1
|
Borah R, O'Sullivan J, Suku M, Spurling D, Diez Clarke D, Nicolosi V, Caldwell MA, Monaghan MG. Electrically Conductive Injectable Silk/PEDOT: PSS Hydrogel for Enhanced Neural Network Formation. J Biomed Mater Res A 2025; 113:e37859. [PMID: 39719872 DOI: 10.1002/jbm.a.37859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/06/2024] [Accepted: 12/12/2024] [Indexed: 12/26/2024]
Abstract
With no effective treatments for functional recovery after injury, spinal cord injury (SCI) remains one of the unresolved healthcare challenges. Human induced pluripotent stem cell (hiPSC) transplantation is a versatile patient-specific regenerative approach for functional recovery after SCI. Injectable electroconductive hydrogel (ECH) can further enhance the cell transplantation efficacy through a minimally invasive manner as well as recapitulate the native bioelectrical microenvironment of neural tissue. Given these considerations, we report a novel ECH prepared through self-assembly facilitated in situ gelation of natural silk fibroin (SF) derived from mulberry Bombyx mori silk and electrically conductive PEDOT:PSS. PEDOT:PSS was pre-stabilized to prevent the potential delamination of its hydrophilic PSS chain under aqueous environment using 3% (v/v) (3-glycidyloxypropyl)trimethoxysilane (GoPS) and 3% (w/v) poly(ethylene glycol)diglycidyl ether (PeGDE). The resultant ECH formulations are easily injectable with standard hand force with flow point below 100 Pa and good shear-thinning properties. The ECH formulations with unmodified and GoPS-modified PEDOT:PSS, that is, SF/PEDOT and SF/PEDOTGoP maintain comparable elastic modulus to spinal cord (~10-60 kPa) under physiological condition, indicating their flexibility. The GoPS-modified ECHs also display improved structural recoverability (~70%-90%) as compared to the unmodified versions of the ECHs (~30%-80%), as indicated by the three interval time thixotropy (3ITT) test. Additionally, these ECHs possess electrical conductivity in the range of ~0.2-1.2 S/m comparable to spinal cord (1-10 S/m), indicating their ability to mimic native bioelectrical environment. Approximately 80% or more cell survival was observed when hiPSC-derived cortical neurons and astrocytes were encapsulated within these ECHs. These ECHs support the maturation of cortical neurons when embedded for 7 days, fostering the development of a complex, interconnected network of long axonal processes and promoting synaptogenesis. These results underline the potential of silk ECHs in cell transplantation therapy for spinal cord regeneration.
Collapse
Affiliation(s)
- Rajiv Borah
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
| | - Julia O'Sullivan
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Meenakshi Suku
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Dahnan Spurling
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Daniel Diez Clarke
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| | - Valeria Nicolosi
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
- School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
| | - Maeve A Caldwell
- Department of Physiology, School of Medicine, Trinity College Dublin, Dublin 2, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin 2, Ireland
| | - Michael G Monaghan
- Discipline of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
- Advanced Materials and Bio-Engineering Research (AMBER), Centre at Trinity College Dublin and the Royal College of Surgeons in Ireland, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Research in Medical Devices, National University of Ireland, Galway, Ireland
| |
Collapse
|
2
|
Bingnan W, Jiao T, Ghorbani A, Baghei S. Enhancing regenerative potential: A comprehensive review of stem cell transplantation for sports-related neuronal injuries, with a focus on spinal cord injuries and peripheral nervous system damage. Tissue Cell 2024; 88:102429. [PMID: 38833939 DOI: 10.1016/j.tice.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/06/2024]
Abstract
Neuronal injuries, as one of the consequences of sports-related incidents, exert a profound influence on the athletes' future, potentially leading to complete immobility and impeding their athletic pursuits. In cases of severe damage inflicted upon the spinal cord (SC) and peripheral nervous systems (PNS), the regenerative process is notably compromised, rendering it essentially inefficient. Among the pivotal therapeutic approaches for the enhancement and prevention of secondary SC injuries (SCI), stem cell transplantation (SCT) stands out prominently. Stem cells, whether directly involved in replacement and reconstruction or indirectly through modification and secretion of crucial bioenvironmental factors, engage in the intricate process of tissue regeneration. Stem cells, through the secretion of neurotrophic factors (NTFs) (aiming to modulate the immune system), reduction of inflammation, axonal growth stimulation, and myelin formation, endeavor to facilitate the regeneration of damaged SC tissue. The fundamental challenges of this approach encompass the proper selection of suitable stem cell candidates for transplantation and the establishment of an appropriate microenvironment conducive to SC repair. In this article, an attempt has been made to explore sports-related injuries, particularly SCI, to comprehensively review innovative methods for treating SCI, and to address the existing challenges. Additionally, some of the stem cells used in neural injuries and the process of their utilization have been discussed.
Collapse
Affiliation(s)
- Wang Bingnan
- Department of P.E, Central South University, Changsha 410083, China
| | - Tong Jiao
- The High School Attached to Hunan Normal University Bocai Experimental Middle School,Changsha 410208, China.
| | - A Ghorbani
- Biotechnology Department, Islamic Azad University, Isfahan, Iran
| | - Sh Baghei
- Biotechnology Department, Islamic Azad University, Isfahan, Iran.
| |
Collapse
|
3
|
Rogujski P, Lukomska B, Janowski M, Stanaszek L. Glial-restricted progenitor cells: a cure for diseased brain? Biol Res 2024; 57:8. [PMID: 38475854 DOI: 10.1186/s40659-024-00486-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
The central nervous system (CNS) is home to neuronal and glial cells. Traditionally, glia was disregarded as just the structural support across the brain and spinal cord, in striking contrast to neurons, always considered critical players in CNS functioning. In modern times this outdated dogma is continuously repelled by new evidence unravelling the importance of glia in neuronal maintenance and function. Therefore, glia replacement has been considered a potentially powerful therapeutic strategy. Glial progenitors are at the center of this hope, as they are the source of new glial cells. Indeed, sophisticated experimental therapies and exciting clinical trials shed light on the utility of exogenous glia in disease treatment. Therefore, this review article will elaborate on glial-restricted progenitor cells (GRPs), their origin and characteristics, available sources, and adaptation to current therapeutic approaches aimed at various CNS diseases, with particular attention paid to myelin-related disorders with a focus on recent progress and emerging concepts. The landscape of GRP clinical applications is also comprehensively presented, and future perspectives on promising, GRP-based therapeutic strategies for brain and spinal cord diseases are described in detail.
Collapse
Affiliation(s)
- Piotr Rogujski
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland
| | - Miroslaw Janowski
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland, Baltimore, MD, USA
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106, Warsaw, Poland.
| |
Collapse
|
4
|
Franklin RJM, Bodini B, Goldman SA. Remyelination in the Central Nervous System. Cold Spring Harb Perspect Biol 2024; 16:a041371. [PMID: 38316552 PMCID: PMC10910446 DOI: 10.1101/cshperspect.a041371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The inability of the mammalian central nervous system (CNS) to undergo spontaneous regeneration has long been regarded as a central tenet of neurobiology. However, while this is largely true of the neuronal elements of the adult mammalian CNS, save for discrete populations of granule neurons, the same is not true of its glial elements. In particular, the loss of oligodendrocytes, which results in demyelination, triggers a spontaneous and often highly efficient regenerative response, remyelination, in which new oligodendrocytes are generated and myelin sheaths are restored to denuded axons. Yet remyelination in humans is not without limitation, and a variety of demyelinating conditions are associated with sustained and disabling myelin loss. In this work, we will (1) review the biology of remyelination, including the cells and signals involved; (2) describe when remyelination occurs and when and why it fails, including the consequences of its failure; and (3) discuss approaches for therapeutically enhancing remyelination in demyelinating diseases of both children and adults, both by stimulating endogenous oligodendrocyte progenitor cells and by transplanting these cells into demyelinated brain.
Collapse
Affiliation(s)
- Robin J M Franklin
- Altos Labs Cambridge Institute of Science, Cambridge CB21 6GH, United Kingdom
| | - Benedetta Bodini
- Sorbonne Université, Paris Brain Institute, CNRS, INSERM, Paris 75013, France
- Saint-Antoine Hospital, APHP, Paris 75012, France
| | - Steven A Goldman
- Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, New York 14642, USA
- University of Copenhagen Faculty of Medicine, Copenhagen 2200, Denmark
| |
Collapse
|
5
|
Doulames VM, Marquardt LM, Hefferon ME, Baugh NJ, Suhar RA, Wang AT, Dubbin KR, Weimann JM, Palmer TD, Plant GW, Heilshorn SC. Custom-engineered hydrogels for delivery of human iPSC-derived neurons into the injured cervical spinal cord. Biomaterials 2024; 305:122400. [PMID: 38134472 PMCID: PMC10846596 DOI: 10.1016/j.biomaterials.2023.122400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/18/2023] [Accepted: 11/11/2023] [Indexed: 12/24/2023]
Abstract
Cervical damage is the most prevalent type of spinal cord injury clinically, although few preclinical research studies focus on this anatomical region of injury. Here we present a combinatorial therapy composed of a custom-engineered, injectable hydrogel and human induced pluripotent stem cell (iPSC)-derived deep cortical neurons. The biomimetic hydrogel has a modular design that includes a protein-engineered component to allow customization of the cell-adhesive peptide sequence and a synthetic polymer component to allow customization of the gel mechanical properties. In vitro studies with encapsulated iPSC-neurons were used to select a bespoke hydrogel formulation that maintains cell viability and promotes neurite extension. Following injection into the injured cervical spinal cord in a rat contusion model, the hydrogel biodegraded over six weeks without causing any adverse reaction. Compared to cell delivery using saline, the hydrogel significantly improved the reproducibility of cell transplantation and integration into the host tissue. Across three metrics of animal behavior, this combinatorial therapy significantly improved sensorimotor function by six weeks post transplantation. Taken together, these findings demonstrate that design of a combinatorial therapy that includes a gel customized for a specific fate-restricted cell type can induce regeneration in the injured cervical spinal cord.
Collapse
Affiliation(s)
- V M Doulames
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - L M Marquardt
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - M E Hefferon
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - N J Baugh
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - R A Suhar
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - A T Wang
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - K R Dubbin
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| | - J M Weimann
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - T D Palmer
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - G W Plant
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - S C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
6
|
Mehta JM, Hiremath SC, Chilimba C, Ghasemi A, Weaver JD. Translation of cell therapies to treat autoimmune disorders. Adv Drug Deliv Rev 2024; 205:115161. [PMID: 38142739 PMCID: PMC10843859 DOI: 10.1016/j.addr.2023.115161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 12/26/2023]
Abstract
Autoimmune diseases are a diverse and complex set of chronic disorders with a substantial impact on patient quality of life and a significant global healthcare burden. Current approaches to autoimmune disease treatment comprise broadly acting immunosuppressive drugs that lack disease specificity, possess limited efficacy, and confer undesirable side effects. Additionally, there are limited treatments available to restore organs and tissues damaged during the course of autoimmune disease progression. Cell therapies are an emergent area of therapeutics with the potential to address both autoimmune disease immune dysfunction as well as autoimmune disease-damaged tissue and organ systems. In this review, we discuss the pathogenesis of common autoimmune disorders and the state-of-the-art in cell therapy approaches to (1) regenerate or replace autoimmune disease-damaged tissue and (2) eliminate pathological immune responses in autoimmunity. Finally, we discuss critical considerations for the translation of cell products to the clinic.
