodriguez‐Medina
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Samuel Rusoff
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Ted W. Toal
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| | - Kaisa Kajala
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
- Present address:
Plant EcophysiologyUtrecht UniversityPadualaan 83584 CHUtrechtthe Netherlands
| | - Daniel E. Runcie
- Department of Plant SciencesUniversity of California, DavisOne Shields AvenueDavisCA95616USA
| | - Siobhan M. Brady
- Department of Plant Biology and Genome CenterUniversity of California, Davis451 Health Sciences DriveDavisCA95616USA
| |
Collapse
|
14
|
Ainsworth EA, Lemonnier P, Wedow JM. The influence of rising tropospheric carbon dioxide and ozone on plant productivity. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:5-11. [PMID: 30734441 PMCID: PMC6916594 DOI: 10.1111/plb.12973] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
Human activities result in a wide array of pollutants being released to the atmosphere. A number of these pollutants have direct effects on plants, including carbon dioxide (CO2 ), which is the substrate for photosynthesis, and ozone (O3 ), a damaging oxidant. How plants respond to changes in these atmospheric air pollutants, both directly and indirectly, feeds back on atmospheric composition and climate, global net primary productivity and ecosystem service provisioning. Here we discuss the past, current and future trends in emissions of CO2 and O3 and synthesise the current atmospheric CO2 and O3 budgets, describing the important role of vegetation in determining the atmospheric burden of those pollutants. While increased atmospheric CO2 concentration over the past 150 years has been accompanied by greater CO2 assimilation and storage in terrestrial ecosystems, there is evidence that rising temperatures and increased drought stress may limit the ability of future terrestrial ecosystems to buffer against atmospheric emissions. Long-term Free Air CO2 or O3 Enrichment (FACE) experiments provide critical experimentation about the effects of future CO2 and O3 on ecosystems, and highlight the important interactive effects of temperature, nutrients and water supply in determining ecosystem responses to air pollution. Long-term experimentation in both natural and cropping systems is needed to provide critical empirical data for modelling the effects of air pollutants on plant productivity in the decades to come.
Collapse
Affiliation(s)
- E. A. Ainsworth
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS) Global Change and Photosynthesis Research UnitUrbanaILUSA
- Department of Plant Biology and Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - P. Lemonnier
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS) Global Change and Photosynthesis Research UnitUrbanaILUSA
- Department of Plant Biology and Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - J. M. Wedow
- Department of Plant Biology and Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
15
|
Hebbar KB, Apshara E, Chandran KP, Prasad PVV. Effect of elevated CO 2, high temperature, and water deficit on growth, photosynthesis, and whole plant water use efficiency of cocoa (Theobroma cacao L.). INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2020; 64:47-57. [PMID: 31468175 DOI: 10.1007/s00484-019-01792-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 08/21/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
In this study, the response of 6-month-old cocoa (Theobroma cacao L.) seedlings to elevated CO2 concentration [ECO2], elevated temperature [ET], and their interaction with water deficit stress was studied in an open top chamber (OTC). Each OTC was maintained at chamber control (400 ppm CO2), [ECO2] 550 ppm, [ECO2] 700 ppm, ET 3 °C above chamber control, and ET 3 °C + [ECO2] 550 ppm. Inside each OTC, a set of plants received moisture at 100% FC, while the other set was at 50% FC, which was the water deficit stress treatment. Increasing the CO2 concentration in cocoa increased photosynthesis (Pn) by 27%, which resulted in high biomass accumulation, thus improving the whole plant water use efficiency (WUE). The impact of high temperature (Tmax), around 39 °C in ET treatment against 36 °C in chamber control, is quite severe on Pn, leaf Ψ, and biomass accumulation. Similarly, water deficit at 50% FC resulted in the leaf Ψ reducing to - 14.06 bars at which Pn, leaf area, and biomass were significantly reduced. [ECO2] could ameliorate the negative effect of high temperature and water deficit stress to certain extent. However, the relative response of cocoa seedlings to [ECO2] in improving Pn, leaf Ψ, biomass, and WUE was greater under 50% FC compared to plants at 100% FC suggested additional advantage of [ECO2] to cocoa under water limited conditions.