Collapse
Affiliation(s)
- Jinal M Mehta
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Shivani C Hiremath
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Chishiba Chilimba
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Azin Ghasemi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | - Jessica D Weaver
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
7
|
Shim G, Romero-Morales AI, Sripathy SR, Maher BJ. Utilizing hiPSC-derived oligodendrocytes to study myelin pathophysiology in neuropsychiatric and neurodegenerative disorders. Front Cell Neurosci 2024; 17:1322813. [PMID: 38273973 PMCID: PMC10808804 DOI: 10.3389/fncel.2023.1322813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Oligodendrocytes play a crucial role in our central nervous system (CNS) by myelinating axons for faster action potential conduction, protecting axons from degeneration, structuring the position of ion channels, and providing nutrients to neurons. Oligodendrocyte dysfunction and/or dysmyelination can contribute to a range of neurodegenerative diseases and neuropsychiatric disorders such as Multiple Sclerosis (MS), Leukodystrophy (LD), Schizophrenia (SCZ), and Autism Spectrum Disorder (ASD). Common characteristics identified across these disorders were either an inability of oligodendrocytes to remyelinate after degeneration or defects in oligodendrocyte development and maturation. Unfortunately, the causal mechanisms of oligodendrocyte dysfunction are still uncertain, and therapeutic targets remain elusive. Many studies rely on the use of animal models to identify the molecular and cellular mechanisms behind these disorders, however, such studies face species-specific challenges and therefore lack translatability. The use of human induced pluripotent stem cells (hiPSCs) to model neurological diseases is becoming a powerful new tool, improving our understanding of pathophysiology and capacity to explore therapeutic targets. Here, we focus on the application of hiPSC-derived oligodendrocyte model systems to model disorders caused by oligodendrocyte dysregulation.
Collapse
Affiliation(s)
- Gina Shim
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
| | - Alejandra I. Romero-Morales
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Srinidhi R. Sripathy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
| | - Brady J. Maher
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Goldman SA, Franklin RJM, Osorio J. Stem and progenitor cell-based therapy of myelin disorders. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:283-295. [PMID: 39341659 DOI: 10.1016/b978-0-323-90120-8.00015-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Much of clinical neurology is concerned with diseases of-or involving-the brain's subcortical white matter. Common to these disorders is the loss of myelin, reflecting the elimination or dysfunction of oligodendrocytes and fibrous astrocytes. As such, the introduction of glial progenitor cells, which can give rise to new oligodendrocytes and astrocytes alike, may be a feasible strategy for treating a broad variety of conditions in which white matter loss is causally involved. This review first covers the sourcing and production of human glial progenitor cells, and the preclinical evidence for their efficacy in achieving myelin restoration in vivo. It then discusses both pediatric and adult disease targets for which transplanted glial progenitors may prove of therapeutic value, those challenges that remain in the clinical application of a glial cell replacement strategy, and the clinical endpoints by which the efficacy of this approach may be assessed.
Collapse
Affiliation(s)
- Steven A Goldman
- Sana Biotechnology, Cambridge, MA, United States; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, United States; University of Copenhagen Faculty of Medicine, Copenhagen, Denmark.
| | | | - Joana Osorio
- Sana Biotechnology, Cambridge, MA, United States; Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
9
|
Christodoulou MV, Petkou E, Atzemoglou N, Gkorla E, Karamitrou A, Simos YV, Bellos S, Bekiari C, Kouklis P, Konitsiotis S, Vezyraki P, Peschos D, Tsamis KI. Cell replacement therapy with stem cells in multiple sclerosis, a systematic review. Hum Cell 2024; 37:9-53. [PMID: 37985645 PMCID: PMC10764451 DOI: 10.1007/s13577-023-01006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/22/2023]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory, autoimmune, and neurodegenerative disease of the central nervous system (CNS), characterized by demyelination and axonal loss. It is induced by attack of autoreactive lymphocytes on the myelin sheath and endogenous remyelination failure, eventually leading to accumulation of neurological disability. Disease-modifying agents can successfully address inflammatory relapses, but have low efficacy in progressive forms of MS, and cannot stop the progressive neurodegenerative process. Thus, the stem cell replacement therapy approach, which aims to overcome CNS cell loss and remyelination failure, is considered a promising alternative treatment. Although the mechanisms behind the beneficial effects of stem cell transplantation are not yet fully understood, neurotrophic support, immunomodulation, and cell replacement appear to play an important role, leading to a multifaceted fight against the pathology of the disease. The present systematic review is focusing on the efficacy of stem cells to migrate at the lesion sites of the CNS and develop functional oligodendrocytes remyelinating axons. While most studies confirm the improvement of neurological deficits after the administration of different stem cell types, many critical issues need to be clarified before they can be efficiently introduced into clinical practice.
Collapse
Affiliation(s)
- Maria Veatriki Christodoulou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Ermioni Petkou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Natalia Atzemoglou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Eleni Gkorla
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Aikaterini Karamitrou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Yannis V Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Stefanos Bellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Chryssa Bekiari
- Laboratory of Anatomy and Histology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panos Kouklis
- Laboratory of Biology, Department of Medicine, University of Ioannina, Ioannina, Greece
| | | | - Patra Vezyraki
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Konstantinos I Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece.
- Department of Neurology, University Hospital of Ioannina, Ioannina, Greece.
| |
Collapse
|
10
|
da Silva MDV, Piva M, Martelossi-Cebinelli G, Stinglin Rosa Ribas M, Hoffmann Salles Bianchini B, K Heintz O, Casagrande R, Verri WA. Stem cells and pain. World J Stem Cells 2023; 15:1035-1062. [PMID: 38179216 PMCID: PMC10762525 DOI: 10.4252/wjsc.v15.i12.1035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/06/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Pain can be defined as an unpleasant sensory and emotional experience caused by either actual or potential tissue damage or even resemble that unpleasant experience. For years, science has sought to find treatment alternatives, with minimal side effects, to relieve pain. However, the currently available pharmacological options on the market show significant adverse events. Therefore, the search for a safer and highly efficient analgesic treatment has become a priority. Stem cells (SCs) are non-specialized cells with a high capacity for replication, self-renewal, and a wide range of differentiation possibilities. In this review, we provide evidence that the immune and neuromodulatory properties of SCs can be a valuable tool in the search for ideal treatment strategies for different types of pain. With the advantage of multiple administration routes and dosages, therapies based on SCs for pain relief have demonstrated meaningful results with few downsides. Nonetheless, there are still more questions than answers when it comes to the mechanisms and pathways of pain targeted by SCs. Thus, this is an evolving field that merits further investigation towards the development of SC-based analgesic therapies, and this review will approach all of these aspects.
Collapse
Affiliation(s)
- Matheus Deroco Veloso da Silva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Maiara Piva
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Geovana Martelossi-Cebinelli
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Mariana Stinglin Rosa Ribas
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Beatriz Hoffmann Salles Bianchini
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, State University of Londrina, Londrina 86057-970, Paraná, Brazil
| | - Olivia K Heintz
- Morningside Graduate School of Biomedical Sciences, University of Massachusetts Chan Medical School, Worcester, MA 01655, United States
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Center of Health Science, State University of Londrina, Londrina 86038-440, Paraná, Brazil
| | - Waldiceu A Verri
- Department of Pathology, Laboratory of Pain, Inflammation, Neuropathy and Cancer, Center of Biological Sciences, State University of Londrina, Londrina 86057-970, Paraná, Brazil.
| |
Collapse
|
11
|
Zou P, Wu C, Liu TCY, Duan R, Yang L. Oligodendrocyte progenitor cells in Alzheimer's disease: from physiology to pathology. Transl Neurodegener 2023; 12:52. [PMID: 37964328 PMCID: PMC10644503 DOI: 10.1186/s40035-023-00385-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 11/16/2023] Open
Abstract
Oligodendrocyte progenitor cells (OPCs) play pivotal roles in myelin formation and phagocytosis, communicating with neighboring cells and contributing to the integrity of the blood-brain barrier (BBB). However, under the pathological circumstances of Alzheimer's disease (AD), the brain's microenvironment undergoes detrimental changes that significantly impact OPCs and their functions. Starting with OPC functions, we delve into the transformation of OPCs to myelin-producing oligodendrocytes, the intricate signaling interactions with other cells in the central nervous system (CNS), and the fascinating process of phagocytosis, which influences the function of OPCs and affects CNS homeostasis. Moreover, we discuss the essential role of OPCs in BBB formation and highlight the critical contribution of OPCs in forming CNS-protective barriers. In the context of AD, the deterioration of the local microenvironment in the brain is discussed, mainly focusing on neuroinflammation, oxidative stress, and the accumulation of toxic proteins. The detrimental changes disturb the delicate balance in the brain, impacting the regenerative capacity of OPCs and compromising myelin integrity. Under pathological conditions, OPCs experience significant alterations in migration and proliferation, leading to impaired differentiation and a reduced ability to produce mature oligodendrocytes. Moreover, myelin degeneration and formation become increasingly active in AD, contributing to progressive neurodegeneration. Finally, we summarize the current therapeutic approaches targeting OPCs in AD. Strategies to revitalize OPC senescence, modulate signaling pathways to enhance OPC differentiation, and explore other potential therapeutic avenues are promising in alleviating the impact of AD on OPCs and CNS function. In conclusion, this review highlights the indispensable role of OPCs in CNS function and their involvement in the pathogenesis of AD. The intricate interplay between OPCs and the AD brain microenvironment underscores the complexity of neurodegenerative diseases. Insights from studying OPCs under pathological conditions provide a foundation for innovative therapeutic strategies targeting OPCs and fostering neurodegeneration. Future research will advance our understanding and management of neurodegenerative diseases, ultimately offering hope for effective treatments and improved quality of life for those affected by AD and related disorders.
Collapse
Affiliation(s)
- Peibin Zou
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Timon Cheng-Yi Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Rui Duan
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
12
|
Takahashi Y, Kajitani T, Endo T, Nakayashiki A, Inoue T, Niizuma K, Tominaga T. Intravenous Administration of Human Muse Cells Ameliorates Deficits in a Rat Model of Subacute Spinal Cord Injury. Int J Mol Sci 2023; 24:14603. [PMID: 37834052 PMCID: PMC10572998 DOI: 10.3390/ijms241914603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/21/2023] [Accepted: 09/26/2023] [Indexed: 10/15/2023] Open
Abstract
Multilineage-differentiating stress-enduring (Muse) cells are newly established pluripotent stem cells. The aim of the present study was to examine the potential of the systemic administration of Muse cells as an effective treatment for subacute SCI. We intravenously administered the clinical product "CL2020" containing Muse cells to a rat model two weeks after mid-thoracic spinal cord contusion. Eight experimental animals received CL2020, and twelve received the vehicle. Behavioral analyses were conducted over 20 weeks. Histological evaluations were performed. After 20 weeks of observation, diphtheria toxin was administered to three CL2020-treated animals to selectively ablate human cell functions. Hindlimb motor functions significantly improved from 6 to 20 weeks after the administration of CL2020. The cystic cavity was smaller in the CL2020 group. Furthermore, larger numbers of descending 5-HT fibers were preserved in the distal spinal cord. Muse cells in CL2020 were considered to have differentiated into neuronal and neural cells in the injured spinal cord. Neuronal and neural cells were identified in the gray and white matter, respectively. Importantly, these effects were reversed by the selective ablation of human cells by diphtheria toxin. Intravenously administered Muse cells facilitated the therapeutic potential of CL2020 for severe subacute spinal cord injury.
Collapse
Affiliation(s)
- Yoshiharu Takahashi
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
- Department of Neurosurgery, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Takumi Kajitani
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
| | - Toshiki Endo
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
- Department of Neurosurgery, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan
| | - Atsushi Nakayashiki
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
| | - Tomoo Inoue
- Department of Neurosurgery, Saitama Red Cross Hospital, Saitama 330-8553, Japan;
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8576, Japan
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8572, Japan
| | - Teiji Tominaga
- Department of Neurosurgery, Graduate School of Medicine, Tohoku University, Sendai 980-8572, Japan; (Y.T.); (A.N.)
| |
Collapse
|
13
|
Martinez-Curiel R, Jansson L, Tsupykov O, Avaliani N, Aretio-Medina C, Hidalgo I, Monni E, Bengzon J, Skibo G, Lindvall O, Kokaia Z, Palma-Tortosa S. Oligodendrocytes in human induced pluripotent stem cell-derived cortical grafts remyelinate adult rat and human cortical neurons. Stem Cell Reports 2023; 18:1643-1656. [PMID: 37236198 PMCID: PMC10444570 DOI: 10.1016/j.stemcr.2023.04.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Neuronal loss and axonal demyelination underlie long-term functional impairments in patients affected by brain disorders such as ischemic stroke. Stem cell-based approaches reconstructing and remyelinating brain neural circuitry, leading to recovery, are highly warranted. Here, we demonstrate the in vitro and in vivo production of myelinating oligodendrocytes from a human induced pluripotent stem cell (iPSC)-derived long-term neuroepithelial stem (lt-NES) cell line, which also gives rise to neurons with the capacity to integrate into stroke-injured, adult rat cortical networks. Most importantly, the generated oligodendrocytes survive and form myelin-ensheathing human axons in the host tissue after grafting onto adult human cortical organotypic cultures. This lt-NES cell line is the first human stem cell source that, after intracerebral delivery, can repair both injured neural circuitries and demyelinated axons. Our findings provide supportive evidence for the potential future use of human iPSC-derived cell lines to promote effective clinical recovery following brain injuries.
Collapse
Affiliation(s)
- Raquel Martinez-Curiel
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Linda Jansson
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Oleg Tsupykov
- Department of Cytology, Bogomoletz Institute of Physiology; Institute of Genetic and Regenerative Medicine, Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, 01024 Kyiv, Ukraine
| | | | - Constanza Aretio-Medina
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Isabel Hidalgo
- Division of Molecular Hematology, Wallenberg Center for Molecular Medicine, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Emanuela Monni
- Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Johan Bengzon
- Division of Neurosurgery, Department of Clinical Sciences Lund, University Hospital, 22184 Lund, Sweden
| | - Galyna Skibo
- Department of Cytology, Bogomoletz Institute of Physiology; Institute of Genetic and Regenerative Medicine, Strazhesko National Scientific Center of Cardiology, Clinical and Regenerative Medicine, 01024 Kyiv, Ukraine
| | - Olle Lindvall
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| | - Zaal Kokaia
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden.
| | - Sara Palma-Tortosa
- Laboratory of Stem Cells and Restorative Neurology, Lund Stem Cell Center, Lund University, 22184 Lund, Sweden
| |
Collapse
|
14
|
Putka AF, Mato JP, McLoughlin HS. Myelinating Glia: Potential Therapeutic Targets in Polyglutamine Spinocerebellar Ataxias. Cells 2023; 12:601. [PMID: 36831268 PMCID: PMC9953858 DOI: 10.3390/cells12040601] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 02/15/2023] Open
Abstract
Human studies, in combination with animal and cellular models, support glial cells as both major contributors to neurodegenerative diseases and promising therapeutic targets. Among glial cells, oligodendrocytes and Schwann cells are the myelinating glial cells of the central and peripheral nervous system, respectively. In this review, we discuss the contributions of these central and peripheral myelinating glia to the pathomechanisms of polyglutamine (polyQ) spinocerebellar ataxia (SCA) types 1, 2, 3, 6, 7, and 17. First, we highlight the function of oligodendrocytes in healthy conditions and how they are disrupted in polyQ SCA patients and diseased model systems. We then cover the role of Schwann cells in peripheral nerve function and repair as well as their possible role in peripheral neuropathy in polyQ SCAs. Finally, we discuss potential polyQ SCA therapeutic interventions in myelinating glial.
Collapse
Affiliation(s)
- Alexandra F. Putka
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Juan P. Mato
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
15
|
McCaughey-Chapman A, Connor B. Cell reprogramming for oligodendrocytes: A review of protocols and their applications to disease modeling and cell-based remyelination therapies. J Neurosci Res 2023; 101:1000-1028. [PMID: 36749877 DOI: 10.1002/jnr.25173] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 02/09/2023]
Abstract
Oligodendrocytes are a type of glial cells that produce a lipid-rich membrane called myelin. Myelin assembles into a sheath and lines neuronal axons in the brain and spinal cord to insulate them. This not only increases the speed and efficiency of nerve signal transduction but also protects the axons from damage and degradation, which could trigger neuronal cell death. Demyelination, which is caused by a loss of myelin and oligodendrocytes, is a prominent feature of many neurological conditions, including Multiple sclerosis (MS), spinal cord injuries (SCI), and leukodystrophies. Demyelination is followed by a time of remyelination mediated by the recruitment of endogenous oligodendrocyte precursor cells, their migration to the injury site, and differentiation into myelin-producing oligodendrocytes. Unfortunately, endogenous remyelination is not sufficient to overcome demyelination, which explains why there are to date no regenerative-based treatments for MS, SCI, or leukodystrophies. To better understand the role of oligodendrocytes and develop cell-based remyelination therapies, human oligodendrocytes have been derived from somatic cells using cell reprogramming. This review will detail the different cell reprogramming methods that have been developed to generate human oligodendrocytes and their applications to disease modeling and cell-based remyelination therapies. Recent developments in the field have seen the derivation of brain organoids from pluripotent stem cells, and protocols have been devised to incorporate oligodendrocytes within the organoids, which will also be reviewed.
Collapse
Affiliation(s)
- Amy McCaughey-Chapman
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Bronwen Connor
- Department of Pharmacology and Clinical Pharmacology, Centre for Brain Research, School of Medical Science, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
16
|
Borda M, Aquino JB, Mazzone GL. Cell-based experimental strategies for myelin repair in multiple sclerosis. J Neurosci Res 2023; 101:86-111. [PMID: 36164729 DOI: 10.1002/jnr.25129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 08/21/2022] [Accepted: 09/09/2022] [Indexed: 11/10/2022]
Abstract
Multiple sclerosis (MS) is an autoimmune demyelinating disorder of the central nervous system (CNS), diagnosed at a mean age of 32 years. CNS glia are crucial players in the onset of MS, primarily involving astrocytes and microglia that can cause/allow massive oligodendroglial cells death, without immune cell infiltration. Current therapeutic approaches are aimed at modulating inflammatory reactions during relapsing episodes, but lack the ability to induce very significant repair mechanisms. In this review article, different experimental approaches based mainly on the application of different cell types as therapeutic strategies applied for the induction of myelin repair and/or the amelioration of the disease are discussed. Regarding this issue, different cell sources were applied in various experimental models of MS, with different results, both in significant improvements in remyelination and the reduction of neuroinflammation and glial activation, or in neuroprotection. All cell types tested have advantages and disadvantages, which makes it difficult to choose a better option for therapeutic application in MS. New strategies combining cell-based treatment with other applications would result in further improvements and would be good candidates for MS cell therapy and myelin repair.
Collapse
Affiliation(s)
- Maximiliano Borda
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina
| | - Jorge B Aquino
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina.,CONICET, Comisión Nacional de Investigaciones Científicas y Técnicas
| | - Graciela L Mazzone
- Instituto de Investigaciones en Medicina Traslacional (IIMT), CONICET-Universidad Austral, Derqui, Pilar, Buenos Aires, Argentina.,CONICET, Comisión Nacional de Investigaciones Científicas y Técnicas
| |
Collapse
|
17
|
Min S, Byeon Y, Kim M, Lee Y, Lee SH, Lee Y, Farooqi HMU, Lee HK, Paeng DG. Production enhancement of human adipose-derived mesenchymal stem cells by low-intensity ultrasound stimulation. Sci Rep 2022; 12:22041. [PMID: 36543825 PMCID: PMC9772213 DOI: 10.1038/s41598-022-24742-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/18/2022] [Indexed: 12/24/2022] Open
Abstract
Low-intensity ultrasound (LIUS) enhances the proliferation rate of various mammalian stem cells through mechanical stimulation. This study quantitively finds suitable LIUS stimulation parameters for increasing the proliferation rate of human adipose-derived mesenchymal stem cells (hAdMSCs) for mass production. Various stimulation conditions of LIUS were assessed based on the beam pattern of the ultrasonic transducer and the attenuation of the sound waves. Using optimal LIUS stimulation parameters for enhancing proliferation of hAdMSCs taken from bromodeoxyuridine (BrdU) incorporation assay, long-term culture of hAdMSCs was performed for 16 days. The resultant hAdMSCs were characterized for various biomarkers such as CD34-, CD45-, CD73+, CD95+, CD105+ and cytological staining and a cytokine array assay. LIUS stimulation parameters found for enhancing the hAdMSCs proliferation were the frequency of 5 MHz, an intensity of 300 mWcm-2, a duration of 10 min per day, and continuous waves with a 100% duty cycle. The LIUS stimulated hAdMSCs group showed a 3.25-fold increase in the cell number compared to the control group after 16 days of culture. By confirming the effects of quantitatively measured LIUS stimulation on the enhancement of hAdMSCs proliferation, this study may be a foundation for the applications of LIUS stimulation in the industrial-scale production of hAdMSCs.
Collapse
Affiliation(s)
- Soohong Min
- EHL Bio Inc, Gyeonggi, South Korea ,grid.411277.60000 0001 0725 5207Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | | | - Min Kim
- EHL Bio Inc, Gyeonggi, South Korea
| | | | | | | | - Hafiz Muhammad Umer Farooqi
- grid.411277.60000 0001 0725 5207Department of Ocean System Engineering, Jeju National University, Jeju, South Korea
| | | | - Dong-Guk Paeng
- grid.411277.60000 0001 0725 5207Department of Ocean System Engineering, Jeju National University, Jeju, South Korea ,grid.27755.320000 0000 9136 933XDepartment of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
18
|
Shen Y, Cao X, Lu M, Gu H, Li M, Posner DA. Current treatments after spinal cord injury: Cell engineering, tissue engineering, and combined therapies. SMART MEDICINE 2022; 1:e20220017. [PMID: 39188731 PMCID: PMC11235943 DOI: 10.1002/smmd.20220017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/20/2022] [Indexed: 08/28/2024]
Abstract
Both traumatic and non-traumatic spinal cord injuries (SCIs) can be categorized as damages done to our central nervous system (CNS). The patients' physical and mental health may suffer greatly because of traumatic SCI. With the widespread use of motor vehicles and increasingly aged population, the occurrence of SCI is more frequent than before, creating a considerable burden to global public health. The regeneration process of the spinal cord is hampered by a series of events that occur following SCI like edema, hemorrhage, formation of cystic cavities, and ischemia. An effective strategy for the treatment of SCI and functional recovery still has not been discovered; however, recent advances have been made in bioengineering fields that therapies based on cells, biomaterials, and biomolecules have proved effective in the repair of the spinal cord. In the light of worldwide importance of treatments for SCI, this article aims to provide a review of recent advances by first introducing the physiology, etiology, epidemiology, and mechanisms of SCI. We then put emphasis on the widely used clinical treatments and bioengineering strategies (cell-based, biomaterial-based, and biomolecule-based) for the functional regeneration of the spinal cord as well as challenges faced by scientists currently. This article provides scientists and clinicians with a comprehensive outlook on the recent advances of preclinical and clinical treatments of SCI, hoping to help them find keys to the functional regeneration of SCI.