Collapse
Affiliation(s)
- K B Hebbar
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671 124, India.
| | - Elain Apshara
- ICAR-Central Plantation Crop Research Institute, Regional Station, Vittal, 574 243, India
| | - K P Chandran
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671 124, India
| | - P V Vara Prasad
- Department of Agronomy, Throckmorton Plant Science Center, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
16
|
Warming and elevated CO 2 alter the transcriptomic response of maize (Zea mays L.) at the silking stage. Sci Rep 2019; 9:17948. [PMID: 31784668 PMCID: PMC6884611 DOI: 10.1038/s41598-019-54325-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 11/04/2019] [Indexed: 11/21/2022] Open
Abstract
Exploring the transcriptome of crops in response to warming and elevated CO2 (eCO2) is important to gaining insights of botanical adaption and feedback to climate change. This study deployed Illumina sequencing technology to characterize transcriptomic profile of maize plants at the silking stage, which were grown under warming (2 °C higher than ambient temperature) and eCO2 (550 ppm) conditions. The treatment of ambient temperature and ambient CO2 concentration was considered as control (CK). Warming, eCO2 and warming plus eCO2 resulted in 2732, 1966 and 271 genes expressing differently (DEGs) compared to the CK, respectively. Among the DEGs, 48, 47 and 36 gene ontology (GO) terms were enriched in response to warming, eCO2 and warming plus eCO2 compared to the CK, respectively. The majority of genes were assigned to the biological process category and the cellular component category. Elevated CO2 significantly inhibited gene expressions in terms of photosynthesis and carbohydrate biosynthesis pathways. Warming not only negatively affected expressions of these genes, but also secondary pathways of nitrogen (N) metabolism, including key enzymes of GST30, GST7, GST26, GST15, GLUL and glnA. These results indicated the negative biochemical regulation and physiological functions in maize in response to warming and eCO2, highlighting the necessity to improve the genetic adaptability of plant to future climate change.
Collapse
|
17
|
Effects of Elevated CO2 on Wheat Yield: Non-Linear Response and Relation to Site Productivity. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9050243] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elevated carbon dioxide (eCO2) is well known to stimulate plant photosynthesis and growth. Elevated carbon dioxide’s effects on crop yields are of particular interest due to concerns for future food security. We compiled experimental data where field-grown wheat (Triticum aestivum Linnaeus) was exposed to different CO2 concentrations. Yield and yield components were analyzed by meta-analysis to estimate average effects, and response functions derived to assess effect size in relation to CO2 concentration. Grain yield increased by 26% under eCO2 (average ambient concentration of 372 ppm and elevated 605 ppm), mainly due to the increase in grain number. The response function for grain yield with CO2 concentration strongly suggests a non-linear response, where yield stimulation levels off at ~600 ppm. This was supported by the meta-analysis, which did not indicate any significant difference in yield stimulation in wheat grown at 456–600 ppm compared to 601–750 ppm. Yield response to eCO2 was independent of fumigation technique and rooting environment, but clearly related to site productivity, where relative CO2 yield stimulation was stronger in low productive systems. The non-linear yield response, saturating at a relatively modest elevation of CO2, was of large importance for crop modelling and assessments of future food production under rising CO2.
Collapse
|
18
|
Leakey ADB, Ferguson JN, Pignon CP, Wu A, Jin Z, Hammer GL, Lobell DB. Water Use Efficiency as a Constraint and Target for Improving the Resilience and Productivity of C 3 and C 4 Crops. ANNUAL REVIEW OF PLANT BIOLOGY 2019; 70:781-808. [PMID: 31035829 DOI: 10.1146/annurev-arplant-042817-040305] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The ratio of plant carbon gain to water use, known as water use efficiency (WUE), has long been recognized as a key constraint on crop production and an important target for crop improvement. WUE is a physiologically and genetically complex trait that can be defined at a range of scales. Many component traits directly influence WUE, including photosynthesis, stomatal and mesophyll conductances, and canopy structure. Interactions of carbon and water relations with diverse aspects of the environment and crop development also modulate WUE. As a consequence, enhancing WUE by breeding or biotechnology has proven challenging but not impossible. This review aims to synthesize new knowledge of WUE arising from advances in phenotyping, modeling, physiology, genetics, and molecular biology in the context of classical theoretical principles. In addition, we discuss how rising atmospheric CO2 concentration has created and will continue to create opportunities for enhancing WUE by modifying the trade-off between photosynthesis and transpiration.