Collapse
Affiliation(s)
- Yingbo Shen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Xinyue Cao
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minhui Lu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Hongcheng Gu
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - Minli Li
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjingChina
| | - David A. Posner
- Molecular Immunity UnitCambridge Institute of Therapeutic Immunology and Infectious DiseasesDepartment of MedicineUniversity of CambridgeCambridgeUK
| |
Collapse
|
19
|
Hall A, Fortino T, Spruance V, Niceforo A, Harrop JS, Phelps PE, Priest CA, Zholudeva LV, Lane MA. Cell transplantation to repair the injured spinal cord. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2022; 166:79-158. [PMID: 36424097 PMCID: PMC10008620 DOI: 10.1016/bs.irn.2022.09.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Adam Hall
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Tara Fortino
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - Victoria Spruance
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Division of Kidney, Urologic, & Hematologic Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Alessia Niceforo
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States
| | - James S Harrop
- Department of Neurological and Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA, United States
| | - Patricia E Phelps
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, CA, United States
| | | | - Lyandysha V Zholudeva
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States; Gladstone Institutes, San Francisco, CA, United States
| | - Michael A Lane
- Drexel University, Philadelphia, PA, United States; Marion Murray Spinal Cord Research Center, Drexel University, Philadelphia, PA, United States.
| |
Collapse
|
20
|
Prasse T, Hofstetter CP. Editorial. Unleashing embryonic stem cells for treatment of human spinal cord injury. J Neurosurg Spine 2022; 37:317-319. [PMID: 35364572 DOI: 10.3171/2022.1.spine211573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
21
|
McKenna SL, Ehsanian R, Liu CY, Steinberg GK, Jones L, Lebkowski JS, Wirth E, Fessler RG. Ten-year safety of pluripotent stem cell transplantation in acute thoracic spinal cord injury. J Neurosurg Spine 2022; 37:321-330. [PMID: 35364569 DOI: 10.3171/2021.12.spine21622] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/20/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The purpose of this study was to evaluate the safety of oligodendrocyte progenitor cells (LCTOPC1) derived from human pluripotent stem cells administered between 7 and 14 days postinjury to patients with T3 to T11 neurologically complete spinal cord injury (SCI). The rationale for this first-in-human trial was based on evidence that administration of LCTOPC1 supports survival and potential repair of key cellular components and architecture at the SCI site. METHODS This study was a multisite, open-label, single-arm interventional clinical trial. Participants (n = 5) received a single intraparenchymal injection of 2 × 106 LCTOPC1 caudal to the epicenter of injury using a syringe positioning device. Immunosuppression with tacrolimus was administered for a total of 60 days. Participants were followed with annual in-person examinations and MRI for 5 years at the time of this report and will be followed with annual telephone questionnaires for 6 to 15 years postinjection. The primary endpoint was safety, as measured by the frequency and severity of adverse events related to the LCTOPC1 injection, the injection procedure, and/or the concomitant immunosuppression administered. The secondary endpoint was neurological function as measured by sensory scores and lower-extremity motor scores as measured by the International Standards for Neurological Classification of Spinal Cord Injury examinations. RESULTS No unanticipated serious adverse events related to LCTOPC1 have been reported with 98% follow-up of participants (49 of 50 annual visits) through the first 10 years of the clinical trial. There was no evidence of neurological decline, enlarging masses, further spinal cord damage, or syrinx formation. MRI results during the long-term follow-up period in patients administered LCTOPC1 cells showed that 80% of patients demonstrated T2 signal changes consistent with the formation of a tissue matrix at the injury site. CONCLUSIONS This study provides crucial first-in-human safety data supporting the pursuit of future human embryonic stem cell-derived therapies. While we cannot exclude the possibility of future adverse events, the experience in this trial provides evidence that this cell type can be well tolerated by patients, with an event-free period of up to 10 years. Based on the safety profile of LCTOPC1 obtained in this study, a cervical dose escalation trial was initiated (NCT02302157).
Collapse
Affiliation(s)
- Stephen L McKenna
- 1Department of Physical Medicine and Rehabilitation, Santa Clara Valley Medical Center, San Jose, California
- 2Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Reza Ehsanian
- 3Division of Physical Medicine and Rehabilitation, Department of Orthopedics & Rehabilitation, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Charles Y Liu
- 4USC Neurorestoration Center, Los Angeles, California
- 6Rancho Los Amigos National Rehabilitation Center, Downey, California
| | - Gary K Steinberg
- 2Department of Neurosurgery, Stanford University School of Medicine, Stanford, California
| | - Linda Jones
- 7Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Jane S Lebkowski
- 8Asterias Biotherapeutics, a wholly owned subsidiary of Lineage Cell Therapeutics, Carlsbad, California
- 9Regenerative Patch Technologies, LLC, Menlo Park, California
| | - Edward Wirth
- 8Asterias Biotherapeutics, a wholly owned subsidiary of Lineage Cell Therapeutics, Carlsbad, California
- 10Aspen Neuroscience, San Diego, California; and
| | - Richard G Fessler
- 11Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
22
|
Kiaie N, Gorabi AM, Loveless R, Teng Y, Jamialahmadi T, Sahebkar A. The regenerative potential of glial progenitor cells and reactive astrocytes in CNS injuries. Neurosci Biobehav Rev 2022; 140:104794. [PMID: 35902044 DOI: 10.1016/j.neubiorev.2022.104794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 10/16/2022]
Abstract
Cell therapeutic approaches focusing on the regeneration of damaged tissue have been a popular topic among researchers in recent years. In particular, self-repair scarring from the central nervous system (CNS) can significantly complicate the treatment of an injured patient. In CNS regeneration schemes, either glial progenitor cells or reactive glial cells have key roles to play. In this review, the contribution and underlying mechanisms of these progenitor/reactive glial cells during CNS regeneration are discussed, as well as their role in CNS-related diseases.
Collapse
Affiliation(s)
- Nasim Kiaie
- Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Armita Mahdavi Gorabi
- Department of Tissue Engineering and Applied Cell Science, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reid Loveless
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Yong Teng
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Tannaz Jamialahmadi
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
23
|
McComish SF, MacMahon Copas AN, Caldwell MA. Human Brain-Based Models Provide a Powerful Tool for the Advancement of Parkinson’s Disease Research and Therapeutic Development. Front Neurosci 2022; 16:851058. [PMID: 35651633 PMCID: PMC9149087 DOI: 10.3389/fnins.2022.851058] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease and affects approximately 2–3% of the population over the age of 65. PD is characterised by the loss of dopaminergic neurons from the substantia nigra, leading to debilitating motor symptoms including bradykinesia, tremor, rigidity, and postural instability. PD also results in a host of non-motor symptoms such as cognitive decline, sleep disturbances and depression. Although existing therapies can successfully manage some motor symptoms for several years, there is still no means to halt progression of this severely debilitating disorder. Animal models used to replicate aspects of PD have contributed greatly to our current understanding but do not fully replicate pathological mechanisms as they occur in patients. Because of this, there is now great interest in the use of human brain-based models to help further our understanding of disease processes. Human brain-based models include those derived from embryonic stem cells, patient-derived induced neurons, induced pluripotent stem cells and brain organoids, as well as post-mortem tissue. These models facilitate in vitro analysis of disease mechanisms and it is hoped they will help bridge the existing gap between bench and bedside. This review will discuss the various human brain-based models utilised in PD research today and highlight some of the key breakthroughs they have facilitated. Furthermore, the potential caveats associated with the use of human brain-based models will be detailed.
Collapse
Affiliation(s)
- Sarah F. McComish
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Adina N. MacMahon Copas
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Maeve A. Caldwell
- Department of Physiology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- *Correspondence: Maeve A. Caldwell,
| |
Collapse
|
24
|
Barak M, Fedorova V, Pospisilova V, Raska J, Vochyanova S, Sedmik J, Hribkova H, Klimova H, Vanova T, Bohaciakova D. Human iPSC-Derived Neural Models for Studying Alzheimer's Disease: from Neural Stem Cells to Cerebral Organoids. Stem Cell Rev Rep 2022; 18:792-820. [PMID: 35107767 PMCID: PMC8930932 DOI: 10.1007/s12015-021-10254-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2021] [Indexed: 12/05/2022]
Abstract
During the past two decades, induced pluripotent stem cells (iPSCs) have been widely used to study mechanisms of human neural development, disease modeling, and drug discovery in vitro. Especially in the field of Alzheimer’s disease (AD), where this treatment is lacking, tremendous effort has been put into the investigation of molecular mechanisms behind this disease using induced pluripotent stem cell-based models. Numerous of these studies have found either novel regulatory mechanisms that could be exploited to develop relevant drugs for AD treatment or have already tested small molecules on in vitro cultures, directly demonstrating their effect on amelioration of AD-associated pathology. This review thus summarizes currently used differentiation strategies of induced pluripotent stem cells towards neuronal and glial cell types and cerebral organoids and their utilization in modeling AD and potential drug discovery.
Collapse
Affiliation(s)
- Martin Barak
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Veronika Fedorova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Veronika Pospisilova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Jan Raska
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Simona Vochyanova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Jiri Sedmik
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic
| | - Hana Hribkova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Hana Klimova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
| | - Tereza Vanova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic
| | - Dasa Bohaciakova
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University Brno, Brno, Czech Republic.
- International Clinical Research Center, St. Anne's Faculty Hospital Brno, Brno, Czech Republic.
| |
Collapse
|
25
|
McTague A, Rossignoli G, Ferrini A, Barral S, Kurian MA. Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therapeutic Strategies. Front Genome Ed 2021; 3:630600. [PMID: 34713254 PMCID: PMC8525405 DOI: 10.3389/fgeed.2021.630600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Therapeutic advances for neurological disorders are challenging due to limited accessibility of the human central nervous system and incomplete understanding of disease mechanisms. Many neurological diseases lack precision treatments, leading to significant disease burden and poor outcome for affected patients. Induced pluripotent stem cell (iPSC) technology provides human neuronal cells that facilitate disease modeling and development of therapies. The use of genome editing, in particular CRISPR-Cas9 technology, has extended the potential of iPSCs, generating new models for a number of disorders, including Alzheimers and Parkinson Disease. Editing of iPSCs, in particular with CRISPR-Cas9, allows generation of isogenic pairs, which differ only in the disease-causing mutation and share the same genetic background, for assessment of phenotypic differences and downstream effects. Moreover, genome-wide CRISPR screens allow high-throughput interrogation for genetic modifiers in neuronal phenotypes, leading to discovery of novel pathways, and identification of new therapeutic targets. CRISPR-Cas9 has now evolved beyond altering gene expression. Indeed, fusion of a defective Cas9 (dCas9) nuclease with transcriptional repressors or activation domains allows down-regulation or activation of gene expression (CRISPR interference, CRISPRi; CRISPR activation, CRISPRa). These new tools will improve disease modeling and facilitate CRISPR and cell-based therapies, as seen for epilepsy and Duchenne muscular dystrophy. Genome engineering holds huge promise for the future understanding and treatment of neurological disorders, but there are numerous barriers to overcome. The synergy of iPSC-based model systems and gene editing will play a vital role in the route to precision medicine and the clinical translation of genome editing-based therapies.