Collapse
Affiliation(s)
- Andrew D B Leakey
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - John N Ferguson
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Charles P Pignon
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| | - Alex Wu
- Centre for Crop Science and Centre of Excellence for Translational Photosynthesis, University of Queensland, St. Lucia, Queensland 4069, Australia
| | - Zhenong Jin
- Department of Earth System Science and Center for Food Security and Environment, Stanford University, Stanford, California 94305, USA
| | - Graeme L Hammer
- Centre for Crop Science and Centre of Excellence for Translational Photosynthesis, University of Queensland, St. Lucia, Queensland 4069, Australia
| | - David B Lobell
- Department of Earth System Science and Center for Food Security and Environment, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
19
|
Palacios CJ, Grandis A, Carvalho VJ, Salatino A, Buckeridge MS. Isolated and combined effects of elevated CO 2 and high temperature on the whole-plant biomass and the chemical composition of soybean seeds. Food Chem 2019; 275:610-617. [PMID: 30724240 DOI: 10.1016/j.foodchem.2018.09.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 10/28/2022]
Abstract
Soybean plants of the variety 'MG/BR Conquista' were grown in open top chambers, simulating elevated CO2 concentration ([CO2]) and high temperature under the following treatments: 1) ambient [CO2] and ambient temperature (Amb); 2) elevated [CO2] (eCO2) and ambient temperature (Elev); 3) ambient [CO2] and high temperature (Amb/Temp); 4) elevated CO2 and high temperature (Elev/Temp). The aim was to evaluate responses to elevated [CO2] and high temperature, with focus on plant development and seed yield, and composition. Elev stimulated grain yield and Amb/Temp had opposite effect. Several biochemical parameters were affected by Amb/Temp, most of them reversed by simultaneous application of Elev. The oil obtained with Elev/Temp had lower degree of unsaturation. A network of relationships among biochemical parameters of grains at three developmental stages revealed that Amb/Temp and Elev/Temp affect significantly both carbohydrate and lipid metabolisms. No significant difference was obtained comparing networks corresponding to Amb and Elev/Temp.
Collapse
Affiliation(s)
- C J Palacios
- Laboratory of Phytochemistry, Department of Botany, Institute of Biosciences, University of São Paulo, Brazil
| | - A Grandis
- Laboratory of Plant Physiological Ecology (LAFIECO), Department of Botany, Institute of Biosciences, University of São Paulo, Brazil
| | - V J Carvalho
- Laboratory of Plant Physiological Ecology (LAFIECO), Department of Botany, Institute of Biosciences, University of São Paulo, Brazil
| | - A Salatino
- Laboratory of Phytochemistry, Department of Botany, Institute of Biosciences, University of São Paulo, Brazil
| | - M S Buckeridge
- Laboratory of Plant Physiological Ecology (LAFIECO), Department of Botany, Institute of Biosciences, University of São Paulo, Brazil.