Collapse
Affiliation(s)
- Amy McTague
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Giada Rossignoli
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Arianna Ferrini
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Serena Barral
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Manju A Kurian
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
26
|
Chang CY, Ting HC, Liu CA, Su HL, Chiou TW, Harn HJ, Lin SZ, Ho TJ. Differentiation of Human Pluripotent Stem Cells Into Specific Neural Lineages. Cell Transplant 2021; 30:9636897211017829. [PMID: 34665040 PMCID: PMC8529300 DOI: 10.1177/09636897211017829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Human pluripotent stem cells (hPSCs) are sources of several somatic cell
types for human developmental studies, in vitro disease modeling, and
cell transplantation therapy. Improving strategies of derivation of
high-purity specific neural and glial lineages from hPSCs is critical
for application to the study and therapy of the nervous system. Here,
we will focus on the principles behind establishment of neuron and
glia differentiation methods according to developmental studies. We
will also highlight the limitations and challenges associated with the
differentiation of several “difficult” neural lineages and delay in
neuronal maturation and functional integration. To overcome these
challenges, we will introduce strategies and novel technologies aimed
at improving the differentiation of various neural lineages to expand
the application potential of hPSCs to the study of the nervous
system.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Neuroscience Center, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Hsiao-Chien Ting
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ching-Ann Liu
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Medical Research, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Neuroscience Center, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
| | - Tzyy-Wen Chiou
- Department of Life Science, National Dong Hwa University, Hualien, Taiwan
| | - Horng-Jyh Harn
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Pathology, Hualien Tzu Chi Hospital and Tzu Chi University, Hualien, Taiwan
| | - Shinn-Zong Lin
- Bioinnovation Center, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Neurosurgery, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Tsung-Jung Ho
- Department of Chinese Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.,Integration Center of Traditional Chinese and Modern Medicine, Hualien Tzu Chi Hospital, Hualien, Taiwan.,School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
27
|
Das M, Pethe P. Differential expression of retinoic acid alpha and beta receptors in neuronal progenitors generated from human embryonic stem cells in response to TTNPB (a retinoic acid mimetic). Differentiation 2021; 121:13-24. [PMID: 34419635 DOI: 10.1016/j.diff.2021.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 07/26/2021] [Accepted: 08/09/2021] [Indexed: 02/07/2023]
Abstract
Retinoic acid (RA), an active metabolite of vitamin A, plays a critical role in the morphogenesis and differentiation of various tissues, especially in the central nervous system. RA is the most commonly used morphogen for the differentiation of human embryonic stem cells (hESCs) into neuronal progenitor cells (NPCs), an abundant source of healthy neuronal tissues for regenerative therapy. During the differentiation process, the activity of RA is governed by the involvement of RA receptor subtypes (RAR α, β, and γ) and their isoforms in the nucleus. However, little is known about the involvement of specific RAR subtypes during neuronal differentiation in humans. It is essential to elucidate the dynamic function of different RAR subtypes and their influence on the phenotypic outcome. Here in this study, we used TTNPB, an analog and stabilized form of retinoic acid that potently and selectively activates retinoic acid receptors. Here we determined the optimum concentration of TTNPBfor the efficient generation of early NPCs from hESCs. Using the optimized concentration of -TTNPB, we found that RARα is the functionally dominant subtype and controls the RA-mediated neurogenesis of hESCs. Importantly, we also found that the RARγ subtype also played a role in neuronal differentiation. In contrast, the RARβ subtype negatively correlates with neuronal differentiation. Therefore, pharmacological inhibition of RARβ in the TTNPB-mediated differentiation process could be used as a strategy to generate a large number of NPCs in vitro. In summary, our results show that RARα and RARγ play a vital role in the TTNPB-mediated neuronal differentiation of hESCs, -whereas RARβ acts as a negative regulator.
Collapse
Affiliation(s)
- Madhurima Das
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India.
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research, Symbiosis International (Deemed University), Pune, 412115, India.
| |
Collapse
|
28
|
Fessler RG, Liu CY, McKenna S, Fessler RD, Lebkowski JS, Priest CA, Wirth ED. Safety of direct injection of oligodendrocyte progenitor cells into the spinal cord of uninjured Göttingen minipigs. J Neurosurg Spine 2021; 35:389-397. [PMID: 34243160 DOI: 10.3171/2020.12.spine201853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE This study was conducted as a final proof-of-safety direct injection of oligodendrocyte progenitor cells into the uninjured spinal cord prior to translation to the human clinical trials. METHODS In this study, 107 oligodendrocyte progenitor cells (LCTOPC1, also known as AST-OPC1 and GRNOPC1) in 50-μL suspension were injected directly into the uninjured spinal cords of 8 immunosuppressed Göttingen minipigs using a specially designed stereotactic delivery device. Four additional Göttingen minipigs were given Hanks' Balanced Salt Solution and acted as the control group. RESULTS Cell survival and no evidence of histological damage, abnormal inflammation, microbiological or immunological abnormalities, tumor formation, or unexpected morbidity or mortality were demonstrated. CONCLUSIONS These data strongly support the safety of intraparenchymal injection of LCTOPC1 into the spinal cord using a model anatomically similar to that of the human spinal cord. Furthermore, this research provides guidance for future clinical interventions, including mechanisms for precise positioning and anticipated volumes of biological payloads that can be safely delivered directly into uninjured portions of the spinal cord.
Collapse
Affiliation(s)
- Richard G Fessler
- 1Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | | | - Stephen McKenna
- 3Department of Neurosurgery, Stanford University, Palo Alto; and
| | - R David Fessler
- 1Department of Neurosurgery, Rush University Medical Center, Chicago, Illinois
| | - Jane S Lebkowski
- 4Asterias Biotherapeutics, a wholly owned subsidiary of Lineage Cell Therapeutics, Carlsbad, California
| | - Catherine A Priest
- 4Asterias Biotherapeutics, a wholly owned subsidiary of Lineage Cell Therapeutics, Carlsbad, California
| | - Edward D Wirth
- 4Asterias Biotherapeutics, a wholly owned subsidiary of Lineage Cell Therapeutics, Carlsbad, California
| |
Collapse
|
29
|
Olmsted ZT, Paluh JL. Stem Cell Neurodevelopmental Solutions for Restorative Treatments of the Human Trunk and Spine. Front Cell Neurosci 2021; 15:667590. [PMID: 33981202 PMCID: PMC8107236 DOI: 10.3389/fncel.2021.667590] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 03/29/2021] [Indexed: 12/21/2022] Open
Abstract
The ability to reliably repair spinal cord injuries (SCI) will be one of the greatest human achievements realized in regenerative medicine. Until recently, the cellular path to this goal has been challenging. However, as detailed developmental principles are revealed in mouse and human models, their application in the stem cell community brings trunk and spine embryology into efforts to advance human regenerative medicine. New models of posterior embryo development identify neuromesodermal progenitors (NMPs) as a major bifurcation point in generating the spinal cord and somites and is leading to production of cell types with the full range of axial identities critical for repair of trunk and spine disorders. This is coupled with organoid technologies including assembloids, circuitoids, and gastruloids. We describe a paradigm for applying developmental principles towards the goal of cell-based restorative therapies to enable reproducible and effective near-term clinical interventions.
Collapse
|
30
|
Lanjewar SN, Sloan SA. Growing Glia: Cultivating Human Stem Cell Models of Gliogenesis in Health and Disease. Front Cell Dev Biol 2021; 9:649538. [PMID: 33842475 PMCID: PMC8027322 DOI: 10.3389/fcell.2021.649538] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/25/2021] [Indexed: 12/31/2022] Open
Abstract
Glia are present in all organisms with a central nervous system but considerably differ in their diversity, functions, and numbers. Coordinated efforts across many model systems have contributed to our understanding of glial-glial and neuron-glial interactions during nervous system development and disease, but human glia exhibit prominent species-specific attributes. Limited access to primary samples at critical developmental timepoints constrains our ability to assess glial contributions in human tissues. This challenge has been addressed throughout the past decade via advancements in human stem cell differentiation protocols that now offer the ability to model human astrocytes, oligodendrocytes, and microglia. Here, we review the use of novel 2D cell culture protocols, 3D organoid models, and bioengineered systems derived from human stem cells to study human glial development and the role of glia in neurodevelopmental disorders.
Collapse
Affiliation(s)
| | - Steven A. Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
31
|
Chamling X, Kallman A, Fang W, Berlinicke CA, Mertz JL, Devkota P, Pantoja IEM, Smith MD, Ji Z, Chang C, Kaushik A, Chen L, Whartenby KA, Calabresi PA, Mao HQ, Ji H, Wang TH, Zack DJ. Single-cell transcriptomic reveals molecular diversity and developmental heterogeneity of human stem cell-derived oligodendrocyte lineage cells. Nat Commun 2021; 12:652. [PMID: 33510160 PMCID: PMC7844020 DOI: 10.1038/s41467-021-20892-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/28/2020] [Indexed: 01/30/2023] Open
Abstract
Injury and loss of oligodendrocytes can cause demyelinating diseases such as multiple sclerosis. To improve our understanding of human oligodendrocyte development, which could facilitate development of remyelination-based treatment strategies, here we describe time-course single-cell-transcriptomic analysis of developing human stem cell-derived oligodendrocyte-lineage-cells (hOLLCs). The study includes hOLLCs derived from both genome engineered embryonic stem cell (ESC) reporter cells containing an Identification-and-Purification tag driven by the endogenous PDGFRα promoter and from unmodified induced pluripotent (iPS) cells. Our analysis uncovers substantial transcriptional heterogeneity of PDGFRα-lineage hOLLCs. We discover sub-populations of human oligodendrocyte progenitor cells (hOPCs) including a potential cytokine-responsive hOPC subset, and identify candidate regulatory genes/networks that define the identity of these sub-populations. Pseudotime trajectory analysis defines developmental pathways of oligodendrocytes vs astrocytes from PDGFRα-expressing hOPCs and predicts differentially expressed genes between the two lineages. In addition, pathway enrichment analysis followed by pharmacological intervention of these pathways confirm that mTOR and cholesterol biosynthesis signaling pathways are involved in maturation of oligodendrocytes from hOPCs.
Collapse
Affiliation(s)
- Xitiz Chamling
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Alyssa Kallman
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Weixiang Fang
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Cynthia A Berlinicke
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Joseph L Mertz
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Prajwal Devkota
- Department of Computer Science, University of Miami, Coral Gables, FL, 33146, USA
| | - Itzy E Morales Pantoja
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Zhicheng Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Calvin Chang
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Aniruddha Kaushik
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Katharine A Whartenby
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Hai-Quan Mao
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, 21287, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Whiting School of Engineering Baltimore, Maryland, MD, 21218, USA
| | - Hongkai Ji
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Donald J Zack
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| |
Collapse
|
32
|
Jeong HJ, Yun Y, Lee SJ, Ha Y, Gwak SJ. Biomaterials and strategies for repairing spinal cord lesions. Neurochem Int 2021; 144:104973. [PMID: 33497713 DOI: 10.1016/j.neuint.2021.104973] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 01/13/2023]
Abstract
Spinal cord injury (SCI) causes intractable disease and leads to inevitable physical, financial, and psychological burdens on patients and their families. SCI is commonly divided into primary and secondary injury. Primary injury occurs upon direct impact to the spinal cord, which leads to cell necrosis, axon disruption, and vascular loss. This triggers pathophysiological secondary injury, which has several phases: acute, subacute, intermediate, and chronic. These phases are dependent on post-injury time and pathophysiology and have various causes, such as the infiltration of inflammatory cells and release of cytokines that can act as a barrier to neural regeneration. Another unique feature of SCI is the glial scar produced from the reactive proliferation of astrocytes, which acts as a barrier to axonal regeneration. Interdisciplinary research is investigating the use of biomaterials and tissue-engineered fabrication to overcome SCI. In this review, we discuss representative biomaterials, including natural and synthetic polymers and nanomaterials. In addition, we describe several strategies to repair spinal cord injuries, such as fabrication and the delivery of therapeutic biocomponents. These biomaterials and strategies may offer beneficial information to enhance the repair of spinal cord lesions.
Collapse
Affiliation(s)
- Hun-Jin Jeong
- Department of Mechanical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| | - Yeomin Yun
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul, Republic of Korea
| | - Seung-Jae Lee
- Department of Mechanical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea; Department of Mechanical and Design Engineering, Wonkwang University, 54538, Iksan, Republic of Korea
| | - Yoon Ha
- Department of Neurosurgery, Spine and Spinal Cord Institute, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul, Republic of Korea; POSTECH Biotech Center, Pohang University of Science and Technology, San 31, Pohang, Gyeongbuk, Republic of Korea
| | - So-Jung Gwak
- Department of Chemical Engineering, Wonkwang University, 54538, Iksan, Republic of Korea.
| |
Collapse
|
33
|
Huntemer-Silveira A, Patil N, Brickner MA, Parr AM. Strategies for Oligodendrocyte and Myelin Repair in Traumatic CNS Injury. Front Cell Neurosci 2021; 14:619707. [PMID: 33505250 PMCID: PMC7829188 DOI: 10.3389/fncel.2020.619707] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
A major consequence of traumatic brain and spinal cord injury is the loss of the myelin sheath, a cholesterol-rich layer of insulation that wraps around axons of the nervous system. In the central nervous system (CNS), myelin is produced and maintained by oligodendrocytes. Damage to the CNS may result in oligodendrocyte cell death and subsequent loss of myelin, which can have serious consequences for functional recovery. Demyelination impairs neuronal function by decelerating signal transmission along the axon and has been implicated in many neurodegenerative diseases. After a traumatic injury, mechanisms of endogenous remyelination in the CNS are limited and often fail, for reasons that remain poorly understood. One area of research focuses on enhancing this endogenous response. Existing techniques include the use of small molecules, RNA interference (RNAi), and monoclonal antibodies that target specific signaling components of myelination for recovery. Cell-based replacement strategies geared towards replenishing oligodendrocytes and their progenitors have been utilized by several groups in the last decade as well. In this review article, we discuss the effects of traumatic injury on oligodendrocytes in the CNS, the lack of endogenous remyelination, translational studies in rodent models promoting remyelination, and finally human clinical studies on remyelination in the CNS after injury.
Collapse
Affiliation(s)
| | - Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| | - Megan A. Brickner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Ann M. Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
34
|
Goldman SA, Mariani JN, Madsen PM. Glial progenitor cell-based repair of the dysmyelinated brain: Progression to the clinic. Semin Cell Dev Biol 2021; 116:62-70. [PMID: 33414060 DOI: 10.1016/j.semcdb.2020.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 11/25/2022]
Abstract
Demyelinating disorders of the central white matter are among the most prevalent and disabling conditions in neurology. Since myelin-producing oligodendrocytes comprise the principal cell type deficient or lost in these conditions, their replacement by new cells generated from transplanted bipotential oligodendrocyte-astrocyte progenitor cells has emerged as a therapeutic strategy for a variety of primary dysmyelinating diseases. In this review, we summarize the research and clinical considerations supporting current efforts to bring this treatment approach to patients.
Collapse
Affiliation(s)
- Steven A Goldman
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Science, Denmark; Neuroscience Center, Rigshospitalet, Copenhagen, Denmark.
| | - John N Mariani
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Pernille M Madsen
- Center for Translational Neuromedicine and the Department of Neurology, University of Rochester Medical Center, Rochester, NY 14642, USA; Center for Translational Neuromedicine, University of Copenhagen Faculty of Health and Medical Science, Denmark
| |
Collapse
|
35
|
Hu XC, Lu YB, Yang YN, Kang XW, Wang YG, Ma B, Xing S. Progress in clinical trials of cell transplantation for the treatment of spinal cord injury: how many questions remain unanswered? Neural Regen Res 2021; 16:405-413. [PMID: 32985458 PMCID: PMC7996007 DOI: 10.4103/1673-5374.293130] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Spinal cord injury can lead to severe motor, sensory and autonomic nervous dysfunctions. However, there is currently no effective treatment for spinal cord injury. Neural stem cells and progenitor cells, bone marrow mesenchymal stem cells, olfactory ensheathing cells, umbilical cord blood stem cells, adipose stem cells, hematopoietic stem cells, oligodendrocyte precursor cells, macrophages and Schwann cells have been studied as potential treatments for spinal cord injury. These treatments were mainly performed in animals. However, subtle changes in sensory function, nerve root movement and pain cannot be fully investigated with animal studies. Although these cell types have shown excellent safety and effectiveness in various animal models, sufficient evidence of efficacy for clinical translation is still lacking. Cell transplantation should be combined with tissue engineering scaffolds, local drug delivery systems, postoperative adjuvant therapy and physical rehabilitation training as part of a comprehensive treatment plan to provide the possibility for patients with SCI to return to normal life. This review summarizes and analyzes the clinical trials of cell transplantation therapy in spinal cord injury, with the aim of providing a rational foundation for the development of clinical treatments for spinal cord injury.
Collapse
Affiliation(s)
- Xu-Chang Hu
- Key Laboratory of Bone and Joint Diseases Research of Gansu Province, Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yu-Bao Lu
- Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu Province, China
| | - Yong-Na Yang
- Department of Neurology, The First People's Hospital of Lanzhou City, Lanzhou, Gansu Province, China
| | - Xue-Wen Kang
- Key Laboratory of Bone and Joint Diseases Research of Gansu Province, Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Yong-Gang Wang
- Key Laboratory of Bone and Joint Diseases Research of Gansu Province, Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Bing Ma
- Key Laboratory of Bone and Joint Diseases Research of Gansu Province, Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| | - Shuai Xing
- Key Laboratory of Bone and Joint Diseases Research of Gansu Province, Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
36
|
Farzaneh M, Anbiyaiee A, Khoshnam SE. Human Pluripotent Stem Cells for Spinal Cord Injury. Curr Stem Cell Res Ther 2020; 15:135-143. [PMID: 31656156 DOI: 10.2174/1574362414666191018121658] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Revised: 07/16/2019] [Accepted: 09/17/2019] [Indexed: 12/27/2022]
Abstract
Spinal cord injury (SCI) as a serious public health issue and neurological insult is one of the most severe cause of long-term disability. To date, a variety of techniques have been widely developed to treat central nervous system injury. Currently, clinical treatments are limited to surgical decompression and pharmacotherapy. Because of their negative effects and inefficiency, novel therapeutic approaches are required in the management of SCI. Improvement and innovation of stem cell-based therapies have a huge potential for biological and future clinical applications. Human pluripotent stem cells (hPSCs) including embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are defined by their abilities to divide asymmetrically, self-renew and ultimately differentiate into various cell lineages. There are considerable research efforts to use various types of stem cells, such as ESCs, neural stem cells (NSCs), and mesenchymal stem cells (MSCs) in the treatment of patients with SCI. Moreover, the use of patient-specific iPSCs holds great potential as an unlimited cell source for generating in vivo models of SCI. In this review, we focused on the potential of hPSCs in treating SCI.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Amir Anbiyaiee
- Department of Obstetrics and Gynecology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz 61357-15794, Iran
| | - Seyed Esmaeil Khoshnam
- Physiology Research Center, Department of Physiology, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
37
|
Muckom RJ, Sampayo RG, Johnson HJ, Schaffer DV. Advanced Materials to Enhance Central Nervous System Tissue Modeling and Cell Therapy. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002931. [PMID: 33510596 PMCID: PMC7840150 DOI: 10.1002/adfm.202002931] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Indexed: 05/04/2023]
Abstract
The progressively deeper understanding of mechanisms underlying stem cell fate decisions has enabled parallel advances in basic biology-such as the generation of organoid models that can further one's basic understanding of human development and disease-and in clinical translation-including stem cell based therapies to treat human disease. Both of these applications rely on tight control of the stem cell microenvironment to properly modulate cell fate, and materials that can be engineered to interface with cells in a controlled and tunable manner have therefore emerged as valuable tools for guiding stem cell growth and differentiation. With a focus on the central nervous system (CNS), a broad range of material solutions that have been engineered to overcome various hurdles in constructing advanced organoid models and developing effective stem cell therapeutics is reviewed. Finally, regulatory aspects of combined material-cell approaches for CNS therapies are considered.
Collapse
Affiliation(s)
- Riya J Muckom
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Rocío G Sampayo
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| | - Hunter J Johnson
- Department of Bioengineering, UC Berkeley, Berkeley, CA 94704, USA
| | - David V Schaffer
- Department of Chemical and Biomolecular Engineering, UC Berkeley, Berkeley, CA 94704, USA
| |
Collapse
|
38
|
Fu Z, Wang H, Wu Y, Zhu T. Transplantation of neural stem cells encapsulated in hydrogels improve functional recovery in a cauda equina lesion model. Biosci Trends 2020; 14:360-367. [PMID: 33100289 DOI: 10.5582/bst.2020.03321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
This study explored the therapeutic effects of transplantation of neural stem cells (NSCs) encapsulated in hydrogels in a cauda equina lesion model. NSCs were isolated from neonatal dorsal root ganglion (nDRG) and cultured in three-dimensional porous hydrogel scaffolds. Immunohistochemistry, transmission electron microscopy and TUNEL assay were performed to detect the differentiation capability, ultrastructural and pathological changes, and apoptosis of NSCs. Furthermore, the functional recovery of sensorimotor reflexes was determined using the tail-flick test. NSCs derived from DRG were able to proliferate to form neurospheres and mainly differentiate into oligodendrocytes in the three-dimensional hydrogel culture system. After transplantation of NSCs encapsulated in hydrogels, NSCs differentiated into oligodendrocytes, neurons or astrocytes in vivo. Moreover, NSCs engrafted on the hydrogels decreased apoptosis and alleviated the ultrastructural and pathological changes of injured cauda equina. Behavioral analysis showed that transplanted hydrogel-encapsulated NSCs decreased the tail-flick latency and showed a neuroprotective role on injured cauda equina. Our results indicate transplantation of hydrogel-encapsulated NSCs promotes stem cell differentiation into oligodendrocytes, neurons or astrocytes and contributes to the functional recovery of injured cauda equina, suggesting that NSCs encapsulated in hydrogels may be applied for the treatment of cauda equina injury.