| |
Collapse
|
20
|
Yuan N, Moser G, Mueller C, Obermeier WA, Bendix J, Luterbacher J. Extreme climatic events down-regulate the grassland biomass response to elevated carbon dioxide. Sci Rep 2018; 8:17758. [PMID: 30531888 PMCID: PMC6288116 DOI: 10.1038/s41598-018-36157-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 11/16/2018] [Indexed: 11/08/2022] Open
Abstract
Terrestrial ecosystems are considered as carbon sinks that may mitigate the impacts of increased atmospheric CO2 concentration ([CO2]). However, it is not clear what their carbon sink capacity will be under extreme climatic conditions. In this study, we used long-term (1998-2013) data from a C3 grassland Free Air CO2 Enrichment (FACE) experiment in Germany to study the combined effects of elevated [CO2] and extreme climatic events (ECEs) on aboveground biomass production. CO2 fertilization effect (CFE), which represents the promoted plant photosynthesis and water use efficiency under higher [CO2], was quantiffied by calculating the relative differences in biomass between the plots with [CO2] enrichment and the plots with ambient [CO2]. Down-regulated CFEs were found when ECEs occurred during the growing season, and the CFE decreases were statistically significant with p well below 0.05 (t-test). Of all the observed ECEs, the strongest CFE decreases were associated with intensive and prolonged heat waves. These findings suggest that more frequent ECEs in the future are likely to restrict the mitigatory effects of C3 grassland ecosystems, leading to an accelerated warming trend. To reduce the uncertainties of future projections, the atmosphere-vegetation interactions, especially the ECEs effects, are emphasized and need to be better accounted.
Collapse
Affiliation(s)
- Naiming Yuan
- Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus-Liebig University Giessen, Senckenbergstr. 1, 35390, Giessen, Germany.
- CAS Key laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, 100029, China.
| | - Gerald Moser
- Department of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
| | - Christoph Mueller
- Department of Plant Ecology, Justus-Liebig University Giessen, Heinrich-Buff-Ring 26, 35392, Giessen, Germany
- School of Biology and Environmental Sciences, University College Dublin, Dublin, Ireland
| | - Wolfgang A Obermeier
- Faculty of Geography, Laboratory for Climatology and Remote Sensing, Philipps-University of Marburg, Deutschhausstr. 10, Marburg, Germany
| | - Joerg Bendix
- Faculty of Geography, Laboratory for Climatology and Remote Sensing, Philipps-University of Marburg, Deutschhausstr. 10, Marburg, Germany
| | - Jürg Luterbacher
- Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus-Liebig University Giessen, Senckenbergstr. 1, 35390, Giessen, Germany
- Centre for International Development and Environmental Research, Justus-Liebig University Giessen, 35390, Giessen, Germany
| |
Collapse
|
21
|
Ruiz-Vera UM, Siebers MH, Jaiswal D, Ort DR, Bernacchi CJ. Canopy warming accelerates development in soybean and maize, offsetting the delay in soybean reproductive development by elevated CO 2 concentrations. PLANT, CELL & ENVIRONMENT 2018; 41:2806-2820. [PMID: 30055106 DOI: 10.1111/pce.13410] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 07/11/2018] [Accepted: 07/12/2018] [Indexed: 05/25/2023]
Abstract
Increases in atmospheric CO2 concentrations ([CO2 ]) and surface temperature are known to individually have effects on crop development and yield, but their interactive effects have not been adequately investigated under field conditions. We evaluated the impacts of elevated [CO2 ] with and without canopy warming as a function of development in soybean and maize using infrared heating arrays nested within free air CO2 enrichment plots over three growing seasons. Vegetative development accelerated in soybean with temperature plus elevated [CO2 ] resulting in higher node number. Reproductive development was delayed in soybean under elevated [CO2 ], but warming mitigated this delay. In maize, both vegetative and reproductive developments were accelerated by warming, whereas elevated [CO2 ] had no apparent effect on development. Treatment-induced changes in the leaf carbohydrates, dark respiration rate, morphological parameters, and environmental conditions accompanied the changes in plant development. We used two thermal models to investigate their ability to predict the observed development under warming and elevated [CO2 ]. Whereas the growing degree day model underestimated the thermal threshold to reach each developmental stage, the alternative process-based model used (β function) was able to predict crop development under climate change conditions.