Collapse
Affiliation(s)
- Zhiyi Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huidong Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yujie Wu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tong Zhu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
39
|
García-León JA, García-Díaz B, Eggermont K, Cáceres-Palomo L, Neyrinck K, Madeiro da Costa R, Dávila JC, Baron-Van Evercooren A, Gutiérrez A, Verfaillie CM. Generation of oligodendrocytes and establishment of an all-human myelinating platform from human pluripotent stem cells. Nat Protoc 2020; 15:3716-3744. [PMID: 33097924 DOI: 10.1038/s41596-020-0395-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
Oligodendrocytes (OLs) are responsible for myelin production and metabolic support of neurons. Defects in OLs are crucial in several neurodegenerative diseases including multiple sclerosis (MS) and amyotrophic lateral sclerosis (ALS). This protocol describes a method to generate oligodendrocyte precursor cells (OPCs) from human pluripotent stem cells (hPSCs) in only ~20 d, which can subsequently myelinate neurons, both in vitro and in vivo. To date, OPCs have been derived from eight different hPSC lines including those derived from patients with spontaneous and familial forms of MS and ALS, respectively. hPSCs, fated for 8 d toward neural progenitors, are transduced with an inducible lentiviral vector encoding for SOX10. The addition of doxycycline for 10 d results in >60% of cells being O4-expressing OPCs, of which 20% co-express the mature OL marker myelin basic protein (MBP). The protocol also describes an alternative for viral transduction, by incorporating an inducible SOX10 in the safe harbor locus AAVS1, yielding ~100% pure OPCs. O4+ OPCs can be purified and either cryopreserved or used for functional studies. As an example of the type of functional study for which the derived cells could be used, O4+ cells can be co-cultured with maturing hPSC-derived neurons in 96/384-well-format plates, allowing the screening of pro-myelinating compounds.
Collapse
Affiliation(s)
- Juan Antonio García-León
- Departamento Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga-IBIMA, Universidad de Malaga, Malaga, Spain. .,Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain. .,Department of Development and Regeneration, Stem Cell Biology and Embryology, Stem Cell Institute, KU Leuven, Leuven, Belgium.
| | - Beatriz García-Díaz
- Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127; CNRS, UMR 7225; Sorbonne Universités, Université Pierre et Marie Curie Paris 06, UM-75, Paris, France.,Unidad de Gestión Clínica de Neurociencias, IBIMA, Hospital Regional Universitario de Málaga, Malaga, Spain
| | - Kristel Eggermont
- Department of Development and Regeneration, Stem Cell Biology and Embryology, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Laura Cáceres-Palomo
- Departamento Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga-IBIMA, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Katrien Neyrinck
- Department of Development and Regeneration, Stem Cell Biology and Embryology, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - Rodrigo Madeiro da Costa
- Department of Development and Regeneration, Stem Cell Biology and Embryology, Stem Cell Institute, KU Leuven, Leuven, Belgium
| | - José Carlos Dávila
- Departamento Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga-IBIMA, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Anne Baron-Van Evercooren
- Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127; CNRS, UMR 7225; Sorbonne Universités, Université Pierre et Marie Curie Paris 06, UM-75, Paris, France
| | - Antonia Gutiérrez
- Departamento Biologia Celular, Genetica y Fisiologia, Facultad de Ciencias, Instituto de Investigacion Biomedica de Malaga-IBIMA, Universidad de Malaga, Malaga, Spain.,Centro de Investigacion Biomedica en Red Sobre Enfermedades Neurodegenerativas, CIBERNED, Madrid, Spain
| | - Catherine M Verfaillie
- Department of Development and Regeneration, Stem Cell Biology and Embryology, Stem Cell Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
40
|
Bacon K, Lavoie A, Rao BM, Daniele M, Menegatti S. Past, Present, and Future of Affinity-based Cell Separation Technologies. Acta Biomater 2020; 112:29-51. [PMID: 32442784 PMCID: PMC10364325 DOI: 10.1016/j.actbio.2020.05.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Progress in cell purification technology is critical to increase the availability of viable cells for therapeutic, diagnostic, and research applications. A variety of techniques are now available for cell separation, ranging from non-affinity methods such as density gradient centrifugation, dielectrophoresis, and filtration, to affinity methods such as chromatography, two-phase partitioning, and magnetic-/fluorescence-assisted cell sorting. For clinical and analytical procedures that require highly purified cells, the choice of cell purification method is crucial, since every method offers a different balance between yield, purity, and bioactivity of the cell product. For most applications, the requisite purity is only achievable through affinity methods, owing to the high target specificity that they grant. In this review, we discuss past and current methods for developing cell-targeting affinity ligands and their application in cell purification, along with the benefits and challenges associated with different purification formats. We further present new technologies, like stimuli-responsive ligands and parallelized microfluidic devices, towards improving the viability and throughput of cell products for tissue engineering and regenerative medicine. Our comparative analysis provides guidance in the multifarious landscape of cell separation techniques and highlights new technologies that are poised to play a key role in the future of cell purification in clinical settings and the biotech industry. STATEMENT OF SIGNIFICANCE: Technologies for cell purification have served science, medicine, and industrial biotechnology and biomanufacturing for decades. This review presents a comprehensive survey of this field by highlighting the scope and relevance of all known methods for cell isolation, old and new alike. The first section covers the main classes of target cells and compares traditional non-affinity and affinity-based purification techniques, focusing on established ligands and chromatographic formats. The second section presents an excursus of affinity-based pseudo-chromatographic and non-chromatographic technologies, especially focusing on magnetic-activated cell sorting (MACS) and fluorescence-activated cell sorting (FACS). Finally, the third section presents an overview of new technologies and emerging trends, highlighting how the progress in chemical, material, and microfluidic sciences has opened new exciting avenues towards high-throughput and high-purity cell isolation processes. This review is designed to guide scientists and engineers in their choice of suitable cell purification techniques for research or bioprocessing needs.
Collapse
Affiliation(s)
- Kaitlyn Bacon
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Ashton Lavoie
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA
| | - Balaji M Rao
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA
| | - Michael Daniele
- Joint Department of Biomedical Engineering, North Carolina State University - University of North Carolina Chapel Hill, North Carolina, United States
| | - Stefano Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695-7905, USA; Biomanufacturing Training and Education Center (BTEC), North Carolina State University, Raleigh, NC 27695-7928, USA.
| |
Collapse
|
41
|
Modeling Neurodevelopmental Deficits in Tuberous Sclerosis Complex with Stem Cell Derived Neural Precursors and Neurons. ADVANCES IN NEUROBIOLOGY 2020. [PMID: 32578142 DOI: 10.1007/978-3-030-45493-7_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Tuberous sclerosis complex (TSC) is a rare genetic disorder that is caused by mutations in TSC1 or TSC2. TSC is a multi-organ disorder characterized by development of non-malignant cellular overgrowths, called hamartomas, in different organs of the body. TSC is also characterized as a neurodevelopmental disorder presenting with epilepsy and autism, and formation of cortical malformations ("tubers"), subependymal giant cell astrocytomas (SEGAs), and subependymal nodules (SENs) in the patient's brain. In this chapter, we are going to give an overview of neural stem cell and neuronal development in TSC. In addition, we will also describe previously developed animal models of TSC that display seizures, autistic-like behaviors, and neuronal cell abnormalities in vivo, and we will compare them to disease phenotypes detected with human stem cell derived neuronal cells in vitro. We will describe the effects of TSC-mutations in different neural cell subtypes, and discuss the mitochondrial function, autophagy, and synaptic development and functional deficits in the neurons. Finally, we will review utilization of these human TSC-patient derived neuronal models for drug screening to develop new treatment options for the neurological phenotypes seen in TSC patients.
Collapse
|
42
|
Chen SD, Li HQ, Cui M, Dong Q, Yu JT. Pluripotent stem cells for neurodegenerative disease modeling: an expert view on their value to drug discovery. Expert Opin Drug Discov 2020; 15:1081-1094. [PMID: 32425128 DOI: 10.1080/17460441.2020.1767579] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Neurodegenerative diseases have become a major global health concern, posing a huge disease burden on patients and their families. Although there has been rapid progress in the development of therapies, a lack of accurate disease models and efficient drug screening platforms have made achieving a breakthrough difficult. The technology of human-induced pluripotent stem cells (iPSCs) shows better recapitulation of disease pathophysiology and provides a more accessible supply of patient-specific samples compared to other modeling methods. It has been a powerful tool for mechanism exploration and drug development. AREAS COVERED This review describes the recent use of human iPSC-derived cells for modeling neurodegenerative disorders and discovering potential drugs. EXPERT OPINION Model systems based on iPSC-derived cells have created a paradigm shift in drug discovery. Accuracy, consistency, translatability, and cost-effectiveness are the four major focuses of academic and industrial communities to fulfill the potential of iPSC technology for their purposes. It is the art of balance between these four factors to generate efficacious outputs with maximum efficiency. Future studies should persist in refining this technology and promote its application in this field to benefit all the disease-affected population eventually.
Collapse
Affiliation(s)
- Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| | - Hong-Qi Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| | - Mei Cui
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University , Shanghai, China
| |
Collapse
|
43
|
Platt A, David BT, Fessler RG. Stem Cell Clinical Trials in Spinal Cord Injury: A Brief Review of Studies in the United States. MEDICINES 2020; 7:medicines7050027. [PMID: 32408562 PMCID: PMC7281746 DOI: 10.3390/medicines7050027] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 05/08/2020] [Accepted: 05/08/2020] [Indexed: 12/21/2022]
Abstract
Background: Although many therapeutic approaches have been attempted to treat spinal cord injury, cellular transplantation offers the greatest promise in reconstituting the architecture of the damaged cord. Methods: A literature review was conducted to search for clinical trials investigating stem cells as treatment for spinal cord injury in the United States. Results: Overall, eight studies met inclusion criteria. Of the included studies, four were identified as being terminated, suspended, or not yet recruiting. Two studies were identified as currently recruiting, including one phase one trial evaluating stereotactic injections of human spinal cord-derived neural stem cells in patients with chronic spinal cord injuries, and one trial of transplantation of autologous bone marrow derived stem cells via paraspinal injections, intravenous injections, and intranasal placement. One study was identified as an active study, a phase one trial of intrathecal injection of 100 million autologous, ex-vivo expanded, adipose-derived mesenchymal stem cells. One trial that was listed as completed is a phase 1/2a, dose escalation study, investigating stereotactic injection of human embryonic stem cell derived oligodendrocyte progenitor cells. Conclusions: Although few significant publications have emerged to this point, current trial results are promising.