Collapse
Affiliation(s)
- Ursula M Ruiz-Vera
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Matthew H Siebers
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Deepak Jaiswal
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Agricultural Research Service, Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Urbana, Illinois, USA
| | - Carl J Bernacchi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Agricultural Research Service, Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Urbana, Illinois, USA
| |
Collapse
|
22
|
|
23
|
Feng Z, Uddling J, Tang H, Zhu J, Kobayashi K. Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments. GLOBAL CHANGE BIOLOGY 2018; 24:2231-2238. [PMID: 29393991 DOI: 10.1111/gcb.14077] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 12/22/2017] [Accepted: 01/23/2018] [Indexed: 06/07/2023]
Abstract
Assessments of the impacts of ozone (O3 ) on regional and global food production are currently based on results from experiments using open-top chambers (OTCs). However, there are concerns that these impact estimates might be biased due to the environmental artifacts imposed by this enclosure system. In this study, we collated O3 exposure and yield data for three major crop species-wheat, rice, and soybean-for which O3 experiments have been conducted with OTCs as well as the ecologically more realistic free-air O3 elevation (O3 -FACE) exposure system; both within the same cultivation region and country. For all three crops, we found that the sensitivity of crop yield to the O3 metric AOT40 (accumulated hourly O3 exposure above a cut-off threshold concentration of 40 ppb) significantly differed between OTC and O3 -FACE experiments. In wheat and rice, O3 sensitivity was higher in O3 -FACE than OTC experiments, while the opposite was the case for soybean. In all three crops, these differences could be linked to factors influencing stomatal conductance (manipulation of water inputs, passive chamber warming, and cultivar differences in gas exchange). Our study thus highlights the importance of accounting for factors that control stomatal O3 flux when applying experimental data to assess O3 impacts on crops at large spatial scales.
Collapse
Affiliation(s)
- Zhaozhong Feng
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Johan Uddling
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Haoye Tang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing, China
| | - Jianguo Zhu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing, China
| | - Kazuhiko Kobayashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
24
|
Bunce JA. Variation in Yield Responses to Elevated CO₂ and a Brief High Temperature Treatment in Quinoa. PLANTS (BASEL, SWITZERLAND) 2017; 6:E26. [PMID: 28678208 PMCID: PMC5620582 DOI: 10.3390/plants6030026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 06/30/2017] [Accepted: 07/03/2017] [Indexed: 11/16/2022]
Abstract
Intraspecific variation in crop responses to global climate change conditions would provide opportunities to adapt crops to future climates. These experiments explored intraspecific variation in response to elevated CO₂ and to high temperature during anthesis in Chenopodium quinoa Wild. Three cultivars of quinoa were grown to maturity at 400 ("ambient") and 600 ("elevated") μmol·mol-1 CO₂ concentrations at 20/14 °C day/night ("control") temperatures, with or without exposure to day/night temperatures of 35/29 °C ("high" temperatures) for seven days during anthesis. At control temperatures, the elevated CO₂ concentration increased the total aboveground dry mass at maturity similarly in all cultivars, but by only about 10%. A large down-regulation of photosynthesis at elevated CO₂ occurred during grain filling. In contrast to shoot mass, the increase in seed dry mass at elevated CO₂ ranged from 12% to 44% among cultivars at the control temperature. At ambient CO₂, the week-long high temperature treatment greatly decreased (0.30 × control) or increased (1.70 × control) seed yield, depending on the cultivar. At elevated CO₂, the high temperature treatment increased seed yield moderately in all cultivars. These quinoa cultivars had a wide range of responses to both elevated CO₂ and to high temperatures during anthesis, and much more variation in harvest index responses to elevated CO₂ than other crops that have been examined.