Collapse
Affiliation(s)
- Andrew Platt
- Department of Surgery, Section of Neurosurgery, University of Chicago, Chicago, IL 60612, USA;
| | - Brian T. David
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Richard G. Fessler
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL 60612, USA;
- Correspondence: ; Tel.: +312-942-6644
| |
Collapse
|
44
|
Induced Pluripotent Stem Cell (iPSC)-Based Neurodegenerative Disease Models for Phenotype Recapitulation and Drug Screening. Molecules 2020; 25:molecules25082000. [PMID: 32344649 PMCID: PMC7221979 DOI: 10.3390/molecules25082000] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative diseases represent a significant unmet medical need in our aging society. There are no effective treatments for most of these diseases, and we know comparatively little regarding pathogenic mechanisms. Among the challenges faced by those involved in developing therapeutic drugs for neurodegenerative diseases, the syndromes are often complex, and small animal models do not fully recapitulate the unique features of the human nervous system. Human induced pluripotent stem cells (iPSCs) are a novel technology that ideally would permit us to generate neuronal cells from individual patients, thereby eliminating the problem of species-specificity inherent when using animal models. Specific phenotypes of iPSC-derived cells may permit researchers to identify sub-types and to distinguish among unique clusters and groups. Recently, iPSCs were used for drug screening and testing for neurologic disorders including Alzheimer’s disease (AD), amyotrophic lateral sclerosis (ALS), spinocerebellar atrophy (SCA), and Zika virus infection. However, there remain many challenges still ahead, including how one might effectively recapitulate sporadic disease phenotypes and the selection of ideal phenotypes and for large-scale drug screening. Fortunately, quite a few novel strategies have been developed that might be combined with an iPSC-based model to solve these challenges, including organoid technology, single-cell RNA sequencing, genome editing, and deep learning artificial intelligence. Here, we will review current applications and potential future directions for iPSC-based neurodegenerative disease models for critical drug screening.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW We review the ways in which stem cells are used in psychiatric disease research, including the related advances in gene editing and directed cell differentiation. RECENT FINDINGS The recent development of induced pluripotent stem cell (iPSC) technologies has created new possibilities for the study of psychiatric disease. iPSCs can be derived from patients or controls and differentiated to an array of neuronal and non-neuronal cell types. Their genomes can be edited as desired, and they can be assessed for a variety of phenotypes. This makes them especially interesting for studying genetic variation, which is particularly useful today now that our knowledge on the genetics of psychiatric disease is quickly expanding. The recent advances in cell engineering have led to powerful new methods for studying psychiatric illness including schizophrenia, bipolar disorder, and autism. There is a wide array of possible applications as illustrated by the many examples from the literature, most of which are cited here.
Collapse
Affiliation(s)
- Debamitra Das
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kyra Feuer
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marah Wahbeh
- Predoctoral Training Program in Human Genetics, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dimitrios Avramopoulos
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
46
|
Silvestro S, Bramanti P, Trubiani O, Mazzon E. Stem Cells Therapy for Spinal Cord Injury: An Overview of Clinical Trials. Int J Mol Sci 2020; 21:E659. [PMID: 31963888 PMCID: PMC7013533 DOI: 10.3390/ijms21020659] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/17/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022] Open
Abstract
Spinal cord injury (SCI) is a traumatic lesion that causes disability with temporary or permanent sensory and/or motor deficits. The pharmacological approach still in use for the treatment of SCI involves the employment of corticosteroid drugs. However, SCI remains a very complex disorder that needs future studies to find effective pharmacological treatments. SCI actives a strong inflammatory response that induces a loss of neurons followed by a cascade of events that lead to further spinal cord damage. Many experimental studies demonstrate the therapeutic effect of stem cells in SCI due to their capacity to differentiate into neuronal cells and by releasing neurotrophic factors. Therefore, they appear to be a valid strategy to use in the field of regenerative medicine. The purpose of this paper is to provide an overview of clinical trials, recorded in clinical trial.gov during 2005-2019, aimed to evaluate the use of stem cell-based therapy in SCI. The results available thus far show the safety and efficacy of stem cell therapy in patients with SCI. However, future trials are needed to investigate the safety and efficacy of stem cell transplantation.
Collapse
Affiliation(s)
- Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (S.S.); (P.B.)
| |
Collapse
|
47
|
Marotta N, Kim S, Krainc D. Organoid and pluripotent stem cells in Parkinson's disease modeling: an expert view on their value to drug discovery. Expert Opin Drug Discov 2020; 15:427-441. [PMID: 31899983 DOI: 10.1080/17460441.2020.1703671] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Introduction: Parkinson's disease is a devastating neurodegenerative disorder preferentially involving loss of dopaminergic neurons in the substantia nigra, leading to typical motor symptoms. While there are still no therapeutics to modify disease course, recent work using induced pluripotent stem cell (iPSC) and 3D brain organoid models have provided further insight into Parkinson's disease pathogenesis and potential therapeutic targets.Areas covered: This review highlights the generation of iPSC neurons and neural organoids as models for studying Parkinson's disease. It further discusses the recent work using patient-derived neurons from both familial and sporadic forms of Parkinson's to study disease pathogenic phenotypes and pathways. It additionally provides an evaluation of iPSC neurons and organoid models for therapeutic development in Parkinson's.Expert opinion: The use of Parkinson's disease patient-derived neurons and organoids provides us with the exciting opportunity to directly investigate pathogenic mechanisms and test drug compounds in human neurons. Future studies will involve generating more sophisticated models of brain organoids, studying neuronal pathways using larger patient cohorts, and routinely assessing therapeutics in these models.
Collapse
Affiliation(s)
- Nick Marotta
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Soojin Kim
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Dimitri Krainc
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
48
|
Chanoumidou K, Mozafari S, Baron-Van Evercooren A, Kuhlmann T. Stem cell derived oligodendrocytes to study myelin diseases. Glia 2019; 68:705-720. [PMID: 31633852 DOI: 10.1002/glia.23733] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/16/2022]
Abstract
Oligodendroglial pathology is central to de- and dysmyelinating, but also contributes to neurodegenerative and psychiatric diseases as well as brain injury. The understanding of oligodendroglial biology in health and disease has been significantly increased during recent years by experimental in vitro and in vivo preclinical studies as well as histological analyses of human tissue samples. However, for many of these diseases the underlying pathology is still not fully understood and treatment options are frequently lacking. This is at least partly caused by the limited access to human oligodendrocytes from patients to perform functional studies and drug screens. The induced pluripotent stem cell technology (iPSC) represents a possibility to circumvent this obstacle and paves new ways to study human disease and to develop new treatment options for so far incurable central nervous system (CNS) diseases. In this review, we summarize the differences between human and rodent oligodendrocytes, provide an overview of the different techniques to generate oligodendrocytes from human progenitor or stem cells and describe the results from studies using iPSC derived oligodendroglial lineage cells. Furthermore, we discuss future perspectives and challenges of the iPSC technology with respect to disease modeling, drug screen, and cell transplantation approaches.
Collapse
Affiliation(s)
| | - Sabah Mozafari
- Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127; CNRS, UMR 7225; Sorbonne Université UM-75, Paris, France
| | - Anne Baron-Van Evercooren
- Institut du Cerveau et de la Moelle Epinière-Groupe Hospitalier Pitié-Salpêtrière, INSERM, U1127; CNRS, UMR 7225; Sorbonne Université UM-75, Paris, France
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Münster, Germany
| |
Collapse
|
49
|
A First-in-Human, Phase I Study of Neural Stem Cell Transplantation for Chronic Spinal Cord Injury. Cell Stem Cell 2019; 22:941-950.e6. [PMID: 29859175 DOI: 10.1016/j.stem.2018.05.014] [Citation(s) in RCA: 215] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 04/25/2018] [Accepted: 05/14/2018] [Indexed: 12/14/2022]
Abstract
We tested the feasibility and safety of human-spinal-cord-derived neural stem cell (NSI-566) transplantation for the treatment of chronic spinal cord injury (SCI). In this clinical trial, four subjects with T2-T12 SCI received treatment consisting of removal of spinal instrumentation, laminectomy, and durotomy, followed by six midline bilateral stereotactic injections of NSI-566 cells. All subjects tolerated the procedure well and there have been no serious adverse events to date (18-27 months post-grafting). In two subjects, one to two levels of neurological improvement were detected using ISNCSCI motor and sensory scores. Our results support the safety of NSI-566 transplantation into the SCI site and early signs of potential efficacy in three of the subjects warrant further exploration of NSI-566 cells in dose escalation studies. Despite these encouraging secondary data, we emphasize that this safety trial lacks statistical power or a control group needed to evaluate functional changes resulting from cell grafting.
Collapse
|
50
|
Levi AD, Okonkwo DO, Park P, Jenkins AL, Kurpad SN, Parr AM, Ganju A, Aarabi B, Kim D, Casha S, Fehlings MG, Harrop JS, Anderson KD, Gage A, Hsieh J, Huhn S, Curt A, Guzman R. Emerging Safety of Intramedullary Transplantation of Human Neural Stem Cells in Chronic Cervical and Thoracic Spinal Cord Injury. Neurosurgery 2019; 82:562-575. [PMID: 28541431 DOI: 10.1093/neuros/nyx250] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 05/18/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Human central nervous system stem cells (HuCNS-SC) are multipotent adult stem cells with successful engraftment, migration, and region-appropriate differentiation after spinal cord injury (SCI). OBJECTIVE To present data on the surgical safety profile and feasibility of multiple intramedullary perilesional injections of HuCNS-SC after SCI. METHODS Intramedullary free-hand (manual) transplantation of HuCNS-SC cells was performed in subjects with thoracic (n = 12) and cervical (n = 17) complete and sensory incomplete chronic traumatic SCI. RESULTS Intramedullary stem cell transplantation needle times in the thoracic cohort (20 M HuCNS-SC) were 19:30 min and total injection time was 42:15 min. The cervical cohort I (n = 6), demonstrated that escalating doses of HuCNS-SC up to 40 M range were well tolerated. In cohort II (40 M, n = 11), the intramedullary stem cell transplantation needle times and total injection time was 26:05 ± 1:08 and 58:14 ± 4:06 min, respectively. In the first year after injection, there were 4 serious adverse events in 4 of the 12 thoracic subjects and 15 serious adverse events in 9 of the 17 cervical patients. No safety concerns were considered related to the cells or the manual intramedullary injection. Cervical magnetic resonance images demonstrated mild increased T2 signal change in 8 of 17 transplanted subjects without motor decrements or emerging neuropathic pain. All T2 signal change resolved by 6 to 12 mo post-transplant. CONCLUSION A total cell dose of 20 M cells via 4 and up to 40 M cells via 8 perilesional intramedullary injections after thoracic and cervical SCI respectively proved safe and feasible using a manual injection technique.
Collapse
Affiliation(s)
- Allan D Levi
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | - David O Okonkwo
- Department of Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Paul Park
- Department of Neurosurgery, University of Michigan, Ann Arbor, Michigan
| | - Arthur L Jenkins
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Shekar N Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ann M Parr
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota
| | - Aruna Ganju
- Department of Neurological Surgery, Northwestern Feinberg School of Medicine, Chicago, Illinois
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland, College Park, Maryland
| | - Dong Kim
- Department of Neurosurgery, University of Texas Health Science Center, Austin, Texas
| | - Steven Casha
- Department of Clinical Neurosciences and the Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Michael G Fehlings
- Division of Neurosurgery and Spinal Program, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - James S Harrop
- Department of Neurological Surgery, Thomas Jefferson University Hospital, Philadelphia, Pennsylvania
| | - Kim D Anderson
- Department of Neurological Surgery and the Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida
| | | | | | | | - Armin Curt
- Spinal Cord Injury Unit, Balgrist University Hospital, Zürich, Switzerland
| | - Raphael Guzman
- Department of Neurosurgery, University Hospital Basel, Basel, Switzerland
| |
Collapse
|