Collapse
Affiliation(s)
- James A Bunce
- Crop Systems and Global Change Laboratory, United States Department of Agriculture, 10300 Baltimore Avenue, Beltsville, MD 20705-2350, USA.
| |
Collapse
|
25
|
Jiang Y, Xu Z, Zhou G, Liu T. Elevated CO2 can modify the response to a water status gradient in a steppe grass: from cell organelles to photosynthetic capacity to plant growth. BMC PLANT BIOLOGY 2016; 16:157. [PMID: 27405416 PMCID: PMC4942890 DOI: 10.1186/s12870-016-0846-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 07/06/2016] [Indexed: 05/14/2023]
Abstract
BACKGROUND The atmospheric CO2 concentration is rising continuously, and abnormal precipitation may occur more frequently in the future. Although the effects of elevated CO2 and drought on plants have been well reported individually, little is known about their interaction, particularly over a water status gradient. Here, we aimed to characterize the effects of elevated CO2 and a water status gradient on the growth, photosynthetic capacity, and mesophyll cell ultrastructure of a dominant grass from a degraded grassland. RESULTS Elevated CO2 stimulated plant biomass to a greater extent under moderate changes in water status than under either extreme drought or over-watering conditions. Photosynthetic capacity and stomatal conductance were also enhanced by elevated CO2 under moderate drought, but inhibited with over-watering. Severe drought distorted mesophyll cell organelles, but CO2 enrichment partly alleviated this effect. Intrinsic water use efficiency (WUEi) and total biomass water use efficiency (WUEt) were increased by elevated CO2, regardless of water status. Plant structural traits were also found to be tightly associated with photosynthetic potentials. CONCLUSION The results indicated that CO2 enrichment alleviated severe and moderate drought stress, and highlighted that CO2 fertilization's dependency on water status should be considered when projecting key species' responses to climate change in dry ecosystems.
Collapse
Affiliation(s)
- Yanling Jiang
- />State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidian Beijing, 100093 China
| | - Zhenzhu Xu
- />State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidian Beijing, 100093 China
| | - Guangsheng Zhou
- />State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidian Beijing, 100093 China
- />Chinese Academy of Meteorological Sciences, China Meteorological Administration, 46 Zhongguancun South Street, Haidian Beijing, 100081 China
| | - Tao Liu
- />State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Haidian Beijing, 100093 China
- />Chinese Academy of Meteorological Sciences, China Meteorological Administration, 46 Zhongguancun South Street, Haidian Beijing, 100081 China
| |
Collapse
|
26
|
Kimball BA. Crop responses to elevated CO2 and interactions with H2O, N, and temperature. CURRENT OPINION IN PLANT BIOLOGY 2016; 31:36-43. [PMID: 27043481 DOI: 10.1016/j.pbi.2016.03.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/09/2016] [Accepted: 03/10/2016] [Indexed: 05/20/2023]
Abstract
About twenty-seven years ago, free-air CO2 enrichment (FACE) technology was developed that enabled the air above open-field plots to be enriched with CO2 for entire growing seasons. Since then, FACE experiments have been conducted on cotton, wheat, ryegrass, clover, potato, grape, rice, barley, sugar beet, soybean, cassava, rape, mustard, coffee (C3 crops), and sorghum and maize (C4 crops). Elevated CO2 (550ppm from an ambient concentration of about 353ppm in 1990) decreased evapotranspiration about 10% on average and increased canopy temperatures about 0.7°C. Biomass and yield were increased by FACE in all C3 species, but not in C4 species except when water was limiting. Yields of C3 grain crops were increased on average about 19%.
Collapse
|
27
|
Haworth M, Hoshika Y, Killi D. Has the Impact of Rising CO2 on Plants been Exaggerated by Meta-Analysis of Free Air CO2 Enrichment Studies? FRONTIERS IN PLANT SCIENCE 2016; 7:1153. [PMID: 27536310 PMCID: PMC4971589 DOI: 10.3389/fpls.2016.01153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 07/19/2016] [Indexed: 05/06/2023]
Abstract
Meta-analysis is extensively used to synthesize the results of free air CO2 enrichment (FACE) studies to produce an average effect size, which is then used to model likely plant response to rising [CO2]. The efficacy of meta-analysis is reliant upon the use of data that characterizes the range of responses to a given factor. Previous meta-analyses of the effect of FACE on plants have not incorporated the potential impact of reporting bias in skewing data. By replicating the methodology of these meta-analytic studies, we demonstrate that meta-analysis of FACE has likely exaggerated the effect size of elevated [CO2] on plants by 20 to 40%; having significant implications for predictions of food security and vegetation response to climate change. Incorporation of the impact of reporting bias did not affect the significance or the direction of the [CO2] effect.
Collapse
Affiliation(s)
- Matthew Haworth
- Tree and Timber Institute, National Research Council (CNR-IVALSA), FlorenceItaly,
- *Correspondence: Matthew Haworth,
| | - Yasutomo Hoshika
- Institute for Sustainable Plant Protection, National Research CouncilFlorence, Italy
| | - Dilek Killi
- Department of Agrifood Production and Environmental Sciences, University of FlorenceFlorence, Italy
| |
Collapse
|
28
|
Engineer CB, Hashimoto-Sugimoto M, Negi J, Israelsson-Nordström M, Azoulay-Shemer T, Rappel WJ, Iba K, Schroeder JI. CO2 Sensing and CO2 Regulation of Stomatal Conductance: Advances and Open Questions. TRENDS IN PLANT SCIENCE 2016; 21:16-30. [PMID: 26482956 PMCID: PMC4707055 DOI: 10.1016/j.tplants.2015.08.014] [Citation(s) in RCA: 143] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 08/24/2015] [Accepted: 08/27/2015] [Indexed: 05/18/2023]
Abstract
Guard cells form epidermal stomatal gas-exchange valves in plants and regulate the aperture of stomatal pores in response to changes in the carbon dioxide (CO2) concentration ([CO2]) in leaves. Moreover, the development of stomata is repressed by elevated CO2 in diverse plant species. Evidence suggests that plants can sense [CO2] changes via guard cells and via mesophyll tissues in mediating stomatal movements. We review new discoveries and open questions on mechanisms mediating CO2-regulated stomatal movements and CO2 modulation of stomatal development, which together function in the CO2 regulation of stomatal conductance and gas exchange in plants. Research in this area is timely in light of the necessity of selecting and developing crop cultivars that perform better in a shifting climate.
Collapse
Affiliation(s)
- Cawas B Engineer
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Food & Fuel for the 21st Century, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - Mimi Hashimoto-Sugimoto
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Juntaro Negi
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Maria Israelsson-Nordström
- Umeå Plant Science Center, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden
| | - Tamar Azoulay-Shemer
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Food & Fuel for the 21st Century, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - Wouter-Jan Rappel
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Food & Fuel for the 21st Century, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA
| | - Koh Iba
- Department of Biology, Faculty of Sciences, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Julian I Schroeder
- Division of Biological Sciences, Cell and Developmental Biology Section and Center for Food & Fuel for the 21st Century, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0116, USA.
| |
Collapse
|
29
|
Sanz-Sáez Á, Heath KD, Burke PV, Ainsworth EA. Inoculation with an enhanced N2 -fixing Bradyrhizobium japonicum strain (USDA110) does not alter soybean (Glycine max Merr.) response to elevated [CO2 ]. PLANT, CELL & ENVIRONMENT 2015; 38:2589-602. [PMID: 26012898 DOI: 10.1111/pce.12577] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/17/2015] [Accepted: 05/12/2015] [Indexed: 05/22/2023]
Abstract
This study tested the hypothesis that inoculation of soybean (Glycine max Merr.) with a Bradyrhizobium japonicum strain (USDA110) with greater N2 fixation rates would enhance soybean response to elevated [CO2 ]. In field experiments at the Soybean Free Air CO2 Enrichment facility, inoculation of soybean with USDA110 increased nodule occupancy from 5% in native soil to 54% in elevated [CO2 ] and 34% at ambient [CO2 ]. Despite this success, inoculation with USDA110 did not result in greater photosynthesis, growth or seed yield at ambient or elevated [CO2 ] in the field, presumably due to competition from native rhizobia. In a growth chamber experiment designed to study the effects of inoculation in the absence of competition, inoculation with USDA110 in sterilized soil resulted in nodule occupation of >90%, significantly greater (15) N2 fixation, photosynthetic capacity, leaf N and total plant biomass compared with plants grown with native soil bacteria. However, there was no interaction of rhizobium fertilization with elevated [CO2 ]; inoculation with USDA110 was equally beneficial at ambient and elevated [CO2 ]. These results suggest that selected rhizobia could potentially stimulate soybean yield in soils with little or no history of prior soybean production, but that better quality rhizobia do not enhance soybean responses to elevated [CO2 ].
Collapse
Affiliation(s)
- Álvaro Sanz-Sáez
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Plant Biology and Ecology, Pharmacy Faculty, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Alava, 01007, Spain
| | - Katy D Heath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Patricia V Burke
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elizabeth A Ainsworth
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, IL, 61801, USA
| |
Collapse
|
30
|
Bishop KA, Betzelberger AM, Long SP, Ainsworth EA. Is there potential to adapt soybean (Glycine max Merr.) to future [CO₂]? An analysis of the yield response of 18 genotypes in free-air CO₂ enrichment. PLANT, CELL & ENVIRONMENT 2015; 38:1765-74. [PMID: 25211487 DOI: 10.1111/pce.12443] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/28/2014] [Accepted: 09/02/2014] [Indexed: 05/03/2023]
Abstract
Rising atmospheric [CO2] is a uniform, global change that increases C3 photosynthesis and could offset some of the negative effects of global climate change on crop yields. Genetic variation in yield responsiveness to rising [CO2] would provide an opportunity to breed more responsive crop genotypes. A multi-year study of 18 soybean (Glycine max Merr.) genotypes was carried out to identify variation in responsiveness to season-long elevated [CO2] (550 ppm) under fully open-air replicated field conditions. On average across 18 genotypes, elevated [CO2] stimulated total above-ground biomass by 22%, but seed yield by only 9%, in part because most genotypes showed a reduction in partitioning of energy to seeds. Over four years of study, there was consistency from year to year in the genotypes that were most and least responsive to elevated [CO2], suggesting heritability of CO2 response. Further analysis of six genotypes did not reveal a photosynthetic basis for the variation in yield response. Although partitioning to seed was decreased, cultivars with the highest partitioning coefficient in current [CO2 ] also had the highest partitioning coefficient in elevated [CO2]. The results show the existence of genetic variation in soybean response to elevated [CO2], which is needed to breed soybean to the future atmospheric environment.
Collapse
Affiliation(s)
- Kristen A Bishop
- Department of Plant Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amy M Betzelberger
- Department of Plant Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Stephen P Long
- Department of Plant Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Elizabeth A Ainsworth
- Department of Plant Biology, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Global Change and Photosynthesis Research Unit, USDA ARS, Urbana, IL, 61801, USA
| |
Collapse
|
31
|
Bernacchi CJ, VanLoocke A. Terrestrial ecosystems in a changing environment: a dominant role for water. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:599-622. [PMID: 25621516 DOI: 10.1146/annurev-arplant-043014-114834] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Transpiration--the movement of water from the soil, through plants, and into the atmosphere--is the dominant water flux from the earth's terrestrial surface. The evolution of vascular plants, while increasing terrestrial primary productivity, led to higher transpiration rates and widespread alterations in the global climate system. Similarly, anthropogenic influences on transpiration rates are already influencing terrestrial hydrologic cycles, with an even greater potential for changes lying ahead. Intricate linkages among anthropogenic activities, terrestrial productivity, the hydrologic cycle, and global demand for ecosystem services will lead to increased pressures on ecosystem water demands. Here, we focus on identifying the key drivers of ecosystem water use as they relate to plant physiological function, the role of predicted global changes in ecosystem water uses, trade-offs between ecosystem water use and carbon uptake, and knowledge gaps.
Collapse
Affiliation(s)
- Carl J Bernacchi
- Global Change and Photosynthesis Research Unit, USDA-ARS, and Department of Plant Biology, University of Illinois, Urbana, Illinois 61801;
| | | |
Collapse
|